Finitely Dominated Subnormal Covers of 4-manifolds

Jonathan A. Hillman

School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, AUSTRALIA

e-mail: jonh@ maths.usyd.edu.au

ABSTRACT

Let M be a closed 4-manifold which has a finitely dominated covering space associated to a subnormal subgroup G of infinite index in $\pi = \pi_1(M)$. If Gis FP_3 , has finitely many ends and π is virtually torsion free then either Mis aspherical or its universal covering space is homotopy equivalent to S^2 or S^3 . In the aspherical case such a subnormal subgroup is usually Z, a surface group or a PD_3 -group. (This is a revision of Research Report 1994-23).

AMS Subject Classification (1991): Primary 57N13. Secondary 20J05 Key words and phrases: finitely dominated, 4-manifold, Poincaré duality group, subnormal subgroup.

In this note we shall extend earlier work on 4-manifolds with a finitely dominated infinite covering space from the regular to the subnormal case. (See §2 of Chapter 3 of [9]). Finitely dominated covering spaces of aspherical manifolds correspond to FP subgroups of the fundamental group. In §1 we show that an FP_3 subnormal subgroup of a PD_4 -group is usually a PD-group. However we have not been able to eliminate other possibilities completely. For instance, it is not known whether a Baumslag-Solitar group may be a subnormal subgroup of a PD_4 -group. In §2 we assume that M is a closed 4-manifold and that $\pi = \pi_1(M)$ has an FP_3 subnormal subgroup G of infinite index such that the associated covering space is finitely dominated, and give homological conditions on π and G under which either M is aspherical or its universal covering space is homotopy equivalent to S^2 or S^3 .

$\S1.$ Poincaré duality groups

The Hirsch-Plotkin radical $\sqrt{\pi}$ of a group π is the maximal locally nilpotent, normal subgroup of π . The Hirsch length $h(\nu)$ of a finitely generated

nilpotent group ν is the number of infinite cyclic factors of a composition series for the group; $h(\sqrt{\pi})$ is the least upper bound of $h(\nu)$ as ν varies over finitely generated subgroups of $\sqrt{\pi}$. If G is a subgroup of π then $C_{\pi}(G)$ and $N_{\pi}(G)$ are the centralizer and normalizer of G in π , respectively. The centre of G is $\zeta G = G \cap C_{\pi}(G)$.

Theorem 1. Let G be a nontrivial FP_3 normal subgroup of infinite index in a PD_4 -group π . Then either

(i) G is a PD_3 -group and π/G has two ends;

(ii) G is a PD_2 -group and π/G is virtually a PD_2 -group; or

(iii) $G \cong Z$, $H^s(\pi/G; Z[\pi/G]) = 0$ for $s \le 2$ and $H^3(\pi/G; Z[\pi/G]) \cong Z$.

Proof. The subgroup G is FP, since c.d.G < 4 [13], and hence so is π/G . The E_2 terms of the LHS spectral sequence with coefficients $Q[\pi]$ can then be expressed as tensor products $H^p(\pi/G; Q[\pi/G]) \otimes H^q(G; Q[G])$. If $H^j(\pi/G; Q[\pi/G])$ and $H^k(G; Q[G])$ are the first nonzero such cohomology groups then $H^j(\pi/G; Q[\pi/G]) \otimes H^k(G; Q[G])$ persists to E_∞ and hence j+k = 4 and this tensor product is Q. Hence $H^j(\pi/G; Q[\pi/G]) \cong H^{n-j}(G; Q[G]) \cong Q$. In particular, π/G has one or two ends and G is a PD_{4-j} -group over Q [6]. If π/G has two ends then it is virtually Z, and then G is a PD_3 -group (over Z) by Theorem 9.11 of [1]. If $H^2(G; Q[G]) \cong H^2(\pi/G; Q[\pi/G]) \cong Q$ then G and π/G are virtually PD_2 -groups [3]. Since G is torsion free it is then in fact a PD_2 -group. The only remaining possibility is (*iii*).

Is it sufficient that G be FP_2 ? Must the quotient π/G be virtually a PD-group in case (iii) also?

Corollary. If K is FP_2 and is subnormal in N where N is an FP_3 normal subgroup of infinite index in the PD_4 -group π then K is a PD_k -group for some k < 4.

Proof. This follows immediately from Theorem 1 together with [2]. \Box

In [2] it was shown that if H is an FP_2 subnormal subgroup of a PD_3 -group G then either H is an infinite cyclic normal subgroup or H is a surface group and $[G: N_G(H)] < \infty$ or G is virtually poly-Z. We shall consider next FP subnormal subgroups of PD_4 -groups.

Theorem 2. Let G be a nontrivial FP subnormal subgroup of infinite index in a PD_4 -group π . Suppose that G has finitely many ends. Then either

- (i) G is a PD₃-group, $[\pi : N_{\pi}(G)] < \infty$ and $N_{\pi}(G)/G$ has two ends; or
- (ii) c.d.G = 3 and $H^2(G; Z[G])$ is not finitely generated; or
- (iii) G is a PD_2 -group, $[\pi : N_{\pi}(G)] < \infty$ and π is virtually the group of a surface bundle over a surface; or
- (iv) G is a PD_2 -group, $\zeta G = 1$ and π is virtually the group of the mapping torus of a self homeomorphism of a surface bundle over the circle; or
- (v) c.d.G = 2, $\chi(G) = 0$, $H^2(G; Z[G])$ is not finitely generated and $[\pi : N_{\pi}(G)] = \infty$; or
- (vi) $G \cong Z$ and $G \leq \sqrt{\pi}$, and either $\sqrt{\pi}$ is abelian of rank ≤ 2 or π is virtually poly-Z.

Proof. Let $G = N_0 < N_1 < ... < N_r = \pi$ be a subnormal chain of minimal length. Let $j = \min\{i | [N_{i+1} : G] = \infty\}$. Then N_j is FP and is subnormal in π , and it is easily seen that the theorem holds for G if it holds for N_j . Thus we may assume that $[N_1 : G] = \infty$. Suppose first that G has one end. Then c.d.G = 2 or 3, since $[\pi : G] = \infty$. If c.d.G = 3 and $H^2(G; Z[G])$ is finitely generated then $H^s(G; Z[G]) = 0$ for $s \leq 2$, by [5]. It follows immediately from the LHS spectral sequence that $H^s(N_1; W) = 0$ for $s \leq 3$ and any free $Z[N_1]$ -module W. Hence $c.d.N_1 = 4$ and so $[\pi : N_1] < \infty$, by [13]. Hence N_1 is a PD_4 -group and (i) follows from Theorem 1. If c.d.G = 3 and $H^2(G; Z[G])$ is not finitely generated (ii) holds.

Suppose next that c.d.G = 2. If $G_1 < G_2$ are two such groups with G_1 normal in G_2 then $[G_2:G_1]$ is finite, by Theorem 8.2 of [1], and $\chi(G_1) = [G_2:G_1]\chi(G_2)$. Moreover if G_2 is normal in J then $[J:N_J(G_1)] < \infty$, since G_2 has only finitely many subgroups of index $[G_2:G_1]$. Therefore if $\chi(G) \neq 0$ we may assume that G is maximal among normal subgroups of N_1 with cohomological dimension 2. Let n be an element of N_2 such that $nGn^{-1} \neq G$, and let $H = G.nGn^{-1}$. Then G < H and H is normal in N_1 so $[H:G] = \infty$ and $c.d._QH = 3$. Moreover H is FP and $H^s(H;Z[H]) = 0$ for $s \leq 2$, so either N_1/H is locally finite or $c.d_QN_1 > c.d._QH$, by Theorem 8.2 of [1]. If N_1/H is locally finite but not finite then we again have $c.d_QN_1 > c.d._QH$, by Theorem 3.3 of [8]. If $c.d._QN_1 = 4$ then $[\pi:N_1] < \infty$, so N_1 is a PD_4 -group and (*iii*) holds, by Theorem 1. Otherwise $[N_1:H] < \infty$ and then $c.d.N_1 = 3$, N_1 is FP and $H^s(N_1; Z[N_1]) = 0$ for $s \leq 2$. Hence N_1 is a PD_3 -group by (i), and so (iv) holds.

Suppose that $\chi(G) = 0$ and that G is a PD_2 -group. Then $G \cong Z^2$ or $Z \times_{-1} Z$, so $h(\sqrt{\pi}) \ge 2$ and $\chi(\pi) = 0$. We may assume that π is orientable, so $Hom(\pi, Z) \ne 0$. If $h(\sqrt{\pi}) > 2$ then π is virtually poly-Z, by Theorem 8.1 of [9]. Therefore we may also assume that $h(\sqrt{\pi}) = 2$. In this case $\sqrt{\pi} \cong Z^2$ and π is virtually the group of a torus bundle over a surface, by Theorem 9.2 of [9]. Since $[\sqrt{\pi}: G] < \infty$ it follows also that $[\pi: N_{\pi}(G)] < \infty$ and so (*iii*) holds. If G has one end and c.d.G = 2 but G is not a PD_2 -group then $H^2(G; Z[G])$ is not finitely generated [6] and $[\pi: N_{\pi}(G)] = \infty$, and so (v) covers the remaining possibilities.

Finally, if G has two ends then $G \cong Z$, so $G \leq \sqrt{\pi}$. If $h = h(\sqrt{\pi}) > 2$ then π is virtually poly-Z. If $h \leq 2$ then $\sqrt{\pi}$ is abelian of rank h. \Box

To what extent can the hypotheses be relaxed? Are all FP subnormal subgroups PD-groups? If so then cases (*ii*) and (*vi*) cannot arise. (This is certainly so if there is a subnormal chain consisting of FP subgroups). If G is FP and c.d.G = 3 then G has one end (cf [2]). Can a finitely generated noncyclic free group be a subnormal subgroup of a PD_4 -group?

Examples. 1. Let π be the semidirect product of $S = \langle a, b, c, d \mid [a, b][c, d] = 1 \rangle$ (the genus 2 surface group) with the rank 2 free abelian normal subgroup G generated by x and y, with the action of S on G given by $axa^{-1} = xy^2, cyc^{-1} = x^2y, b, c, d$ commute with x and a, b, d commute with y. Then $\sqrt{\pi} = G$ and $C_{\pi}(G) \cong Z^2 \times F(\infty)$. In particular, $C_{\pi}(\sqrt{\pi})$ need not be finitely generated.

2. Let G be a PD_2 -group such that $\zeta G = 1$. Let $\theta : G \to G$ have infinite order in Out(G), and let $\lambda : G \to Z$ be an epimorphism. Let $\pi = (G \times Z) \times_{\phi} Z$ where $\phi(g, n) = (\theta(g), \lambda(g) + n)$ for all $g \in G$ and $n \in Z$. Then G is subnormal in π but this group is not virtually the group of a surface bundle over a surface.

3. Any group with a finite 2-dimensional Eilenberg - Mac Lane complex is the fundamental group of a compact aspherical 4-manifold with boundary, obtained by attaching 1- and 2-handles to D^4 . On applying the orbifold hyperbolization technique of Gromov, Davis and Januszkiewicz to the boundary

4

we see that each such group embeds in a PD_4 -group. (See [10]). (Conjecturally such groups are exactly the finitely presentable groups of cohomological dimension 2). The simplest such groups G with $\chi(G) = 0$ which are not PD_2 -groups are the Baumslag-Solitar 1-relator groups $G_{p,q} = \langle a, t | ta^p t^{-1} = a^q \rangle$ with |pq| > 1. Can they be realised as *subnormal* subgroups of PD_4 -groups?

§2. Closed 4-manifolds

In this section we shall investigate closed 4-manifolds whose fundamental groups have subnormal subgroups and whose homology is constrained in other ways.

Theorem 3. Let M be a closed 4-manifold with fundamental group π and let $p: \hat{M} \to M$ be a covering projection such that \hat{M} is finitely dominated and such that $G = \pi_1(\hat{M})$ is a nontrivial subnormal subgroup of infinite index in π . Suppose also that G is FP_3 . Then

- (i) if G is finite then the universal covering space M̃ is homotopy equivalent to S² or S³ and [π : N_π(G)] is finite;
- (ii) if G has one end then M is aspherical;
- (iii) if G has two ends then either M is aspherical or it is finitely covered by $S^2 \times S^1 \times S^1$ or $h(\sqrt{\pi}) = 1$ and $H^2(\pi; Z[\pi])$ is not finitely generated;
- (iv) if G has infinitely many ends and is subnormal in N where N is an FP_2 normal subgroup of infinite index in π then either M has a finite covering space which is homotopy equivalent to the mapping torus of a self homotopy equivalence of a PD_3 -complex and $[\pi : N_{\pi}(G)]$ is finite or M is aspherical and N is not FP_3 .

Proof. Let $G = N_0 < N_1 < ... < N_r = \pi$ be a subnormal chain. Suppose first that G is finite. Then \tilde{M} is also finitely dominated. Since π has nontrivial torsion M cannot be aspherical, so is homotopy equivalent to S^2 or S^3 , by Theorem 3.9 of [9]. If $\tilde{M} \simeq S^2$ then the kernel of the natural homomorphism from π to $Aut(\pi_2(M))$ is torsion free. Hence G = Z/2Z and so G is central in N_1 . Moreover as it is the torsion subgroup of ζN_1 it is characteristic in N_1 , and hence normal in N_2 . A finite induction now shows that G is normal in π . If $\tilde{M} \simeq S^3$ then π has two ends, and so $[\pi : N_{\pi}(G)]$ is finite.

If G is infinite then a finite induction using the LHS spectral sequence shows that π has one end, and that if moreover G has one end then $H^2(\pi; Z[\pi]) =$ 0. Since G is FP_3 and \hat{M} is finitely dominated $\pi_2(M) = \pi_2(\hat{M})$ is finitely generated as a Z[G]-module, and so $Hom_{\pi}(\pi_2(M), Z[\pi]) = 0$. Therefore $\pi_2(M) \cong \overline{H^2(\pi; Z[\pi])}$, by Lemma 3.3 of [9], and so M is aspherical if and only if $H^2(\pi; Z[\pi]) = 0$. In particular, M is aspherical if G has one end.

If G has two ends then it has an infinite cyclic normal subgroup of finite index, and so we may assume without loss of generality that $G \cong Z$. A finite induction then shows that $G \leq \sqrt{\pi}$. If $h(\sqrt{\pi}) > 2$ then $H^2(\pi; Z[\pi]) = 0$, by Theorem 1.16 of [9], and so M is aspherical. (In fact M is then homeomorphic to an infrasolvmanifold, by Theorem 8.1 of [9]). If $h(\sqrt{\pi}) = 2$ and $\sqrt{\pi}$ has infinite index in π then we again have $H^2(\pi; Z[\pi]) = 0$ and so M is aspherical. (If $\sqrt{\pi}$ is finitely generated it is nilpotent, hence FP, and the vanishing of $H^2(\pi; Z[\pi])$ follows immediately from an LHS spectral sequence argument. If $\sqrt{\pi}$ is not finitely generated then it is the increasing union of finitely generated subgroups of Hirsch rank 2, and we may apply Theorem 3.3 of [7] to conclude that $H^s(\sqrt{\pi}; Z[\pi]) = 0$ for $s \leq 2$). If $h(\sqrt{\pi}) = 2$ and $\sqrt{\pi}$ has finite index in π then π is virtually Z^2 . We may then assume that $\pi \cong Z^2$ and $\pi/G \cong Z$. Since $H_*(\hat{M}; Q)$ is finitely generated it follows from the Wang sequence for the projection of \hat{M} onto M that $\chi(M) = 0$. Hence M is finitely covered by $S^2 \times S^1 \times S^1$, by Theorem 10.10 of [9].

Suppose that $h(\sqrt{\pi}) = 1$ and let \sqrt{M} be the associated covering space. Since $h(G) = h(\sqrt{\pi})$ the stages of a subnormal chain between G and $\sqrt{\pi}$ are locally finite, and so the rational homology spectral sequences between the corresponding covering spaces collapse, to show that $H_*(\sqrt{M}; Q)$ is finitely generated and $\chi(\sqrt{M}) = \chi(\hat{M})$. In particular, $\pi/\sqrt{\pi}$ has finitely many ends, since $H_3(\sqrt{M}; Q)$ is finite dimensional.

If $[\pi : \sqrt{\pi}]$ is finite then $\sqrt{\pi}$ is finitely generated. But then $[\sqrt{\pi} : G] < \infty$ and so $[\pi : G] < \infty$, contrary to hypothesis.

If $\pi/\sqrt{\pi}$ has two ends then we may assume that $\pi/\sqrt{\pi} \cong Z$. But then π is an ascending HNN construction over a finitely generated base, and so the torsion subgroup T of $\sqrt{\pi}$ is finite, while $\sqrt{\pi}/T$ is abelian. Therefore $\sqrt{\pi}$ has a finitely generated infinite normal subgroup and so $H^2(\pi; Z[\pi])$ is free abelian [11]. Since $H_*(\sqrt{M}; Q)$ is finitely generated \sqrt{M} satisfies Poincaré duality with simple coefficients Q and formal dimension 3 [12] and so $\chi(\sqrt{M}) =$ 0. Hence $\chi(\hat{M}) = 0$. This in turn implies that $\pi_2(\hat{M})$ is a torsion Z[G]- module. Since $Z[G] \cong Z[t, t^{-1}]$ and $\pi_2(\hat{M}) = \pi_2(M) \cong H^2(\pi; Z[\pi])$ is free abelian it must be finitely generated. Since π has elements of infinite order $H^2(\pi; Z[\pi])$ must therefore be 0 or Z, by Corollary 5.2 of [5]. But M cannot be aspherical as $c.d._Q(\pi) \leq c.d._Q\sqrt{\pi} + c.d._QZ = 2$. Therefore $\tilde{M} \simeq S^2$. As π is elementary amenable it must be virtually Z^2 , by Theorem 10.10 of [9]. But this contradicts the assumption that $h(\sqrt{\pi}) = 1$. Therefore $\pi/\sqrt{\pi}$ has one end. As we may again exclude the possibility that $H^2(\pi; Z[\pi]) \cong Z$, either M is aspherical or $H^2(\pi; Z[\pi])$ is not finitely generated.

Suppose that G has infinitely many ends and is subnormal in N where N is an FP_2 normal subgroup of infinite index in π . If [N:G] is finite then N has infinitely many ends and the regular covering space associated to N is finitely dominated, so π/N has two ends and the covering space associated to N is a PD_3 -complex, by Theorem 3.9 of [9]. If $[N:G] = \infty$ then $H^s(\pi; Z[\pi]) = 0$ for $s \leq 2$ and so M is aspherical, as before. This cannot happen if N is FP_3 , by the corollary to Theorem 2. \Box

What happens if we drop the subnormality hypothesis? It can be shown that a closed 3-manifold has a finitely dominated infinite covering space if and only if its fundamental group has one or two ends. Does this condition remain necessary in dimension 4? The hypothesis that G be FP_3 is automatic if π is finite or has two ends. It is used only to ensure that $Hom_{\pi}(\pi_2(M), Z[\pi]) = 0$. Can it be relaxed to FP_2 in general? The final possibility in case (*iii*) surely never occurs. Mapping tori of self homeomorphisms of 3-manifolds whose fundamental group is a nontrivial free product give examples in which G is FP_3 , has infinitely many ends and is normal in π .

Corollary. If π is virtually torsion free and G has finitely many ends then either M is aspherical or its universal covering space is homotopy equivalent to S^2 or S^3 .

Proof. It is sufficient to note that if $\sqrt{\pi}$ is torsion free and $h(\sqrt{\pi}) = 1$ then $\sqrt{\pi}$ is abelian and has a finitely generated infinite normal subgroup. Hence $H^2(\pi; Z[\pi]) = 0$, by [7] and [11], and so M is aspherical. \Box

Conversely, if \tilde{M} is finitely dominated then π is virtually torsion free, by Theorems 3.9, 10.1 and 11.1 of [9]. This also holds if M is finitely covered by the mapping torus of a self homotopy equivalence of a PD_3 -complex [4].

If M is a closed 4-manifold with $\chi(M) = 0$ and such that $\pi = \pi_1(M)$ has a subnormal subgroup G of infinite index which is a PD_2 -group then M is aspherical and either has a finite regular covering space which is homotopy equivalent to the total space of a torus bundle over an aspherical closed surface or has a finite covering space which is homotopy equivalent to a mapping torus. See Chapters 4 and 5 of [9].

References.

- [1] Bieri, R. Homological Dimensions of Discrete Groups, Queen Mary College Mathematics Notes, London (1976).
- [2] Bieri, R. and Hillman, J.A. Subnormal subgroups of 3-dimensional Poincaré duality groups, Math. Z. 206 (1991), 67-69.
- [3] Bowditch, B.H. Planar groups and the Seifert conjecture, preprint, University of Southampton (1999).
- [4] Crisp, J. The decomposition of 3-dimensional Poincaré duality complexes, Comment. Math. Helvetici 75 (2000), 232-246.
- [5] Farrell, F.T. The second cohomology group of G with coefficients Z/2Z[G], Topology 13 (1974), 313-326.
- [6] Farrell, F.T. Poincaré duality and groups of type FP, Comment. Math. Helvetici 50 (1975), 187-195.
- [7] Geoghegan, R. and Mihalik, M.L. A note on the vanishing of $H^n(G; Z[G])$, J. Pure Appl. Alg. 39 (1986), 301-304.
- [8] Gildenhuys, D. and Strebel, R. On the cohomological dimension of soluble groups, Canad. Math. Bull. 24 (1981), 385-392.
- [9] Hillman, J.A. Four-Manifolds, Geometries and Knots, Geometry and Topology Monographs, vol. 5, Geometry and Topology Publications (2002).
- [10] Mess, G. Examples of Poincaré duality groups, Proc. Amer. Math. Soc. 110 (1990), 1144-5.
- [11] Mihalik, M.L. Ends of double extension groups, Topology 25 (1986), 45-53.
- [12] Milnor, J.W. Infinite cyclic coverings, in *Conference on the Topology of Manifolds* (edited by J.G.Hocking), Prindle, Weber and Schmidt, Boston - London - Sydney (1968), 115-133.
- [13] Strebel, R. A remark on subgroups of infinite index in Poincaré duality groups, Comment. Math. Helvetici 52 (1977), 317-324.

8