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JONATHAN A. HILLMAN

Abstract. We consider the homotopy types of PD4-complexes X with fun-
damental group π such that c.d.π = 2 and π has one end. Our main result
is that (modulo two technical conditions) the orbits of the k-invariants deter-
mining “strongly minimal” complexes (i.e., those with homotopy intersection
pairing λX trivial) correspond to elements of a subset of H2(π; F2). This
group has order 2 when π is a PD2-group. In general, the homotopy type of
a PD4-complex X with π a PD2-group is determined by π, w1(X), λX and
the v2-type of X. Our result also implies that Fox’s 2-knot with metabelian
group is determined up to homeomorphism by its group.

It remains an open problem to give a homotopy classification of closed 4-manifolds,
or more generally PD4-complexes, in terms of standard invariants such as the fun-
damental group, characteristic classes and homotopy intersection pairings. The
class of groups of cohomological dimension at most 2 seems to be both tractable
and of direct interest to geometric topology, as it includes all surface groups, knot
groups and the groups of many other bounded 3-manifolds. In our earlier papers
we have shown that this case can largely be reduced to the study of “strongly
minimal” PD4-complexes Z with trivial intersection pairing on π2(Z). If X is a
PD4-complex with fundamental group π, k1(X) = 0 and there is a 2-connected
degree-1 map p : X → Z, where Z is strongly minimal then the homotopy type
of X is determined by Z and the intersection pairing λX on the “surgery kernel”
K2(p) = Ker(π2(p)), which is a finitely generated projective left Z[π]-module [16].

The first two sections review material about generalized Eilenberg-Mac Lane
spaces and cohomology with twisted coefficients, the Whitehead quadratic functor
and PD4-complexes. We assume thereafter that X is a PD4-complex, π = π1(X)
and c.d.π = 2. Such complexes have strongly minimal models p : X → Z. In §3
we show that the homotopy type of X is determined by its first three homotopy
groups and the second k-invariant k2(X) ∈ H4(Lπ(π2(X), 2); π3(X)).

The key special cases in which the possible strongly minimal models are known
are reviewed in §4. These are when

(1) π ∼= F (r) is a finitely generated free group;
(2) π = F (r) ⋊ Z; or
(3) π is a PD2-group.

We review the first two cases briefly in §4, and in §5 we outline an argument for the
case of PD2-groups, which involves cup product in integral cohomology. (This is a
model for our later work in Theorem 13.) In Theorem 8 we show that the homotopy
type of a PD4-complex X with π a PD2-group is determined by π, w1(X), λX and
the v2-type of X . (The corresponding result was already known for π free and in
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the Spin case when π is a PD2-group.) In §6 we assume further that π has one
end, and give a partial realization theorem for k-invariants (Theorem 9); we do not
know whether the 4-complexes we construct all satisfy Poincaré duality. In §7 and
§8 we extend the cup product argument sketched in §5 to a situation involving local
coefficient systems, to establish our main result (Theorem 13). Here we show that
the number of homotopy types of minimal PD4-complexes is bounded by the order
of H2(π; F2), provided that Z

w ⊗π ΓW (π2(X)) has no 2-torsion. (However we do
not have an explicit invariant.) This hypothesis fails for π a PD2-group and w1(π)
or w nontrivial, and thus our result is far from ideal. Nevertheless it holds in other
interesting cases, notably when π = Z∗m (with m even) and w = 1. (See §9.) In
the final sections we consider other groups arising in low-dimensional topology. In
particular, if π is the group of a fibred ribbon 2-knot K the knot manifold M(K) is
determined up to TOP s-cobordism by π, while Example 10 of Fox’s “Quick Trip
Through Knot Theory” [11] is determined up to homeomorphism by its group.

1. generalities

Let X be a topological space with fundamental group π and universal covering

space X̃ , and let fX,k : X → Pk(X) be the kth stage of the Postnikov tower for X .
We may construct Pk(X) by adjoining cells of dimension at least k + 2 to kill the
higher homotopy groups of X . The map fX,k is then given by the inclusion of X
into Pk(X), and is a (k + 1)-connected map. In particular, P1(X) ≃ K = K(π, 1)
and cX = fX,1 is the classifying map for the fundamental group π = π1(X).

Let [X ; Y ]K be the set of homotopy classes over K of maps f : X → Y such that
cX = cY f . If M is a left Z[π]-module let Lπ(M, n) be the generalized Eilenberg-Mac
Lane space over K realizing the given action of π on M . Thus the classifying map
for L = Lπ(M, n) is a principal K(M, n)-fibration with a section σ : K → L. We
may view L as the ex-K loop space ΩLπ(M, n + 1), with section σ and projection
cL. Let µ : L×K L → L be the (fibrewise) loop multiplication. Then µ(idL, σcL) =
µ(σcL, idL) = idL in [L; L]K . Let ιM,n ∈ Hn(L; M) be the characteristic element.
The function θ : [X, L]K → Hn(X ; M) given by θ(f) = f∗ιM,n is a isomorphism
with respect to the addition on [X, L]K determined by µ. Thus θ(idL) = ιM,n,
θ(σcX) = 0 and θ(µ(f, f ′)) = θ(f) + θ(f ′). (See Definition III.6.5 of [3].)

Let ΓW be the quadratic functor of J.H.C.Whitehead and let γA : A → ΓW (A) be
the universal quadratic function, for A an abelian group. The natural epimorphism
from A onto A/2A = F2 ⊗A is quadratic, and so induces a canonical epimorphism
from ΓW (A) to A/2A. The kernel of this epimorphism is the image of the symmetric
square A ⊙ A. If A is a Z-torsion-free left Z[π]-module the sequence

0 → A ⊙ A → ΓW (A) → A/2A → 0

is an exact sequence of left Z[π]-modules, when A⊙A and ΓW (A) have the diagonal
left π-action.

There is a natural exact sequence of Z[π]-modules

(1) π4(X)
hwz4−−−−→ H4(X̃; Z) → ΓW (Π) → π3(X)

hwz3−−−−→ H3(X̃ ; Z) → 0,

where hwzq is the Hurewicz homomorphism in dimension q. (See Chapter 1 of [4].)
Let w : π → {±1} be a homomorphism, and let εw : Z[π] → Z

w be the w-twisted
augmentation, given by w on elements of π. Let Iw = Ker(εw). If N is a right Z[π]-
module let N denote the conjugate left module determined by g.n = w(g)n.g−1
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for all g ∈ π and n ∈ N . If M is a left Z[π]-module let M † = Homπ(M, Z[π]).
The higher extension modules are naturally right modules, and we set EiM =

Exti
Z[π](M, Z[π]). In particular, E0M = M † and Ei

Z = Hi(π; Z[π]).

Lemma 1. Let M be a Z[π]-module with a finite resolution of length n and such
that EiM = 0 for i < n. Then Autπ(M) ∼= Autπ(E

nM).

Proof. Since c.d.π ≤ 2 and EiM = 0 for i < n the dual of a finite resolution for M is
a finite resolution for EnM . Taking duals again recovers the original resolution, and
so EnEnM ∼= M . If f ∈ Aut(M) it extends to an endomorphism of the resolution
inducing an automorphism Enf of EnM . Taking duals again gives EnEnf = f .
Thus f 7→ Enf determines an isomorphism Autπ(M) ∼= Autπ(E

nM). �

In particular, if π is a duality group of dimension n over Z and D = Hn(G; Z[G])
is the dualizing module then D = En

Z and Autπ(D) = {±1}. Free groups are
duality groups of dimension 1, while if c.d.π = 2 then π is a duality group of
dimension 2 if and only if it has one end and E2

Z is Z-torsion-free. (See Chapter
III of [5].)

2. PD4-complexes

We assume henceforth that X is a PD4-complex. Then π is finitely presentable
and X is homotopy equivalent to Xo ∪φ e4, where Xo is a complex of dimension at
most 3 and φ ∈ π3(Xo) [24]. In [14] and [15] we used such cellular decompositions
to study the homotopy types of PD4-complexes. Here we shall follow [16] instead
and rely more consistently on the dual Postnikov approach.

Lemma 2. If π is infinite the homotopy type of X is determined by P3(X).

Proof. If X and Y are two such PD4-complexes and h : P3(X) → P3(Y ) is a
homotopy equivalence then hfX,3 is homotopic to a map g : X → Y . Since π

is infinite H4(X̃ ; Z) = H4(Ỹ ; Z) = 0. Since g is 4-connected any lift to a map

g̃ : X̃ → Ỹ is a homotopy equivalence, by Whitehead’s Theorem, and so g is a
homotopy equivalence. �

Let Π = π2(X), with the natural left Z[π]-module structure. In Theorem 11 of
[16] we showed that two PD4-complexes X and Y with the same strongly minimal
model and with trivial first k-invariants (k1(X) = k1(Y ) = 0 in H3(π; Π)) are
homotopy equivalent if and only if λX ∼= λY . The appeal to [20] there is inadequate.
Instead we may use the following lemma (which requires no hypothesis on k1(X)).

Lemma 3. Let P = P2(X) and Q = P2(Z), and let f, g : P → Q be 2-connected
maps such that πi(f) = πi(g) for i = 1, 2. Then there is a homotopy equivalence
h : P → P such that gh ∼ f .

Proof. This follows from Corollaries 2.6 and 2.7 of Chapter VIII of [3]. �

Lemma 4. Let Z be a PD4-complex with a finite covering space Zρ. Then Z is
strongly minimal if and only if Zρ is strongly minimal.

Proof. Let π = π1(Z), ρ = π1(Zρ) and Π = π2(Z). Then π2(Zρ) ∼= Π|ρ, and so
the lemma follows from the observations that since [π : ρ] is finite H2(π; Z[π])|ρ ∼=
H2(ρ; Z[ρ]) and HomZ[π](Π, Z[π])|ρ ∼= HomZ[ρ](Π|ρ, Z[ρ]), as right Z[ρ]-modules.

�
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In particular, if v.c.dπ ≤ 2 and ρ is a torsion-free subgroup of finite index then
c.d.ρ ≤ 2, and so χ(Zρ) = 2χ(ρ), by Theorem 13 of [16]. Hence [π : ρ] divides
2χ(ρ), thus bounding the order of torsion subgroups of π.

The next theorem gives a much stronger restriction, under another hypothesis.

Theorem 5. Let Z be a strongly minimal PD4-complex and π = π1(Z). Suppose
that π has one end and E2

Z is free abelian. If π has nontrivial torsion then it is a
semidirect product κ ⋊ (Z/2Z), where κ is a PD2-group.

Proof. Let κ be the kernel of the natural action of π on Π = π2(Z) ∼= E2
Z. Then

[π : κ] ≤ 2, since Aut(Π) = {±1}, by Lemma 1. Suppose that g ∈ π has prime order
p > 1. Then Hs+3(Z/pZ; Z) ∼= Hs(Z/pZ; Π) for s > 1, by Lemma 2.10 of [13]. If
g acts trivially on Π then Z/pZ = H3(Z/pZ; Π) ≤ Π, which is impossible, since Π
is torsion-free. Therefore g acts via multiplication by −1 and p = 2. In particular,
π ∼= κ ⋊ (Z/2Z), where κ is torsion-free. Moreover H2(Z/pZ; Π) = Π/2Π ∼= Z/2Z,
and so the free abelian group E2

Z ∼= Π must in fact be infinite cyclic. Hence κ is
a PD2-group [6]. �

This result settles the question on page 67 of [13].

Corollary 6. Let X be a PD4-complex with π1(X) = π ∼= Z ∗m ⋊Z/2Z. Then
χ(X) > 0.

Proof. Let ρ = Z∗m. Then χ(X) = 1
2χ(Xρ). Hence χ(X) ≥ 0, with equality if

and only if Xρ is strongly minimal, by Theorem 13 of [16]. In that case X would
be strongly minimal, by Lemma 4. Since π is solvable E2

Z is free abelian [18].
Therefore X is not strongly minimal and so χ(X) > 0. �

3. c.d.π ≤ 2

We now assume that c.d.π ≤ 2. Let w = w1(X) be the orientation character. In
this case the following three notions of minimality are equivalent, by Theorem 13
of [16]:

(1) X is strongly minimal;
(2) X is minimal with respect to the partial order determined by 2-connected

degree-1 maps;
(3) χ(X) = 2χ(π) ≤ χ(Y ) for Y any PD4-complex with (π1(Y ), w1(Y )) ∼=

(π, w).

Thus we may drop the qualification “strongly” when c.d.π ≤ 2.
We have Π ∼= E2

Z ⊕ P , where P is a finitely generated projective left Z[π]-
module, and X is minimal if and only if P = 0. The first k-invariant is trivial,
since H3(π; Π) = 0, and so P2(X) ≃ L = Lπ(Π, 2). Let σ be a section for cL.
The group Eπ(L) of based homotopy classes of based self-homotopy equivalences
of L which induce the identity on π is the group of units of [L, L]K with respect to
composition, and is isomorphic to a semidirect product H2(π; Π) ⋊ Autπ(Π). (See
Corollary 8.2.7 of [3].)

Lemma 7. The homotopy type of X is determined by π, Π, π3(X) and the orbit
of k2(X) ∈ H4(L; π3(X)) under the actions of Eπ(L) and Autπ(π3(X)).

Proof. Since these invariants determine P3(X) this follows from Lemma 1. �
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It follows from the Whitehead sequence (1) that H3(L̃; Z) = 0 and H4(L̃; Z) ∼=
ΓW (Π), since L̃ ≃ K(Π, 2). Hence the spectral sequence for the universal covering

pL : L̃ → L gives exact sequences

0 → Ext2
Z[π](Z, Π) = H2(π; Π) → H2(L; Π) → HomZ[π](Π, Π) = Endπ(Π) → 0,

which is split by H2(σ; Π), and
(2)

0 → Ext2
Z[π](Π, π3(X)) → H4(L; π3(X))

p∗
L−−−−→ HomZ[π](ΓW (Π), π3(X)) → 0,

since c.d.π ≤ 2. The right hand homomorphisms are the homomorphisms induced
by pL, in each case. (There are similar exact sequences with coefficients any left
Z[π]-module A.) The image of k2(X) in Hom(ΓW (Π), π3(X)) is a representative

for k2(X̃), and determines the middle homomorphism in the Whitehead sequence
(1). If p∗Lk2(X) is an isomorphism its orbit under the action of Autπ(π3(X)) is

unique. If π has one end the spectral sequence for pX : X̃ → X gives isomor-
phisms Ext2

Z[π](Π,A)) ∼= H4(X ;A) for any left Z[π]-module A, and so fX,2 induces

splittings H4(L;A) ∼= H4(X ;A) ⊕ H4(Π, 2;A)
π
.

We wish to classify the orbits of k-invariants for minimal PD4-complexes. We
shall first review the known cases, when π is a free group or a PD2-group.

4. the known cases: free groups and semidirect products

The cases with fundamental group a free group are well-understood. A minimal
PD4-complex X with π ∼= F (r) free of rank r is either #r(S1 × S3), if w = 0,
or #r(S1×̃S3), if w 6= 0. In [14] this is established by consideration of the chain

complex C∗(X̃), using the good homological properties of Z[F (r)]. From the present
point of view, if X is strongly minimal Π = 0, so L = K(π, 1), H4(L; π3(X)) = 0
and k2(X) is trivial.

If X is not assumed to be minimal Π is a free Z[π]-module of rank χ(X)+2r−2
and the homotopy type of X is determined by the triple (π, w, λX ) [14].

The second class of groups for which the minimal models are known are the
extensions of Z by finitely generated free groups. If π = F (s) ⋊α Z the minimal
models are mapping tori of based self-homeomorphisms of closed 3-manifolds N =
#s(S1 × S2) (if w|ν = 0) or #s(S1×̃S2) (if w|ν 6= 0). (See Chapter 4 of [13].)
Two such mapping tori are orientation-preserving homeomorphic if the homotopy
classes of the defining self-homeomorphisms are conjugate in the group of based
self homotopy equivalences E0(N). There is a natural representation of Aut(F (s))
by isotopy classes of based homeomorphisms of N , and E0(N) is a semidirect
product D⋊Aut(F (s)), where D is generated by Dehn twists about nonseparating 2-
spheres [12]. We may identify D with (Z/2Z)s = H1(F (s); F2), and then E0(N) =
(Z/2Z)s ⋊ Aut(F (s)), with the natural action of Aut(F (s)).

Let f be a based self-homeomorphism of N , and let M(f) be the mapping torus
of f . If f has image (d, α) in E0(N) then π = π1(M(f)) ∼= F (s) ⋊α Z. Let
δ(f) be the image of d in H2(π; F2) = H1(F (s); F2)/(α − 1)H1(F (s); F2). If g is
another based self-homeomorphism of N with image (d′, α) and δ(g) = δ(f) then
d−d′ = (α−1)(e) for some e ∈ D and so (d, α) and (d′, α) are conjugate. In fact this
cohomology group parametrizes such homotopy types; see Theorem 13 for a more
general result. However in this case we do not yet have explicit invariants enabling
us to decide which are the possible minimal models for a given PD4-complex. (It is
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a remarkable fact that if π = F (s) ⋊α Z and β1(π) ≥ 2 then π is such a semidirect
product for infinitely many distinct values of s [7]. However this does not affect our
present considerations.)

5. the known cases: PD2-groups

The cases with fundamental group a PD2-group are also well understood, from
a different point of view. A minimal PD4-complex X with π a PD2-group is
homotopy equivalent to the total space of a S2-bundle over a closed aspherical
surface. Thus there are two minimal models for each pair (π, w), distinguished by
their second Wu classes. This follows easily from the fact that the inclusion of
O(3) into the monoid of self-homotopy equivalences E(S2) induces a bijection on
components and an isomorphism on fundamental groups. (See Lemma 5.9 of [13].)
However it is instructive to consider this case from the present point of view, in
terms of k-invariants, as we shall extend the following argument to other groups in
our main result.

When π is a PD2-group and X is minimal Π and ΓW (Π) are infinite cyclic. The
action u : π → Aut(Π) is given by u(g) = w1(π)(g)w(g) for all g ∈ π, by Lemma
10.3 of [13], while the induced action on ΓW (Π) is trivial.

Suppose first that π acts trivially on Π. Then L ≃ K × CP∞. Fix generators t,
x, η and z for H2(π; Z), Π, ΓW (Π) and Hom(Π, Z) = H2(CP∞; Z), respectively,
such that z(x) = 1 and 2η = [x, x] (the Whitehead product of x with itself). Let
t, z denote also the generators of H2(L; Z) induced by the projections to K and
CP∞, respectively. Then H2(π; Π) is generated by t ⊗ x, while H4(L; ΓW (Π)) is
generated by tz ⊗ η and z2 ⊗ η. (Note that t has order 2 if w1(π) 6= 0.)

The action of [K, L]K = [K, CP∞] ∼= H2(π; Z) on H2(L; Z) is generated by
t 7→ t and z 7→ z + t. The action on H4(L; ΓW (Π)) is then given by tz 7→ tz and
z2 7→ z2 + 2tz. Hence ft⊗x(z

2) = 2tz (which is the image of 2t⊗x). There are thus
two possible Eπ(L)-orbits of k-invariants, and each is in fact realized by the total
space of an S2-bundle over the surface K.

If the action u is nontrivial these calculations go through essentially unchanged
with coefficients F2 instead of Z. There are again two possible Eπ(L)-orbits of
k-invariants, and each is realized by an S2-bundle space. (See §4 of [15] for another
account.)

In all cases the orbits of k-invariants correspond to the elements of H2(π; F2) =
Z/2Z. In fact the k-invariant may be detected by the Wu class. Let [c]2 denote the
image of a cohomology class under reduction mod (2). Since k2(X) ± (z2 + mtz)
has image 0 in H4(X ; Z) it follows that [z]22 ≡ m[tz]2 in H4(X ; F2). This holds also
if π is nonorientable or the action u is nontrivial, and so v2(X) = m[z]2 and the
orbit of k2(X) determine each other.

If X is not assumed to be minimal its minimal models may be determined from
Theorem 7 of [15]. The enunciation of this theorem in [15] is not correct; an
(implicit) quantifier over certain elements of H2(X ; Zu) is misplaced and should be
“there is” rather than “for all”. More precisely, where it has

“and let x ∈ H2(X ; Zu) be such that (x ∪ c∗XωF )[X ] = 1. Then there is a 2-

connected degree-1 map h : X → E such that cE = cXh if and only if (c∗X)−1w1(X)
= (c∗E)−1w1(E), [x]22 = 0 if v2(E) = 0 and [x]22 = [x]2 ∪ c∗X [ωF ]2 otherwise”

it should read
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“Then there is a 2-connected degree-1 map h : X → E such that cE = cXh if

and only if (c∗X)−1w1(X) = (c∗E)−1w1(E) and there is an x ∈ H2(X ; Zu) such that

(x∪c∗XωF )[X ] = 1, with [x]22 = 0 if v2(E) = 0 and [x]22 = [x]2∪c∗X [ωF ]2 otherwise”.

The argument is otherwise correct. Thus if v2(X̃) = 0 the minimal model Z
is uniquely determined by X ; otherwise this is not so. Nevertheless we have the
following result. It shall be useful to distinguish three “v2-types” of PD4-complexes:

(1) v2(X̃) 6= 0 (i.e., v2(X) is not in the image of H2(π; F2) under c∗X);
(2) v2(X) = 0;

(3) v2(X) 6= 0 but v2(X̃) = 0 (i.e., v2(X) is in c∗X(H2(π; F2)) − {0});

(This trichotomy is due to Kreck, who formulated it in terms of Stiefel-Whitney
classes of the stable normal bundle of a closed 4-manifold.)

Theorem 8. If π is a PD2-group the homotopy type of X is determined by the
triple (π, w, λX ) together with its v2-type.

Proof. Let t2 generate H2(π; F2). Then τ = c∗Xt2 6= 0. If v2(X) = mτ and
p : X → Z is a 2-connected degree-1 map then v2(Z) = mc∗Zt2, and so there is an
unique minimal model for X . Otherwise v2(X) 6= τ , and so there are elements
y, z ∈ H2(X ; F2) such that y ∪ τ 6= y2 and z ∪ τ 6= 0. If y ∪ τ = 0 and z2 6= 0 then
(y + z) ∪ τ 6= 0 and (y + z)2 = 0. Taking x = y, z or y + z appropriately, we have
x ∪ τ 6= 0 and x2 = 0, so there is a minimal model Z with v2(Z) = 0. In all cases
the theorem now follows from the main result of [16]. �

In particular, if C is a smooth projective complex curve of genus ≥ 1 and X =
(C ×S2)#CP 2 is a blowup of the ruled surface C ×CP 1 = C ×S2 each of the two
orientable S2-bundles over C is a minimal model for X . In this case they are also
minimal models in the sense of complex surface theory. (See Chapter VI.§6 of [1].)
Many of the other minimal complex surfaces in the Enriques-Kodaira classification
are aspherical, and hence strongly minimal in our sense. However 1-connected
complex surfaces are never minimal in our sense, since S4 is the unique minimal
1-connected PD4-complex and S4 has no complex structure, by a classical result
of Wu. (See Proposition IV.7.3 of [1].)

6. realizing k-invariants

We assume now that π has one end. Then c.d.π = 2. If X is a PD4-complex

with π1(X) = π then H3(X̃ ; Z) = H4(X̃; Z) = 0. Hence k2(X̃) : ΓW (Π) → π3(X) is
an isomorphism, by the Whitehead sequence (1), while Eπ(L) ∼= H2(π; Π) ⋊ {±1},
by Corollary 8.2.7 of [3] and Lemma 3. Thus if X is minimal its homotopy type
is determined by π, w and the orbit of k2(X). We would like to find more explicit
and accessible invariants that characterize such orbits. We would also like to know
which k-invariants give rise to PD4-complexes.

Let P (k) denote the Postnikov 3-stage determined by k ∈ H4(L;A).

Theorem 9. Let π be a finitely presentable group with c.d.π = 2 and one end, and
let w : π → {±1} be a homomorphism. Let Π = E2

Z and let k ∈ H4(L; ΓW (Π)).
Then

(1) There is a finitely dominated 4-complex Y with H3(Ỹ ; Z) = H4(Ỹ ; Z) = 0
and Postnikov 3-stage P (k) if and only if p∗Lk is an isomorphism and P (k)
has finite 3-skeleton. These conditions determine the homotopy type of Y .
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(2) If π is of type FF we may assume that Y is a finite complex.

(3) H4(Y ; Zw) ∼= Z and there are isomorphisms Hp(Y ; Z[π]) ∼= H4−p(Y ; Z[π])
induced by cap product with a generator [Y ], for p 6= 2.

Proof. Let Y be a finitely dominated 4-complex with H3(Ỹ ; Z) = H4(Ỹ ; Z) = 0 and
Postnikov 3-stage P (k). Since Y is finitely dominated it is homotopy equivalent to
a 4-complex with finite 3-skeleton, and since P (k) ≃ Y ∪ eq≥5 may be constructed
by adjoining cells of dimension at least 5 we may assume that P (k) has finite
3-skeleton. The homomorphism p∗Lk is an isomorphism, by the exactness of the
Whitehead sequence (1).

Suppose now that p∗Lk is an isomorphism and P (k) has finite 3-skeleton. Let

P = P (k)[4] and let C∗ = C∗(P̃ ) be the equivariant cellular chain complex for P̃ .
Then Cq is finitely generated for q ≤ 3. Let Bq ≤ Zq ≤ Cq be the submodules
of q-boundaries and q-cycles, respectively. Clearly H1(C∗) = 0 and H2(C∗) ∼= Π,
while H3(C∗) = 0, since p∗Lk is an isomorphism. Hence there are exact sequences

0 → B1 → C1 → C0 → Z → 0

and

0 → B3 → C3 → Z2 → Π → 0.

Schanuel’s Lemma implies that B1 is projective, since c.d.π = 2. Hence C2
∼=

B1 ⊕ Z2 and so Z2 is finitely generated and projective. It then follows that B3 is
also finitely generated and projective, and so C4

∼= B3 ⊕ Z4. Thus H4(C∗) = Z4 is
a projective direct summand of C4.

After replacing P by P ∨ W , where W is a wedge of copies of S3, if necessary,
we may assume that Z4 = H4(P ; Z[π]) is free. Since ΓW (Π) ∼= π3(P ) the Hurewicz
homomorphism from π4(P ) to H4(P ; Z[π]) is onto. (See Chapter I§3 of [4].) We
may then attach 5-cells along maps representing a basis to obtain a countable 5-

complex Q with 3-skeleton Q[3] = P (k)[3] and with Hq(Q̃; Z) = 0 for q ≥ 3. The
inclusion of P into P (k) extends to a 4-connected map from Q to P (k). Now

C∗(Q̃) is chain homotopy equivalent to the complex obtained from C∗ by replacing
C4 by B3, which is a finite projective chain complex. It follows from the finiteness
conditions of Wall that Q is homotopy equivalent to a finitely dominated complex
Y of dimension ≤ 4 [23]. The homotopy type of Y is uniquely determined by the
data, as in Lemma 1.

If π is of type FF then B1 is stably free, by Schanuel’s Lemma. Hence Z2 is also
stably free. Since dualizing a finite free resolution of Z gives a finite free resolution

of Π = E2
Z we see in turn that B3 must be stably free, and so C∗(Ỹ ) is chain

homotopy equivalent to a finite free complex. Hence Y is homotopy equivalent to
a finite 4-complex [23].

Let D∗ and E∗ be the subcomplexes of C∗ corresponding to the above projective
resolutions of Z and Π. (Thus D0 = C0, D1 = C1, D2 = B1 and Dq = 0 for
q 6= 0, 1, 2, while E2 = Z2, E3 = C3, E4 = B3 and Er = 0 for r 6= 2, 3, 4.)

Then C∗(Ỹ ) ≃ D∗ ⊕ E∗. (The splitting reflects the fact that cY is a retraction,
since k1(Y ) = 0.) Clearly Hp(Y ; Z[π]) = H4−p(Y ; Z[π]) = 0 if p 6= 2 or 4, while
H4(Y ; Z[π]) = E2Π ∼= Z and H4(Y ; Zw) = Tor2(Z

w ; Π) ∼= Z
w ⊗π Z[π] ∼= Z.

The homomorphism εw# : H4(Y ; Z[π]) → H4(Y ; Zw) induced by εw is surjective,
since Y is 4-dimensional, and therefore is an isomorphism. Hence − ∩ [Y ] induces
isomorphisms in degrees other than 2. �
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Since H2(Y ; Z[π]) ∼= E2
Z, H2(Y ; Z[π]) = Π and Homπ(E

2
Z, Π) ∼= Endπ(E

2
Z)

= Z, cap product with [Y ] in degree 2 is determined by an integer, and Y is a
PD4-complex if and only if this integer is ±1. The obvious question is: what is this
integer? Is it always ±1? The complex C∗ is clearly chain homotopy equivalent to
its dual, but is the chain homotopy equivalence given by slant product with [Y ]?

There remains also the question of characterizing the k-invariants corresponding
to Postnikov 3-stages with finite 3-skeleton.

7. a lemma on cup products

In our main result (Theorem 12) we shall use a “cup-product” argument to relate
cohomology in degrees 2 and 4. Let G be a group and let Γ = Z[G]. Let C∗ and
D∗ be chain complexes of left Γ-modules and A and B left Γ-modules. Using the
diagonal homomorphism from G to G × G we may define internal products

Hp(HomΓ(C∗,A)) ⊗ Hq(HomΓ(D∗,B)) → Hp+q(HomΓ(C∗ ⊗ D∗,A⊗ B))

where the tensor products of Γ-modules are taken over Z and have the diagonal
G-action. (See Chapter XI.§4 of [8].) If C∗ and D∗ are resolutions of C and D,
respectively, we get pairings

ExtpΓ(C,A) ⊗ ExtqΓ(D,B) → Extp+qΓ (C ⊗ D,A⊗ B).

If instead C∗ = D∗ = C∗(S̃) for some space S with π1(S) ∼= G then composing with
an equivariant diagonal approximation gives “cup product” pairings

Hp(S;A) ⊗ Hq(S;B) → Hp+q(S;A⊗ B).

These pairings are compatible with the universal coefficient spectral sequences
ExtqΓ(Hp(C∗),A) ⇒ Hp+q(C∗;A) = Hp+q(HomΓ(C∗,A)), etc. We shall use the
symbol ∪ to express the values of these pairings.

We wish to show that if c.d.π = 2 and π has one end the homomorphism from
H2(π; Π) to Ext2

Z[π](Π, Π ⊗ Π) given by cup product with idΠ is an isomorphism.

We state the next lemma in greater generality than we need, in order to clarify the
hypotheses.

Lemma 10. Let G be a group for which the augmentation (left) module Z has a
finite projective resolution P∗ of length n, and such that Hj(G; Γ) = 0 for j < n.
Let D = Hn(G; Γ), w : G → {±1} be a homomorphism and B be a left Γ-module.
Then there are natural isomorphisms

(1) hB : Hn(G;B) → D⊗G B; and
(2) eB : ExtnΓ(D,B) → Z

w ⊗G B = B/IwB.

Hence θB = e−1

D⊗B
hB : Hn(G;B) ∼= ExtnΓ(D,D ⊗ B) is an isomorphism;

Proof. We may assume that P0 = Γ. Let Qj = HomΓ(Pn−j , Γ) and ∂Qi =
HomΓ(∂Pn−j , Γ). This gives a resolution Q∗ for D by finitely generated projective
right modules, with Qn = Γ. Let η : Q0 → D be the canonical epimorphism. Ten-
soring Q∗ with B gives (1). Conjugating and applying HomΓ(−,B) gives (2). Since
we may identify D ⊗G B with Z

w ⊗G (D ⊗ B), composition gives an isomorphism
θB = e−1

D⊗B
hB : Hn(G;B) ∼= ExtnΓ(D,D ⊗ B). �

If D is Z-torsion free then G is a duality group of dimension n, with dualizing
module D. (See [5].) It is not known whether all the groups considered in the
lemma are duality groups, even when n = 2.
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Let A : Q0⊗GD → HomΓ(Pn,D) be the homomorphism given by A(q ⊗G δ)(p)=
q(p)δ for all p ∈ Pn, q ∈ Q0 and δ ∈ D, and let [ξ] ∈ Hn(G;D) be the image of
ξ ∈ HomΓ(Pn,D). If ξ = A(q ⊗G δ) then hD([ξ]) = η(q)⊗ δ and ξ ⊗ η : Pn⊗Q0 →

D⊗D represents [ξ]∪idD in ExtnΓ(D,D⊗D). There is a chain homotopy equivalence

j∗ : Q∗ → P∗ ⊗ Q∗, since P∗ is a resolution of Z. Given such a chain homotopy
equivalence, eD⊗D([ξ]∪idD) is the image of (ξ⊗η)(jn(1∗)), where 1∗ is the canonical

generator of Qn, defined by 1∗(1) = 1.
Let τ be the (Z-linear) involution of Hn(G;D) given by τ(h−1

D
(ρ ⊗G α)) =

h−1

D
(α ⊗G ρ)). If G is a PDn-group then Hn(G;D) ∼= Z (if w = w1(π)) or Z/2Z

(otherwise), and so τ is the identity. Let δij be the Kronecker δ-function.
Examples. We shall give several simple examples (with w trivial and n = 0, 1 or
2), where we have managed to compute an explicit chain map j∗.

(1) Let G = 1. Then Γ = Z, with trivial involution. In this case there are
obvious isomorphisms of P0, Q0, D, D, H0(G;D) and Ext0Γ(D,D⊗D) with
Z, and we may suppress hD, eD⊗D and θD from the notation. We see easily

that [ξ] ∪ idD = [ξ] for ξ ∈ H0(G;D). (Note that G is a PD0-group.)
(2) Let G = F (r), with presentation 〈xi, 1 ≤ i ≤ r | ∅〉. Then

P∗ = Γ〈pi〉 → Γ, where ∂(pi) = xi − 1 for 1 ≤ i, j ≤ r.

Define a basis for Q0 by qi(pj) = δij , for 1 ≤ i, j ≤ r. Then

Q∗ = Γ1∗ → Γ〈qi〉, where ∂(1∗) = Σi=ri=1(x
−1
i − 1)qi.

Let j0(qi) = 1 ⊗ qi, for 1 ≤ i ≤ r, and j1(1
∗) = 1 ⊗ 1∗ − Σi=ri=1x

−1
i (pi ⊗ qi).

Then (A(qi ⊗G δ) ⊗ η)(j1(1
∗)) = −x−1

i (δ ⊗ η(qi)) for 1 ≤ i ≤ r. Hence

eD⊗D([ξ] ∪ idD) = −hD(τ([ξ]))

(equivalently, [ξ] ∪ idD = −θD(τ([ξ]))) for ξ ∈ H1(G;D).
Note that when r = 1 the group G = F (1) = Z is a PD1-group.

(3) Let G = F (r)×Z, with presentation 〈xi, t | txi = xit〉. We shall also write
x0 = t, for simplicity in the following formulae. Then

P∗ = Γ〈fi | 1 ≤ i ≤ r〉 → Γ〈ei | 0 ≤ i ≤ r〉 → Γ,

where ∂fi = (t − 1)ei + (1 − x)e0 and ∂ei = xi − 1.
Define bases for Q0 and Q1 by by e∗i (ej) = δij and f∗

k (fl) = δkl. Then

Q∗ = Γ1∗ → Γ〈e∗i | 0 ≤ i ≤ r〉 → Γ〈f∗
i | 1 ≤ i ≤ r〉,

where ∂1∗ = Σi=ri=0(x
−1
i −1)e∗i , ∂e∗0 = Σi=ri=1(1−x−1

i )f∗
i , and ∂e∗i = (t−1−1)f∗

i

for 1 ≤ i ≤ r.
Let j0(f

∗
i ) = 1 ⊗ f∗

i , and j1(e
∗
i ) = 1 ⊗ e∗i − t−1(e0 ⊗ f∗

i ), for 1 ≤ i ≤ r,

j1(e
∗
0) = 1 ⊗ e∗0 + Σi=ri=1x

−1
i (ei ⊗ f∗

i ) and

j2(1
∗) = 1 ⊗ 1∗ − Σi=ri=0x

−1
i (ei ⊗ e∗i ) − t−1Σi=ri=1x

−1
i (fi ⊗ f∗

i ).

We again find that [ξ] ∪ idD = −θD(τ([ξ])) for ξ ∈ H2(G;D).
Note that when r = 2 the group G = F (1) × Z = Z2 is a PD2-group.



STRONGLY MINIMAL PD4-COMPLEXES 11

(4) Let G = Z∗m be the group with presentation 〈a, t | ta = amt〉 and let

µk = Σi=k−1
i=0 ai and µ̄k = Σi=k−1

i=0 a−i for 0 ≤ k ≤ m. Then

P∗ = Γp2 → Γ〈pa, pt〉 → Γ,

where ∂p2 = (t − µm)pa + (1 − am)pt, ∂pa = a − 1 and ∂pt = t − 1.
Define bases for Q0 and Q1 by q(p2) = 1, qa(pa) = qt(pt) = 1 and qa(pt) =
qt(pa) = 0. Then

Q∗ = Γ1∗ → Γ〈qa, qt〉 → Γq,

where ∂1∗ = (a−1 − 1)qa + (t−1 − 1)qt, ∂qa = (t−1 − µ̄m)q and ∂qt =
(1 − a−m)q.
Let j0(q) = 1 ⊗ q, j1(qa) = 1 ⊗ qa + Σi=m−1

i=1 a−i(µipa ⊗ q) − t−1(pt ⊗ q),

j1(qt) = 1 ⊗ qt + a−m(µmpa ⊗ q) and

j2(1
∗) = 1 ⊗ 1∗ − a−1(pa ⊗ qa) − t−1(pt ⊗ qt) − a−1t−1(p2 ⊗ q).

Then it may be verified that ∂j2(1
∗) − j1(∂1∗) = 0. (At one point we use

the fact that t−1a−m = a−1t−1.)
We again find that [ξ] ∪ idD = −θD(τ([ξ])) for ξ ∈ H2(G;D).
Note that when m = 1 we have Z∗1 = Z2, and our formulae agree with

those of the previous example.

In each of cases (3) and (4) the group is an HNN extension with finitely generated
free base and stable letter t. Do these formulae extend easily to other such groups,
such as PD2-groups or semidirect products F (r) ⋊ Z?

8. the action of Eπ(L)

In attempting to study the action of Eπ(L) on the set of possible k-invariants
we shall switch between the algebraic and homotopical (obstruction-theoretic) in-
terpretations of cohomology classes.

In this section we shall assume that X is minimal, and need to restrict further
the pair (π, w). We believe this to be a shortcoming of our argument rather than
a limitation of the result.

We shall use the following special case of a result of Tsukiyama [21]; we give
only the part that we need below.

Lemma 11. There is an exact sequence 0 → H2(π; Π) → Eπ(L) → Autπ(Π) → 0.

Proof. Let θ : [K, L]K → H2(π; Π) be the isomorphism given by θ(s) = s∗ιΠ,2, and
let θ−1(φ) = sφ for φ ∈ H2(π; Π). Then sφ is a homotopy class of sections of cL,
s0 = σ and sφ+ψ = µ(sφ, sψ), while φ = s∗φιΠ,2. (Recall that µ : L×K L → L is the

fibrewise loop multiplication.)
Let hφ = µ(sφcL, idL). Then cLhφ = cL and so hφ ∈ [L; L]K . Clearly h0 =

µ(σcL, idL) = idL and h∗
φιΠ,2 = ιΠ,2 + c∗Lφ ∈ H2(L; Π). We also see that

hφ+ψ = µ(µ(sφ, sψ)cL, idL) = µ(µ(sφcL, sψcL), idL) = µ(sφcL, µ(sψcL, idL))

(by homotopy associativity of µ) and so

hφ+ψ = µ(sφcL, hψ) = µ(sφcLhψ, hψ) = hφhψ.

Therefore hφ is a homotopy equivalence for all φ ∈ H2(π; Π), and φ 7→ hφ defines
a homomorphism from H2(π; Π) to Eπ(L).
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The lift of hφ to the universal cover L̃ is (non-equivariantly) homotopic to the
identity, since the lift of cL is (non-equivariantly) homotopic to a constant map.
Therefore hφ acts as the identity on Π. The homomorphism h : φ 7→ hφ is in fact
an isomorphism onto the kernel of the action of Eπ(L) on Π = π2(L) [21]. �

Note also that we may view elements of [K, L]K (etc.) as π-equivariant homotopy

classes of π-equivariant maps from K̃ to L̃. Let c2
π(ξ) = ξ∪idΠ for all ξ ∈ H2(π; Π).

Theorem 12. Let π be a finitely presentable group such that c.d.π = 2 and π
has one end. Let Π = E2

Z. Assume that c2
π is surjective and Z

w ⊗π ΓW (Π) is
2-torsion-free. Then there is a bijection from the set of orbits of k-invariants of
minimal PD4-complexes with Postnikov 2-stage L under the actions of Eπ(L) and
Autπ(ΓW (Π)) to a subset of H2(π; F2).

Proof. Let φ ∈ H2(π; Π) and let sφ ∈ [K, L]K and hφ ∈ [L, L]K be as defined in

Lemma 9. Let M = Lπ(Π, 3) and let Ω : [M, M ]K → [L, L]K be the loop map.
Since c.d.π = 2 we have [M, M ]K ∼= H3(M ; Π) = Endπ(Π). Let g ∈ [M, M ]K
have image [g] = π3(g) ∈ Endπ(Π) and let f = Ωg. Then ω([g]) = f∗ιΠ,2 defines
a homomorphism ω : Endπ(Π) → H2(L; Π) such that p∗Lω([g]) = [g] for all [g] ∈
Endπ(Π). Moreover fµ = µ(f, f), since f = Ωg, and so fhφ = µ(fsφcL, f).
Hence h∗

φξ = ξ + c∗Ls∗φξ for ξ = ω([g]) = f∗ιΠ,2. Naturality of the isomorphisms

H2(X ;A) ∼= [X, Lπ(A, 2)]K for X a space over K and A a left Z[π]-module implies
that

s∗φω([g]) = [g]#s∗φιΠ,2 = [g]#φ

for all φ ∈ H2(π; Π) and g ∈ [M, M ]K . (See Chapter 5.§4 of [2].)
Let A be a left Z[π]-module. If u ∈ H2(π;A) then h∗

φc
∗
L(u) = c∗L(u), since

cLhφ = cL. The homomorphism induced on the quotient H2(L;A)/c∗LH2(π;A) ∼=
HomZ[π](Π,A) by hφ is also the identity, since the lifts of hφ are (non-equivariantly)

homotopic to the identity in L̃. Taking A = Π we obtain a homomorphism δφ :
Endπ(Π) → H2(π; Π) such that h∗

φ(ξ) = ξ + δφ(p
∗
Lξ) for all ξ ∈ H2(L; Π). Since

p∗Lδφ = 0 and hφ+ψ = hφhψ it follows that δφ is additive as a function of φ. If
g ∈ [M, M ]K and φ = ρ ⊗π α ∈ H2(π; Z[π]) ⊗π Π then

δφ([g]) = δφ(p
∗
Lω([g])) = c∗Ls∗φω[g] = c∗L(ρ ⊗π [g](α)).

The automorphism of H4(L;A) induced by hφ preserves the subgroup Ext2
Z[π](Π,A)

and induces the identity on the quotient Homπ(ΓW (Π),A). Taking A = ΓW (Π) we
obtain a homomorphism fφ = h∗

φ − id from H4(L; ΓW (Π)) to Ext2
Z[π](Π, ΓW (Π)).

When A = D = Π, C = Z, p = 2 and q = 0 the pairing of Ext groups in §6 gives
a pairing

H2(π; Π) ⊗ HomZ[π](Π,B) → Ext2
Z[π](Π, Π ⊗ B).

Taking S = L, A = B = Π, p = 2 and q = 0 instead gives a pairing of H2(L; Π) ∼=
H2(π; Π) ⊕ Endπ(Π) with itself with values in H4(L; Π ⊗ Π). This restricts to the
above pairing of H2(π; Π) with Endπ(Π) into Ext2

Z[π](Π, Π ⊗ Π). We may also

compose with the symmetrization homomorphism from Π ⊗ Π to Π ⊙ Π < ΓW (Π)
to get pairings with values in H4(L; Π ⊙ Π) and H4(L; ΓW (Π)). Since c.d.π = 2

these pairings are trivial on the image of H2(π; Π)⊗H2(π; Π). On passing to L̃ we
find that

p∗L(ξ ∪ ξ′)(γΠ(x)) = p∗Lξ(x) ⊙ p∗Lξ′(x)
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for all ξ, ξ′ ∈ H2(L; Π) and x ∈ Π. Since h∗
φ(ξ ∪ ξ′) = h∗

φξ ∪ h∗
φξ

′ we have also

fφ(ξ ∪ ξ′) = δφ(p
∗
Lξ′) ∪ ξ + δφ(p

∗
Lξ) ∪ ξ′

for all ξ, ξ′ ∈ H2(L; Π). In particular, if p∗Lξ = p∗Lξ′ = idΠ then p∗L(ξ ∪ ξ′) =
2idΓW (Π) and fφ(ξ ∪ ξ′) = 2φ ∪ idΠ = 2c2

π(φ).
If k = k2(X) for some minimal PD4-complex X with π1(X) ∼= π then p∗Lk is an

isomorphism. After composition with an automorphism of ΓW (Π) we may assume
that p∗Lk = idΓW (Π). We then have 2fφ(k) = 2c2

π(φ). Since Z
w ⊗π ΓW (Π) is 2-

torsion-free fφ(k) = c2
π(φ). Since c2

π is surjective the orbit of k under the action
of Eπ(L) corresponds to an element of the quotient of Ext2

Z[π](Π, ΓW (Π)) by the

image of H2(π; Π) ∼= Ext2
Z[π](Π, Π⊗Π). Since ΓW (Π)/Π⊙Π ∼= Π/2Π this quotient

is Ext2
Z[π](Π, Π/2Π) ∼= Π/(2, Iw)Π ∼= H2(π; F2). �

Minimality of X is used in the appeal to the work of §6. The hypotheses are
satisfied if π ∼= Z2 or Z∗2 and w = 1. However if π is a PD2-group and w1(π) or
w is nontrivial then Z

w ⊗π ΓW (Π) ∼= Z/2Z.
We note that we do not yet have explicit invariants that might distinguish two

such minimal PD4-complexes.

Corollary 13. If H2(π; F2) = 0 and Z
w ⊗π ΓW (Π) is 2-torsion-free then there

is an unique minimal PD4-complex realizing (π, w). Hence two PD4-complexes X
and Y with π1(X) ∼= π1(Y ) ∼= π are homotopy equivalent if and only if there is an
isomorphism θ : π1(X) → π1(Y ) such that w1(X) = w1(Y ) ◦ θ and an isometry of
homotopy intersection pairings λX ∼= θ∗λY . �

Let ε2Π = H2(π; F2). Then ε2Π ∼= Π/(2, Iw)Π is the largest quotient of Π/2Π
on which π acts trivially. (Similarly, HomZ[π](Π, F2) ∼= H2(π; F2).)

Let κ be the image of k2(X) in H4(L; ε2Π) under the change of coefficients
induced by the canonical epimorphism from ΓW (Π) to ε2Π. To what extent does
κ determine the cup product pairing on H2(X ; F2)?

9. verifying the torsion condition for Z∗2m

Applying Z ⊗π − to the exact sequence

0 → Π ⊙ Π → ΓW (Π) → Π/2Π → 0

gives an exact sequence

Tor
Z[π]
1 (Z, Π/2Π)

δ
−−−−→ Π ⊙π Π → Z ⊗π ΓW (Π) → Z ⊗π Π/2Π → 0.

Thus if Z⊗πΠ/2Π = H2(π; F2) = 0 it is enough to show that Π⊙πΠ is 2-torsion-free,

for then the connecting homomorphism from the 2-torsion group Tor
Z[π]
1 (Z, Π/2Π)

to Π ⊙π Π is 0, and so Π ⊙π Π ∼= Z ⊗π ΓW (Π).
Let π = Z∗m, which has a one-relator presentation 〈a, t | ta = amt〉 and is also

a semidirect product Z[ 1
m ] ⋊ Z. Let R = Z[π] and D = Z[an]/(an+1 − amn ), where

an = tnat−n for n ∈ Z. Then R = ⊕n∈ZtnD is a twisted Laurent extension of the
commutative domain D.

On dualizing the Fox-Lyndon resolution of the augmentation module we see
that H2(π; Z[π]) ∼= R/(am − 1, t− µm)R and so Π ∼= R/R(am − 1, tµm − 1), where
µm = Σi=m−1

i=0 ai. Let E = D/(am − 1). As an abelian group E is freely generated

by {ax | x = k
mn , 0 ≤ k < mn+1}, where ax is the image of ak−n, and D acts
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on E in an obvious way. Since tak1−n = ak−nt we have Π ∼= ⊕n∈ZtnE/ ∼, where

tmax ∼ tmaxtµm = tm+1µmax/m.
Therefore Π ⊙ Π ∼= ⊕m∈Z(tmE ⊙ tmE)/ ∼, where

tmax ⊙ tmay ∼ tm+1µmax/m ⊙ tm+1µmay/m.

Setting z = y − x this gives

tmax(1 ⊙ az) ∼ tm+1ax/m(µm ⊙ µmaz/m) = tm+1ax/m(Σi,j=m−1
i,j=0 ai(1 ⊙ aj−iaz/m)).

On factoring out the action of π we see that

Π ⊙π Π ∼= E/(az − m(Σk=m−1
k=0 akaz/m)).

(In simplifying the double sum we may set k = j − i for j ≥ i and k = j + m − i
otherwise, since amaz/m = az/m for all z.) Thus Π ⊙π Π is a direct limit of

free abelian groups and so is torsion-free. If m is even H2(Z∗m; F2) = 0 and so
Z ⊗π ΓW (Π) is torsion-free. This also holds for Z∗1 = Z2; does it remain true for
all m?

10. other groups

If c.d.π = 2 but π is not a PD2-group then E2
Z is not finitely generated [10].

It remains an open question whether E2
Z is free abelian for all finitely presentable

groups [18]. We shall verify that this is so for many of the groups of most direct
interest to low dimensional topologists.

Lemma 14. Let π have one end, and be either a semidirect product F (s) ⋊ Z, the
fundamental group of an irreducible 3-manifold M with nonempty boundary or a
torsion-free one-relator group. Then π is of type FF , c.d.π = 2 and Π = E2

πZ is
free abelian.

Proof. If π = ν ⋊ Z, where ν ∼= F (s) is a nontrivial finitely generated free group,
then s ≥ 1, since π has one end. We may realize K(π, 1) as a mapping torus of a
self-map of ∨sS1. Hence π is of type FF and c.d.π = 2. An LHS spectral sequence
argument shows that Π|ν = E2

πZ|ν ∼= E1
νZ, which is free abelian.

If π = π1(M) for some irreducible 3-manifold M with nonempty boundary then
M is aspherical and retracts onto a finite 2-complex. Hence π is of type FF and

c.d.π = 2. Also Π = H2(π; Z[π]) = H2(M ; Z[π]) ∼= H1(M̃, ∂M̃ ; Z), by Poincaré

duality. This is free abelian since it is the kernel of the augmentation H0(∂M̃ ; Z) →

H0(M̃ ; Z).
If π has a one-relator presentation 〈X | r〉 and is torsion-free the 2-complex

associated to the presentation is aspherical, so c.d.π = 2 and π is of type FF . It is
shown in [19] that one-relator groups are semistable at infinity and hence that Π is
free abelian. �

In particular, all such groups are 2-dimensional duality groups. The class of
groups covered by this lemma includes all PD2-groups, classical knot groups and
solvable HNN extensions Z∗m other than Z. It remains an open question whether
every finitely presentable group with one end and of cohomological dimension 2 is
of type FF and semistable at infinity.

We note also that if π is either a semidirect product F (s)⋊Z or the fundamental

group of an irreducible 3-manifold M with nonempty boundary then K̃0(Z[π]) = 0,
i.e., projective Z[π]-modules are stably free [22]. (This is not yet known for all
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torsion-free one relator groups.) In such cases finitely dominated complexes are
homotopy finite.

Suppose that π is either the fundamental group of a finite graph of groups, with
all vertex groups Z, or is square root closed accessible. (This includes all PD2-
groups, semidirect products F (s)⋊Z and the solvable groups Z∗m.) Then L5(π, w)
acts trivially on the s-cobordism structure set SsTOP (M) and the surgery obstruc-
tion map σ4(M) : [M, G/TOP ] → L4(π, w) is onto, for any closed 4-manifold M
realizing (π, w). (See Lemma 6.9 of [13].) Thus there are finitely many s-cobordism
classes within each homotopy type of such manifolds.

11. applications to 2-knots

Let π be a finitely presentable group with c.d.π = 2. If H1(π; Z) = π/π′ ∼= Z and
H2(π; Z) = 0 then def(π) = 1, by Theorem 2.8 of [13] If moreover π is the normal
closure of a single element then π is the group of a 2-knot K : S2 → S4. (If the
Whitehead Conjecture is true every knot group of deficiency 1 has cohomological
dimension at most 2.) Since π is torsion-free it is indecomposable, by a theorem of
Klyachko. Hence π has one end.

Let M = M(K) be the closed 4-manifold obtained by surgery on the 2-knot K.
Then π1(M) ∼= π and χ(M(K)) = χ(π) = 0, and so M is a minimal model for
π. If π = F (s) ⋊ Z the homotopy type of M is determined by π, as explained in
§4 above. This holds more generally for all knot groups for which Z ⊗π ΓW (Π)
is torsion-free, by Corollary 13. (Does this condition hold for semidirect products
π = F (s) ⋊ Z?) If moreover π is a classical knot group or π = πG for some graph
of groups G with all vertex groups infinite cyclic then M is determined up to TOP
s-cobordism by its homotopy type, by Theorem 17.8 of [13]. It follows that a fibred
ribbon 2-knot is determined up to s-concordance and reflection by its fundamental
group together with the conjugacy class of a meridian.

The group S = Z∗m also has such a graph-of-groups structure, since it is an
HNN extension with base Z. Solvable groups are “good” and so 5-dimensional
s-cobordisms with such groups are TOP products. Thus if m is even the closed
orientable 4-manifold M with π1(M) ∼= Z∗m and χ(M) = 0 is unique up to home-
omorphism. If m = 1 there are two such homeomorphism types, distinguished by
the second Wu class v2(M).

In particular, Z∗2 is the group of Fox’s Example 10, which is a ribbon 2-knot [11].
Since metabelian knot groups have an unique conjugacy class of normal generators
(up to inversion) and ribbon 2-knots are reflexive and -amphicheiral this is the
unique 2-knot (up to homeomorphism) with this group.



16 JONATHAN A. HILLMAN

References

[1] Barth, W., Peters, C. and Van de Ven, A. Compact Complex Surfaces,
Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Bd 4,
Springer-Verlag, Berlin – Heidelberg –New York (1984).

[2] Baues, H.-J. Obstruction Theory,
Lectures Notes in Mathematics 628,
Springer-Verlag, Berlin – Heidelberg –New York (1977).

[3] Baues, H.-J. Algebraic Homotopy,
Cambridge University Press, Cambridge – New York (1989).

[4] Baues, H.-J. Combinatorial Homotopy and 4-Dimensional Complexes,
W. De Gruyter, Berlin – New York (1991).

[5] Bieri, R. Homological Dimensions of Discrete Groups,
Queen Mary College Mathematical Notes, London (1976).

[6] Bowditch, B.H. Planar groups and the Seifert conjecture,
J. Reine u. Angew. Math. 576 (2004), 11–62.

[7] Button, J.O. Mapping tori with first Betti number at least two,
J. Math. Soc. Japan (2007), 351–370.

[8] Cartan, H. and Eilenberg, S. Homological Algebra,
Princeton University Press, Princeton (1956).

[9] Dold, A. Zur Homotopietheorie der Kettencomplexe,
Math. Ann. 140 (1960), 278-298.

[10] Farrell, F.T. The second cohomology group of G with coefficients Z/2Z[G],
Topology 13 (1974), 313–326.

[11] Fox, R.H. A quick trip through knot theory,
in Topology of 3-Manifolds and Related Topics (edited by M.K.Fort, Jr),
Prentice-Hall, Englewood Cliffs, N.J.(1962), 120-167.

[12] Hendriks, H. Applications de la théorie d’obstruction en dimension 3,

Mem. Soc. Math. France 53 (1977), 1–86.
[13] Hillman, J.A. Four-Manifolds, Geometries and Knots,

GT Monograph vol. 5,
Geometry and Topology Publications, University of Warwick (2002).

[14] Hillman, J.A. PD4-complexes with free fundamental group,
Hiroshima Math. J. 34 (2004), 295–306.

[15] Hillman, J.A. PD4-complexes with fundamental group a PD2-group,
Top. Appl. 142 (2004), 49–60.

[16] Hillman, J.A. PD4-complexes with strongly minimal models,
Top. Appl. 153 (2006), 2413–2424.

[17] Klyachko, A. A funny property of sphere and equations over groups,
Comm. Algebra 21 (1993), 2555–2575.

[18] Mihalik, M. Solvable groups that are simply connected at ∞,
Math. Z. 195(1987), 79–87.

[19] Mihalik, M. and Tschantz, S.T. One relator groups are semistable at infinity,
Topology 31 (1992), 801-804.

[20] Rutter, J.W. The group of homotopy self-equivalences of non-simply-connected spaces using
Postnikov decompositions, Proc. Roy. Soc. Edinburgh 120A (1992), 47–60.

[21] Tsukiyama, K. Self-homotopy-equivalences of a space with two nonvanishing homotopy
groups, Proc. Amer. Math. Soc. 79 (1980), 134–138.

[22] Waldhausen, F. Algebraic K-theory of generalized free products,
Ann. Math. 108 (1978), 135–256.

[23] Wall, C.T.C. Finiteness conditions for CW complexes. II,
Proc. Roy. Soc. London Series A 295 (1966), 129–139.

[24] Wall, C.T.C. Surgery on Compact Manifolds,
Academic Press, New York – London (1970).

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

E-mail address: jonh@maths.usyd.edu.au


