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1. INTRODUCTION. Some years ago W. Plesken told the first author of
a simple but interesting construction of a Lie algebra from a finite group.
The authors posed themselves the question as to what the structure of this
Lie algebra might be. In particular, for which groups does the construction
produce a simple Lie algebra? The answer is given in the present paper;
it uses some textbook results on representations of finite groups, which we
explain along the way.

Little knowledge of the theory of Lie algebras is required beyond the defi-
nition of a Lie algebra itself and the definitions of simple and semisimple Lie
algebras. Thus this exposition may serve as the basis for some entertaining
examples or exercises in a graduate course on the representation theory of
finite groups.

2. THE PLESKEN LIE ALGEBRA OF A GROUP. Let G be a finite
group. As with any associative algebra, the group algebra C[G] over the
field C of complex numbers can be made into a Lie algebra by means of
the bracket product: [a, b] = ab − ba. The Lie algebra L(G) suggested by
Plesken is the subspace that is the linear span of the elements g− g−1 for g

in G. Indeed, setting ĝ = g − g−1 we see that ĝ−1 = −ĝ and

[ĝ, ĥ] = ĝh− ĝh−1 − ĝ−1h+ ̂g−1h−1.

Thus L(G) is closed under the Lie product, and therefore it is a Lie algebra.
Let L be a Lie algebra. The algebra L is Abelian if [x, y] = 0 for all x and

y in L. A subspace I of L is an ideal if [x, y] belongs to I for all x in I and
all y in L. The Lie algebra L is simple if its dimension is at least two and
if {0} and L are its only ideals. It is semisimple if {0} is the only Abelian
ideal. In characteristic 0 a Lie algebra is semisimple if and only if it is the
direct sum of ideals that are simple Lie algebras.

The Lie algebra gl(n) is the space of all linear transformations of Cn,
where the Lie product is defined by [x, y] = xy − yx. The subalgebra sl(n)
of linear transformations with trace zero is a simple Lie algebra except when
n is 1.

If n ≥ 1 and if β is a nondegenerate alternating or symmetric form, then
the subspace of gl(n) consisting of all x such that β(xu, v)+β(u, xv) = 0 for
all u and v is a Lie algebra (see Humphreys [3, p. 3]). When β is alternating,
n is necessarily even, and we have the symplectic Lie algebra sp(n); when
β is symmetric, we have the orthogonal Lie algebra o(n). If n ≥ 2, almost
all these Lie algebras are simple: the exceptions are o(2), which is Abelian
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and o(4), which is semisimple. The algebras sl(n), sp(n), and o(n) are the
classical simple Lie algebras. Cartan showed that a simple Lie algebra over
C is either classical or one of five exceptions. He used the symbols An, Bn,
Cn, Dn, E6, E7, E8, F4, and G2 to denote the simple Lie algebras. For the
classical algebras, sl(n + 1) is of type An, sp(2n) is of type Cn, o(2n + 1)
is of type Bn, and o(2n) is of type Dn. Not all are distinct: it is true that
sl(2) ' sp(2) ' o(3), sp(4) ' o(5), and sl(3) ' o(6).

3. SMALL EXAMPLES. Before addressing the question of simplicity di-
rectly, we examine some small examples. Since ĝ = 0 if and only if g2 = 1,
the dimension of L(G) is half the number of elements g in G such that
g2 6= 1. (This already suggests that Schur-Frobenius theory might be in-
volved.) Since the dimension of a smallest nontrivial simple Lie algebra is
three, this should serve as a guide to possible examples.

If g and h commute in G, then [ĝ, ĥ] = 0 and therefore [L(G),L(G)] =
0 whenever G is Abelian. Furthermore, if A is an Abelian subgroup of
index 2 in G and x is an element of order 2 such that xax = a−1 for
all a in A, then every element of G \ A has order 2. This implies that
L(G) = L(A), so [L(G),L(G)] = 0 in this case as well. For example, for
the symmetric group Sym(3) on three letters with A = Alt(3) and x any
transposition, we find that the dimension of L(Sym(3)) is one and it is
spanned by (1, 2, 3)− (1, 3, 2). Furthermore, in general, the linear span of ẑ,
for z in Z(G), is an Abelian ideal of L(G) that is trivial if and only if Z(G)
is an elementary Abelian 2-group.

The considerations so far show that in searching for nontrivial simple
examples we can ignore Abelian groups, dihedral groups, and groups whose
centres are not elementary Abelian 2-groups. The smallest group not covered
by these restrictions is the quaternion group of order 8:

Q8 = 〈 a, b | a2 = b2, b4 = 1, a−1ba = b−1 〉.

In this case dimL(Q8) = 3, and setting c = ab we have

[â, b̂] = 4ĉ, [b̂, ĉ] = 4â, [ĉ, â] = 4b̂.

Thus L(Q8) is the simple Lie algebra sl(2). The elements 2â, 2b̂, and 2ĉ

correspond to the matrices

[
0 1
−1 0

]
,

[
−i 0
0 i

]
, and

[
0 i
i 0

]
.

4. BILINEAR FORMS AND THE ADJOINT MAP. The key to under-
standing the group algebra C[G] (hence L(G)) is the study of the irreducible
representations of G. In this section we introduce the material on represen-
tations and bilinear forms that we need for the structural analysis of L(G)
carried out in the next section.

Suppose that V is a G-module. The character of V is the complex valued
function, defined on G, that assigns each element g of G to the trace of
the linear transformation that g induces on V . If χ is the character of V ,
its complex conjugate χ is the character of the dual space V ∗, which is a
G-module with G-action given by gϕ(v) = ϕ(g−1v). Then χ = χ if and only
if V is isomorphic to V ∗.
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If θ : V → V ∗ is a linear transformation, then β(u, v) = θ(v)u is a
bilinear form on V . Furthermore, every bilinear form β on V arises in this
way, and θ is an isomorphism if and only if β is nondegenerate. It is clear
that β is preserved by G if and only if θ is a G-module homomorphism.
Therefore, if V is an irreducible G-module, then by Schur’s lemma there is
at most one nonzero bilinear form β (up to a scalar multiple) preserved by G.
Moreover, if β is G-invariant, the alternating form (u, v) 7→ β(u, v)−β(v, u)
and the symmetric form (u, v) 7→ β(u, v) + β(v, u) are also G-invariant.
Consequently, if V is irreducible, β is either alternating or symmetric.

An irreducible G-module V is said to be of real (respectively, symplectic)
type if G preserves a nondegenerate symmetric (respectively, alternating)
form on V . If G is not of real or symplectic type, then we have shown that
the only bilinear form on V preserved by G is 0. In this case V is said to be
of complex type. Furthermore, the character χ of V is of real, symplectic, or
complex type according to the type of V .

If f belongs to End(V ), the transpose of f is the element f ∗ of End(V ∗)
defined by f ∗ϕ = ϕf . Suppose that β is nondegenerate, and θ(v)u = β(u, v).
The map σ defined by

σ(f) = θ−1f∗θ

is an anti-automorphism of End(V ). The definition of σ is equivalent to the
requirement that

β(u, σ(f)v) = β(f(u), v) (1)

for all u and v in V and all f in End(V ). That is, σ(f) is the adjoint of
f with respect to β. This formula shows that the nonzero scalar multiples
of β give rise to the same anti-automorphism σ and that σ−1 is the anti-
automorphism corresponding to the opposite form β ′(u, v) = β(v, u).

Suppose that there is no nondegenerate bilinear form preserved by G.
Then V and V ∗ are not isomorphic as G-modules. However, the map Q :
V ⊕ V ∗ → C for which (u, ϕ) 7→ ϕ(u) is a G-invariant quadratic form and
the G-invariant symmetric form β defined by β(u+ϕ, v+ψ) = ϕ(v) +ψ(u)
is known as the polar form of Q.

To complete the description of σ we consider the situation where V is a
G-module and β is a nondegenerate G-invariant bilinear form on V . For g
in G we have β(u, σ(g)) = β(gu, v) = β(u, g−1v) for all u and v in V . Thus
σ(g) = g−1, where we identify g with the automorphism induced by g on
V . In particular, σ is an anti-involution of End(V ). In the next section we
apply this observation to the group algebra of G.

5. THE STRUCTURE OF L(G). The group algebra C[G] can be written
as a direct sum of two-sided ideals:

C[G] = I1 ⊕ I2 ⊕ · · · ⊕ Ir.

In fact, we may take Ii = End(Vi), where V1, V2, . . . , Vr are a set of repre-
sentatives for the irreducible G-modules. The Ii are also ideals with respect
to the Lie product on C[G].

If χi is the character of Vi, its complex conjugate χi is the character of the
dual space V ∗

i . When χi 6= χi, we can choose the notation so that V ∗

i = Vj

for some j different from i; in this case we put i∗ = j.
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Theorem 5.1. The Lie algebra L(G) admits the decomposition

L(G) =
⊕

χ∈R

o(χ(1)) ⊕
⊕

χ∈Sp

sp(χ(1)) ⊕
⊕

χ∈C

′gl(χ(1))

where R, Sp, and C are the sets of irreducible characters of real, symplectic,
and complex types, respectively, and where the prime signifies that there is
just one summand gl(χ(1)) for each pair {χ, χ} from C.

Proof. The calculations of the previous section show that either Vi or Vi⊕Vi∗

carries a nondegenerate bilinear form βi according to whether or not Vi is
isomorphic to V ∗

i . These forms combine to provide a nondegenerate G-
invariant form β on V =

⊕
i Vi, hence an anti-involution σ of C[G] such that

σ(g) = g−1 for all g in G. The Lie algebra L(G) is just the −1-eigenspace
of this anti-involution. It follows from equation (1) that

L(G) = { f ∈ C[G] : β(f(u), v) + β(u, f(v)) = 0 for all u and v in V }.

Accordingly, if Vi is of real or symplectic type, the image of L(G) under the
projection of C[G] onto Ii consists of all linear transformations h in End(Vi)
such that βi(h(u), v)+βi(u, h(v)) = 0 for all u and v in Vi; that is, the image
is the full Lie algebra of the form βi.

Let di = χi(1) be the dimension of Vi. If Vi is of real type, the image
of L(G) under the projection of C[G] onto Ii is o(di), which has dimension
di(di − 1)/2. Similarly, if Vi is of symplectic type, the image of L(G) is
sp(di), a Lie algebra of dimension di(di + 1)/2.

If Vi is of complex type, then σ interchanges Ii and Ii∗ . In this case the
image of L(G) in Ii ⊕ Ii∗ is the d2

i -dimensional Lie algebra gl(di). �

The Schur-Frobenius indicator ν(χ) of χ is defined to be 1, −1, or 0
according to whether χ is of real, symplectic, or complex type.

Example. The dimensions of the irreducible representations of the group
SL(3, 2) of three by three non-singular matrices over the field of two elements
are 1, 3, 3, 6, 7, and 8 and the Schur-Frobenius indicators of their characters
are 1, 0, 0, 1, 1, and 1, respectively (see [1, p. 3]). Thus the Lie algebra of
this group is the direct sum of simple Lie algebras of types gl(3), o(6), o(7),
and o(8) and the dimension of its centre is one.

On computing the dimension of L(G) we obtain the following well-known
formula (see Isaacs [4, p. 51]):

Corollary 5.2. If t is the number of involutions (i.e., elements of order 2)
in G, then

t+ 1 =
r∑

i=1

ν(χ)di,

Proof. In the proof of Theorem 5.1 we showed that if Vi is of real or sym-
plectic type, the dimension of the image of L(G) in Ii is di(di − ν(χi))/2,
and if Vi is of complex type, the dimension of the image of L(G) in Ii ⊕ Ii∗
is d2

i . Thus

dimL(G) =

r∑

i=1

di(di − ν(χi))/2.
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Combining this with the observation from section 3 that

dimL(G) = (|G| − t− 1)/2,

where t is the number of involutions in G, we see that
r∑

i=1

d2
i −

r∑

i=1

diν(χi) = |G| − t− 1.

But |G| =
∑

i d
2
i , so the first terms cancel, and we obtain the required

equality. �

6. WHEN IS L(G) SIMPLE?. Assume, until further notice, that L(G) is
a simple Lie algebra and, in particular, that dimL(G) ≥ 3. The following
result is a corollary of Theorem 5.1:

Corollary 6.1. If L(G) is simple, then all linear characters of G are real,
and G has a unique irreducible character of degree greater than 1, which is
of real or symplectic type.

Proof. The group algebra C[G] is a direct sum of two-sided ideals Ij, which
are also ideals with respect to the Lie product. From the proof of Theo-
rem 5.1 we have L(G)∩Ij 6= {0} for some j. By assumption, L(G) is simple,
whence Ij is the unique ideal such that L(G) ⊆ Ij and L(G)∩Ii = {0} when
i 6= j. The Lie algebra gl(n) has a one-dimensional centre and is not simple.
It follows that G has no representations of complex type and that di = 1 if
i 6= j. Thus Vj is of real or symplectic type, and L(G) is o(dj) or sp(dj). �

A group G is an extraspecial 2-group if G′ = Z(G) has order 2 and G/G′

is an elementary Abelian 2-group. In [2, Theorem 5.2] it is shown that for
each n there are just two extraspecial 2-groups of order 21+2n, namely,

21+2n
+ = D8 ◦D8 ◦ · · · ◦D8︸ ︷︷ ︸

n factors

and

21+2n
−

= Q8 ◦D8 ◦ · · · ◦D8︸ ︷︷ ︸
n factors

,

where D8 is the dihedral group of order 8, Q8 is the quaternion group of
order 8, and ◦ denotes a central product (see Gorenstein [2, p. 29]).

Now we have enough information to prove our main result:

Theorem 6.2. Except in two cases the Lie algebra L(G) of a finite group
G is simple if and only if G is an extraspecial 2-group. The two exceptions
are the dihedral group D8 and the central product Q8 ◦Q8 ' D8 ◦D8.

Proof. Suppose that L(G) is simple. Then all the linear characters of G are
real, so G/G′ has no element whose order is greater than 2; that is, G/G′ is
an elementary Abelian 2-group. Furthermore there is only one irreducible
character of G that is not linear. Now G′ has at least two conjugacy classes,
and all conjugates of x in G belong to the coset xG′. Therefore G has at
least |G/G′|+1 conjugacy classes. But G has exactly |G/G′|+1 characters,
from which it follows that all nonidentity elements of G′ are conjugate. Thus
G′ is an elementary Abelian p-group for some prime p.
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If x /∈ G′, then the coset xG′ consists of a single conjugacy class in G and
hence x /∈ Z(G); that is, Z(G) ⊆ G′. The linear span of ẑ for z in Z(G) is
an Abelian ideal of L(G) which in this case must be trivial. Thus Z(G) is
either the identity subgroup or an elementary Abelian 2-group.

Suppose at first that p 6= 2. If S is a Sylow 2-subgroup of G, then G is the
semidirect product of G′ and S, where S acts faithfully on G′ by conjugation
(i.e., only the identity element of S commutes with every element of G′).
Therefore the elements of S are simultaneously diagonalizable (regarding G ′

as a vector space over the field of p elements). However, S acts transitively
on G′, so the only possibility is that |G′| = 3, whence G is the symmetric
group Sym(3). This case was considered in section 3, where it was shown
that L(Sym(3)) is not simple.

We have proved that G is a 2-group. Let m be the degree of the unique
nonlinear character of G. Then |G| = |G/G′| +m2, and m is a power of 2.
Hence m2 = |G/G′|(|G′| − 1) and consequently |G′| = 2. Thus we have
established that G′ = Z(G) and that G/G′ is elementary Abelian (i.e., G is
an extraspecial 2-group of order 21+2n, where m = 2n). Consequently, G is
isomorphic to either 21+2n

+ or 21+2n
−

.
We have seen before that L(D8) is not simple. Moreover, it turns out that

L(Q8 ◦Q8) = L(D8 ◦D8) is the direct sum of two copies of a Lie algebra of
type sl(2). On the other hand, in all other cases the Lie algebra is simple.

If Gn denotes 21+2n
+ or 21+2n

−
, then Gn+1 = Gn ◦D8. We infer that if tn

is the number of involutions in Gn, then tn satisfies the recurrence relation

tn+1 = 21+2n + 2tn + 1.

The groups D8 and Q8 contain five involutions and one involution, respec-
tively. Thus 21+2n

+ contains m2 +m− 1 involutions, hence

dimL(21+2n
+ ) = m(m− 1)/2.

Similarly, 21+2n
−

contains m2 −m− 1 involutions, hence

dimL(21+2n
−

) = m(m+ 1)/2.

(These values can also be derived from the number of singular vectors in an
orthogonal geometry over the field of two elements; see Taylor [5, p. 146].)

It follows that

L(21+2n
+ ) ' o(2n), L(21+2n

−
) ' sp(2n).

�

As a bonus, our main structure theorem provides the following answer to
the question about the semisimplicity of L(G):

Theorem 6.3. The Lie algebra L(G) of the finite group G is semisimple if
and only if G has no complex characters and every character of degree 2 is
of symplectic type.

Proof. The Lie algebra gl(n) has a centre of dimension one, so if L(G) is
semisimple it follows from Theorem 5.1 that G has no complex charac-
ters. Furthermore, the only orthogonal or symplectic Lie algebra that is
not semisimple is the Lie algebra o(2) of orthogonal 2 × 2 matrices. In our
context this is the Lie algebra arising from a real character of degree 2. �
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