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Abstract

The arbitrage free prices of real estate leases satisfy the Black-

Scholes partial differential equation with an upper reflecting bound-

ary condition. This upper boundary corresponds to rent conditions

of new entry into the market. We show, in this paper, how to solve

such problems using the Method of Images. It transpires that for

reflecting boundary value problems, we need a continuous distribu-

tion of images, as opposed to the simple point images obtained for

absorbing boundary conditions. We derive the corresponding Equiv-

alent European Payoff and use it to price a simple lease contract of

fixed maturity. The solution can be expressed as a portfolio of simple

power binaries.

1 Introduction

The valuation of a real estate lease in a real options setting has been consid-

ered in detail by Grenadier [9]. The emphasis of that paper was the extension

to real estate markets, of the theory of dynamic equilibrium in a competitive

industry, as outlined in Dixit and Pindyck [1]. Earlier related ideas were

attributed to Smith [2]. Grenadier then applied this theory to value a fixed

term lease on a property and also to a number of more complex lease con-

tracts.
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It transpires that lease agreements in this framework satisfy the classical

Black-Scholes partial differential equation (BS-pde) with terminal payoff

function depending on the specifics of the contract and with an upper reflect-

ing boundary condition. In the theory of pde’s this last condition is known

as a Neumann boundary condition and is relatively rare in Black-Scholes

derivative pricing – absorbing BC’s being much more common. Barrier op-

tions, for example are well known derivatives which satisfy the BS-pde with

an absorbing (aka a Dirichlet) boundary condition at the barrier. While it is

fairly straightforward to price derivatives with absorbing BC’s, this is not the

case for reflecting BC’s. Grenadier prices the lease contracts utilising the dis-

counted expectation of the payoff under the risk neutral (i.e. arbitrage free)

measure. This expectation is taken under the assumption the instantaneous

rent process follows geometrical Brownian motion with an upper reflecting

boundary. The resulting analysis involves ‘grueling integration’ [8], so that

Grenadier simply states the result without providing the details.

The contribution of this paper is to present a complete analysis of such re-

flecting boundary value problems for the BS-pde. We employ the method

of images for pde’s to solve the general problem and derive the price of a

fixed term lease as an example of the method. This method has considerable

advantages over traditional methods in that it requires no complex integra-

tions and the final outcome has a simple economic interpretation in terms

of portfolios of so called, power binaries and their images. It is gratifying

that our solution can be shown to be equivalent to Grenadier’s, apart from

a couple of typographical errors which we report later in the text.

Buchen [6] shows how to price barrier options by finding the equivalent Eu-
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ropean payoff at the expiration time. This payoff involves certain binary

options (i.e. options which pay out only if the underlying is above or below

a given exercise price) and their images. Image options and the Method of

Images is described in section 5. The equivalent European option is an oth-

erwise identical option, but without the presence of the barrier. This is an

extremely useful concept, since it allows the solution of complex boundary

value problems in terms of simpler terminal value problems.

We derive in this paper the Method of Images and corresponding equivalent

payoff for reflecting boundary value problems. These turns out to be more

complex than the related absorbing boundary value problem. For one thing,

absorbing BV problems for the Black-Scholes equation have simple point

images. Reflecting BV problems on the other hand, require a continuous dis-

tribution of images. In this regard, the equivalent payoffs for reflecting BV

problems is closer to those for lookback options than for knock-out barrier

options (e.g. see Buchen and Konstandatos [7]). We show that the arbitrage

free price of a lease on a given property can be expressed as an equivalent

portfolio of power binaries and their images. We derive explicit formulae for

these power binaries and hence find a closed form expression for the corre-

sponding lease value.

This paper briefly describes the lease model in sections 2 and 3 and how

it impacts on the Sydney CBD commercial office space market. In section

4 we derive the pde for the fixed term lease value, while in section 5 we

describe the method of images needed to solve it. Proofs are relegated to an

Appendix. The conclusion of the paper reports on some computations and

their relation to Grenadier’s results.
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2 The Lease Model

When a tenant leases a property, possession of the property is taken for a

fixed term equal to the duration of the lease. At the end of the term, the

property is returned to the owner. In exchange for the use of the property,

the tenant pays an agreed premium equal to the value of the lease. The

premium is usually paid in advance in installments called rent. To simplify

the analysis, rent is abstracted to a continuous stochastic process to indicate

the value of real estate, similar to the stock price process as an indicator

of company value. Although the instantaneous rent is not observable, it is

nevertheless a useful concept in the lease model presented. If one further

assumes a homogeneous market in which all firms make identical decisions

and the real estate supply is constant, the instantaneous rent can be used as

a proxy for real estate demand.

While there are many factors that determine real estate value in practice, the

model assumes that property value depends only on the rental income it can

generate. Commercial office space comes closer to this ideal than other forms

of real estate such as residential property, where subjective issues (e.g. water

views) strongly influence value. The Property Council of Australia classi-

fies commercial office space and produces a valuation index for the different

classes. Within each class, the basic unit of office space can be considered to

be approximately homogeneous (see www.propertyoz.com.au for details).

The index involves both temporal and regional averaging, the specifics of

which go beyond the scope of this paper, but is broadly consistent with the

above model.

Under the above simplifying assumptions, Dixit and Pindyck [1] derive a long
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term equilibrium value H(x) for the fair value of a property as a function of

the rent x. This derivation, which is based on Black-Scholes option pricing

concepts, is briefly reviewed in the next section. Grenadier [9] extended this

model to pricing a fixed term lease on a property. In Grenadier’s approach,

which has its foundations in the work of Smith [2], the lease is shown to be

equivalent to a portfolio which is long the property and short a European call

option on the value of the property H(x), with zero strike price and expiry

date coinciding with the end of the lease. The call option will, naturally,

always be exercised at expiry and corresponds to the fact the property will

be returned to the owner when the lease expires. If C(x, t; T ) denotes the

value of this call option at time t < T , where T is the termination date of

the lease, then the corresponding lease value is given by

L(x, t : T ) = H(x) − C(x, t; T ) (1)

The model permits valuation of both H(x) and C(x, t; T ) as solutions of

Black-Scholes differential equations under suitable boundary conditions. Dixit

and Pindyck argue that there should exist an upper threshold b on the rent

x, which if reached, will trigger new entry into the market. As any one new

firm enters the market, the rent will decrease along the demand curve that

applies for that instant. Hence if the rent ever climbs to this threshold, it is

immediately brought back down to a slightly lower level. In technical terms,

the threshold b becomes an upper reflecting barrier for the rent process. Fur-

thermore, under the homogeneous market assumption, industry equilibrium

requires a firm’s threshold at b to be equal to its rational (risk-neutral) ex-

pectation of all other firms’ thresholds.

Mathematically, a reflecting boundary condition at x = b for a derivative

contract of value V (x, t) is given by ∂V (b, t)/∂x = 0. This can be contrasted
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with an absorbing BC (e.g. for a knock-out barrier option) where V (b, t) = 0.

3 Equilibrium Property Value

Assume the instantaneous rent process Xt follows geometrical Brownian mo-

tion described by the stochastic differential equation (sde)

dXt = Xt[µdt + σ dBt] (2)

where µ is the drift rate and σ is the volatility, both assumed constant. Bt

is a standard Brownian motion (under the real world measure) and for any

fixed t > 0, is Gaussian with zero mean and variance equal to t, that is,

Bt ∼ N(0, t).

Dixit and Pindyck [1] show that, under this rent process the long term equi-

librium value H(x, t) of property satisfies the time independent Black-Scholes

equation (it is actually an ode)

1
2σ

2x2 ∂2H

∂x2
+ (r − q)x

∂H

∂x
− rH + x = 0 (3)

where q is the yield on the property (see also Patel and Sing [5]). This pde

is almost identical to the standard time independent Black-Scholes pde for a

derivative on a dividend paying asset. The only difference is the final added

term x which arises from the rent paid in the associated instantaneous hedge

portfolio used to derive it.

The BC’s for (3) are determined as follows. First H(x) = 0 when x = 0, since

a property that attracts no rent will also have no value. As argued above we

also have the reflecting BC at x = b, where the derivative with respect to x
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vanishes. The natural domain of the ode is therefore 0 < x < b.

Is such a reflecting barrier observable in the market? It is a moot point

whether such a boundary can ever really be observed. Figure 1 shows the

median rent for the Sydney CBD1 total office space corrected for inflation for

the years 1986 to 2005. There is a clear fall in rent during the early 1990’s

and a hint of a resistance level, if not an actual threshold, after 1997.

Numerous other factors influence the Sydney commercial real estate market.

The introduction of capital gains tax in 1985 and compulsory superannuation

for all employees in 1992 are two important examples. Newell [4] identifies

superannuation in Australia as being a “key driver“ behind the growth in

the commercial property market with “95% of superannuation funds having

a specific allocation to property“. Figure 2 shows the total supply and to-

tal occupancy of Sydney CBD office space from 1990 to 2005. In the first

half of the 1990 decade, supply increased without an increase in occupancy.

Subsequently, total supply behaved like the supremum of occupancy. This is

consistent with Grenadier’s model assumption that demand indirectly drives

supply. There is also empirical evidence for this assumption, as noted by

Higgins [3]: “the movement of office capital values leads to new orders and

consequently new office space.”

Figure 3. shows that the yield on commercial real estate in the Sydney CBD

has remained pretty well constant at around 7% since 1997.

1Central Business District
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The unique solution of (3) is

H(x) =
b

q

[

x

b
− 1

β

(x

b

)β
]

(4)

where β is the positive root of the quadratic

1
2σ

2β2 + (r − q − 1
2σ

2)β − r = 0 (5)

The first term in (4), i.e. x/q, is the value of the property generated from

continuous rent to perpetuity. The second term is a correction for the pres-

ence of the upper threshold at x = b. Note that H → x/q as b → ∞, that is

as the threshold disappears.

4 The Lease Framework

Consider a self-financing portfolio that is long a derivative V (x, t) and short

h units of rent x = Xt. The dynamics of the process Xt is assumed to follow

the sde (2). This portfolio has current value

P (t) = V (Xt, t) − hXt (6)

Holding this portfolio to time t + dt, the value will then be

P (t + dt) = V (Xt + dXt, t + dt) − h(Xt + dXt) − hqXt dt (7)

The last term is the yield generated by the rent process over the time interval

[t, t + dt). Subtracting these two expressions and employing Itô’s Lemma

gives, conditional on x = Xt,

dP = dV (x, t) − hdXt − hqx dt

= (Vt + 1
2σ

2x2Vxx − hqx)dt + (Vx − h)dXt (8)
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The standard Black-Scholes hedging argument now proceeds by choosing

h = Vx. The portfolio becomes riskless, since the only stochastic term is

dXt, and in order to avoid arbitrage the portfolio must earn the risk free rate

r. That is, from (6) and (8)

dP = rPdt = r(V − xVx)dt = Vt + 1
2σ

2x2Vxx − qxVx

This leads to the usual Black-Scholes pde for the derivative, viz

LV (x, t) =
∂V

∂t
+ 1

2σ
2x2 ∂2V

∂x2
+ (r − q)x

∂V

∂x
− rV = 0 (9)

Hence all derivatives that depend only on the rent process satisfy the Black-

Scholes pde. Different derivatives will be distinguished only by their payoffs

at maturity T and their boundary conditions. For the lease problem of

interest here, the zero strike call option on the value of the property C(x, t; T ),

will satisfy the Black-Scholes pde LC(x, t; T ) = 0 in the domain 0 < x <

b, t < T subject to the BC’s

C(0, t; T ) = 0; C(x, T ; T ) = H(x); Cx(b, t; T ) = 0 (10)

where H(x) given by (4), is the long term property value and Cx(b, t; T ) = 0

specifies the reflecting BC at the barrier x = b.

The next section describes the mathematical tools needed to solve this pde

for C(x, t; T ) in its domain of definition and also derives this solution as a

portfolio of power binaries.

5 Solving for the Lease Value

5.1 Method of Images

Solutions of boundary value problems for pde’s are often facilitated using so

called image solutions. Buchen [6] has shown that if V (x, t) is any solution
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of the Black-Scholes pde (9), then

∗
V (x, t) = I[V (x, t)] =

(x

b

)α

V

(

b2

x
, t

)

; α =
2(r − q)

σ2
− 1 (11)

is the image solution relative to x = b. The image solution has a number of

important properties. These include

1.
∗∗
V (x, t) = I[

∗
V (x, t)] = I2V (x, t) = V (x, t)

2. V =
∗
V when x = b

3. If V (x, t) solves the BS-pde with payoff V (x, T ) = F (x), then
∗
V (x, t) solves the BS-pde with payoff

∗
V (x, T ) =

∗
F (x).

The Method of Images for the absorbing BV problem: LV = 0 in x <

b, t < T with V (x, T ) = F (x) and V (b, t) = 0, has solution given by

V (x, t) = Vb(x, t) − ∗
V b(x, t), where Vb(x, t) solves the terminal value prob-

lem LVb = 0 in x > 0, t < T with Vb(x, T ) = F (x)I(x < b). The payoff

F (x)I(x< b) for Vb(x, T ) is termed a down-type binary on F (x); the holder

receives F (x) at the expiry date T , but only if the underlying asset (here,

the rent) is below the barrier level b. Otherwise the holder gets nothing.

This solution is unique and solves the problem of pricing an up-and-out bar-

rier option with arbitrary payoff F (x). The Method of Images implies the

following important result for absorbing BV problems in the Black-Scholes

framework.

Theorem 1. Equivalent payoff for absorbing BV problems

The equivalent European payoff for an absorbing BV problem for the Black-

Scholes pde in x < b, with expiry T payoff F (x) is given by

Veq(x, T ) = F (x)I(x<b) − ∗
F (x)I(x>b) (12)
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The last term above follows from the observation I[F (x)I(x<b)] =
∗
F (x)I(x>

b). This theorem allows us to solve absorbing BV problems by solving a re-

lated terminal value problem, i.e. a European option without the presence

of the barrier at x = b.

The lease problem we are concerned with however is not an absorbing BV

problem but rather a reflecting BV problem. The corresponding result for

such problems is a central result of this paper and is given by:

Theorem 2. Equivalent payoff for reflecting BV problems

The equivalent European payoff for a reflecting BV problem for the Black-

Scholes pde in x < b, with expiry T payoff F (x) is given by

Veq(x, T ) = F (x)I(x<b) +
∗
F (x)I(x>b) + αI(x>b)

∫ x

b

∗
F (y)

dy

y
(13)

Proof: See Appendix. �

The equivalent payoff for reflecting BV problems is seen to be somewhat more

complex than that for absorbing BV problems. The extra term involving an

integral of
∗
F (y) shows that the payoff now involves a continuum of images,

as well as the single point image
∗
F (x).

For the lease problem, the payoff is F (x) = H(x) given by (4). Define

Fa(x) = (x/b)a. Then H(x) = b/q[F1(x)−β−1Fβ(x)]. By linearity, if Ca(x, t)

solves the reflecting BV problem with payoff Fa(x), then

C(x, t; T ) = b/q[C1(x, t) − β−1Cβ(x, t)] (14)

solves the Black-Scholes pde with BC’s (10).
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We now evaluate the equivalent payoff for the reflecting BV problem with

payoff Fa(x), using (13) and I[(x/b)a] = (b/x)a+α to obtain

Ceq
a (x, T ) = (x/b)a

I(x<b) + (b/x)a+α
I(x>b) + αKI(x>b)

where

K =

∫ x

b

(

b

y

)a+α
dy

y
= α

a+α

[

1 − (b/x)a+α
]

(15)

Hence

Ceq
a (x, T ) = (x/b)a

I(x<b) + a
a+α(b/x)a+α

I(x>b)] + α
a+αI(x>b)

= (x/b)a
I(x<b) + a

a+αI[(x/b)a
I(x<b)] + α

a+αI(x>b) (16)

This is the equivalent payoff we are seeking and it only remains to determine

the present value of a European derivative with this payoff. To this end,

observe that each term above is a special case of a power binary defined by

the terminal payoff

P s
b (x, T ; c) = (x/b)c

I(sx>sb) (17)

The holder of such a contract receives (x/b)c at time T , but only if the asset

price x is above b (up-type if s = +1) or below b (down-type if s = −1). For

these up and down binaries the barrier price b plays the role of an exercise

price. The parameter s = ±1 defines the binary type.

Theorem 3. Present value of a power binary

The arbitrage free price of the power binary, defined by (17), is given, in the

Black-Scholes framework, by

P s
b (x, t; c) = (x/b)c eµ(c)τ N [sd(x, τ ; c)] (18)
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for all t < T , where τ = T − t, N (d) is the cumulative normal distribution

function and

µ(c) = 1
2σ

2c2 + (r − q − 1
2σ

2)c − r (19)

d(x, τ ; c) =
log(x/b) + [r − q + (c − 1

2)σ
2]τ

σ
√

τ
(20)

Proof: See Appendix. �

Observe that the three values of c implicit in the call option value are c =

(1, β, 0), with corresponding µ values µ(c) = (−q, 0,−r). ¿From (17), the

present value of Ca(x, t) is given by

Ca(x, t) = P−
b (x, t; a) +

a

a + α

∗
P−

b (x, t; a) +
α

a + α
P+

b (x, t; 0) (21)

Substituting into (14), we then finally obtain the expression

C(x, t; T ) =
b

q

[

P−
b (x, t; 1) + 1

α+1

∗
P−

b (x, t; 1) + α
α+1P

+
b (x, t; 0)

− 1
β P−

b (x, t; β) − 1
α+β

∗
P−

b (x, t; β) − α
β(α+β)P

+
b (x, t; 0)

]

(22)

The call option is seen to be a portfolio of power binaries (and their im-

ages), all with the same exercise price b, but with different power indices

c = (1, β, 0). Note further that although the two expressions in P +
b (x, t; 0)

can be combined, we leave them as above, in order to facilitate comparison

with Grenadier’s result. One final point to observe is that the images in (22)

can be evaluated using (11) and leads to the identity

∗
P s

b(x, t; c) = P−s
b (x, t;−c − α) (23)

Thus the image of a power binary is itself a power binary but of opposite

type.

The lease value can be graphed against the rent and against the time re-

maining in the lease. These plots are shown in figure (4) and figure (5).
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These graphs are scaled to the value of the reflecting barrier for clarity. The

values of the default parameters used were q = 0.07, r = 0.05, σ = 0.15 and

T = 5years.
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Figure 5: Lease versus Time

6 Comparison with Grenadier

While our graph of Lease versus Time looks quite different to Grenadier [9]

figure 1, the two are in fact consistent. In Grenadier’s term structure of lease
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rates, he includes an interest rate factor, r
1−exp(−r.T )

, which accounts fully for

the difference. Indeed, while our lease curves (fig 5) are all monotone increas-

ing with time, this factor permits humped shaped and monotone decreasing

term structures as well .

We can also demonstrate the analytical equivalence of our pricing formula

(22) with his equation [9](29) and [9](30), provided we correct a typographical

error in his equation [9](30): the factor [1 − h(w)] should read [1 + h(w)].

7 Conclusion

Grenadier’s [9] model for pricing real estate leases in the Black-Scholes frame-

work involves the solution of the Black-Scholes partial PDE with an upper

reflecting boundary condition. Such boundary conditions are not often seen

in applications of financial mathematics.

We have shown in this paper how to solve such problems by extending the

Method of Images for absorbing boundary conditions used to price barrier

options. The image system turns out to contain both point images and a

continuous distribution of images.

We have also derived the corresponding Equivalent European Payoff for this

class of problems. This further simplifies the analysis, as demonstrated, for

the case of a standard lease with fixed maturity. For this problem the Equiv-

alent European Payoff is found to be that of a portfolio of power binaries

and their images. The problem of pricing the lease is therefore reduced to

one of pricing a power binary, which is straightforward.
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Once the analytical machinery is in place, the only integration needed was

an elementary one carried out in equation (15). Our method is therefore

considerably simpler than the standard approach adopted by Grenadier and

also leads to a simpler interpretation and a more elegant pricing formula.
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A Equivalent Payoff for reflecting BV prob-

lems

We prove in this appendix that the equivalent European payoff for a reflecting

BV problem for the Black-Scholes pde in x < b, with expiry T payoff F (x)

is given by

Veq(x, T ) = F (x)I(x<b) +
∗
F (x)I(x>b) + αI(x>b)

∫ x

b

∗
F (y)

dy

y
(24)

Proof: The proof has four steps.

• Transform to the heat equation

• Solve the PDE using Laplace Transforms

• Transform back to original variables

• Evaluate at the maturity date, t = T

A.1 Transform to the heat equation

The Black Scholes PDE with the reflecting boundary

Vt = rV − (r − q)xVx − 1
2σ

2x2Vxx in x < b, t ≤ T (25)

18



V (x, T ) = f(x), Vx(b, t) = 0

can be transformed to the Heat Equation using

τ = T − t, ξ = log b/x, V = e
1
2αξ−βτu(ξ, τ)

This gives the mixed boundary value problem

ut = 1
2σ

2uξξ in ξ > 0, τ > 0

u(ξ, 0) = e−
1
2αξf(be−ξ) = h(ξ)

uξ + 1
2αu = 0 when ξ = 0 (26)

where α = 2(r − q)/σ2 − 1 and β = r + α2σ2/8.

A.2 Solving the PDE

Using Laplace transforms and standard techniques this mixed boundary value

problem can be solved. Let

ū(ξ, τ) =

∫ ∞

−∞
G(ξ − η, τ)h+(η)dη (27)

where h+(η) = h(η)I(η>0) and G(ξ, τ) is the Greens function

G(ξ, τ) =
e−ξ2/2σ2τ

√
2πσ2τ

.

The solution can then be written in terms of ū and its image ū(−ξ, τ), as:

u(ξ, τ) = ū(ξ, τ) + ū(−ξ, τ) +

∫ ∞

ξ

ū(−ν, τ)e
1
2α(ν−ξ)dν (28)

A.3 Conversion back to the Black-Scholes variables

Let ξ = log b/x, t = T − τ and

V (x, t) = e
1
2αξ−βτu(ξ, τ)

Vb(x, t) = e
1
2αξ−βτ ū(ξ, τ)

19



Now Vb(x, t) solves

LVb(x, t) = 0 in t < T, x > 0

Vb(x, T ) = f(x)I(x<b)

Further

∗
Vb(x, t) = (b/x)αVb(b

2/x, t)

= (b/x)α(x/b)
1
2αe−βτu(log x/b, τ)

= (b/x)
1
2αe−βτu(− log b/x, τ)

= e
1
2αξ−βτ ū(−ξ, τ)

Multiplying equation (28) by e
1
2αξ−βτ gives

V (x, t) = Vb(x, t) +
∗
Vb(x, t) +

∫ ∞

ξ

∗
Vb(be

−ν , t)dν

The last term can be simplified by using ξ = log b/x and y = be−ν to change

variables giving

V (x, t) = Vb(x, t) +
∗
Vb(x, t) + α

∫ x

0

∗
Vb(y, t)

dy

y
(29)

A.4 The Equivalent European Payoff

To find the equivalent European payoff evaluate (29) at t = T giving

Veq(x, T ) = f(x)I(x<b) +
∗
f(x)I(x>b) + α

∫ x

0

∗
f(y)I(y>b)

dy

y

= f(x)I(x<b) +
∗
f(x)I(x>b) + α

∫ x

b

∗
f(y)

dy

y
I(x>b)

�
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B The Power Binary

P s
b (x, t; c) = e−rτ

E

{(

XT

b

)c

I(sXT >sb)|Xt = x

}

(30)

where under the risk neutral measure

XT = xe(r−q−1
2σ2)τ+σ

√
τz

and τ = T − t and z ∼ N (0, 1). Therefore

P s
b (x, t; c) = e−rτ (x/b)cec(r−q−1

2σ2)τ
E{ecσ

√
τz

I(sz>−sd′)}

where

d′ = [log x/b + (r − q − 1
2σ

2)τ ]/σ
√

τ

and E is the expectation operator.

Using the result

E{eazF (z)} = e
1
2a2

E{F (z + a)}

for any constant a and arbitrary function F , we obtain:

P s
b (x, t; c) = e−rτ (x/b)cec(r−q−1

2σ2)τ+
1
2σ2c2τ

E{I(s(z + cσ
√

τ )>−sd′)}
= (x/b)ce−(r−c(r−q−1

2σ2))τ+
1
2σ2c2τ

E{I(sz>s(−d′ − cσ
√

τ))}
= (x/b)ce−(r−c(r−q−1

2σ2))τ+
1
2σ2c2τN [s(d′ + cσ

√
τ )]

This can be expressed as

P s
b (x, t; c) = (x/b)c eµ(c)τ N [sd(x, τ ; c)] (31)

for all t < T , where τ = T − t, N (d) is the cumulative normal distribution

function and

µ(c) = 1
2σ

2c2 + (r − q − 1
2σ

2)c − r

d(x, τ ; c) = d′ + cσ
√

τ =
log(x/b) + [r − q + (c − 1

2)σ
2]τ

σ
√

τ
.
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