Partial Differential Equations

On trichotomy of positive singular solutions associated with the Hardy–Sobolev operator $\stackrel{\text{\tiny{$\boxtimes$}}}{\sim}$

Nirmalendu Chaudhuri^a, Florica C. Cîrstea^{b,1}

^aSchool of Mathematics and Applied Statistics, University of Wollongong, NSW 2522, Australia ^bSchool of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia

Abstract

In this Note, we present a complete classification of singularities of positive solutions of the equation $\Delta u + \frac{\mu}{|x|^2}u = h(u)$ in $\Omega \setminus \{0\}$, where Ω is a bounded domain of \mathbb{R}^N , $N \ge 3$, $0 \in \Omega$, and $0 < \mu < \frac{(N-2)^2}{4}$. The case $\mu = 0$ with $h(t) = t^q$, q > 1 were treated by Brezis and Véron.

Résumé

Sur la trichotomie des solutions positives singulières associées à l'opérateur de Hardy–Sobolev. Dans cette Note, nous présentons une classification complète des singularités de solutions positives de l'équation $\Delta u + \frac{\mu}{|x|^2}u = h(u)$ dans $\Omega \setminus \{0\}$, où Ω est un domaine borné de \mathbb{R}^N , $N \ge 3$, $0 \in \Omega$, et où $0 < \mu < \frac{(N-2)^2}{4}$. Le cas $\mu = 0$ avec $h(t) = t^q$, q > 1 a été traité par Brezis et Véron.

Version française abrégée

Soit Ω un domaine borné de \mathbb{R}^N $(N \ge 3)$ et $0 \in \Omega$. Pour tout $\mu > 0$, soit L_{μ} l'opérateur de Hardy–Sobolev défini par $L_{\mu} := -\left(\Delta + \frac{\mu}{|x|^2}\right)$. Grâce à l'inégalité de Hardy (voir, par exemple, [3] et [1]), l'opérateur $L_{\mu}^{-1} : L^2(\Omega) \to L^2(\Omega)$ est positif, compact et auto-adjoint pour tout $\mu \in (0, \mu^*)$, où $\mu^* := (N-2)^2/4$ est la meilleure constante dans l'inégalité de Hardy. Soit $h : \mathbb{R} \to \mathbb{R}$ une fonction localement lipschitzienne tels que h > 0 sur $(0, \infty)$ et h(0) = 0.

Pour tout $\mu \in (0, \mu^*)$, on considère le problème semilinéaire $L_{\mu}u + h(u) = 0$ dans $\Omega^* := \Omega \setminus \{0\}$ (c'est-à-dire (1)). On dit que $u \in C^1(\Omega^*)$ est une solution faible du problème (1) si u vérifie (1) au sens des distributions dans $\mathcal{D}'(\Omega^*)$. Si l'on suppose que h est régulière alors les estimations elliptiques standard impliquent que les solutions faibles du problème (1) sont dans $C^{\infty}(\Omega^*)$. En utilisant le principe du maximum fort (voir [10, Théorème 1.1]) on obtient que toute solution non négative et non identiquement nulle est alors positive dans Ω^* . De plus, on montre que toute solution positive u(x) du problème (1) tend vers l'infini quand |x| tend vers zéro (voir [5]). Notons que l'équation (1) peut avoir des solutions classiques dans Ω si la condition de Lipschitz locale sur h n'est pas vérifiée. Par exemple, $u(x) := |x|^{\lambda}$, $\lambda > 2$ est une telle solution pour l'équation $L_{\mu}u + (\lambda^2 + (N - 2)\lambda + \mu)u^{1-2/\lambda} = 0$ dans Ω .

On désigne par Φ_{μ}^{\pm} les solutions fondamentales de l'équation $L_{\mu}v = 0$ dans Ω^* (voir (2)). Guerch and Véron dans [9, Théorème 3.1] ont donné une condition nécessaire et suffisante sur *h* pour l'existence des solutions faibles du problème (1) qui vérifient $\lim_{|x|\to 0} u(x)/\Phi_{\mu}^+(x) \in \mathbb{R}$. Théorème 1.1 dans [9] fournit une condition suffisante sur *h* pour avoir une solution du problème (1) qui peut être prolongée comme une solution de la même équation dans $\mathcal{D}'(\Omega)$. Une question naturelle se pose : comment les solutions faibles du problème (1) peuvent-elles se comporter au voisinage

^a This work were partially supported by an Australian Research Council Grant of Professors Neil Trudinger and Xu-Jia Wang.

Email addresses: chaudhur@uow.edu.au (Nirmalendu Chaudhuri), florica@maths.usyd.edu.au (Florica C. Cîrstea)

¹Supported by the Australian Research Council

Preprint submitted to the Académie des sciences

de zéro? Le théorème suivant fournit la réponse sous une hypothèse de *variation régulière d'indice q* (q > 1) posée sur la fonction h, ce qui signifie que $\lim_{t\to\infty} h(\lambda t)/h(t) = \lambda^q$ pour chaque $\lambda > 0$, voir [11]. Soit $H(t) := \int_0^t h(s) ds$ pour t > 0. On donne une trichotomie des solutions positives du problème (1) dans le cas $q < q^*$, où q^* est défini par (3).

Théorème 0.1. Soient $N \ge 3$ et $\mu \in (0, \mu^*)$, où $\mu^* = \frac{(N-2)^2}{4}$. On suppose que h est une fonction à variation régulière d'indice $q \in (1, q^*)$. Soit $u \in C^1(\Omega^*)$ une solution faible positive du problème (1). Alors, quand $|x| \to 0$ on a :

- (A) soit $u(x)/\Phi_{\mu}^{-}(x)$ converge vers un nombre positif;
- **(B)** ou $u(x)/\Phi^+_{\mu}(x)$ converge vers un nombre positif;
- (C) ou $u(x)/\Phi_{\mu}^{+}(x)$ tend vers l'infini. Dans ce cas, la solution u vérifie de plus (4).

On note que (i) seules les solutions de la catégorie **A** sont dans $W^{1,2}(\Omega)$; (ii) q^* est l'exponent *critique* pour le Théorème 0.1 : Si $q > q^*$, alors pour toute solution positive u on montre que $\lim_{|x|\to 0} u(x)/\Phi_{\mu}^-(x) \in [0,\infty)$. Cette affirmation est aussi vrai pour $q = q^*$ si $h(t) = t^q$ (voir [5]); (iii) le cas N = 2 pour l'opérateur de Hardy L_{μ} défini par $-\Delta -\mu \left(|x|\log \frac{1}{|x|}\right)^{-2}$ avec $\mu \in (0, \frac{1}{4})$ est abordé dans [5], où on établit une version de Théorème 0.1 pour tout $q \in (1, \infty)$.

1. Introduction

Let Ω be a bounded domain of \mathbb{R}^N , $N \ge 3$ and $0 \in \Omega$. For any parameter $\mu > 0$, let $L_{\mu} := -(\Delta + \frac{\mu}{|x|^2})$ be the *Hardy–Sobolev operator*. Owing to the classical *Hardy inequality* (see, for example, [3] and [1]), the operator $L_{\mu}^{-1} : L^2(\Omega) \to L^2(\Omega)$ is positive-definite, compact and self-adjoint, for any μ in $(0, \mu^*)$, where $\mu^* := (N-2)^2/4$ is the best constant in the Hardy inequality. Let $h : \mathbb{R} \to \mathbb{R}$ be locally Lipschitz such that h > 0 on $(0, \infty)$ and h(0) = 0.

Let $\mu \in (0, \mu^*)$ and consider the semilinear equation

$$L_{\mu}u + h(u) = 0 \quad \text{in} \ \Omega^* := \Omega \setminus \{0\}. \tag{1}$$

We say that $u \in C^1(\Omega^*)$ is a *weak solution* of (1) if u satisfies (1) in the sense of distributions in $\mathcal{D}'(\Omega^*)$. If h is smooth, by standard elliptic estimates, weak solutions of (1) are $C^{\infty}(\Omega^*)$. By the strong maximum principle (Theorem 1.1 in [10]), any non-negative and non-trivial weak solution u of (1) is positive in Ω^* and $\liminf_{|x|\to 0} u(x) > 0$. Moreover, by careful use of the radial solutions of (1) and the comparison principle (Lemma 2.1), we infer that any positive solution of (1) blows-up at zero (see [5]). However, the equation (1) may admit classical solutions in Ω if the locally Lipschitz condition on h fails. For example, $u(x) := |x|^{\lambda}$, $\lambda > 2$ is a $C^2(\Omega)$ -solution of $L_{\mu}u + (\lambda^2 + (N - 2)\lambda + \mu)u^{1-2/\lambda} = 0$ in Ω .

Throughout this Note, Φ^{\pm}_{μ} denote the *fundamental solutions* of the equation $L_{\mu}v = 0$ in Ω^* , namely

$$\Phi_{\mu}^{\pm}(x) := |x|^{-\left(\frac{N-2}{2} \pm \sqrt{\mu^* - \mu}\right)} \quad \text{for } x \neq 0, \quad \mu \in (0, \mu^*).$$
⁽²⁾

Guerch and Véron [9, Theorem 3.1] provide a necessary and sufficient condition on *h* for the existence of weak solutions of (1) satisfying $\lim_{|x|\to 0} u(x)/\Phi_{\mu}^+(x) \in \mathbb{R}$. Among other results, Theorem 1.1 in [9] gives a sufficient condition on *h* for which a solution of (1) can be extended as a solution of the same equation in $\mathcal{D}'(\Omega)$. These results raise the issue of classifying the asymptotic behavior of weak solutions of (1) near zero. We answer this question under the assumption that *h* is *regularly varying at infinity of index q with q > 1* (in short, $h \in RV_q$), which means that $\lim_{t\to\infty} h(\lambda t)/h(t) = \lambda^q$ for any $\lambda > 0$, see [11]. Set $H(t) := \int_0^t h(s) ds$ for t > 0.

We reveal below a trichotomy of positive singular solutions of (1) in the *subcritical* case $q < q^*$, where

$$q^* := \frac{N+2+2\sqrt{\mu^*-\mu}}{N-2+2\sqrt{\mu^*-\mu}}.$$
(3)

Theorem 1.1. Let $N \ge 3$ and $\mu \in (0, \mu^*)$, where μ^* is the Hardy constant. We assume that h is regularly varying at infinity of index $q \in (1, q^*)$. Let $u \in C^1(\Omega^*)$ be a positive weak solution of (1). Then as $|x| \to 0$, we have:

(A) either $u(x)/\Phi_u^-(x)$ converges to a positive number;

(B) or $u(x)/\Phi^+_{\mu}(x)$ converges to a positive number;

(C) or $u(x)/\Phi_{\mu}^{+}(x)$ tends to ∞ , in which case

$$\lim_{|x| \to 0} \frac{1}{|x|} \int_{u(x)}^{\infty} \frac{ds}{\sqrt{H(s)}} = M, \quad M = M(\mu, q, N) := \left(\frac{2(q+1)}{N - (N-2)q + \mu(q-1)^2/2}\right)^{1/2}.$$
 (4)

Remarks.

- (i) By the usual translation of the form v(y) := u(x + ry) for |y| < 1, where r := |x|/2, $x \in \Omega^*$, together with the standard elliptic estimates for v, it follows that if $u(x) \le |x|^{-\alpha}$ for some $\alpha > 0$, then $|\nabla u| \le C|x|^{-(\alpha+1)}$ for some positive constant C independent of x. This asserts that only the Category A solutions are in $W^{1,2}(\Omega)$.
- (ii) The exponent q^* in (3) is *critical* for Theorem 1.1: If $q > q^*$, then for any positive solution u of (1) we have $\lim_{|x|\to 0} u(x)/\Phi_u^-(x) \in [0,\infty)$, hence $u \in W^{1,2}(\Omega)$. This assertion is true for $q = q^*$ if $h(t) = t^q$ (to appear in [5]).
- (iii) The 2-dimensional Hardy operator $L_{\mu} := -\Delta \mu \left(|x| \log \frac{1}{|x|} \right)^{-2}$ with $\mu \in (0, \frac{1}{4})$ is considered in [5], where we show that an appropriate version of the Theorem 1.1 is valid for any $q \in (1, \infty)$.

The analysis of weak solutions of (1) for the case $\mu = 0$ has been pioneered by Brezis and Véron [4] and subsequently studied by many other authors. Given $q \ge N/(N-2)$ and the equation

$$-\Delta u + u^q = 0 \quad \text{in} \quad \Omega^*, \tag{5}$$

it is known from [4] that any non-negative solution can be extended as a classical solution of (5) in Ω .

For 1 < q < N/(N-2), Véron [12], [13] gives a complete classification of isolated singularities of non-negative weak solutions of (5). More precisely, as $|x| \rightarrow 0$ any non-negative solution u of (5) satisfies one of the following: (i) either u(x) admits a finite limit and u can be extended as a C²-solution of (5) in Ω ; (ii) or $|x|^{N-2}u(x)$ converges to some positive constant; (iii) or $|x|^{2/(q-1)}u(x)$ converges to M(0, q, N). A simpler proof were obtained by Brezis and Oswald [2]. Recently, the above result of Véron were extended by Cîrstea and Du [6, Theorem 1.1] to equations of the form $-\Delta u + h(u) = 0$ in Ω^* for $h \in RV_q$ and 1 < q < N/(N-2).

2. Proof of Theorem 1.1

For a clear exposition and the purpose of this presentation, we outline a proof for the power nonlinearity $h(t) := t^q$. The complete proof for general nonlinearity h will appear in [5]. A function $v \in C^2(\Omega^*)$ is called a sub-solution (super-solution) of (1) if $L_{\mu}v + h(v) \le (\ge) 0$ in Ω^* . Throughout the proof we use the following comparison principle, which follows from Lemma 2.1 in [7].

Lemma 2.1 (Comparison principle). Let $N \geq 3$ and U be a smooth bounded domain in \mathbb{R}^N with $\overline{U} \subset \mathbb{R}^N \setminus \{0\}$. Let g be continuous on $(0, \infty)$ and g(t)/t be increasing in $(0, \infty)$. If $v_1, v_2 \in C^2(U)$ are positive functions such that

$$\begin{cases} L_{\mu}v_{1} + g(v_{1}) \le 0 \le L_{\mu}v_{2} + g(v_{2}) \text{ in } U, \\ \limsup_{x \to \partial U} [v_{1}(x) - v_{2}(x)] \le 0, \end{cases}$$
(6)

then $v_1 \leq v_2$ in U.

Let u be a positive weak solution of $L_{\mu}v + v^q = 0$ in Ω^* with $q \in (1, q^*)$. We have $u \in C^2(\Omega^*)$ and $\lim_{|x|\to 0} u(x) = \infty$. Without loss of generality, we can assume that the closed unit ball is strictly contained in Ω . Set

$$f^{\pm}(x) := \frac{u(x)}{\Phi^{\pm}_{\mu}(x)} \quad \text{for } x \in B_1^*(0) := B_1(0) \setminus \{0\}.$$

The above functions play a crucial role in our analysis. If $\limsup_{|x|\to 0} f^+(x) = c \in (0, \infty)$, from Guerch–Véron [9, Theorem 2.1] it follows that $f^+(x)$ converges to c as $|x| \to 0$. Hence u is of Category **B** in Theorem 1.1. We next prove that the Category A and C in Theorem 1.1 correspond to the remaining two cases, respectively:

I.
$$\limsup_{|x|\to 0} f^+(x) = 0;$$

II. $\limsup_{|x|\to 0} f^+(x) = \infty.$

This will be achieved via several steps. We first obtain a sharp upper-bound for $|x|^{2/(q-1)}u(x)$ by devising a family of super-solutions of (1) and using Lemma 2.1. Then we provide a positive radially symmetric solution w_{∞} of $L_{\mu}v+v^q = 0$ in $B_{1/2}^*(0)$ such that $cu \le w_{\infty} \le u$ in $B_{1/2}^*(0)$ for some constant c > 0. Step 3–Step 5 are concerned with positive radial solutions. In Step 3 we show that $\lim_{r\to 0} f^{\pm}(r)$ exists in $[0, \infty]$. We prove that solutions of Type I and II above are of Category A and C, respectively: We argue with radial solutions in Steps 4 and 5, then in the general case we use a reduction to radial symmetry (see Steps 6 and 7). The reduction procedure relies on Step 3 and the construction of w_{∞} in Step 2. We devise the super-solutions (sub-solutions) in Step 1 (Step 5) inspired by the work in [6] for $\mu = 0$.

Step 1. Sharp upper-bound for $|x|^{2/(q-1)}u(x)$: Let *M* be given by (4). We show that

$$\limsup_{|x|\to 0} |x|^{\frac{2}{q-1}} u(x) \le \widetilde{M}, \quad \text{where } \widetilde{M} = \widetilde{M}(q) := \left(\frac{2\sqrt{q+1}}{M(q-1)}\right)^{2/(q-1)}.$$
(7)

By direct calculation, we see that $\psi(x) := \widetilde{M} |x|^{-\frac{2}{q-1}}$ for $x \in B_1^*(0)$ satisfies $L_{\mu}v + v^q = 0$ in $B_1^*(0)$. Since $q < q^*$, we have $\lim_{|x|\to 0} |x|^{2/(q-1)} \Phi_{\mu}^+(x) = 0$. Thus to conclude (7), it is enough to prove that

$$u(x) \le \psi(x) + C\Phi^+_{\mu}(x)$$
 for $0 < |x| < 1$, where $C := \max_{|y|=1} u(y)$. (8)

Since $L_{\mu}\Phi_{\mu}^{+} = 0$ in $B_{1}^{*}(0)$, the function $\psi(x) + C\Phi_{\mu}^{+}(x)$ is a super-solution of $L_{\mu}v + v^{q} = 0$ in $B_{1}^{*}(0)$. Fix $\lambda > 0$ sufficiently large. Let $\varepsilon \in (0, 1)$ be small enough and define $\psi_{\varepsilon} : (\varepsilon, 1) \to (0, \infty)$ by

$$\psi_{\varepsilon}(r) := \widetilde{M}_{\varepsilon} \left(r - \varepsilon \right)^{-\frac{2}{q-1} \left(1 + \frac{\lambda}{\log(1/\varepsilon)} \right)} \quad \text{for } \varepsilon < r < 1, \ \widetilde{M}_{\varepsilon} > 0$$

By careful computations, there exists $\widetilde{M}_{\varepsilon} > 0$ such that $\widetilde{M}_{\varepsilon} \nearrow \widetilde{M}$ as $\varepsilon \to 0$ and $L_{\mu}\psi_{\varepsilon} + (\psi_{\varepsilon})^q \ge 0$ for $\varepsilon < |x| < 1$. Since $\lim_{r \searrow \varepsilon} \psi_{\varepsilon}(r) = \infty$, by the comparison principle in Lemma 2.1, we infer that $u(x) \le \psi_{\varepsilon}(|x|) + C\Phi_{\mu}^+(x)$ for $\varepsilon < |x| < 1$. By letting $\varepsilon \to 0$, we obtain (8) and conclude the proof of (7).

Step 2. Construction of w_{∞} : Using essentially the Harnack inequality [8, Theorem 8.20] and Step 1, it follows that there exists a constant K > 1, which is independent of u, such that

$$\max_{|x|=r} u(x) \le K \min_{|x|=r} u(x) \quad \text{for every } 0 < r < 1/2.$$
(9)

We construct below a positive radial solution w_{∞} of $L_{\mu}v + v^q = 0$ in $B^*_{1/2}(0)$ such that

$$u/K \le w_{\infty} \le u$$
 in $B_{1/2}^{*}(0)$. (10)

By the sub/super-solutions method, for every integer $n \ge 3$ there exists a positive solution w_n of

$$\begin{cases} L_{\mu}v + v^{q} = 0 & \text{in } A_{n} := \{x \in \mathbb{R}^{N} : 1/n < |x| < 1/2\}, \\ v(x) = \min_{|y| = |y|} u(y) & \text{for } x \in \partial A_{n}. \end{cases}$$
(11)

By Lemma 2.1, w_n is a unique solution to (11). Owing to the rotation symmetry of L_{μ} and the boundary condition, w_n is radially symmetric. By (9) we have $u/K \le w_n$ on ∂A_n for every $n \ge 3$. Since u/K is a sub-solution of (11), it follows from the comparison principle that $u/K \le w_n \le u$ and $w_m \le w_n$ in A_n for any $m \ge n \ge 3$. Thus, up to a subsequence, w_n converges to some w_{∞} in $C^2_{loc}(B^*_{1/2}(0))$ as $n \to \infty$. This w_{∞} satisfies the above-mentioned properties.

In Step 3–Step 5 we assume that u is a positive radial solution of $L_{\mu}v + v^q = 0$ in $B_1^*(0)$.

Step 3. *Existence of* $\lim_{r\to 0} f^{\pm}(r) \in [0, \infty]$: If we assume the contrary, then $\limsup_{r\to 0} f^{\pm}(r) > 0$ and there exists c > 0 such that $0 \le \liminf_{r\to 0} f^{\pm}(r) < c < \limsup_{r\to 0} f^{\pm}(r)$. Let $(r_n)_{n\ge 1}$ be a sequence that decreases to 0 as $n \to \infty$ and satisfies $\lim_{n\to\infty} f^{\pm}(r_n) = \liminf_{r\to 0} f^{\pm}(r)$. Then for sufficiently large $n_0 \in \mathbb{N}$, we have $u(r_n) \le c \Phi^{\pm}_{\mu}(r_n)$ for all $n \ge n_0$. Observe that for $n > n_0$ we have $L_{\mu}u + u^q \le 0 \le L_{\mu}\Phi^{\pm}_{\mu} + (\Phi^{\pm}_{\mu})^q$ in $r_n < |x| < r_{n_0}$. Thus by the comparison principle, $u(r) \le c \Phi^{\pm}_{\mu}(r)$ for all $r \in (0, r_{n_0})$. This being a contradiction with the choice of c, we conclude Step 3.

Step 4. *Radial solutions of Type* I *are of Category* A: Let *u* be a positive radial solution of $L_{\mu}v + v^q = 0$ in $B_1^*(0)$ such that $\lim_{r\to 0} f^+(r) = 0$. We conclude that $\lim_{r\to 0} f^-(r) \in (0, \infty)$ by showing the following: (i) $\frac{d}{dr}(f^-(r))$ is positive on (0, 1); (ii) the assumption $\lim_{r\to 0} f^-(r) = 0$ would lead to $\lim_{r\to 0} u(r) = 0$, which would contradict $\lim_{r\to 0} u(r) = \infty$.

To this end, we set $\gamma := N/2 + \sqrt{\mu^* - \mu}$ and $g(r) := r^{2\gamma+1-N} \frac{d}{dr}(f^-(r))$ for $r \in (0, 1)$. Since $\lim_{r\to 0} f^+(r) = 0$ and $\lim_{r\to 0} u(r) = \infty$, we conclude that $\lim_{r\to 0} g(r) = 0$. Moreover, *u* satisfies $g'(r) = r^{\gamma}u^q$ in (0, 1). By integrating this equation and multiplying it by $r^{N-1-2\gamma}$, we get

$$\frac{d}{dr}(f^{-}(r)) = b(r) > 0, \quad \text{where } b(r) := r^{N-1-2\gamma} \int_{0}^{r} s^{\gamma} u^{q}(s) \, ds \quad \text{for } r \in (0,1).$$
(12)

Hence $\lim_{r\to 0} f^-(r)$ exists in $[0,\infty)$. Assuming that $\lim_{r\to 0} f^-(r) = 0$, then we have: (a) for every $\varepsilon > 0$ there exists $r_{\varepsilon} > 0$ such that $u \le \varepsilon \Phi_{\mu}^-$ in $(0, r_{\varepsilon}]$; (b) integrating (12) yields $u(r) = \Phi_{\mu}^-(r) \int_0^r b(s) ds$ for every $r \in (0, 1)$.

Set $m_0 := \sqrt{\mu^* - \mu} - \frac{N-2}{2} < 0$. Using (a) and (b), we find a constant C > 0 independent of ε such that

$$u(r) \le C \varepsilon^q r^{2+qm_0} \quad \text{for every } r \in (0, r_{\varepsilon}).$$
(13)

Let $m_k := 2 + q m_{k-1}$ for any integer $k \ge 1$ and $\tilde{q} := 2/(q-1)$. We define $q^{\#}$ as follows

$$q^{\#} := \frac{N+2-2\sqrt{\mu^*-\mu}}{N-2-2\sqrt{\mu^*-\mu}}.$$
(14)

Note that $q^* < q^{\#}$. Using $q < q^{\#}$, we deduce that $m_k > m_{k-1}$ and $m_k = -\tilde{q} + (\tilde{q} + m_0)q^k$ for every integer $k \ge 1$. Since q > 1 and the coefficient of q^k is positive, it follows that $\lim_{k\to\infty} m_k = \infty$. Therefore, $m_j > 0$ for sufficiently large j. Since $\varepsilon > 0$ is arbitrary, (13) yields that $\lim_{r\to 0} u(r)/r^{m_1} = 0$. If $m_1 \ge 0$, it follows that $\lim_{r\to 0} u(r) = 0$. If $m_1 < 0$, by using (13) in (b) we iterate the above arguments and find that $\lim_{r\to 0} u(r)/r^{m_j} = 0$ for some $m_j > 0$. Thus both the cases lead to $\lim_{r\to 0} u(r) = 0$, which is a contradiction. Hence u is of Category **A** for every $q \in (1, q^{\#})$.

Step 5. *Radial solutions of Type* **II** *are of Category* **C**: Let *u* be a positive radial solution of $L_{\mu}v + v^q = 0$ in $B_1^*(0)$ such that $\limsup_{r\to 0} f^+(r) = \infty$. By Step 3 we have $\lim_{r\to 0} u(r)/\Phi_{\mu}^+(r) = \infty$. Proving that *u* is of Category C means that $\lim_{r\to 0} r^{2/(q-1)}u(r) = \widetilde{M}$ with \widetilde{M} given by (7). By Step 1, it remains to show that $\liminf_{r\to 0} r^{2/(q-1)}u(r) \ge \widetilde{M}$. This will be achieved by establishing the following inequality

$$Mr^{-2/(q-1)} \le u(r) + M\Phi_{\mu}^{+}(r)$$
 for every $r \in (0, 1).$ (15)

Since $\lim_{r\to 0} r^{-2/(q-1)}/\Phi^+_{\mu}(r) = \infty$, we cannot directly conclude (15) for *r* close to zero. The idea is to fix $\varepsilon > 0$ small and devise a suitable family of sub-solutions φ_{ε} of $L_{\mu}v + v^q = 0$ in $B_1^*(0)$ such that:

 $(P_1) \varphi_{\varepsilon}(r)$ increases to $\widetilde{M}r^{-2/(q-1)}$ as ε decreases to 0;

 $(P_2) \varphi_{\varepsilon}(r) \le u(r) + \widetilde{M} \Phi_u^+(r)$ for every $r \in (0, 1)$.

The construction of φ_{ε} completes Step 5. Indeed, letting $\varepsilon \to 0$ in (P_2) and using (P_1) yields (15).

Let $\alpha > 0$ to be specified in (17) and define φ_{ε} by

$$\varphi_{\varepsilon}(r) := \left(\widetilde{M}^{-\frac{(q-1)}{2}}r + (\varepsilon r^{\alpha})^{\frac{q-1}{2}}\right)^{-\frac{2}{q-1}} \quad \text{for every } r \in (0,1).$$
(16)

For sufficiently small $\tau = \tau(N,\mu) > 0$, we can choose a smaller positive number ν that is independent of q such that $L_{\mu}\varphi_{\varepsilon} + (\varphi_{\varepsilon})^q \le 0$ in $B_1^*(0)$ for the particular choice of α given by

$$\alpha := \begin{cases} (N-2)/2 + \sqrt{\mu^* - \mu} & \text{if } q^* - \tau < q < q^*, \\ 2/(q-1+\nu) & \text{if } 1 < q \le q^* - \tau. \end{cases}$$
(17)

We see that (P_1) holds for φ_{ε} in (16). We only need to prove (P_2) . The key ingredient is to establish that

 $\lim_{r \to 0} r^{\alpha} w(r) = \infty \text{ for any positive radial solution } w \text{ of } L_{\mu}v + v^{q} = 0 \text{ in } B_{1}^{*}(0), \text{ subject to } \lim_{r \to 0} v(r)/\Phi_{\mu}^{+}(r) = \infty.$ (18)

Assuming the validity of (18), we verify (P_2) and complete Step 5. Indeed, (18) implies in particular that $r^{\alpha}u(r) \rightarrow \infty$ as $r \rightarrow 0$. Thus for some $r_{\varepsilon} > 0$ we have $r^{-\alpha}/\varepsilon \leq u(r)$ for every $r \in (0, r_{\varepsilon}]$. From (16) we have $\varphi_{\varepsilon}(r) \leq r^{-\alpha}/\varepsilon$ for $r \in (0, 1)$. Hence the inequality in (P_2) holds for every $r \in (0, r_{\varepsilon}]$. Since $\varphi_{\varepsilon}(1) \leq \widetilde{M}$ and $u + \widetilde{M}\Phi^+_{\mu}$ is a super-solution of $L_{\mu}v + v^q = 0$ in $B_1^*(0)$, by the comparison principle, (P_2) holds in $[r_{\varepsilon}, 1)$. This proves the validity of (P_2) .

Proof of (18). Since v > 0, there exists a large integer m > 0 such that $v = (q^* - \tau - 1)/m$. Set

 $J_0 := (q^* - \tau, q^*)$ and $J_i := (q^* - \tau - i\nu, q^* - \tau - (i - 1)\nu]$ for i = 1, 2, ..., m.

Hence $(1, q^*) = \bigcup_{i=0}^m J_i$. To achieve (18) for any $q \in (1, q^*)$, we proceed by induction.

(i) If $q \in J_0$, then the assertion of (18) follows from the definition of α in (17) and $\lim_{r\to 0} w(r)/\Phi_{\mu}^+(r) = \infty$.

(ii) Let $i \in \{0, 1, \dots, m-1\}$ and assume that (18) is true for any $q \in J_i$. We prove that (18) is true for any $q \in J_{i+1}$.

To this aim, let $q \in J_{i+1}$ and w be an arbitrary positive radial solution of the problem in (18). From the definition of α in (17), we have $\alpha = 2/(q - 1 + \nu)$. We choose $q_1 \in J_i$ such that $q_1 < q + \nu$. Since $w(r) \to \infty$ as $r \to 0$, there exists $0 < r_1 < 1$ such that $(w(r))^q \le (w(r))^{q_1}$ for every $r \in (0, r_1)$. By [9, Remark 3.1], for each $k \in \mathbb{N}$ there exists a unique positive solution ν_k of the following equation

$$v''(r) + \frac{N-1}{r}v'(r) + \frac{\mu}{r^2}v(r) = v^{q_1}(r), \quad 0 < r < r_1$$

subject to $\lim_{r\to 0} v(r)/\Phi_{\mu}^{+}(r) = k$ and $v(r_1) = 0$. By the comparison principle, v_k is non-decreasing in k and $v_k \le w$ in $(0, r_1)$. Let $v_{\infty}(r) := \lim_{k\to\infty} v_k(r)$ for $r \in (0, r_1)$, so that $v_{\infty} \le w$ in $(0, r_1)$. Standard regularity arguments show that, up to a subsequence, $v_k \to v_{\infty}$ in $C_{\text{loc}}^2(0, r_1)$ as $k \to \infty$ and v_{∞} is a positive radial solution of $L_{\mu}v + v^{q_1} = 0$ in $B_1^*(0)$ with $\lim_{r\to 0} v_{\infty}(r)/\Phi_{\mu}^+(r) = \infty$. Since $q_1 \in J_i$, by the induction hypothesis applied to v_{∞} and the argument after (18), we have $\lim_{r\to 0} r^{2/(q_1-1)}v_{\infty}(r) = \widetilde{M}(q_1) > 0$. Using $q_1 < q + v$, we find $\lim_{r\to 0} r^{2/(q_1-1+v)}w(r) = \infty$. This concludes Step 5.

Step 6. Reduction to radial symmetry for Type I solutions: We show that any positive solution of $L_{\mu}u + u^q = 0$ in Ω^* with $\lim_{|x|\to 0} f^+(x) = 0$ must be of Category A. Let \mathbb{S}^{N-1} be the unit sphere in \mathbb{R}^N and $(r, \sigma) \in (0, \infty) \times \mathbb{S}^{N-1}$ denote the polar coordinates in $\mathbb{R}^N \setminus \{0\}$. For any function $v(r, \sigma)$, its spherical mean $\overline{v}(r)$ is defined by

$$\overline{v}(r) := \frac{1}{|\mathbb{S}^{N-1}|} \int_{\mathbb{S}^{N-1}} v(r, \sigma) \, d\sigma.$$

By averaging the equation $L_{\mu}u + u^q = 0$ in $B_1^*(0)$ and using Jensen's inequality, we find $L_{\mu}\overline{u} = -\overline{(u^q)} \le -(\overline{u})^q$ in (0, 1). By Step 3 applied to the sub-solution \overline{u} , we know that $\lim_{r\to 0} \overline{u}(r)/\Phi_{\mu}^-(r)$ exists in $[0, \infty]$. By Lemmas 2.1 and 2.3 in [9], the ratio $(u(r, \sigma) - \overline{u}(r))/\Phi_{\mu}^-(r)$ converges to 0 as $r \to 0$, uniformly in $\sigma \in \mathbb{S}^{N-1}$. Hence $u(r, \sigma)/\Phi_{\mu}^-(r)$ admits a limit in $[0, \infty]$ as $r \to 0$, uniformly in $\sigma \in \mathbb{S}^{N-1}$. Consequently, $\lim_{|x|\to 0} f^-(x)$ exists in $[0, \infty]$. To conclude Step 6, we apply Step 4 to w_{∞} constructed in Step 2.

Step 7. Reduction to radial symmetry for Type **II** solutions: Let *u* be a positive solution of $L_{\mu}v + v^q = 0$ in Ω^* such that $\limsup_{|x|\to 0} f^+(x) = \infty$. We construct w_{∞} as in Step 2. By (10) and Step 3, we find $\lim_{r\to 0} w_{\infty}(r)/\Phi_{\mu}^+(r) = \infty$. Applying Step 5 to w_{∞} , together with (10) and Step 1, it follows that *u* must be of category **C**.

References

- Adimurthi, N. Chaudhuri, M. Ramaswamy, An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc. 130 (2002) 489–505.
- [2] H. Brezis, L. Oswald, Singular solutions for some semilinear elliptic equations, Arch. Rational Mech. Anal. 99 (1987) 249–259.
- [3] H. Brezis, J.L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997) 443-469.
- [4] H. Brezis, L. Véron, Removable singularities of some nonlinear elliptic equations, Arch. Rational Mech. Anal. 75 (1980) 1–6.
- [5] N. Chaudhuri, F.C. Cîrstea, On classification of isolated singularities of solutions associated with the Hardy–Sobolev operator, in preparation.
 [6] F.C. Cîrstea, Y. Du, Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity, J. Funct. Anal. 250 (2007)
- 317–346.
- [7] F.C. Cîrstea, V. Rădulescu, Extremal singular solutions for degenerate logistic-type equations in anisotropic media, C. R. Math. Acad. Sci. Paris 339 (2004) 119–124.
- [8] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, Berlin, 1983.
- [9] B. Guerch, L. Véron, Local properties of stationary solutions of some nonlinear singular Schrödinger equations, Rev. Mat. Iberoamericana 7 (1991) 65–114.
- [10] P. Pucci, J. Serrin, The strong maximum principle revisited, J. Differential Equations 196 (2004) 1-66.
- [11] E. Seneta, Regularly Varying Functions, in: Lecture Notes in Math., Vol. 508, Springer-Verlag, Berlin, Heidelberg, 1976.
- [12] L. Véron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal., T.M.A. 5 (1981) 225–242.
- [13] L. Véron, Weak and strong singularities of nonlinear elliptic equations, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983), Proc. Sympos. Pure Math. 45, 477–795, Amer. Math. Soc., Providence, RI, 1986.