KNOT GROUPS AND SLICE CONDITIONS

JONATHAN A. HILLMAN

ABSTRACT. We introduce the notions of "k-connected-slice" and " π_1 -slice", interpolating between "homotopy ribbon" and "slice". We show that every high-dimensional knot group π is the group of an (n-1)-connected-slice *n*-knot for all $n \geq 3$. However if π is the group of an *n*-connected-slice *n*-knot the augmentation ideal $I(\pi)$ must have deficiency 1 as a module. If moreover n = 2 and π' is finitely generated then π' is free. In this case def $(\pi) = 1$ also.

An *n*-knot is a locally flat embedding $K : S^n \to S^{n+2}$. Such a knot K is homotopy ribbon if it is a slice knot with a slice disc whose exterior W has a handlebody decomposition consisting of 0-, 1- and 2-handles. The dual decomposition of W relative to ∂W has only (n + 1)-, (n + 2)- and (n + 3)-handles, and so the inclusion of ∂W into W is *n*-connected. More generally, we shall say that K is *k*-connected-slice if there is a slice disc with exterior W such that $(W, \partial W)$ is *k*-connected, and that K is π_1 -slice if the inclusion of the knot exterior $X(K) = \overline{S^{n+2} - K(S^n) \times D^2}$ into the exterior of some slice disc induces an isomorphism on fundamental groups.

Every ribbon knot is homotopy ribbon [4], while if $n \ge 2$ "homotopy ribbon" \Rightarrow "*n*-connected-slice" \Rightarrow " π_1 -slice" \Rightarrow "slice". Nontrivial classical knots are never π_1 -slice, since the longitude of a slice knot is nullhomotopic in the exterior of a slice disc. (A 1-knot is "homotopically ribbon" in the sense used in Problem 4.22 of [6] if and only if it is 1-connected-slice.) It is an open question whether every classical slice knot is ribbon. However in higher dimensions these notions are generally distinct. Every even-dimensional knot is slice, but a knot group is the group of a ribbon *n*-knot (for $n \ge 2$) if and only if it has a Wirtinger presentation of deficiency 1 [11]. (More generally, if W is homotopy equivalent to a finite 2-complex and $\chi(W) = 0$ then def $(\pi_1(W)) \ge 1$.) There are *n*-knot groups with deficiency ≤ 0 for every $n \ge 2$.

In this note we shall show that every high-dimensional knot group π is the group of an (n-1)-connected-slice *n*-knot for all $n \geq 3$. However the groups of *n*-connected-slice *n*-knots satisfy constraints related to

¹⁹⁹¹ Mathematics Subject Classification. 57Q45.

Key words and phrases. deficiency, knot, ribbon, slice.

deficiency. We shall show that if π is the group of an *n*-connected-slice *n*-knot the augmentation ideal $I(\pi)$ must have deficiency 1 as a $\mathbb{Z}[\pi]$ -module. In all known cases def $(\pi) = 1$, and we shall show that the latter condition must hold if π is the group of a π_1 -slice 2-knot and π' is finitely generated. (In fact the commutator subgroup π' is then free.)

1. (n-1)-Connected-slice *n*-knots

If K is an n-knot let $\pi K = \pi_1(X(K))$ and $M(K) = X(K) \cup D^{n+1} \times S^1$ denote the knot group and the closed (n+2)-manifold obtained by surgery on K, respectively. Then M(K) has the homology of $S^{n+1} \times S^1$, $\chi(M(K)) = 0$ and $\pi_1(M(K)) \cong \pi K$.

The following result is a variation on Theorem 1.7 of [9].

Theorem 1. Let π be a high dimensional knot group and $n \ge 3$. Then there is an (n-1)-connected-slice n-knot K with group $\pi K \cong \pi$.

Proof. Let \mathcal{P} be a finite presentation for π , and let X be the corresponding finite 2-complex. Then $H_2(X;\mathbb{Z})$ is a finitely generated free abelian group. The Hurewicz homomorphism in degree 2 is surjective, since $H_2(\pi; \mathbb{Z}) = 0$, and so we may attach 3-cells along representatives for a basis for $H_2(X;\mathbb{Z})$ to obtain a finite 3-complex Y with $\pi_1(Y) \cong \pi$ and $H_q(Y) = 0$ for $q \ge 2$. If $n \ge 3$ we may construct an (n+3)dimensional handlebody $N \simeq Y$ with no handles of index > 3. Thus N may be obtained by adding handles of index at least n to a collar neighbourhood of $M = \partial N$, and so the inclusion of M into N is (n-1)-connected. Let Δ be the (n+3)-manifold obtained by adjoining a further 2-handle with attaching map representing a normal generator for π . Then Δ is contractible and $\partial \Delta$ is 1-connected, and so $\Delta \cong D^{n+3}$. The corecore of the final 2-handle is a slice disc for an *n*-knot $K: S^n \to \partial \Delta$, and K is easily seen to be (n-1)-connectedslice.

In particular, π is the group of a π_1 -slice *n*-knot, for all $n \geq 3$.

Note that if $def(\pi) = 1$ then $H_2(X; \mathbb{Z}) = 0$ and so the argument gives a homotopy ribbon *n*-knot with group π for any $n \geq 2$.

2. n-Connected-slice n-knots

If (W, V) is a k-connected (n+3)-manifold pair and $k \leq n-1$ then W has a handlebody decomposition consisting only of handles of index < n+3-k [10]. Thus (n-1)-connected-slice n-knots have slice discs with handlebody decompositions consisting of handles of index ≤ 3 only. If this "homotopy connectivity implies geometric connectivity" result held also when k = n it would follow that every *n*-connected slice *n*-knot K is homotopy ribbon, and hence that $def(\pi K) = 1$. Here we shall show that the linear analogue of this condition must hold.

If R is a ring and M is a finitely presentable R-module let

$$def_R(M) = \sup\{g - r \mid \exists exact sequence \ R^r \to R^g \to M \to 0\}.$$

It is easy to see that if R maps nontrivially to a field then $def_R(M)$ is finite.

Lemma 2. Let G be a finitely presentable group and I(G) be the augmentation ideal of $\mathbb{Z}[G]$. Then $def(G) \leq def_{\mathbb{Z}[G]}I(G) \leq \beta_1(G) - \beta_2(G)$.

Proof. Let X is the finite 2-complex with one 0-cell, g 1-cells and r 2cells associated to a presentation of G and let $C_*(\widetilde{X})$ be the equivariant cellular chain complex of the universal covering \widetilde{X} . Then $\chi(X) =$ 1 - g + r and $C_* = C_*(\widetilde{X})$ is a partial resolution of the augmentation $\mathbb{Z}[G]$ -module Z. Therefore $\partial_2 : C_2 \to C_1$ is a presentation for $I(\pi)$. The first inequality follow easily since C_1 and C_2 are free $\mathbb{Z}[G]$ -modules of rank g and r, respectively. The second inequality follows on applying $\mathbb{Z} \otimes_{\mathbb{Z}[G]} -$ to a presentation of I(G) and observing that $H_{i+1}(G;\mathbb{Z}) =$ $Tor_i^{\mathbb{Z}[G]}(\mathbb{Z}, I(G))$ for $i \geq 0$. \Box

If every partial resolution of length 2 of the augmentation $\mathbb{Z}[G]$ module \mathbb{Z} is chain homotopy equivalent to such a complex $C_*(\widetilde{X})$ then $def(G) = def_{\mathbb{Z}[G]}I(G)$. It is not known whether this "Realization Theorem for algebraic 2-complexes" holds for all groups G. (See [5].)

Theorem 3. Let K be an n-connected-slice n-knot with group $\pi = \pi K$. Then $def_{\mathbb{Z}[\pi]}I(\pi) = 1$.

Proof. Let W be the exterior of a slice disc for K such that $(W, \partial W)$ is *n*-connected, and let C_* be the equivariant cellular chain complex of the universal cover \widetilde{W} , which is a complex of finitely generated free left $\mathbb{Z}[\pi]$ -modules. Then $H_p(W; \mathbb{Z}[\pi]) = H^{n+3-p}(W, \partial W; \mathbb{Z}[\pi]) = 0$ for $p \leq 2$ and $H^q(W; \mathcal{B}) = H_{n+3-q}(W, \partial W; \overline{\mathcal{B}}) = 0$ for any left $\mathbb{Z}[\pi]$ -module \mathcal{B} and $q \geq 3$, by Poincaré duality. (Here $\overline{\mathcal{B}}$ is the right $\mathbb{Z}[\pi]$ -module obtained from \mathcal{B} via the canonical involution of $\mathbb{Z}[\pi]$.) In particular, taking $\mathcal{B} = C_q$ we see that id_{C_q} is a cocycle, and so $id_{C_q} = \partial^q(f) = f_q \partial_q$ for some homomorphism $f_q : C_{q-1} \to C_q$, for $q = n + 3, \ldots, 3$ (in descending order). Thus C_* splits as the sum of a contractible complex and a complex which is concentrated in degrees $0 \leq q \leq 2$. (Compare Lemma 2.3 of [9].) Since C_* is a finite free complex the direct summand $\operatorname{Im}(\partial_3)$ is stably free, and so C_* is chain homotopy equivalent to a finite free complex

$$0 \to D_2 \to D_1 \to D_0 \to 0$$

in which $D_0 \cong \mathbb{Z}[\pi]$. Since $\partial_2 : D_2 \to D_1$ is a presentation for $I(\pi)$ and $\chi(W) = 0$ we se that $\operatorname{def}_{\mathbb{Z}[\pi]}I(\pi) \ge 1$. On the other hand $\operatorname{def}_{\mathbb{Z}[\pi]}I(\pi) \le \beta_1(\pi) - \beta_2(\pi) = 1$, by the lemma, and so $\operatorname{def}_{\mathbb{Z}[\pi]}I(\pi) = 1$. \Box

Is every high dimensional knot group π such that $def_{\mathbb{Z}[\pi]}I(\pi) = 1$ realized by some *n*-connected-slice *n*-knot, for each $n \geq 2$?

If (D, Δ) is a k-connected ball pair of dimension n + 3 then the product with D^r gives a (k + r)-connected ball pair of dimension n + r + 3. Thus n = 2 is the case of greatest interest in attempting to realize knot groups by n-connected slice n-knots.

3. 2-KNOTS

Although we do not yet know whether the result of Theorem 3 hold also for the groups of π_1 -slice 2-knots, it is possible that all such groups may have deficiency 1, which is a stronger condition. In this section we shall give some evidence to support this possibility.

An *n*-knot K (with $n \ge 2$) is fibred if M = M(K) fibres over S^1 . The fibre F is then homotopy equivalent to the infinite cyclic covering space M', with fundamental group the commutator subgroup π' of $\pi = \pi K$. In [1] Cochran showed that if K is a fibred ribbon 2-knot with fibre F then the fundamental class [F] has image 0 in $H_3(\pi'; \mathbb{Z})$, and so $F \simeq \#^r(S^1 \times S^2)$ for some $r \ge 0$. He also raised the question: "if a ribbon 2-knot has a minimal Seifert hypersurface V must $\pi_1(V)$ be free?". The argument of [1] applies equally well if the knot is π_1 slice, and extends to show that if a π_1 -slice 2-knot K has a minimal Seifert hypersurface V and πK is an ascending HNN extension with base $\pi_1(V)$ then $\pi_1(V)$ is free. (Note however that there is a ribbon 2-knot whose group is not an HNN extension with free base [12].)

The following theorem provides another extension of this argument, under more algebraic hypotheses. (See also Theorem 17.10 of [2].)

Theorem 4. Let π be the group of a π_1 -slice 2-knot K. Then π' is finitely generated if and only if it is free. In that case def $(\pi) = 1$.

Proof. Let W be the exterior of a π_1 -slice disc for K and $M = \partial W$. Then $M \cong M(K)$ and is a closed orientable 4-manifold with $\chi(M) = 0$ and $\pi_1(M) \cong \pi$. If π' is finitely generated the infinite cyclic cover M'is a PD_3 -space, by Theorem 6 of [3]. Hence π' is FP_2 and the image of the fundamental class [M'] in $H_3(\pi'; \mathbb{Z})$ determines a projective homotopy equivalence of modules $C^2/\partial^1(C^1) \simeq I(\pi')$, by the argument of Theorem 4 of [8]. (The implication used here does not need π' to be finitely presentable.)

Since the classifying map $c_M : M \to K(\pi, 1)$ factors through W it follows from the exact sequence of homology for the pair (W, M) with coefficients $\mathbb{Z}[\pi/\pi']$ that [M'] has image 0 in $H_3(\pi'; \mathbb{Z})$. Hence $id_{I(\pi')} \sim 0$, so $I(\pi')$ is projective and $c.d.\pi' \leq 1$. Therefore π' is free.

The "knot module" $\pi'/\pi'' \cong H_1(M'; \mathbb{Z})$ is a finitely generated $\mathbb{Z}[\pi/\pi']$ torsion module, since $\mathbb{Z}[\pi/\pi'] \cong \mathbb{Z}[t, t^{-1}]$ is noetherian and t-1 acts invertibly, by the Wang sequence for the covering $M' \to M$. Therefore if π' is free it must be finitely generated. Moreover since $\pi \cong \pi' \rtimes Z$ it is then clear that def $(\pi) = 1$. \Box

In particular, the group of the 2-twist spin of the trefoil knot is not the group of a π_1 -slice 2-knot, since it has commutator subgroup Z/3Z.

As observed in §1, every knot group of deficiency 1 is the group of some (homotopy ribbon) π_1 -slice 2-knot. In [7] it is shown that if $G \cong N \rtimes Z$ has deficiency 1 then N is finitely generated if and only if it is free (The result from [3] used above depends on the "weak finiteness" of certain Novikov rings, proven in [7].)

JONATHAN A. HILLMAN

References

- [1] Cochran, T.D. Ribbon knots in S^4 ,
- J. London Math. Soc. 28 (1983), 563-576.
- [2] Hillman, J.A. Four-Manifolds, Geometries and Knots, Geometry and Topology Monographs vol. 5 (2002).
- [3] Hillman, J.A. and Kochloukova, D.H. Finiteness conditions and PD_r-group covers of PD_n-complexes, Math. Z., to appear.
- [4] Hitt, L.R. Examples of higher dimensional slice knots which are not ribbon knots, Proc. Amer. Math. Soc. 77 (1979), 291-297.
- [5] Johnson, F.E.A. Stable Modules and the D(2)-Problem, London Mathematical Society Lecture Note Series 301, Cambridge University Press, Cambridge - New York - Melbourne (2003).
- Kirby, R.C. Problems in low-dimensional topology, in *Geometric Topology* (editor W.H.Kazez) vol. 2, Studies in Advanced Mathematics 2.2, American Mathematical Society, Providence, R.I. (1997), 35-473.
- [7] Kochloukova, D.H. Some Novikov rings that are von Neumann finite and knotlike groups, Comment. Math. Helv., to appear.
- [8] Turaev, V.G. Three-dimensional Poincaré complexes: homotopy classification and splitting, Math. USSR Sbornik 67 (1990), 261-282.
- [9] Wall, C.T.C. Surgery on Compact Manifolds, AAcademic Press, London - New York (1970).
- [10] Wall, C.T.C. Geometric connectivity I,
 J. London Math. Soc. 3 (1971)), 597-604.
- [11] Yajima, T. On a characterization of knot groups of some spheres in \mathbb{R}^4 , Osaka J. Math. 6 (1969), 435-446.
- [12] Yoshikawa, K. A ribbon knot group which has no free base, Proc. Amer. Math. Soc. 102 (1988), 1065-1070.

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

E-mail address: jonh@maths.usyd.edu.au

6