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NOELLE ANTONY

ABSTRACT. We show that parabolic submonoids of singular Artin monoids of type FC

are canonically isomorphic to singular Artin monoids.

1. PRELIMINARIES

We begin with some formal definitions. Let I be a finite indexing set, and let M =
(mij)i,j∈I denote the matrix, indexed by the elements of I , that satisfies:

(i) mii = 1 if i ∈ I;
(ii) mij = mji ∈ {2, 3, 4, . . . ,∞} whenever i, j ∈ I and i 6= j.

Such a matrix is known as a Coxeter matrix. Every Coxeter matrix M may be associated
with a graph ΓM defined as follows:

(i) I is the set of vertices of ΓM ;
(ii) any two nodes i, j ∈ I are joined by an edge if mij ≥ 3;

(iii) the edge joining two vertices i and j is labelled by mij if mij ≥ 4; edge labels are
suppressed whenever mij = 3.

Such a graph is referred to as a Coxeter graph of type M. Now let S = {σi | i ∈ I} be a
set in one-to-one correspondence with I . If X is a set then X ∗ denotes the free monoid
generated by X . If q is a natural number and i, j ∈ I then 〈σiσj〉q indicates the alternating
product σiσjσi... of length q (that is, with q factors). The Artin group of type M, GM , is
the group generated by S subject to the relations

〈σiσj〉
mij = 〈σjσi〉

mij for i, j ∈ I , mij 6= ∞;

these relations are denoted by R1 and called the braid relations. In arguments below we
regard a relation formally as an ordered pair of words. For example, the relation σiσj =
σjσi becomes the ordered pair (σiσj, σjσi). If X is a set of ordered pairs of words then
XΣ = {(U, V ) | (U, V ) or (V, U) ∈ X}. The Coxeter group of type M, WM , is the group
generated by S subject to the preceding braid relations R1, together with the relations
σ2

i = 1 for every i in I . Hence, Coxeter groups arise as quotient groups of Artin groups. If
WM is finite then M (or ΓM ) is said to be of finite type or spherical type. A Coxeter group
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is finite precisely when its graph is a finite disjoint union of the graphs shown in Figure 1
(see, for example, [21, 22]) .

The first, and arguably the most well-known, (non-abelian) example of an Artin group
is the braid group established in 1925 by Artin [3]; thus the terminology Artin group
was suggested by Brieskorn and Saito in [10]. Indeed, Artin groups are also known as
generalised braid groups. Observe that Bn+1, the braid group on n+1 strings, arises from
the special case when I = {1, . . . , n}, mij = 3 when |i − j| = 1, and mij = 2 when
|i− j| ≥ 2. Its associated Coxeter graph is referred to as type An (shown in Figure 1), and
the corresponding Coxeter group is the symmetric group on n + 1 letters.
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FIGURE 1. The irreducible Coxeter graphs of finite type. Unlabelled edges have
value 3.

We now extend Artin groups as follows [12, 18]: put T = {τi | i ∈ I}, and let S−1 =
{σ−1

i |i ∈ I}, the set of formal inverses of S. The singular Artin monoid of type M, denoted
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by SGM , is the monoid generated by S ∪ S−1 ∪ T and has as its defining relations the set
R which is comprised of the free group relations σiσ

−1

i = σ−1

i σi = 1, the braid relations
R1, and the relations R2 listed below:

τiσi = σiτi for all i in I;

τi〈σjσi〉
mij−1 =

{

〈σjσi〉
mij−1τj if mij < ∞ and is odd, or

〈σjσi〉mij−1τi if mij < ∞ and is even;

τiτj = τjτi if mij = 2.

Remark 1. The special case when the singular Artin monoid is of type An, may be fa-
miliar to some readers as the singular braid monoid on n + 1 strings, SBn+1, which was
introduced by Baez [4] and Birman [8] in their study of knot invariants. We remark that,
although singular Artin monoids are defined (abstractly) by the above generators and rela-
tions, SBn+1 was originally introduced geometrically in [4, 8] and was then shown (in [8,
Lemma 3] and a subcase of [20, Theorem 2.1]) to admit the preceding presentation.

Where it does not cause confusion, elements of GM and SGM may be referred to by
words which represent them. If A and B are elements of (S ∪T ∪S−1)∗, we write A ≈ B

if A can be transformed into B by the use of the set of defining relations of SGM , and
A = B if the two words are equal letter by letter.

2. PARABOLIC SUBGROUPS AND SUBMONOIDS

Now let J be any subset of I . Recall that M is a Coxeter matrix over the finite indexing
set I . Denote by MJ the submatrix of M containing the entries indexed by J ; it is clear
that MJ is also a Coxeter matrix. In accordance with [13, Section 5], we use the notation :

SJ = {σj | j ∈ J},
S−1

J = {σ−1

j | j ∈ J},
TJ = {τj | j ∈ J} .

We denote by R1J
and RJ the defining relations of GMJ

and SGMJ
respectively. Then by

the definition of these relations it is evident that R1J
⊆ R1 and RJ ⊆ R. The subgroups

of WM and GM generated by SJ are denoted by W J
M and GJ

M and are called the standard
parabolic subgroups of WM and GM respectively. Let PJ denote the submonoid of SGM

generated by SJ ∪ S−1

J ∪ TJ ; that is, the set of equivalence classes of words over SJ ∪
S−1

J ∪ TJ under ≈. Then PJ is referred to as the parabolic submonoid defined by J [13,
Section 5]. Notice that GJ

M is a homomorphic image of the Artin group GMJ
. Lek [25] and

Paris [26] showed that this homomorphism is an isomorphism. We note that this result was
first discovered for Artin groups of finite type in [10, 14] (it was also later proved in [11]);
for “extra-large” type Artin systems in [2]; and was gradually extended to include all types
in [25, 26]. It is also well-known that the subgroup W J

M is canonically isomorphic to the
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Coxeter group associated with the matrix MJ ; its graph ΓMJ is the full subgraph of ΓM

generated by SJ [9].
An analogous result holds for singular Artin monoids of finite type: namely, that SGMJ

naturally injects into SGM whenever M is of finite type, so that the image of that embed-
ding is precisely PJ [13, Proposition 33] . Hence the following holds:

Theorem 2. (Corran [13, Theorem 34]) Parabolic submonoids of singular Artin monoids
of finite type are (isomorphic to) singular Artin monoids.

The Coxeter matrix M is said to be right-angled if

mij ∈ {2, ∞} for i, j ∈ I .

Right-angled Artin groups are also known as graph groups or free partially commutative
groups [18]. Their applications extend to areas such as random walks, parallel computation
and cohomology of groups (see, for example, [7]). The Coxeter matrix M is said to be of
type FC if it satisfies the ensuing condition:

• For every J ⊆ I , either

WMJ
is finite or mst = ∞ for some s, t ∈ J, s 6= t.

For example [19], the Coxeter group associated with the graph shown in Figure 2 below is
of type FC. The terminology FC refers to “flag complex”; it is introduced in [11] where
the reader may find a detailed exposition and classification of such types.
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FIGURE 2

Remark 3. Observe that both right-angled and finite type Artin groups are of type FC.
Furthermore, if M is of type FC and J ⊆ I then MJ (the submatrix of M containing the
entries indexed by J) is also a Coxeter matrix of type FC.

In [13, Section 5], Corran postulates that although it is not clear how to generalise
Theorem 2 to include singular Artin monoid of all types, she suspects that it does hold for
arbitrary types. The object of this paper is to extend this theorem of Corran to singular
Artin monoids of type FC. That is, we prove:

Theorem 4. Parabolic submonoids of singular Artin monoids of type FC are (isomorphic
to) singular Artin monoids.

Except when explicitly stated, we assume throughout this paper that M is of any type.
If V and W are words over SJ ∪S−1

J ∪TJ and represent the same element of SGMJ
, write

V ≈J W . By [25, 26], we have:
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Theorem 5. Let U , V be words over SJ ∪ S−1

J such that U ≈ V . Then U ≈J V.

In [16], it was shown that the singular braid monoid on n+1 strings (that is, the singular
Artin monoid of type An) can be embedded in a group. The group constructed by the
authors relies heavily on the geometry of singular braids in space; more specifically, it has a
geometric interpretation as singular braids with two types of (cancelling) singularities. By
employing purely algebraic methods, Paris [27] gave another proof of the fact that singular
braid monoids inject into groups. In fact, all singular Artin monoids embed into groups.
This was shown (chronologically and with completely different proofs) in [5, 24, 18]. An
evident corollary of this is that left and right cancellation hold in SGM ; namely,

Proposition 6. Let C, W , V be words over S ∪ S−1 ∪ T such that either CW ≈ CV or
WC ≈ V C. Then W ≈ V . 1

The next proposition is a subcase of what is known as the “FRZ” property [18, Propo-
sition 4.1]. The property was first discovered in [17, Theorem 7.1] for the singular braid
monoid on n+1 strings (defined in Remark 1); it was later shown to hold for singular Artin
monoids of finite type [13, Theorem 31] and of type FC [18, Proposition 4.1]. We note
that in the case of positive generators, the FRZ property holds for all types [1, Appendix].

Proposition 7. Assume M is of type FC. Let U be a word over S ∪ S−1 ∪ T , s, t ∈ I and
suppose σsU ≈ Uσt. Then τsU ≈ Uτt.

3. PROOF OF THE MAIN THEOREM

Let U , V be words over S ∪ S−1 ∪ T . We say U and V differ by an elementary trans-
formation if there are words X and Y and a relation (κ1, κ2) ∈ (R1 ∪ R2)

Σ such that
V = Xκ1Y and U = Xκ2Y . We say that a word V is obtained from U by a trivial
insertion if there are words X , Y and a letter a ∈ S ∪ S−1 such that U = XY and
V = Xaa−1Y . In this case we also say that U is obtained from V by a trivial deletion.

Define a monoid homomorphism N from SGM to (Z, +) by

N : σ±1

i 7→ 0, τi 7→ 1 for i ∈ I.

Thus N counts the number of taus in any given word. Now let W be a word over S∪S−1∪
T , and suppose N (W ) = k ≥ 1. Then there are words Wi over S ∪ S−1 and generators
τai

∈ T such that
W = W0τa1

W1τa2
. . .Wk−1τak

Wk.

For r = 1, . . . , k let

ρr(W ) = W0τa1
W1 . . . τar−1

Wr−1σar
Wrτar+1

Wr+1 . . . τak
Wk

1The reader is referred to [17, Proposition 5.1] for a (geometric) proof of this result, when M = An,
without calling forth the embedding of (SBn+1 =) SGAn

into a group.
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and

θr(W ) = W0τa1
W1 . . . τar−1

Wr−1Wrτar+1
Wr+1 . . . τak

Wk .

Hence both ρr and θr reduce the number of taus of W by 1. We observe that ρr has been
previously defined in, for example, [6, 15].

Lemma 8. Let W , V be words over S∪S−1∪T such that W ≈ V , and suppose N (W ) =
k is at least 1. Then for every r ∈ {1, . . . , k} there exists an s ∈ {1, . . . , k} such that

ρr(W ) ≈ ρs(V ) and θr(W ) ≈ θs(V ).

Proof. Let r be any integer such that 1 ≤ r ≤ k. Since W ≈ V , there is a sequence
Z1, . . . , Zt of words over S ∪ S−1 ∪ T such that W = Z1 ≈ Z2 ≈ . . . ≈ Zt = V and Zi+1

is obtained from Zi by an elementary transformation or by a trivial deletion or insertion.
If t = 1 the result is trivial and hence starts an induction. Suppose then that t is least 2. If
Z2 is obtained from Z1 by a trivial deletion or insertion, it is evident that ρr(Z1) ≈ ρr(Z2)
and θr(Z1) ≈ θr(Z2). So assume that Z1 and Z2 differ by an elementary transformation.
If the relation involves any σ then inspection of R1 ∪ R2 gives ρr(Z1) ≈ ρr(Z2) and
θr(Z1) ≈ θr(Z2). Hence suppose the relation is of the form (τiτj, τjτi) where mij = 2.
Then we see that either:

ρr(Z1) ≈ ρr+1(Z2) and θr(Z1) = θr+1(Z2) ;

or

ρr(Z1) ≈ ρr(Z2) and θr(Z1) ≈ θr(Z2) ;

or

ρr(Z1) ≈ ρr−1(Z2) and θr(Z1) = θr−1(Z2).

Thus there exists an integer q ∈ {1, . . . , k} such that

ρr(Z1) ≈ ρq(Z2) and θr(Z1) ≈ θq(Z2).

By the inductive hypothesis, we deduce that ρq(Z2) ≈ ρs(Zt) and θq(Z2) ≈ θs(Zt) for
some s ∈ {1, . . . , k}, whence

ρr(W ) = ρr(Z1) ≈ ρq(Z2) ≈ ρs(Zt) = ρs(V ),

and similarly θr(W ) ≈ θs(V ), as required. The result now follows by induction. �

Theorem 9. Suppose M is of type FC. Let J ⊆ I , and suppose U ≈ V where U and V

are words over SJ ∪ S−1

J ∪ TJ . Then U ≈J V .
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Proof. Let U , V be words over SJ ∪ S−1

J ∪ TJ such that U ≈ V , and put N (U) = k. If
k = 0, the result follows by Theorem 5 and starts an induction. So suppose k ≥ 1. Then
there exists an a ∈ J and words X1, X2 over SJ ∪ S−1

J and SJ ∪ S−1

J ∪ TJ respectively
such that U = X1τaX2. Thus

X1τaX2 = U ≈ V , (1)

so by Lemma 8, there exists an r ∈ {1, . . . , k} such that

X1σaX2 = ρ1(U) ≈ ρr(V ) and X1X2 = θ1(U) ≈ θr(V ). (2)

Since N (U) = N (V ) = k ≥ 1, there are words Y1, Y2 over SJ ∪S−1

J ∪TJ and a generator
τb ∈ TJ such that

V = Y1τbY2, where N (Y1) = r − 1 and N (Y2) = k − r. (3)

Then
ρr(V ) = Y1σbY2 and θr(V ) = Y1Y2,

so by (2),
X1σaX2 ≈ Y1σbY2 and X1X2 ≈ Y1Y2. (4)

By noting that X1 is over SJ ∪ S−1

J , we deduce that X−1

1 is also over SJ ∪ S−1

J , so by (4),
we obtain

σaX2 ≈ X−1

1 Y1σbY2 and X2 ≈ X−1

1 Y1Y2 ; (5)

moreover by (3), we see that

k − 1 = N (Y1Y2) = N (X−1
1 Y1Y2) ≥ N (Y1) = N (σaX

−1
1 Y1). (6)

Observe that by (5),
σaX

−1

1 Y1Y2 ≈ σaX2 ≈ X−1

1 Y1σbY2,

so by Proposition 6,
σaX

−1

1 Y1 ≈ X−1

1 Y1σb. (7)

Since a, b ∈ J , and X−1

1 , X2, Y1, Y2 are all words over SJ ∪S−1

J ∪TJ , (7) and (6) together
with the inductive hypothesis give

σaX
−1

1 Y1 ≈J X−1

1 Y1σb ; (8)

furthermore, by (6) and the inductive hypothesis applied to the second equivalence of (5),
we also infer that

X2 ≈J X−1

1 Y1Y2. (9)

Notice that by Remark 3, MJ is also of type FC; thus Proposition 7 may be applied to (8),
and this yields

τaX
−1
1 Y1 ≈J X−1

1 Y1τb. (10)
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Hence
U = X1τaX2 by (1)

≈J X1τaX
−1

1 Y1Y2 by (9)
≈J X1X

−1

1 Y1τbY2 by (10)
≈J Y1τbY2 = V by (3) .

The result now follows by induction. �

Proof of Theorem 4. Suppose M is of type FC. Recall that PJ denotes the submonoid of
SGM generated by SJ ∪ S−1

J ∪ TJ . By Theorem 9, SGMJ
naturally embeds in SGM with

image PJ . Hence the parabolic submonoid PJ is canonically isomorphic to the singular
Artin monoid SGMJ

. �

Remark 10. The reader may notice that the only part of the proof of Theorem 9 which re-
quires the FC condition is Proposition 7. Hence in order to strengthen Theorem 4 to show
that it holds for singular Artin monoids of arbitrary type it suffices to prove Proposition 7
for any Coxeter matrix M ; the proof would then proceed unmodified to that of Theorem
9.
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