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Abstract. We derive a simple formula for the action of a finite crystal-
lographic Coxeter group on the cohomology of its associated complex toric
variety, using the method of counting rational points over finite fields, and the
Hodge structure of the cohomology. Various applications are given, including
the determination of the graded multiplicity of the reflection representation.

1. Introduction and statement of main result

Let V be an vector space of finite dimension n over R. Let Φ be a root system
in V , and let W be the associated Coxeter group, which is generated by the
reflections in hyperplanes orthogonal to the roots; we take W to be finite and
crystallographic, and write 〈−,−〉 for a W -invariant positive definite bilinear
form on V . Assume chosen a simple system Π ⊆ Φ, which forms a basis of V .
Let L := ZΦ be the root lattice, and M := {v ∈ V | 〈v, α〉 ∈ Z ∀ α ∈ L} be the
corresponding weight lattice.

As explained in [F], there is a fan ∆ = ∆W of convex polynedral cones in M ,
and hence a “toric variety” associated with this data. This is a smooth complex
projective variety, which we shall denote by TW . This variety, and hence its
cohomology, carries a natural action of the group W . In this work we shall
determine this action, in the sense that we shall give an explicit formula for the
equivariant Poincaré polynomial

PW (t, w) :=
∑
i≥0

Trace(w,H i(TW ,C))ti ∈ C[t],

for each element w ∈ W .
Equivalently, if R(W ) denotes the complex character ring of W , we shall

determine the element

PW (t) :=
∑
i

H i(TW ,C)ti ∈ R(W )[t]
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by means of its value on elements w ∈ W . This question arises, among other
places, in the study (cf. [DP, DPGM]) of compactifications of reductive groups
and the cohomology of complete symmetric varieties.

This problem was addressed by different methods by Procesi in [P]. He made
use of the fact that TW may be described in terms of repeated blowups, and
the cohomology of the blowup of a space along a subspace is straightforward to
compute. Procesi’s result is well suited to the recursive determination of PW (t).

Stembridge, in [St], studied the same problem indirectly, using a result of
Danilov [Da] to identify the cohomology ring with a certain commutative algebra.
His result [St, Corollary 1.6] is similar to our Theorem 1.1 below, but retains
a recursive flavour. The main thrust of [St] is the identification of the total
cohomology with a permutation representation of W . In their work [DoLu,
Theorem 2.1] Dolgachev and Lunts also prove the same formula as Stembridge,
using the T -equivariant cohomology of the toric variety TW . In the Appendix
below, we prove that the Dolgachev-Lunts-Stembridge formula is equivalent to
ours.

In this work we use the method of counting rational points over finite fields,
combined with the Hodge structure of the cohomology, developed in [Le2, DL,
KL1, KL2]. This results in a quick and direct derivation of a closed formula for
PW (w, t), which is quite easy to evaluate in many cases. Some consequences of
the general formula are discussed in §§3,4; included among these are the fact
that the alternating representation of W does not occur in H∗(TW ,C), and a
formula giving the graded multiplicity of the reflection representation of W in
the cohomology ring (see §4.1).

The case w = 1 of our formula (1.2) below was proved by Fulton in [F,
§4.5], for smooth complete toric varieties T which includes our TW ; the weight
filtration of the cohomology H∗(T ,C) is also determined for these T . Our work
may be regarded as an equivariant generalisation of the results in [F, loc. cit.]
for the particular varieties TW .

We proceed now to state our basic formula.
For each subset J ⊆ Π, let WJ be the corresponding parabolic subgroup

generated by the reflections in the hyperplanes orthogonal to the roots in J , and
VJ the linear span of J .

Theorem 1.1. Let Φ,Π,W and TW be as above. Then H i(TW ,C) = 0 if i is odd.
The even dimensional cohomology is described as follows. For each J ⊆ Π, let
γJ(t) be the C[t]-valued class function on WJ given by γJ,t(w) := detVJ

(t2 − w),
where this is interpreted as 1 if J = ∅. Then

(1.2) PW (t) =
∑
J⊆Π

IndWWJ
(γJ,t).

This may be reformulated as follows.
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Corollary 1.3. Maintain the above notation. For each subset J ⊆ Π, let ρJ,i
be the ith exterior power of the (reflection) representation of WJ on VJ (i =
1, . . . , |J |). Then

(1.4) PW (t) =
n∑
i=0

(−t2)i
∑
J⊆Π

|J |≥i

(−1)|J | IndWWJ
ρJ,|J |−i.

Proof. If w ∈ WJ has eigenvalues λ1, . . . , λ|J | on VJ , then detVJ
(t2 − w) =∏|J |

j=1(t2 − λj). It follows that

γJ,t(w) =

|J |∑
i=0

t2(|J |−i)(−1)iρJ,i(w).

The assertion is now immediate from Theorem 1.1. �

Theorem 1.1 may be restated as the assertion that H2i+1(TW ,C) = 0 for all
i, which of course is well known (cf. [F, Prop., p.92], or (2.1)(iii) below), while
as W -module,

(1.5) H2i(TW ,C) ∼= (−1)i
∑
J⊆Π

|J |≥i

(−1)|J | IndWWJ
ρJ,|J |−i.

2. Proof of the main theorem

Our basic tools will be the Hodge structure of H∗(TW ), and the counting
of rational points over finite fields (cf. [F, p. 94] and [KL1, KL2, Le3]). The
following result is well known.

Lemma 2.1. (i) Let Z = Z(∆) be the toric variety associated with a fan ∆.
If dk is the number of k-dimensional polyhedral cones in ∆ (k = 1, . . . , n =
dimZ), then the (non-equivariant) compactly supported weight polynomial (for
the definition see [DL, (1.5)]) is given by

Wc(Z, t) =
n∑
k=0

dk(t
2 − 1)n−k.

(ii) [F, p. 94] The number of points of the Z-scheme Z over Fq is

|Z(Fq)| =
n∑
k=0

dk(q − 1)n−k := S(q).
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(iii)1 If ∆ is simplicial and complete, in particular if Z is non-singular and
projective, then Z has only even cohomology. Moreover H2j(Z,C) is a pure
Hodge structure of type (j, j). Thus Z is mixed Tate in the sense of [KL2].

Proof. The statements (i) and (ii) may be found in [F, pp. 94,104] and in [DL,
(2.8),(3.3),§5].

If ∆ is simplicial and complete, then the compact supports weight polynomial
Wc(Z, 1) = dimH∗c (Z,C) =

∑
j dimHj

c (Z,C), (see [F, pp. 93,94]). Thus, writ-

ing S(q) for the polynomial which gives the number of Fq-points of Z, we have
S(1) = d0 = dimH∗c (Z,C). All the assertions of (iii) now follow immediately
from [KL2, Proposition 3.3(2)]. �

For any variety (i.e. reduced scheme of finite type) X defined over the finite
field Fq, denote by F the endomorphism of X ⊗ Fq := X(q) obtained by raising
local coordinates to the qth power. The action induced by F on `-adic cohomol-
ogy is defined as follows. There is a natural action of Gal(Fq/Fq) on the `-adic

cohomology spaces Hj
c (X ⊗ Fq,Q`). The action induced on Hj

c (X ⊗ Fq,Q`) by

the inverse of the arithmetic (q-power) Frobenius automorphism in Gal(Fq/Fq)
will also be denoted by F . With this convention, we have the well known fixed
point formula of Grothendieck:

(2.2) |XF | =
2 dimX∑
j=0

(−1)j Trace(F,Hj
c (X(q),Q`)).

Proposition 2.3. For any element w ∈ W , the cardinality |T wFW | is a polynomial
S(q, w) in q, and we have

PW (t, w) = S(t2, w).

Proof. The automorphism w of TW clearly commutes with the geometric Frobe-
nius endomorphism described above. It follows that w and F induce commuting
endomorphisms on Hj

c (X(q),Q`). Hence from Grothendieck’s fixed point for-
mula (2.2) we have

|T wFW | =
2n∑
j=0

(−1)j Trace(wF,Hj
c (TW (q),Q`))

=
2n∑
j=0

Trace(w,H2j(TW (q),Q`))q
j by Poincaré duality and 2.1(iii)

=
2n∑
j=0

Trace(w,H2j(TW ,C))qj for almost all q, by [KL1, (1.2)].

1See Remark 2.8 below
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The Proposition is now immediate. �

Rather than applying Proposition 2.3 directly, we shall make use of the fact
that there is an action of the torus T ∼= (C×)n on TW which partitions TW
into the (finite) union of its orbits, which are locally closed subvarieties, each
isomorphic to a torus.

The following result, (see [Le3, Theorem 2.5]), is designed to handle this
type of situation. For any complex algebraic variety with a G-action, where G
is a finite group, WG

c,X(t) denotes the compactly supported equivariant weight
polynomial

WG
c,X(t) =

∑
m

∑
j

(−1)j GrWm Hj
c (X,C)tm,

regarded as an element of R(G)[t], where R(G) is the Grothendieck ring of
complex representations of G and GrWm denotes the mth graded component of
the weight filtration of Hj

c .

Proposition 2.4. (cf.[DL, Le3, McM]) Let X be a complex algebraic variety
with a G-action, where G is a finite group. Suppose X is a finite disjoint union
X =

∐
i∈I Xi of locally closed subvarieties Xi which are permuted by G. Then

(2.4.1) WG
c,X(t) =

∑
ι∈I/G

IndGGi
WGi
c,Xi

(t),

where the sum is over the G-orbits ι in I, i is any element of ι, and Gi is the
isotropy group of i in G.

We are now in a position to give the

Proof of Theorem 1.1. In case X = TW and G = W , let Γ be the set of poly-
hedral cones of the fan defined by the root system Φ. This is also described as
the set of closures of the regions into which V is partitioned by the reflecting
hyperplanes of W . As explained in [F, Chapter 3], the torus T = TΛ

∼= (C×)n

acts on TW . For each cone τ ∈ Γ, there is a distinguished point xτ ∈ TW , and
the orbit Z(τ) := T ·xτ is isomorphic to a torus of dimension equal to n−dim τ .
Moreover TW is the disjoint union of the tori Z(τ). To describe the W -action,
we require the following details.

The cones τ ∈ Γ are in bijection with the cosets wWJ (w ∈ W,J ⊆ Π) of
the standard parabolic subgroups WJ of W . We have dimZ(τ) = n − dim τ ,
and wWJ is a face of w′WJ ′ if wWJ ⊇ w′WJ ′ . If τ(wWJ) denotes the cone
corresponding to wWJ and Z(wWJ) denotes the corresponding T -orbit in TW ,
then dim τ(wWJ) = n − |J |, so dimZ(wWJ) = |J |, and the character group of
Z(wWJ) is the lattice ZΦw(J), where ΦK is the sub-root system of Φ spanned by
K. Thus the cone τ = {0} corresponds to W , and Z({0}) = Z(W ) is the dense
orbit T = (C×)n in TW . Similarly the |W | chambers of V each correspond to a
torus of dimension 0, i.e. a point in TW .
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The action of W is described as follows. The element g ∈ W takes Z(τ) to
Z(gτ), i.e. Z(wWJ) to Z(gwWJ). The set Γ/W of orbits of W on Γ is therefore
in bijection with the subsets J of Π. If OJ is the orbit corresponding to J ,
then we may (and do) select τ(WJ) ∈ OJ as the representative element of the
orbit. Note that the set of representatives {τ(WJ) | J ⊆ Π} is precisely the set
of facets of the fundamental chamber of the W -action on V which corresponds
to the simple system Π. Since the isotropy group of τ(WJ) is WJ , we have the
following immediate consequence of Proposition 2.4.

(2.5) WW
c,TW

(t) =
∑
J⊆Π

IndWWJ
WWJ

c,Z(WJ )(t)

We are therefore reduced to computing

WWJ

c,Z(WJ )(t, w) =
∑
m

∑
j

(−1)j Trace(w,GrWm Hj
c (Z(WJ),C))tm

for w ∈ WJ . For this, observe first that Z(WJ) is a torus of dimension |J |,
and therefore is minimally pure [DL, §3]. Thus Hj

c (Z(WJ),C) is pure of weight
2j − 2|J |. Hence by [Le3, (2.6)], we have

(2.6) WWJ

c,Z(WJ )(t, w) = |Z(WJ)wF |q 7→t2 = SZ(WJ )(t
2, w),

where SZ(WJ )(q, w) is the polynomial in q which gives the number of points of
Z(WJ) fixed by wF for almost all q.

But wF acts on the character group ZΦJ of Z(WJ) as qw. It follows (see,
e.g. [Ca, 3.2.3]) that SZ(WJ )(q, w) = | detVJ

(qw−1)| = | detVJ
(q−w)|. Moreover

since those eigenvalues of w which are not ±1 come in conjugate pairs e±iθ and
(q − eiθ)(q − e−iθ) = q2 − 2qcosθ + 1 ≥ (q − 1)2 ≥ 0, we see that SZ(WJ )(q, w) =
detVJ

(q − w). Combining this with (2.6) and (2.5) we obtain

(2.7) WW
c,TW

(t) =
∑
J⊆Π

IndWWJ
γJ(t),

where, as in §1 above, γJ is the class function on WJ which takes the value
detVJ

(t2 − w) on w ∈ WJ .
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But by Lemma 2.1 (iii) and Poincaré duality, H2j
c (TW ,C) is a pure Hodge

structure of weight 2j, while H2j+1
c (TW ,C) = 0 for all j. It follows that

WW
c,TW

(t) =
∑
m

∑
j

(−1)j GrWm Hj
c (TW ,C))tm

=
∑
j

H2j
c (TW ,C)t2j by Lemma 2.1 (iii) and Poincaré duality

=
∑
j

H2j(TW ,C)t2j by Poincaré duality

= PTW
(t).

This completes the proof of Theorem 1.1. �

Remark 2.8. The proof of Theorem 1.1 above amounts to the computation of
the polynomial S(q, w) of Proposition 2.3, with the induced character formula
being a convenient way to organise the computation. Explicitly, we have proved
that

S(q, w) =
∑
J⊆Π

IndWWJ
(detVJ

(q − w)),

where w 7→ detVJ
(q−w) is to be thought of as a class function on WJ (when J =

∅, this function is identically 1). In this sense, our main result is a generalisation,
of course applicable only to the varieties TW , of the formula in [F, p. 94], which
is the case w = 1 of our formula.

It follows from this formula (which is proved independently of any asser-
tions concerning the cohomology) that S(1, 1) = |W |. Moreover by (2.6), the
weight polynomial Wc,TW

(t, 1) = S(q, 1)q 7→t2 = S(t2, 1). But since TW is smooth
and projective, it follows from the results of [DL] or from [F, (1), p. 92] that
Wc,TW

(t, 1) coincides with the Poincaré polynomial of TW . This shows imme-
diately (as is pointed out in [F, p.92]) that its odd cohomology vanishes and
that

∑
j dimHj(T ,C) = |W | = S(1, 1). Moreover it follows from [KL2, Propo-

sition 3.3(2)] that TW is mixed Tate. See [DL] for a general discussion of weight
polynomials along the lines of [F, pp. 92–95].

Alternatively, it follows from the non-singular projective nature of TW that
[KL2, (3.7.1)] holds, i.e. that the eigenvalues of Frobenius on H i(TW ,Q`) all

have absolute value q
i
2 . The arguments on [KL2, p. 212] then show that all the

above facts for TW follow from the polynomial nature of |TW (Fq)|.
Thus the case w = 1 of our formula (which is due to Fulton [F]) suffices

to determine the Hodge structure of the cohomology, and this in turn permits
the application of our counting argument to the determination of the graded
character.
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3. Some applications

In this section we point out some consequences of the results above. We begin
by noting that it suffices to consider irreducible root systems.

Proposition 3.1. Suppose Φ is reducible. Then Φ = Φ1 q Φ2, where the Φi

are mutually orthogonal, and if Vi = CΦi (i = 1, 2) then V = V1 ⊕ V2, and
W = W1 ×W2, where Wi is the Coxeter group with root system Φi in Vi.

With notation as in Theorem 1.1, we have for w = (w1, w2) ∈ W
PW (t, w) = PW1(t, w1)PW2(t, w2).

Equivalently, if p1, p2 are functions on W1 and W2 respectively, define p = p1p2

to be the function on W = W1 ×W2 given by p(w1, w2) = p1(w1)p2(w2) (where
wi ∈ Wi). Then we have the following equation in R(W )[t].

PW (t) = PW1(t)PW2(t).

Proof. This is a simple consequence of the character formula provided by The-
orem 1.1. �

Remark 3.2. Proposition 3.1 may also be deduced using the Künneth theorem
from the following general fact.

Proposition 3.3. (cf. [F, pp 19–20]) Let N1 and N2 be lattices in the real vector
spaces V1 and V2. Let ∆1 and ∆2 be fans of rational convex polyhedral cones in
V1, V2 respectively, and let T1, T2 be the corresponding toric varieties. Define the
fan ∆1⊕∆2 in V1⊕V2 as that which contains the cones σ1⊕σ2, where σi ∈ ∆i.
Let T∆1⊕∆2 be the corresponding toric variety.

Then T∆1⊕∆2 ' T1 × T2.

The proof of (3.3) reduces easily to the affine case, where it is straightforward.
As an easy consequence, we have

Corollary 3.4. With notation as in the statement of Proposition 3.1, we have
TW ' TW1 × TW2.

Applying the Künneth theorem to compute the cohomology of TW using 3.4,
we obtain 3.1.

Theorem 3.5. Let W be a finite crystallographic Coxeter group, and TW be the
corresponding toric variety. Then in the notation above:

(i) ([F, p. 94]) The Poincaré polynomial of TW is given by

PW (1, t) =
∑
j

dimHj(TW ,C)tj =
∑
J⊆Π

[W : WJ ](t2 − 1)|J |.

(ii) We have (PW (t), 1W )W = (1+t2)n, where (−,−)W denotes inner product
of class functions, and PW (t) is the class function given by PW (t)(w) =∑

i Trace(w,H i(TW ,C))ti.
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(iii) The alternating character of W does not occur in H i(TW ,C) for any i.

Proof. The statement (i) is simply the case w = 1 of Theorem 1.1.
To see (ii), observe that by Frobenius reciprocity, it follows from 1.3 that

(PW (t), 1)W =
n∑
i=0

t2i
∑
J⊆Π

|J |≥i

(−1)|J |−i(ρJ,|J |−i, 1)WJ
.

But by [Bou, Exercice 3(a), p. 127], (ρJ,|J |−i, 1)WJ
= 0 unless i = |J |, in which

case it is 1. Hence

(PW (t), 1)W =
n∑
i=0

t2i
∑
J⊆Π

|J |=i

1 = (1 + t2)n,

which is the statement (ii).
Finally, in order to compute (PW (t), εW )W , note that the computation above

shows that we need to know (ρJ,k, εJ)WJ
for each J ⊆ Π and k = 0, 1, . . . , |J |,

where εJ is the alternating character of WJ . For this, we note that for any k,
ρJ,|J |−k ∼= εJρJ,k. Hence by the argument above, (ρJ,k, εJ)WJ

= 0 unless k = |J |,
and is 1 in that case. Hence again applying 1.3, it follows that

(PW (t), ε)W =
n∑
i=0

t2i
∑
J⊆Π

|J |≥i

(−1)|J |−i(ρJ,|J |−i, εJ)WJ
=
∑
J⊆Π

(−1)|J | = 0,

as asserted in (iii). �

Remark 3.6. Note that in view of Theorem 3.5(i), the polynomial∑
J⊆Π

[W : WJ ](t2 − 1)|J |

has positive coefficients, a fact which is not entirely obvious.

Proposition 3.7. We have

(i) The character of W on the total cohomology ring is given by

(3.8) PW (1) =
∑
J⊆Π

IndWWJ
(γJ,1),

where γJ,1(w) = detVJ
(1 − w) for w ∈ WJ . It is a non-negative integer

for any w ∈ W (see [St, Proposition 1.7]).

(ii) If w is a Coxeter element of W then PW (t, w) =
∏n

j=1(t2− exp(
2πimj

h
)),

where h is the Coxeter number of W and m1, . . . ,mn are its exponents.
(iii) If w is any elliptic element of W , PW (t, w) =

∏n
j=1(t2 − λj), where the

λj are the eigenvalues of w on V .
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Proof. The first part of (i) follows immediately by putting t = 1 in Theorem 1.1.
Further, the argument in the proof of Theorem 1.1 above shows that detVJ

(q −
w) ≥ 0 for any real number q ≥ 1, whence the positivity assertion (which is due
to Stembridge).

Since w has no non-zero fixed points in V , w has no conjugates in WJ for
J 6= Π. Thus by (1.1), PTW

(t, w) = detV (t − w). But the eigenvalues of w on

V are precisely {exp(
2πimj

h
) | j = 1, . . . , n}, and the statement (ii) is immediate.

The proof of (iii) is the same. �

In the special case when Φ is of type An, so that W ∼= Symn+1, we can be
more explicit about the polynomials PW (t, w).

Proposition 3.9. Let W be the Coxeter group of type An, so that W ∼= Symn+1.
Then

(i) If w is a Coxeter element of W , then PW (t, w) = 1 + t2 + t4 + · · ·+ t2n.
(ii) The character of W on the total cohomology ring is given by PW (1, w) =

(
∑

imi)!
∏

i i
mi if w has cycle type (imi), i.e. mi cycles of length i for

i = 1, 2, . . . .

Proof. The first statement is a special case of (3.7)(ii).
For the second, we apply (3.7)(i), noting that γJ,1 is supported on the Coxeter

class of WJ . Thus in order to apply Frobenius’ formula for evaluation of induced
characters, we note that to evaluate the right side of (3.7)(i) at w, only those J
with associated partition (imi) contribute. The actual evaluation is easy �

Remark 3.10. Combining the statements (3.5(iii)) and (3.9(ii)), we obtain∑
λ=(imi )

(
∑

imi)!∏
imi!

= 2n−1,

where the sum is over the partitions λ of n

Remark 3.11. The varieties TW are clearly defined over R, and one may therefore
speak of the space TW (R) of real points of TW . The methods of [KL2, §5] may
be used to investigate these spaces. As a very simple example we cite type A1,
where TW = P1(C) and TW (R) = P1(R). In this case we have in the above
notation (with PY (t) denoting the usual Poincaré polynomial of a topological
space),

PTW (R)(t) = 1 + t = |TW (Fq)F |q 7→t.
This example leads naturally to the question of how the Poincaré polynomials
of the real varieties TW (R) (both equivariant and otherwise) are related to the
corresponding polynomials for the complex or finite field cases.

We conclude this section by giving the values of the polynomials PW (t, w)
when Φ is the root system of type B3. This is quickly calculated by hand using
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the results above. Recall that the conjugacy classes of the Weyl groups of type
Bn are characterised by their “cycle type” λ±1 , . . . , λ

±
p , where

∑
j λj = n. For

example − IdV is of type 1−, . . . , 1−. There are ten conjugacy classes in W (B3),
and the values of PW (t, w) are given in the table below.

Conjugacy class (w) PW (t, w)
(1, 1, 1) t6 + 23t4 + 23t2 + 1
(1, 2) t6 + 7t4 + 7t2 + 1
(1−, 1, 1) t6 + 7t4 + 7t2 + 1
(3) t6 + 2t4 + 2t2 + 1
1−, 2) t6 + 3t4 + 3t2 + 1
(1, 2−) t6 + t4 + t2 + 1
(1−, 1−, 1) t6 + 3t4 + 3t2 + 1
(3−) t6 + 1
(1−, 2−) t6 + t4 + t2 + 1
1−, 1−, 1−) t6 + 3t4 + 3t2 + 1

4. The reflection representation

In this section we shall apply our main theorem to determine the multiplicity of
the reflection representation ρ = ρW of W in each cohomology space H2i(TW ,C).
We start with some basic facts concerning the reflection representation.

4.1. The reflection representation. Let K be a simple system for a reflection
group H in V = Rn. Suppose K = qci=1Ki is the decomposition of K into irre-
ducible components. Then correspondingly, H = H1 × · · · ×Hc, and Hi = HKi

acts irreducibly on VKi
, the linear span of Ki, through its reflection representa-

tion ρi. Moreover if ρK is the reflection representation of H, its decomposition
into irreducible components is given by

(4.1) ρK = ⊕ci=11H1 ⊗ · · · ⊗ 1Hi−1
⊗ ρi ⊗ 1Hi+1

⊗ · · · ⊗ 1Hc .

Suppose Π is as in Theorem 1.1 and let J ⊆ Π. Then the restriction to WJ

of the reflection representation ρ of W is given by

(4.2) ResWWJ
ρ = ρJ ⊕ |Π \ J |1WJ

,

where ρJ is the reflection representation of WJ (on VJ).
Next, recall that if V1 and V2 are vector spaces, there is a canonical isomor-

phism of graded vector spaces Λ(V1 ⊕ V2)
'−→ Λ(V1)⊗Λ(V2); i.e., for each index

k, we have Λk(V1 ⊕ V2) ∼= ⊕i+j=kΛi(V1)⊗ Λj(V2). It follows from (4.1) that the
decomposition of ΛkρK into irreducibles is given by
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(4.3) ΛkρK = ⊕i1+···+ic=kΛ
i1ρ1 ⊗ Λi2ρ2 ⊗ · · · ⊗ Λicρc.

Note that since the representations Λiρj are irreducible, this implies that ΛkρK
is multiplicity free.

4.2. A combinatorial result about trees. Our multiplicity formula will in-
volve the Dynkin diagram of Φ, and to evaluate it explicitly, the following dis-
cussion will be useful. The author thanks Anthony Henderson for pointing out
the degree of generality in which Proposition 4.6 below holds.

Let Θ be a tree, that is, a finite connected undirected graph with no circuits.
Write n = |Θ|, and for 0 ≤ k ≤ n define c(Θ, k) by

(4.4) c(Θ, k) =
∑
J⊆Θ

|J |=k

c(J),

where c(J) is the number of connected components of the subgraph (forest)
spanned by J . Putting the c(Θ, k) into a generating polynomial, we define

(4.5) cΘ(t) :=
n∑
k=0

c(Θ, k)tn−k ∈ Z[t].

We shall prove

Proposition 4.6. Let Θ be any tree with n vertices. Then

cΘ(t) = (1 + t)n−2(1 + nt).

Proof. Note first that for any tree, the number of vertices is one more than the
number of edges. Since any subset J of Θ spans a forest (disjoint union of trees),
it follows that c(J) is the difference between k = |J | and the number e(J) of
edges of J . Further, each edge of Θ occurs in precisely

(
n−2
k−2

)
subsets J . It follows

that

c(Θ, k) =
∑
J⊆Θ

|J |=k

c(J)

=
∑
J⊆Θ

|J |=k

(k − e(J))

=k

(
n

k

)
− (n− 1)

(
n− 2

k − 2

)
=(n− k + 1)

(
n− 1

k − 1

)
.



13

Hence

cΘ(t) =
n∑
k=0

c(Θ, k)tn−k

=
n∑
k=1

(n− k + 1)

(
n− 1

k − 1

)
tn−k

=
d

dt

n∑
k=1

(
n− 1

k − 1

)
tn−k+1

=
d

dt

(
t(1 + t)n−1

)
=(1 + t)n−2(1 + nt),

as stated. �

Definition 4.7. Define the polynomial un(t) as the value of cΘ(t) for any tree
Θ with n vertices. That is,

un(t) := (1 + t)n−2(1 + nt).

4.3. The multiplicity theorem. In order to discuss our result, it is convenient
to define the polynomial NΦ(t) which is associated with the root system Φ.

Definition 4.8. Let Φ be a root system and let Π ⊂ Φ be a simple system in Φ.
For each subset J ⊆ Π denote by c(J) the number of connected components of
J (or of the root system ΦJ spanned by J). For each integer i ≥ 0 write

νΦ(i) =
∑
J⊆Π

|J |=i+1

c(J).

Then NΦ(t) :=
∑

i≥0 νΦ(i)ti.

Lemma 4.9. If Φ is an irreducible root system of rank n, then NΦ(t) = (1 +
t)n−2(n+ t).

Proof. Let Θ be the Dynkin diagram of Φ. Then evidently for i = 0, 1, . . . , n−1,
νΦ(i) = c(Θ, i+ 1). It follows easily that

NΦ(t) = tn−1un(t−1) = (1 + t)n−2(n+ t).

�

Theorem 4.10. Let Φ be any irreducible root system of rank n (n ≥ 2). Then∑n
i=0(H2i(TW ,C), ρW )W t

i = (n− 1)t(1 + t)n−2.

A straightforward consequence of Theorem 4.10 is
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Corollary 4.11. Let Φ be any root system of rank n, and denote by W and
c(Φ) respectively, the corresponding Weyl group and the number of irreducible
components of Φ. Then

(4.12)
n∑
i=0

(H2i(TW ,C), ρW )ti = (n− c(Φ))t(1 + t)n−2.

Proof of Corollary 4.11. Writing c = c(Φ), and using notation analogous to that
at the beginning of this section, we have

ρW = ⊕ci=11W1 ⊗ · · · ⊗ ρi ⊗ · · · ⊗ 1Wc .

Since H∗(TW ,C) ∼= ⊗ci=1H
∗(TWi

,C), it follows from Theorem 3.5(iii) and Theo-
rem 4.10 above that

n∑
i=0

(H2i(TW ,C), ρW )ti =
c∑
j=1

c∏
i=1
i 6=j

(1 + t)ni(nj − 1)t(1 + t)nj−2,

where ni is the rank of the irreducible component Φi of Φ. The required state-
ment follows easily. �

Proof of Theorem 4.10. Our starting point is the formula (1.5) which describes
H2i(TW ,C) as a W -module.

H2i(TW ,C) ∼=
∑
J⊆Π

|J |≥i

(−1)|J |−i IndWWJ
(Λ|J |−iρJ),

where ρJ is the reflection representation of WJ .
By Frobenius reciprocity, it follows that

κi := (H2i(TW ,C), ρ)W =
∑
J⊆Π

|J |≥i

(−1)|J |−i(ResWWJ
ρ,Λ|J |−iρJ)WJ

.

We therefore turn our attention to the computation of the κi.
Now κi =

∑
J⊆Π

|J |≥i
(−1)|J |−iκi(J), where κi(J) = (ResWWJ

ρ,Λ|J |−iρJ)WJ
. Fur-

ther, by (4.2), we have

κi(J) = (ρJ ,Λ
|J |−iρJ)WJ

+ |Π \ J |(1WJ
,Λ|J |−iρJ)WJ

.

We have seen that (1WJ
,Λ|J |−iρJ)WJ

= 0 unless |J | = i, in which case the
multiplicity is 1. To compute (ρJ ,Λ

|J |−iρJ)WJ
, write J = J1 q · · · q Jc(J) for the

decomposition of J into connected components (cf. 4.1), and let k = |J | − i.
Then from (4.1) and (4.3) we see that (ρJ ,Λ

kρJ)WJ
= 0 unless k = 1, and when

k = 1, (ρJ , ρJ)WJ
= c(J).
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Hence

κi(J) =


|Π \ J | if |J | = i

c(J) if |J | = i+ 1

0 otherwise.

It follows that
n∑
i=0

(H2i(TW ,C), ρW )ti =
n∑
i=0

κit
i

=
n∑
i=0

∑
J⊆Π

|J |≥i

(−1)|J |−iκi(J)ti

=
n∑
i=0

∑
J⊆Π

|J |=i

(n− i)−
∑
J⊆Π

|J |=i+1

c(J)

 ti

=
n∑
i=0

((
n

i

)
(n− i)− νΦ(i)

)
ti

= n(1 + t)n−1 −NΦ(t).

Finally, it follows from Lemma 4.9 that NΦ(t) = (1+t)n−2(n+t). Substituting
into the expression above, we obtain the Theorem. �

Appendix A. Equivalence to the Dolgachev-Lunts-Stembridge
formula

In this Appendix we shall show how the character formula of Dogachev, Lunts
and Stembridge can be derived from our Theorem 1.1 and vice versa.

To do this, we shall evaluate our formula (1.2) at an element w ∈ W , and
compare with the formula in [St, Cor. 1.6]. We start by noting that given
an element w ∈ W , we may apply Frobenius’ formula for induced charac-
ters to the formula (1.2) to obtain the following expression for PW (t, w) :=∑

i≥0 Trace(w,H i(TW ,C))ti ∈ C[t].

(A.1) PW (t, w) =
∑
xWJ

x−1wx∈WJ

det VJ
(t2 − x−1wx),

where the sum is over all cosets xWJ of parabolic subgroups WJ (J ⊆ Π) which
are fixed by w, and VJ is the span of the simple roots in J .

Next we translate the formula in [St, Cor. 1.6] into the notation of the current
work. Let ∆ = ∆W be the fan in V which corresponds to the root system Φ.
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Then in the language of the proof of Theorem 1.1 above, ∆ is the union of the
cones τ(xWJ) over all cosets xWJ . Fix w ∈ W and define

(A.2) QW (t, w) = P∆w(t)(1− t2)− dimV w

det V (1− wt2),

where V w = ker(w − 1) is the fixed point subspace of w, and P∆w(t) is the
Poincaré polynomial of the toric variety T (∆w) corresponding to the fan ∆w

obtained by intersecting the cones of ∆ with V w.
Then [St, Cor. 1.6] asserts that QW (t, w) = PW (t, w). The equivalence of this

statement to our Theorem 1.1 will follow from

Proposition A.3. Let w ∈ W , and define RW (t, w) to be the right side of the
equation (A.1). Then RW (t, w) = QW (t, w).

Proof. First, note that the cones of ∆w are precisely those cones of ∆ which
are fixed by w; this is because w fixes a cone τ (setwise) if and only w fixes τ
pointwise. That is, in the language above, ∆w = {τ(xWJ) ∈ ∆ | x−1wx ∈ WJ}.

It follows, using [F, p. 94] and the fact that dim τ(xWJ) = n− |J | , that

(A.4)

P∆w(t) =
∑
τ∈∆w

(t2 − 1)dimV w−dim τ

=
∑
xWJ

x−1wx∈WJ

(t2 − 1)dimV w−n+|J |.

Substituting the expression (A.4) into (A.2) and simplifying, we obtain

(A.5) Q(t, w) = (−1)dimV w

det V (1− wt2)
∑
xWJ

x−1wx∈WJ

(t2 − 1)−n+|J |.

Now if x−1wx ∈ WJ , then x−1wx fixes V ⊥J pointwise, so that V w ⊇ V ⊥J . Hence
for such xWJ , we have

(A.6)

det V (1− wt2) = det V (1− x−1wxt2)

= det VJ
(1− x−1wxt2) det V ⊥J (1− x−1wxt2)

= det VJ
(1− x−1wxt2)(1− t2)n−|J |.

Now substitute this last expression into (A.5), to obtain
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(A.7)

Q(t, w) =(−1)dimV w
∑
xWJ

x−1wx∈WJ

(t2 − 1)−n+|J | det VJ
(1− x−1wxt2)(1− t2)n−|J |

=(−1)dimV w
∑
xWJ

x−1wx∈WJ

(−1)n−|J | det VJ
(1− x−1wxt2)

=
∑
xWJ

x−1wx∈WJ

(−1)dimV w+n det VJ
(x−1wxt2 − 1).

Finally, since x−1wx has eigenvalues (on V , and therefore VJ) which come
in complex conjugate pairs or are equal to ±1, it follows that det V (x−1wx) =
(−1)n+dimV w

= det VJ
(x−1wx), since x−1wx acts trivially on V ⊥J . It follows from

the last line of (A.7) that

Q(t, w) =
∑
xWJ

x−1wx∈WJ

det VJ
(t2 − x−1wx) = R(t, w),

and the proof of the proposition is complete. �
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