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Abstract

In this article we prove the existence of a canonical theta structure for the

canonical lift of a given ordinary abelian variety.

1 Introduction

The aim of this article is to provide a theoretical basis for the study of the theta
null points of canonical lifts. We prove that there exists a canonical theta struc-
ture for the canonical lift of an ordinary abelian variety. The canonical theta
null point of a canonical lift which is defined in terms of the canonical theta
structure forms an arithmetic invariant. In later work [3] we compute equations
satisfied by the canonical theta null point of a canonical lift over a 2-adic ring.
The resulting equations are related to the formulas that Jean-François Mestre
proposed as a generalisation of Gauss’ Arithmetic Geometric Mean (AGM). For
generalised AGM formulas see [9] and [10, §1.3]. Our formulas, like the ones of
Mestre, may be used in a point counting algorithm which computes the zeta
function of an ordinary abelian variety over a finite field of characteristic 2. For
an exposition of Mestre’s AGM based point counting algorithm see [15, Ch. 4]
and [6]. Another potential application of our formulas is the computation of
equations generating class fields of CM fields. We calculate some examples in
[3, App. A].

∗This work was partially supported by the Australian Research Council grant DP0453134

and by the Spinoza grant of H.W. Lenstra.
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Our work is meant to complement Mestre’s results and to broaden the un-
derstanding of his point counting algorithm. The proof of the existence of the
canonical theta structure is an important step in a research program having
as goal a generalisation of Mestre’s AGM algorithm to arbitrary residue field
characteristic.

The main result, Theorem 2.1, was proven during the last two years of the
author’s postgraduate studies at the universities of Leiden and Groningen. It is
an extension of the corresponding result contained in the author’s PhD thesis
[2, Th. 4.1.1] to the case of residue field characteristic 2.

2 The canonical theta structure

Let R be a complete noetherian local ring with residue field k of characteristic
p > 0 and let A be an abelian scheme over R of relative dimension g having
ordinary reduction. Let L be an ample line bundle on A. Let j ≥ 1 and q = pj .
It is known that there exists an isogeny of abelian schemes F : A → A(q)

which is uniquely determined up to unique isomorphism by the condition that
it lifts the relative q-Frobenius on the special fibre (compare [2, Prop. 2.2.1]).
In Section 6.1 we prove the existence of an ample line bundle L(q) on A(q)

satisfying F ∗L(q) ∼= L⊗q which is uniquely determined up to isomorphism by
the condition that L(q) restricted to the special fibre is the q-Frobenius twist
of L. For a precise statement see Theorem 5.1. Assume that we are given an
isomorphism

(Z/qZ)g
R

∼
→ A[q]et (1)

where A[q]et denotes the maximal étale quotient of A[q].

Theorem 2.1 Let L be an ample symmetric line bundle of degree 1 on A. There
exists a canonical theta structure of type (Z/qZ)g

R for the pair

(

A(qδ),
(

L(qδ)
)⊗q

)

where δ =

{

2, p = 2
1, p > 2

depending on the isomorphism (1) .

Theorem 2.1 will be proven in Section 6.3. For the definition of a theta structure
we refer to Section 4.3. For the following statement we assume that k is perfect
and R admits an automorphism lifting the p-th power Frobenius automorphism
of k.

Corollary 2.2 Let A be a canonical lift and let L be an ample symmetric line
bundle of degree 1 on A. There exists a canonical theta structure of type (Z/qZ)g

R

for the pair
(

A,L⊗q
)

depending on the isomorphism (1).

Corollary 2.2 will be proven in Section 6.4. The above corollary is expected to
hold without the assumption that R admits a lift of the p-th power Frobenius
automorphism of k. For a discussion of canonical lifting see [7], [8], [11, Ch. III]
and [2, Ch. 2].
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3 Notation

Let R be a ring, X an R-scheme and S an R-algebra. By XS we denote the base
extended scheme X ×Spec(R) Spec(S). Let M be a sheaf on X . Then we denote
by MS the sheaf that one gets by pulling back via the projection XS → X . Let
I : X → Y be a morphism of R-schemes. Then IS denotes the morphism that is
induced by I via base extension with S. We use the same symbol for a scheme
and the fppf-sheaf represented by it. By a group we mean a group object in the
category of fppf-sheaves. If a representing object has the property of being finite
(flat, étale, connected, etc.) then we simply say that it is a finite (flat, étale,
connected, etc.) group. Similarly we will say that a morphism of groups is finite
(faithfully flat, smooth, etc.) if the groups are representable and the induced
morphism of schemes has the corresponding property.

A group (morphism of groups) is called finite locally free if it is finite flat
and of finite presentation. The Cartier dual of a finite locally free commutative
group G will be denoted by GD. The multiplication by an integer n ∈ Z on G
will be denoted by [n]. A finite locally free and surjective morphism between
groups is called an isogeny. By an elliptic curve we mean an abelian scheme of
relative dimension 1. We use the notion of a torsor in the sense of [4, Ch. III,
§4, Def. 1.3]. We only consider torsors for the fppf-topology.

4 Theta groups and theta structures

In the following sections we recall some well-known facts about theta groups
and theta structures. We refer to [13], [14, Ch. IV, §23], [16, Ch. 8] and [12, Ch.
V] for further details. Let R be a ring and G a group over R.

Definition 4.1 Assume that there exists a central exact sequence of groups

0 → Gm,R → G→ H → 0,

where H is a commutative finite locally free group whose rank is the square of
an integer. Then the group G is called a theta group over H.

By the term central exact sequence we mean that Gm,R is mapped into the
centre of G. Now let G be a theta group over H . By definition G is a Gm,R-
torsor over H . It follows by descent that the group G is representable by an
affine faithfully flat group scheme of finite presentation over H (see [4, Ch. III,
§4, Prop. 1.9]). Let S be an R-algebra. One defines the commutator pairing
e : H ×R H → Gm,R by lifting x and y in H(S) to x̃ and ỹ in G(S ′), where
S → S′ is a suitable fppf-extension, and by setting

e(x, y) = x̃ỹx̃−1ỹ−1.

Because H is abelian we have e(x, y) ∈ Gm,R(S′). Since e(x, y) does not depend
on the choice of x̃ and ỹ it follows by descent that e(x, y) ∈ Gm,R(S).
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4.1 The theta group of an ample line bundle

Let A be an abelian scheme over a ring R and L a line bundle on A. Consider
the morphism

ϕL : A→ Pic0
A/R, x 7→ 〈T ∗

xL ⊗ L−1〉

where 〈·〉 denotes the class in Pic0
A/R. We set Ǎ = Pic0

A/R. Note that Ǎ is the
dual of A in the category of abelian schemes. It is well-known that the relative
Picard functor of A is representable by an algebraic space (compare [1, Ch. 8,
Th. 1]). The representability of Pic0

A/R by a scheme follows from a theorem of
M. Raynaud which states that the categories of abelian algebraic spaces and
abelian schemes coincide (see [5, Ch. I, Th. 1.9]). We denote the kernel of the
morphism ϕL by H(L). A line bundle L on A satisfies H(L) = A if and only if
its class is in Pic0

A/R(R). Also it is well-known that if L is relatively ample then
ϕL is an isogeny. In the latter case we say that L has degree d if ϕL is fibre-wise
of degree d. Let S be an R-algebra. We define

G(L)(S) =
{

(x, ϕ) | x ∈ H(L)(S), ϕ : LS
∼
→ T ∗

xLS

}

.

The functor G(L) has the structure of a group given by the group law

(

(y, ψ), (x, ϕ)
)

7→ (x+ y, T ∗
xψ ◦ ϕ).

There are natural morphisms

G(L) → H(L), (x, ϕ) 7→ x and Gm,R → G(L), α 7→ (0A, τα)

where 0A denotes the zero section of A and τα denotes the automorphism of L
given by the multiplication with α. The induced sequence of groups

0 → Gm,R → G(L)
π
→ H(L) → 0 (2)

is central and exact. Now let L be relatively ample of degree d. Then H(L) is
finite locally free of order d2 and hence G(L) is a theta group. The commutator
pairing on H(L) as defined above will be denoted by eL. One can show that the
pairing eL is perfect. The perfectness is equivalent to the fact that the centre of
G(L) equals Gm,R.

4.2 Descent of line bundles along isogenies

Let R be a ring. Let I : A → B be an isogeny of abelian schemes over R and
K its kernel. Assume we are given a relatively ample line bundle L on A and
K ⊆ H(L). Define G′ by the commutative diagram

0 // Gm,ROO

id

// G(L) //
OO

H(L) //
OO

i

0

0 // Gm,R // G′
π // K // 0,

(3)
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where the second row is the pull back of the first via the inclusion K
i
↪→ H(L),

i.e. the right hand square is Cartesian. Let U be an R-algebra and M a line
bundle on BU . Suppose we are given an isomorphism α : I∗UM

∼
→ LU . We define

a morphism sα : KU → G′
U by mapping x ∈ K(W ), where W is a U -algebra, to

(

x, T ∗
xαW ◦ α−1

W

)

. This is well-defined because T ∗
x I

∗
WMW = I∗WMW . It is clear

that πU ◦ sα = id where π is as in diagram (3). We define

SK(U) = { s : KU → G′
U | πU ◦ s = id }

and denote by DL(U) the set of isomorphism classes of line bundles M on BU

such that I∗UM ∼= LU . The following classical result about the descent of line
bundles was proven by Alexander Grothendieck.

Proposition 4.2 The functorial map

SK(U) → DL(U), (M, α) 7→ sα

establishes an isomorphism of functors SK
∼
→ DL.

Compare [14, Ch. IV, §23, Th. 2] or [1, Ch. 6.1, Th. 4].

4.3 Theta structures

In the following we define the standard theta group of a given type. Let K be
a commutative finite locally free group of square order over a base ring R. We
set H(K) = K ×R KD and define a group law on G(K) = Gm,R ×R H(K) by
setting

(α1, x1, l1) ∗ (α2, x2, l2) = (α1 · α2 · l2(x1), x1 + x2, l1 · l2).

We have an exact sequence of groups

0 → Gm,R → G(K) → H(K) → 0

where the left hand map is given by α 7→ (α, 0, 1) and the right hand map is
the projection on H(K). The centre of G(K) is given by Gm,R. We conclude
that G(K) is a theta group. We denote the corresponding commutator pairing
by eK . Using the definition of the multiplication in G(K) one computes

eK

(

(x1, l1), (x2, l2)
)

=
l2(x1)

l1(x2)
. (4)

We remark that eK is a perfect pairing. Now assume we are given an abelian
scheme A over R and a relatively ample line bundle L on A.

Definition 4.3 A theta structure of type K for the pair (A,L) is an isomor-
phism Θ : G(K)

∼
→ G(L) making the diagram

Gm,S //
OO

id

G(L)
OO

Θ

Gm,S // G(K)

commutative. Here the horizontal arrows are the natural inclusions.
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Next we want to give another characterisation of a theta structure.

Definition 4.4 A Lagrangian decomposition for H(L) of type K is an isomor-
phism

δ : H(K)
∼
→ H(L),

which is compatible with the commutator pairings eL and eK .

Let δ be a Lagrangian decomposition for H(L) of type K. We can consider K
and KD as subgroups of H(L) via δ. Assume we are given a pair (u, v) where u
and v are sections of the pull back of the extension

0 → Gm,R → G(L)
π
→ H(L) → 0 (5)

along the inclusions K ↪→ H(L) and KD ↪→ H(L), respectively. We define a
morphism Θu,v : G(K) → G(L) by Θu,v(α, x, l) = α · v(l) · u(x).

Proposition 4.5 The map

(δ, u, v) 7→ Θu,v (6)

gives a bijection between the set of triples as above and the set of theta structures
for (A,L) of type K.

Proof. First we have to show that the map (6) is well-defined. We claim that
Θu,v is a theta structure of type K for (A,L). We have

Θu,v

(

(α1, x1, l1) ∗ (α2, x2, l2)
)

= α1 · α2 · l2(x1) · v(l1) · v(l2) · u(x1) · u(x2).

By the definition of the pairing eL it follows that

v(l2) · u(x1) = eL
(

δ(l2), δ(x1)
)

· u(x1) · v(l2).

Since δ is a Lagrangian decomposition we have

eL
(

δ(0, l2), δ(x1, 1)
)

= eK

(

(0, l2), (x1, 1)
)

=
1

l2(x1)
.

The right hand equality follows by (4). This proves that Θu,v is a morphism of
groups. Clearly Θu,v is Gm,R-equivariant.

Next we prove that Θu,v is an isomorphism by giving an inverse. Let g
be a point of G(L). Then we have π(g) = δ(xg , lg) for uniquely determined
xg ∈ K and lg ∈ KD. Here π denotes the projection map of the extension
(5). Now g and Θu,v(1, xg , lg) both lift δ(xg , lg). Hence they differ by a unique
scalar αg , i.e. g = Θu,v(αg , xg , lg). An inverse of Θu,v is given by the morphism
g 7→ (αg , xg , lg).

In order to complete the proof of Proposition 4.5 it is sufficient to give an
inverse of the map (6). Assume we are given a theta structure Θ of typeK for the
pair (A,L). The isomorphism Θ induces an isomorphism δΘ : H(K)

∼
→ H(L).

By the definition of the commutator pairing it follows that the isomorphism δΘ
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is a Lagrangian decomposition. There are two natural sections of the natural
projection G(L) → H(L) over K and KD given by

uΘ : (x, 1) 7→ Θ
(

1, x, 1
)

and vΘ : (0, l) 7→ Θ
(

1, 0, l
)

,

respectively. Here we consider K and KD as subgroups of H(L) via δΘ. An
inverse of (6) is given by Θ 7→

(

δΘ, uΘ, vΘ
)

. This finishes the proof of the
proposition. �

5 Descent along lifts of relative Frobenius and

Verschiebung

In the following we recall some facts about the existence of Frobenius lifts and
the descent of line bundles along lifts of Frobenius and Verschiebung. Theorem
5.1 and 5.2 are known to the experts but they are not yet available in the liter-
ature. We prove them in Section 6.1 and 6.2.

Let R be a complete noetherian local ring with residue class field k of char-
acteristic p > 0 and A an abelian scheme having ordinary reduction. Let j ≥ 1
and q = pj . It is known that there exists an abelian scheme A(q) over R and a
commutative diagram of isogenies

A
F //

[q]

��

A(q)

A
}} V

{{{{{{{{

such that Fk equals the relative q-Frobenius (compare [2, Prop. 2.2.1]). The
latter condition determines F uniquely. The kernel of F is given by A[q]loc

which is defined to be the connected component of A[q]. The condition that Fk

equals the relative q-Frobenius means that there exists a commutative diagram

Ak
fq

&&

��

Fk

FF
FF

##FF
FF

A
(q)
k

pr //

��

Ak

��
Spec(k)

fq // Spec(k)

where fq denotes the absolute q-Frobenius, the vertical maps are the structure
maps and the square is Cartesian. Let L be a line bundle on A. We have a
natural isomorphism

F ∗
k pr∗Lk = f∗

q Lk
∼
→ L⊗q

k (7)

given by l ⊗ 1 7→ l⊗q.
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Theorem 5.1 Assume that L is an ample line bundle on R. There exists a line
bundle L(q) on A(q) determined uniquely up to isomorphism by the following two
conditions:

(

L(q)
)

k

∼= pr∗Lk and F ∗L(q) ∼= L⊗q.

Moreover, the line bundle L(q) is ample and has the same degree as L.

A proof of Theorem 5.1 is presented in Section 6.1.

Theorem 5.2 Assume that L is an ample symmetric line bundle on A.

1. Let p > 2. There exists an isomorphism

V ∗L
∼
→

(

L(q)
)⊗q

. (8)

2. Let p = 2. Assume we are given an isomorphism

A[2]
∼
→ A[2]loc ×A[2]et. (9)

There exists a line bundle L0 on A with 〈L0〉 ∈ Pic0
A/R[2](R) such that

V ∗
(

L ⊗ L0

) ∼
→

(

L(q)
)⊗q

.

The class of L0 depends on the isomorphism (9) .

A proof of Theorem 5.2 will be given in Section 6.2. The isomorphism (8) does
not always exist in the case p = 2. This is illustrated by the following example.

Example: We assume k to be an algebraically closed field of characteristic
2. Let E be an ordinary elliptic curve over k and Q2 the unique non-zero point
in E(2)[2](k). Note that Q2 is a generator of the kernel of the Verschiebung
V : E(2) → E. We have

V ∗(0E) = (0E(2)) + (Q2) 6∼ 2 · (0E(2) )

where 0E and 0E(2) denote the zero sections of E and E(2) and ∼ stands for
linear equivalence of Weil divisors. Let Q be the unique non-zero point in E[2](k)
and R ∈ E(2)[4](k) such that 2R = Q2. We have

V ∗(Q) = (R) + (R+Q2) ∼ 2(0E(2)).

6 The proofs

In the following we prove the results of Section 2 and Section 5.
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6.1 Proof of Theorem 5.1

In the following we prove Theorem 5.1. We use the notation of Section 5. Let
A be an abelian scheme over R having ordinary reduction and let L be an
ample line bundle on A. Let K = A[q]loc and let G′ be defined by the Cartesian
diagram

G(L⊗q) //
OO

H(L⊗q)
OO

G′ // K.

Remark 6.1 The group G′ is commutative.

Proof. The commutativity of G′ is equivalent to the condition that the com-
mutator pairing eL⊗q : H(L⊗q) ×H(L⊗q) → Gm is trivial on K. Let T be an
R-algebra and x ∈ K(T ). Then the map eL⊗q (x, ·) : KT → Gm,T is a T -valued
point of KD ∼= Ǎ[q]et where Ǎ denotes the dual abelian scheme. The morphism
K → Ǎ[q]et given by x 7→ eL⊗q(x, ·) is equal to the zero morphism since the
image of K is connected and hence equals the image of the unit section in Ǎ[q]et

which forms a connected component. �

The main ingredient in the proof of Theorem 5.1 is the following result.

Lemma 6.2 The functor SK (defined in Section 4.2) is a KD-torsor over R.

Proof. Let U be an R-algebra. The group KD(U) = Hom(K,Gm)(U) acts on
SK(U) by translation. This action is transitive and faithful whenever SK(U) is
non-empty. Consider the extension

0 → Gm,R → G′ → K → 0. (10)

It remains to show that (10) has a section over an fppf-extension of R. Taking
q-torsion we get an exact sequence

0 → µq,R → G′[q] → K → 0. (11)

The exactness of (11) follows from the Snake Lemma and the exactness of the
Kummer sequence. By Remark 6.1 the group G′[q] is commutative. Note that
G′[q] is a µq.R-torsor over K. It follows by [4, Ch. III, §4, Prop. 1.9] that the
group G′[q] is finite locally free. Applying Cartier duality to (11) we get an exact
sequence

0 → KD → G′[q]D
π
→ Z/qZ → 0. (12)

We remark that (11) is split if and only if (12) is split. We can lift a generator of
Z/qZ to an element x ∈ G′[q]D(R′) where R → R′ is a suitable fppf-extension.
Clearly x has order q. This gives a splitting of (12) over R′. As a consequence
the extensions (10)–(11) are split over R′. �

9



Corollary 6.3 The functor SK is representable by a finite étale scheme.

Proof. The representability by a finite locally free R-scheme follows from
Lemma 6.2 and [4, Ch. III, §4, Prop. 1.9]. Since A has ordinary reduction, we
have KD = HomR(K,Gm) ∼= Ǎ[q]et where Ǎ denotes the dual of A. It follows
by descent that SK is étale. �

Now we can complete the proof of Theorem 5.1. We have already seen that
there exists a canonical k-rational point of SK given by the isomorphism (7).
By Corollary 6.3 and the theory of finite étale schemes over Henselian local rings
there exists a unique R-rational point of SK reducing to the above k-rational
point. The first part of the claim of Theorem 5.1 now follows from Proposition
4.2. The second part of the claim states that the line bundle L(q) is ample and
of the same degree as L. It suffices to verify the claim on the special fibre. It

is obvious from the construction that L
(q)
k is ample and has the same degree as

Lk. This finishes the proof of Theorem 5.1.

6.2 Proof of Theorem 5.2

We use the notation of Section 5. We set

L′ =
(

V ∗L
)−1

⊗
(

L(q)
)⊗q

.

We have 〈L′〉 ∈ Pic0
A(q)/R(R). In order to prove the proposition we have to show

that L′ is trivial. By the symmetry of L we conclude that

F ∗(V ∗L) ∼= [q]∗L ∼= L⊗q2

.

Together with Theorem 5.1 this implies that F ∗L′ is trivial on A. This means
that 〈L′〉 is in the kernel of the dual F̌ = Pic0(F ) of F . The group Ker(F̌ )
is the Cartier dual of Ker(F ) and hence is annihilated by the isogeny [q]. As a
consequence 〈L′〉 has order dividing q. Since we have assumed L to be symmetric
it follows that L(q) and L′ are symmetric. We conclude that

〈L′〉 ∈ Pic0
A(q)/R[2](R).

By the above discussion the element 〈L′〉 has order dividing the greatest common
divisor of q and 2. If p > 2 we conclude that L′ is trivial and Theorem 5.2 is
proven.

Assume now that p = 2. We claim that there exists a line bundle L0 on
A with 〈L0〉 ∈ Pic0

A/R[2](R) such that V ∗L0
∼= L′. We set Ǎ = Pic0

A/R and

V̌ = Pic0(V ). Then
(

Ǎ
)(q)

= Pic0
A(q)/R. The isogeny V̌ : Ǎ → Ǎ(q) induces a

morphism of connected-étale sequences

0 // Ǎ[2]loc //

V̌ [2]loc

��

Ǎ[2]
π //

V̌ [2]

��

Ǎ[2]et //

V̌ [2]et

��

0

0 // Ǎ(q)[2]loc // Ǎ(q)[2]
π(q)

// Ǎ(q)[2]et // 0.

(13)
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Note that one cannot embed a non-zero finite étale R-group into a connected
one. It follows by the Snake Lemma that V̌ [2]et is a monomorphism. Comparing
ranks we conclude that V̌ [2]et is an isomorphism. By the cokernel property of the
morphism V̌ [2]et◦π there exists a section s : Ǎ(q)[2]et → Ǎ(q)[2] of the projection
π(q). The image of Ǎ(q)[2]et under π(q) coincides with the kernel of F̌ . Recall that
the latter contains 〈L′〉. As a consequence there exists an x ∈ Ǎ(q)[2]et such that
s(x) equals 〈L′〉. Using the isomorphism (9) we map the point (V̌ [2]et)−1(x) to
an element of Ǎ[2] whose image under V̌ [2] equals 〈L′〉. This proves our claim
and completes the proof of the theorem.

6.3 Proof of Theorem 2.1

We use the notation of Section 2. Let A be an abelian scheme of relative dimen-
sion g over R having ordinary reduction and L an ample line bundle of degree
1 on A. Let K = (Z/qZ)g

R. Assume we are given an isomorphism

K
∼
→ A[q]et. (14)

The isogeny F : A→ A(q) induces a commutative diagram

0 // A[q]loc //

F [q]loc

��

A[q] //

F [q]

��

A[q]et //

F [q]et

��

0

0 // A(q)[q]loc // A(q)[q] // A(q)[q]et // 0.

(15)

The induced morphism F [q]et is an isomorphism. Composing the isomorphism
(14) with F [q]et we get an isomorphism m : K

∼
→ A(q)[q]et. The isomorphism

F [q]et induces a unique section r : A(q)[q]et → A(q)[q] of the natural projection
A(q)[q] → A(q)[q]et. We define t = r ◦m and set H = A(q)[q], C = A(q)[q]loc and
E = A(q)[q]et. Let e(·, ·) denote the commutator pairing on

H = H
(

(

L(q)
)⊗q

)

.

Since e is a perfect pairing it induces an isomorphism ϕ : H
∼
→ HD, x 7→ e(x, ·).

Note that C is mapped to the connected component of HD. As a matter of fact
the connected component of HD is given by ED . Hence the isomorphism ϕ
induces isomorphisms α : C

∼
→ ED and β : E

∼
→ CD on the local and étale part

of H . We define k = −(α−1 ◦m−D) : KD ∼
→ C and set s = i ◦ k.

Lemma 6.4 The morphism δ = s⊕ t is a Lagrangian decomposition of type K
for H.
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Proof. Consider the commutative diagram

KD
k //

��

s

##HHHHHHHHH
C

α //

i

��

ED
mD

//

pD

��

KD

��
K ×KD δ //

��

H
ϕ //

p

��

HD
δD

//

iD

��

K ×KD

��
K

t

;;vvvvvvvvvv m // E
β // CD kD

// K.

By definition we have mD ◦ α ◦ k = −id. Since the pairing e is alternating it
follows that ϕD = −ϕ. As a consequence we have βD = −α. Hence

kD ◦ β ◦m =
(

mD ◦ (−α) ◦ k
)D

= id.

The commutator pairing eK on K ×KD gives an isomorphism

τ : K ×KD → K ×KD, z 7→ eK

(

z, ·).

One computes τ
(

(x, l)
)

= (x, l−1). We conclude that τ = δD ◦ϕ◦δ which proves
that δ is compatible with the natural commutator pairings on H and K ×KD.
�

Now the images of K and KD under δ equal the kernels of the lifts of the
Verschiebung V : A(q) → A and the relative q-Frobenius F : A(q) → A(q2),
respectively.

First assume that p > 2. Combining Theorem 5.1, Theorem 5.2 and Propo-
sition 4.2 we get sections

u : K → G
(

(

L(q)
)⊗q

)

and v : KD → G
(

(

L(q)
)⊗q

)

of the natural projection G
(

(

L(q)
)⊗q

)

→ H . Here K and KD are considered as

subgroups of H via the level structure δ constructed above. By Proposition 4.5

the triple (δ, u, v) gives a theta structure of type K for the pair
(

A,
(

L(q)
)⊗q

)

.

The above proof applies to the case p = 2 with some minor change. Assume
that p = 2. We claim that there exists a canonical theta structure of type
(Z/qZ)g

R for the pair
(

A(2q),
(

L(2q)
)⊗q

)

.

We can argue as above replacing A by A(2). Theorem 5.2.2 requires the choice
of an isomorphism

A(2)[2]
∼
→ A(2)[2]loc ×A(2)[2]et.

We claim that there is a canonical choice. It is induced by the restriction of the
isomorphism F [q]et as above to A[2]. This finishes the proof of Theorem 2.1.
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6.4 Proof of Corollary 2.2

We use the notation of Section 2. Our proof can easily be adapted to the general
case. Assume that k is perfect and A is the canonical lift of Ak. Let σ denote an
automorphism of R lifting the (δq)-th power automorphism of k where δ is as in
Theorem 2.1. We denote by A(σ) the pull back of A by the automorphism σ−1.
On A(σ) there exists an ample symmetric line bundle L(σ) of degree 1 which is
defined to be the pull back of L along the projection A(σ) → A.

We set A′ =
(

A(σ)
)(δq)

. Since A′ is a canonical lift of Ak it follows by

uniqueness that there exists an isomorphism τ : A
∼
→ A′. We set

M = τ∗
(

(

L(σ)
)(δq)

)

.

We claim that M⊗q ∼= L⊗q . We set L′ = L⊗M−1. Our claim follows from the
fact that M and L are symmetric and hence

〈L′〉 ∈ Pic0
A/R[2](R).

By Theorem 2.1 the line bundle M⊗q has a canonical theta structure of type
(Z/qZ)g

R. The latter gives a canonical theta structure for L⊗q . This completes
the proof of the corollary.
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