A REMARK ON 4-MANIFOLDS WITH ZERO ENTROPY METRICS

J. A. HILLMAN

ABSTRACT. We sharpen a recent result of Paternain and Petean by showing that a 4-manifold which admits a Riemannian metric with zero topological entropy either has a finite covering space homeomorphic to $S^3 \times S^1$ or $S^2 \times T$ or is aspherical.

Paternain and Petean showed that if a 4-manifold admits a Riemannian metric with zero topological entropy then its universal covering space has the rational homotopy type of S^2 or S^3 or of a point [7]. They show also that if $\pi_1(M)$ has polynomial growth then M has a finite covering space homeomorphic to $S^3 \times S^1$, $S^2 \times T$ or a nilmanifold. We may sharpen this result as follows.

Theorem. Let M be a 4-manifold that admits a Riemannian metric with zero topological entropy. Then either M has a finite covering space homeomorphic to $S^3 \times S^1$ or $S^2 \times T$ or it is aspherical. In the latter case, if $\pi = \pi_1(M)$ has a subgroup σ of finite index with $\beta_1(\sigma) \geq 2$ then it is virtually nilpotent and M is homeomorphic to an infranilmanifold.

Proof. We may clearly assume that M is orientable in order to prove the first assertion. The zero entropy hypothesis implies that π has subexponential growth [3]. Moreover $\chi(M) = 0$, by Theorem 4.1 of [7], and so π maps onto Z (cf. Lemma 3.14 of [5]). Hence π is an HNN extension $HNN(B; \phi : I \to J)$ with finitely generated base B [1]. Such an HNN extension has exponential growth unless I =J = B (see page 196 of [2]). Hence $\pi \cong B \rtimes Z$. If B is finite or has two ends then π is virtually Z or Z^2 , and the result follows from Theorems 10.10 and 11.1 of [5]. Otherwise B has one end (since it has subexponential growth), and so M is aspherical and B is a PD_3^+ -group, by Corollary 6.3 of [6].

If π has a subgroup σ of finite index with $\beta_1(\sigma) \geq 2$ then $B_1 = B \cap \sigma$ has finite index in B and maps onto Z. Since B_1 is FP_2 it is an HNN extension with finitely generated base C [1], and since it has subexponential growth it is a semidirect product $B_1 \cong C \rtimes Z$ [2]. Hence C must be a PD_2^+ -group, by Corollary 6.1 of [6]. Moreover $C \cong Z^2$, since it has subexponential growth. Therefore π is virtually solvable, and hence virtually nilpotent [4]. The final assertion follows from Theorem 8.1 of [5].

Must π be virtually nilpotent in all cases? This would be so if every PD_3 -group has a subgroup of finite index with infinite abelianization.

¹⁹⁹¹ Mathematics Subject Classification. 53D25,37B40.

Key words and phrases. entropy, 4-manifold, infranilmanifold, subexponential growth.

J. A. HILLMAN

References

- [1] Bieri, R. and Strebel, R. Almost finitely presentable soluble groups, Comment. Math. Helv. 53 (1978), 258-278.
- [2] de la Harpe, P. and Bucher, M. Free products with amalgamation and HNN extensions which are of uniformly exponential growth, Mat. Zametki 67 (2000), 811-815 (Russian). English translation: Math. Notes 67 (2000), 686-689.
- Dinaburg, E.I. On the relations among various entropy characteristics of dynamical systems, Math. USSR Izv. 5 (1971), 337-378.
- [4] Gromov, M. Groups of polynomial growth and expanding maps, IHES Publ. Math.53 (1981), 53-73.
- [5] Hillman, J.A. Four-Manifolds, Geometries and Knots, Geometry and Topology Monographs Vol. 5 (2002).
- [6] Hillman, J.A. and Kochloukova, D. Finiteness conditions and PD_r-group covers of PD_ncomplexes, preprint, University of Sydney/UNICAMP-IMECC (2005).
- [7] Paternain, G.P. and Petean, J. Zero entropy and bounded topology, preprint, Cambridge University/CIMAT (2005).

 $\label{eq:school of Mathematics and Statistics, University of Sydney, NSW 2006, AUSTRALIA {\it E-mail address: jonh@maths.usyd.edu.au}$

 $\mathbf{2}$