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Abstract. We introduce the notions of “k-connected-slice” and
“π1-slice”, interpolating between “homotopy ribbon” and “slice”.
We show that every high-dimensional knot group π is the group of
an (n− 1)-connected-slice n-knot for all n ≥ 3. However if π is the
group of an n-connected-slice n-knot the augmentation ideal I(π)
must have deficiency 1 as a module. If moreover n = 2 and π′ is
finitely generated then π′ is free. In this case def(π) = 1 also.

An n-knot is a locally flat embedding K : Sn → Sn+2. Such a
knot K is homotopy ribbon if it is a slice knot with a slice disc whose
exterior W has a handlebody decomposition consisting of 0-, 1- and
2-handles. The dual decomposition of W relative to ∂W has only
(n + 1)-, (n + 2)- and (n + 3)-handles, and so the inclusion of ∂W into
W is n-connected. More generally, we shall say that K is k-connected-

slice if there is a slice disc with exterior W such that (W, ∂W ) is k-
connected, and that K is π1-slice if the inclusion of the knot exterior
X(K) = Sn+2 − K(Sn) × D2 into the exterior of some slice disc induces
an isomorphism on fundamental groups.

Every ribbon knot is homotopy ribbon [4], while if n ≥ 2 “homo-
topy ribbon” ⇒ “n-connected-slice” ⇒ “π1-slice” ⇒ “slice”. Nontriv-
ial classical knots are never π1-slice, since the longitude of a slice knot
is nullhomotopic in the exterior of a slice disc. (A 1-knot is “homotopi-
cally ribbon” in the sense used in Problem 4.22 of [6] if and only if it is
1-connected-slice.) It is an open question whether every classical slice
knot is ribbon. However in higher dimensions these notions are gener-
ally distinct. Every even-dimensional knot is slice, but a knot group is
the group of a ribbon n-knot (for n ≥ 2) if and only if it has a Wirtinger
presentation of deficiency 1 [11]. (More generally, if W is homotopy
equivalent to a finite 2-complex and χ(W ) = 0 then def(π1(W )) ≥ 1.)
There are n-knot groups with deficiency ≤ 0 for every n ≥ 2.

In this note we shall show that every high-dimensional knot group π
is the group of an (n−1)-connected-slice n-knot for all n ≥ 3. However
the groups of n-connected-slice n-knots satisfy constraints related to
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deficiency. We shall show that if π is the group of an n-connected-slice
n-knot the augmentation ideal I(π) must have deficiency 1 as a Z[π]-
module. In all known cases def(π) = 1, and we shall show that the
latter condition must hold if π is the group of a π1-slice 2-knot and
π′ is finitely generated. (In fact the commutator subgroup π′ is then
free.)

1. (n − 1)-Connected-slice n-knots

If K is an n-knot let πK = π1(X(K)) and M(K) = X(K) ∪
Dn+1 × S1 denote the knot group and the closed (n + 2)-manifold ob-
tained by surgery on K, respectively. Then M(K) has the homology
of Sn+1 × S1, χ(M(K)) = 0 and π1(M(K)) ∼= πK.

The following result is a variation on Theorem 1.7 of [9].

Theorem 1. Let π be a high dimensional knot group and n ≥ 3. Then

there is an (n − 1)-connected-slice n-knot K with group πK ∼= π.

Proof. Let P be a finite presentation for π, and let X be the corre-
sponding finite 2-complex. Then H2(X; Z) is a finitely generated free
abelian group. The Hurewicz homomorphism in degree 2 is surjective,
since H2(π; Z) = 0, and so we may attach 3-cells along representatives
for a basis for H2(X; Z) to obtain a finite 3-complex Y with π1(Y ) ∼= π
and Hq(Y ) = 0 for q ≥ 2. If n ≥ 3 we may construct an (n + 3)-
dimensional handlebody N ≃ Y with no handles of index > 3. Thus
N may be obtained by adding handles of index at least n to a col-
lar neighbourhood of M = ∂N , and so the inclusion of M into N is
(n − 1)-connected. Let ∆ be the (n + 3)-manifold obtained by ad-
joining a further 2-handle with attaching map representing a normal
generator for π. Then ∆ is contractible and ∂∆ is 1-connected, and
so ∆ ∼= Dn+3. The corecore of the final 2-handle is a slice disc for an
n-knot K : Sn → ∂∆, and K is easily seen to be (n − 1)-connected-
slice. �

In particular, π is the group of a π1-slice n-knot, for all n ≥ 3.
Note that if def(π) = 1 then H2(X; Z) = 0 and so the argument

gives a homotopy ribbon n-knot with group π for any n ≥ 2.

2. n-Connected-slice n-knots

If (W, V ) is a k-connected (n + 3)-manifold pair and k ≤ n − 1 then
W has a handlebody decomposition consisting only of handles of index
< n + 3 − k [10]. Thus (n− 1)-connected-slice n-knots have slice discs
with handlebody decompositions consisting of handles of index ≤ 3
only. If this “homotopy connectivity implies geometric connectivity”
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result held also when k = n it would follow that every n-connected
slice n-knot K is homotopy ribbon, and hence that def(πK) = 1. Here
we shall show that the linear analogue of this condition must hold.

If R is a ring and M is a finitely presentable R-module let

defR(M) = sup{g − r | ∃ exact sequence Rr → Rg → M → 0}.

It is easy to see that if R maps nontrivially to a field then defR(M) is
finite.

Lemma 2. Let G be a finitely presentable group and I(G) be the aug-

mentation ideal of Z[G]. Then def(G) ≤ defZ[G]I(G) ≤ β1(G)−β2(G).

Proof. Let X is the finite 2-complex with one 0-cell, g 1-cells and r 2-

cells associated to a presentation of G and let C∗(X̃) be the equivariant

cellular chain complex of the universal covering X̃. Then χ(X) =

1 − g + r and C∗ = C∗(X̃) is a partial resolution of the augmentation
Z[G]-module Z. Therefore ∂2 : C2 → C1 is a presentation for I(π). The
first inequality follow easily since C1 and C2 are free Z[G]-modules of
rank g and r, respectively. The second inequality follows on applying
Z ⊗Z[G] − to a presentation of I(G) and observing that Hi+1(G; Z) =

Tor
Z[G]
i (Z, I(G)) for i ≥ 0. �

If every partial resolution of length 2 of the augmentation Z[G]-

module Z is chain homotopy equivalent to such a complex C∗(X̃) then
def(G) = defZ[G]I(G). It is not known whether this “Realization The-
orem for algebraic 2-complexes” holds for all groups G. (See [5].)

Theorem 3. Let K be an n-connected-slice n-knot with group π = πK.

Then defZ[π]I(π) = 1.

Proof. Let W be the exterior of a slice disc for K such that (W, ∂W )
is n-connected, and let C∗ be the equivariant cellular chain complex

of the universal cover W̃ , which is a complex of finitely generated free
left Z[π]-modules. Then Hp(W ; Z[π]) = Hn+3−p(W, ∂W ; Z[π]) = 0 for
p ≤ 2 and Hq(W ;B) = Hn+3−q(W, ∂W ;B) = 0 for any left Z[π]-module
B and q ≥ 3, by Poincaré duality. (Here B is the right Z[π]-module
obtained from B via the canonical involution of Z[π].) In particular,
taking B = Cq we see that idCq

is a cocycle, and so idCq
= ∂q(f) = fq∂q

for some homomorphism fq : Cq−1 → Cq, for q = n + 3, . . . , 3 (in
descending order). Thus C∗ splits as the sum of a contractible complex
and a complex which is concentrated in degrees 0 ≤ q ≤ 2. (Compare
Lemma 2.3 of [9].) Since C∗ is a finite free complex the direct summand
Im(∂3) is stably free, and so C∗ is chain homotopy equivalent to a finite
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free complex

0 → D2 → D1 → D0 → 0

in which D0
∼= Z[π]. Since ∂2 : D2 → D1 is a presentation for I(π) and

χ(W ) = 0 we se that defZ[π]I(π) ≥ 1. On the other hand defZ[π]I(π) ≤
β1(π) − β2(π) = 1, by the lemma, and so defZ[π]I(π) = 1. �

Is every high dimensional knot group π such that defZ[π]I(π) = 1
realized by some n-connected-slice n-knot, for each n ≥ 2?

If (D, ∆) is a k-connected ball pair of dimension n + 3 then the
product with Dr gives a (k + r)-connected ball pair of dimension n +
r + 3. Thus n = 2 is the case of greatest interest in attempting to
realize knot groups by n-connected slice n-knots.

3. 2-knots

Although we do not yet know whether the result of Theorem 3 hold
also for the groups of π1-slice 2-knots, it is possible that all such groups
may have deficiency 1, which is a stronger condition. In this section
we shall give some evidence to support this possibility.

An n-knot K (with n ≥ 2) is fibred if M = M(K) fibres over S1.
The fibre F is then homotopy equivalent to the infinite cyclic covering
space M ′, with fundamental group the commutator subgroup π′ of
π = πK. In [1] Cochran showed that if K is a fibred ribbon 2-knot
with fibre F then the fundamental class [F ] has image 0 in H3(π

′; Z),
and so F ≃ #r(S1 × S2) for some r ≥ 0. He also raised the question:
“if a ribbon 2-knot has a minimal Seifert hypersurface V must π1(V )
be free?”. The argument of [1] applies equally well if the knot is π1-
slice, and extends to show that if a π1-slice 2-knot K has a minimal
Seifert hypersurface V and πK is an ascending HNN extension with
base π1(V ) then π1(V ) is free. (Note however that there is a ribbon
2-knot whose group is not an HNN extension with free base [12].)

The following theorem provides another extension of this argument,
under more algebraic hypotheses. (See also Theorem 17.10 of [2].)

Theorem 4. Let π be the group of a π1-slice 2-knot K. Then π′ is

finitely generated if and only if it is free. In that case def(π) = 1.

Proof. Let W be the exterior of a π1-slice disc for K and M = ∂W .
Then M ∼= M(K) and is a closed orientable 4-manifold with χ(M) = 0
and π1(M) ∼= π. If π′ is finitely generated the infinite cyclic cover M ′

is a PD3-space, by Theorem 6 of [3]. Hence π′ is FP2 and the image
of the fundamental class [M ′] in H3(π

′; Z) determines a projective ho-
motopy equivalence of modules C2/∂1(C1) ≃ I(π′), by the argument
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of Theorem 4 of [8]. (The implication used here does not need π′ to be
finitely presentable.)

Since the classifying map cM : M → K(π, 1) factors through W
it follows from the exact sequence of homology for the pair (W, M)
with coefficients Z[π/π′] that [M ′] has image 0 in H3(π

′; Z). Hence
idI(π′) ∼ 0, so I(π′) is projective and c.d.π′ ≤ 1. Therefore π′ is free.

The “knot module” π′/π′′ ∼= H1(M
′; Z) is a finitely generated Z[π/π′]-

torsion module, since Z[π/π′] ∼= Z[t, t−1] is noetherian and t − 1 acts
invertibly, by the Wang sequence for the covering M ′ → M . Therefore
if π′ is free it must be finitely generated. Moreover since π ∼= π′

⋊ Z it
is then clear that def(π) = 1. �

In particular, the group of the 2-twist spin of the trefoil knot is not
the group of a π1-slice 2-knot, since it has commutator subgroup Z/3Z.

As observed in §1, every knot group of deficiency 1 is the group
of some (homotopy ribbon) π1-slice 2-knot. In [7] it is shown that if
G ∼= N ⋊Z has deficiency 1 then N is finitely generated if and only if it
is free (The result from [3] used above depends on the “weak finiteness”
of certain Novikov rings, proven in [7].)
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