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Abstract

It might be argued that nothing more can be said about pricing options under

the Black-Scholes paradigm. We express the opposite view by presenting in

this paper a new formula that unifies much of the existing literature on pric-

ing exotic options within the Black-Scholes framework. The formula gives the

arbitrage-free price of an M-binary (a generalised multi-asset, multi-period

binary option), which is a fundamental building block for more complex ex-

otic options. To demonstrate the utility of the formula, we apply it to pricing

several well known exotics and also to a new option: a discretely monitored

call barrier option on the maximum of several assets.

Keywords: Exotic options, binaries, digitals, static replication.

1 Introduction

Any option or derivative that is not a plain vanilla call or put is generally

referred to as an exotic option. One class of single asset exotics are those with

path-dependent payoffs. Examples include: Asian options, barrier options,

lookback options, multi-period digitals, compound options, chooser options

and many others. Multi-asset exotics, sometimes called rainbow options have

also become popular in the last couple of decades. Examples of these include:

exchange options, basket options, min/max and best/worst options. Closed
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form price solutions have been found for most of the above 1 in the Black-

Scholes framework. While the following is by no means an exhaustive list, it

nevertheless shows the wide range of published option price solutions within

the Black-Scholes framework. Merton (1973), Reiner and Rubinstein (1991),

Rich (1994),Heynen and Kat (1994), Buchen (2001) analyse barrier options,

Geske (1979) and Rubinstein (1992) provide pricing formulae for compound

options; Margrabe (1978) and Carr (1988) price exchange options; Stulz

(1982), Johnson (1987), Rich and Chance (1993) price options on the max-

imum and minimum of several assets and their variants; Kemna and Vorst

(1990) price Geometric Asian options; Longstaff (1990) prices extendable op-

tions; Conze and Viswanathan (1991) analyse lookback options; Rubinstein

and Reiner (1991) and Heynen and Kat (1996) price single asset and two-

asset binaries; Rubinstein (1991) introduced and analysed chooser options;

Zhang (1995) prices correlated digital options; while Buchen (2003) analyses

the class of dual-expiry exotics.

Pricing for non Black-Scholes dynamics (including stochastic volatility) will

generally require numerical schemes such as Monte Carlo simulation (e.g.

Boyle 1977). Since most exotic options these days do require a stochas-

tic volatility model, one might ask the point of continuing to price in the

Black-Scholes world. Apart from its intrinsic and academic value, one prac-

tical application of the formula presented in this paper is that it can provide

Monte Carlo schemes with good control variates, used for variance reduction.

It might seem implausible that many of the above options can be priced by

a single universal formula. We present in this paper precisely such a formula

within the Black-Scholes framework. In particular we derive the arbirage-free

price of a generalised multi-asset, multi-period exotic binary option 2. We

1Arithmetic Asian and basket options are the exception.
2Binary options are also called digital options.
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shall henceforth refer to these fundamental derivatives as M−binaries (see

Eq(16) for a formal definition).

We demonstrate that M−binaries are building blocks for a wide class of ex-

otic options. In this regard our approach is similar to that of Ingersoll (2000)

who showed how digital options can be used to price more complex options

including two-asset exotics. While Ingersoll derived several expressions for

digitals under varying exercise conditions, we adopt a very different approach

in this paper. We are formally concerned with pricing only a single option:

the M-binary , which includes cash digitals, asset digitals and all possible

power (or turbo) digitals. Many exotic options can be expressed as sim-

ple static portfolios of these digitals. It follows from the principle of static

replication that the arbitrage-free price of these exotics must then be the

corresponding value of their replicating portfolios.

While the formula we derive can price multi-variate, discretely monitored

barrier and lookback options, certain enhancements to the theory presented

here must be made to price continuously monitored versions of these options.

Since these enhancements are not trivial we do not consider them in this pa-

per. However preliminary results can be found in Skipper (2003).

The remainder of the paper is organised as follows. In Section 2 we define

the multi-asset, multi-period framework and because the formulation is much

more involved than usual, we give considerable attention to establishing a

descriptive and unifying notation. We develop the multi-asset, multi-period

price dynamics in Section 3 and state the Main Theorem and universal for-

mula in Section 4. In Section 5 we illustrate the use of the formula through

several examples including: asset and bond type binaries, compound options,

strike reset options, geometric mean Asian options, quality options 3 includ-

3We coin the term quality options to include any option whose payoff depends on the
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ing best and worst options, options on the maximum and minimum of several

assets, discretely monitored lookback and barrier options. Section 6 offers

a short conclusion and the Appendix gives details of the proofs of the two

Theorems stated in the main text.

2 Set-up, Definitions and Notation

1. Let

In = The index set {1, 2, . . . , n}
Vn = Any n−dimensional column vector

Amn = Any m × n matrix

Dn = Any n × n diagonal matrix

Cn, C∗

n = Any n × n covariance/correlation matrix

Gn(R) = Any zero-mean Gaussian n − vector

with positive definite correlation matrix R ∈ C∗

n.

2. The asset parameter set A is the set of (constant) parameters:

A = [r, xi, qi, σi, ρij]; (i, j ∈ IN ) (1)

that underlie the N−asset price dynamics. In the above: r is the risk free

interest rate, xi, qi, σi are the present value, dividend yield and volatility of

asset i and ρij is the correlation coefficient of the instantaneous log-returns

of asset i with asset j.

3. The tenor set T for an M-binary is the set of times:

T = [t, T1, T2, · · · , TM , T ] (2)

maximum or minimum price of a given set of assets.
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where t is the current time, Tk, k ∈ IM are M fixed asset price monitoring

times which occur in the M-binary payoff function VT , and T is the expiry

date of the option (i.e. the date at which the payoff is actually made). We

assume that t < T1 < T2 < · · · < TM ≤ T . Often the last monitoring time

TM coincides with T , but they may also be distinct.

4. The dimension set D for an M-binary is the set of integers:

D = [N, M, n, m]; (m ∈ In) (3)

where N is the number of assets, M is the number of monitoring periods; n

is the ‘payoff dimension’ and m is the ‘exercise dimension’. The payoff and

exercise dimensions are defined later.

5. The payoff parameter set P for an M-binary is the 4-parameter vector

and matrix set

P = [α, a, S, A] (4)

where α ∈ Vn is the ‘payoff index vector’, a ∈ Vm is the ‘exercise price vec-

tor’, S ∈ Dm is the ‘exercise indicator matrix’ and A ∈ Amn is the ‘exercise

condition matrix’. These parameters, which determine the expiry payoff and

exercise conditions of the M-binary are defined in Section 4.

6. The payoff vector X.

Let Xi(s), i ∈ IN denote the price of asset-i at any time s where t < s ≤ T .

The Xi(s) are stochastic processes, which in the Black-Scholes framework,

follow correlated multi-variate geometric Brownian motions. We shall be

concerned with options whose expiry T payoffs VT depend on the random

prices 4 Xik = Xi(Tk) for some subset of monitoring times Tk. To allow

flexible payoff structures we do not require that Xik contains every asset at

4We shall generally use indices i, j to denote different assets and indices k, l to denote
different monitoring times.
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all monitoring times – only that each asset involves at least one of these times.

We assemble all the relevant components Xik into a payoff vector X. The ar-

rangement of these components is arbitrary, but each component corresponds

to a unique pair (i, k) ∈ IN × IM . It should be clear that for each index

i ∈ IN , k may assume any subset of values in IM ; similarly for each index

k ∈ IM , i may take a corresponding subset of values in IN . Because it is

more informative, rather than re-label the components with a new index, we

retain both indices (i, k) and call such vectors: dual-index vectors. Clearly,

dual-index vectors (and matrices) become single-index when there is only one

underlying asset, or when there is only one future monitoring time. We refer

to the dimension n of X as the payoff dimension. In general it differs from

both N (the number of assets) and M (the number of time periods) and may

take any value in the range N ≤ n ≤ NM .

Example 1

To illustrate the type of payoff structures we shall be pricing, consider a

derivative whose expiry T payoff is VT = f [X1(T1), X1(T2), X2(T1), X3(T2)]

for some function f , with T1 < T2 ≤ T . This derivative is multi-asset,

multi-period in the sense we have defined above with N = 3 assets, M =

2 periods and payoff dimension n = 4. One representation of the dual-

index payoff vector (any ordering of the components is permissible) is X =

(X11, X12, X21, X32)
′. The payoff function for this example would then be

written as VT (X) = f(X). �

It should be clear that multi-asset, multi-period binaries are very complex

derivatives requiring many parameters to define them in full. We therefore

adopt a notation that is designed to both simplify mathematical formulae

and aid understanding. It is evident from the preceding discussion, that this

notation is vector and matrix oriented. As described below, we also employ

some deliberate abuse of standard matrix rules to enhance the clarity of the
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exposition.

• If x ∈ Vn is a vector (we use the notation x′ to represent its trans-

pose) then we shall freely use expressions like ex, log x, x2,
√

x, . . .

to denote similar vectors obtained by component-wise function eval-

uation. Thus log x for example, denotes the vector with components

(log x1, log x2, . . . , log xn)′.

• We often ignore the difference between a vector (or matrix) and its

components. Hence we shall feel free to write x = xi or X = Xik for

single and dual-index vectors and R = ρij or R = ρijτkl for matrices.

The second matrix here is defined in Eq(11) and is a dual-index matrix

with components drawn from the asset-time index pairs (i, k) and (j, l).

• Let x ∈ Vn be a column vector of dimension n and let A ∈ Amn be an

m × n matrix. Then define the m−dimensional vector xA ∈ Vm by 5

xA = exp(A log x). (5)

The matrix A is the exercise condition matrix referred to earlier. A spe-

cial case of Eq(5) is the choice A = α where α ∈ Vn is an n−dimensional

column vector. The result is the scalar quantity

xα = eα
′ logx = xα1

1 xα2

2 . . . xαn

n . (6)

The parameter α is the payoff index vector referred to in Eq(4).

• We let 1 and 0 denote column vectors with every component equal to 1

and 0 respectively. Also 1j denotes the column vector with j−component

equal to 1 and all others equal to zero, and In denotes the n−dimensional

identity matrix.

5We also allow A to be n × m, in which case xA = exp(A′ log x) for compatibility.
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• We define the m−dimensional indicator function by

Im(x>a) =

m
∏

i=1

I(xi >ai). (7)

Since I(x<a) ≡ I(−x>−a) it is a simple matter to change ‘less-than’

indicators into ‘greater-than’ indicators as follows. Let S ∈ Dm be

a diagonal matrix with all diagonal components equal to ±1. Then

the indicator Im(Sx > Sa) has i−component I(xi > ai) if Sii = 1,

and has i−component I(xi < ai) if Sii = −1. We shall say that an

option has exercise dimension m, if its expiry payoff depends on some

m−dimensional indicator function. In practice, for any M-binary we

require 1 ≤ m ≤ n where n is the payoff dimension. Matrix S is the

exercise indicator matrix of Eq(4).

• Option prices in the multi-variate Black-Scholes framework often in-

volve the multi-variate normal distribution function. This is denoted

here by Nm(d; C), where d ∈ Vm is an m−dimensional column vec-

tor and C ∈ C∗

m a positive definite m−dimensional correlation matrix.

Thus if Z ∈ G(C) is an m−dimensional Gaussian random vector with

zero mean, unit variances and correlation matrix C, i.e. Z ∼ N(0, C),

then

Nm(d; C)
def
= E{Im(Z <d)}. (8)

Special cases of Eq(8) are the uni-variate (m = 1) and bi-variate

(m = 2) normal distribution functions. These will be written in their

more usual notations N (d) and N (d1, d2; ρ) respectively, where ρ is a

correlation coefficient.

Of course a correlation matrix is just a normalised covariance ma-

trix. In particular, if C is a positive definite covariance matrix with

D2 = diag(C) containing the variances on the main diagonal, then the

corresponding correlation matrix is C∗ = D−1CD−1.
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3 Multi-Variate Asset Dynamics

We adopt the standard Black-Scholes framework extended to multiple assets

with parameters defined by Eq(1). Thus the asset price process Xi(s) for

i ∈ IN and s ∈ (t, T ] defined in the previous Section, satisfies the risk-neutral

stochastic differential equation (SDE) for all s > t

dXi(s) = Xi(s)[(r − qi)ds + σidWi(s)]; Xi(t) = xi (9)

where Wi(s) are correlated Brownian motions with E{dWi(s)dWj(s)} =

ρijds. Using Itô’s Lemma and the stationarity of Wi(s), this SDE has a

solution that can be expressed as

log Xi(s)
d
= log xi + (r − qi − 1

2σ
2
i )(s − t) + σiWi(s − t) (10)

It follows from this representation and the property E{Wi(τk)Wi(τl)} =

min(τk, τl) that log Xi(Tk) is Gaussian with correlation coefficients deter-

mined by

R = corr{log Xik, log Xjl} = ρijτkl; τkl =
min(τk, τl)√

τkτl

(11)

where τk = Tk − t.

Further, since the Wi(τk) are Gaussian with zero mean and variance equal to

τk, we express Eq(10) at the monitoring times s = Tk in the equivalent form

log Xi(Tk)
d
= log xi + (r − qi − 1

2σ
2
i )τk + σi

√
τk Zi(τk). (12)

Zi(τk) ∈ Gn(R) are Gaussian random variables with (dual-index) correla-

tion matrix R = ρijτkl. The ρij are correlation coefficients of instantaneous

log-returns across different assets at the same time; the τkl are correlation

coefficients across different times for the same asset. In matrix form, Eq(12)

has the representation

log X
d
= log x + µ + ΣZ (13)
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where x is the present value of X (evaluated at τk = 0 for all k ∈ IM),

µ = (r − qi − 1
2σ

2
i )τk ∈ Vn (14)

Σ = diag(σi

√
τk) ∈ Dn (15)

and Z ∈ Gn(R) is a Gaussian vector with correlation matrix R defined by

Eq(11).

4 The Main Result

In this Section we give a precise definition of the generalised multi-asset,

multi-period M-binary in terms of its expiry payoff VT (X) and state its

arbitrage-free present value V (x, t) assuming the multi-variate Black-Scholes

representation of the payoff vector X as stated in Eqs(12)-(15). This is the

main result of the paper. The proof, which depends on three well known

Lemmas is relegated to the Appendix and the notation used is that of Sec-

tion 2 and Section 3.

Definition (M-binary )

An M-binary with payoff parameter set P, dimension set D, tenor set T and

payoff vector X ∈ Vn is a multi-asset, multi-period binary option with expiry

T payoff function

VT (X) = Xα
Im(SXA >Sa) (16)

Theorem 1 (Main Theorem)

The arbitrage-free present value of an M-binary as defined above, under log-

normal asset price dynamics with asset parameter set A is given by

V (x, t) = βxαNm(Sd; SCS) (17)
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where

β = exp
(

−rτ + α′µ + 1
2α

′Γα
)

; τ = T − t (18)

d = D−1
{

log
(

xA/a
)

+ A(µ + Γα)
}

∈ Vm (19)

C = D−1(AΓA′)D−1 ∈ C∗

m (20)

and

Γ = ΣRΣ′ ∈ Cn (21)

D2 = diag(AΓA′) ∈ Dm (22)

Proof: See the Appendix. �

The payoff function in Eq(16) is very general. It includes cash digitals (when

α = 0 giving Xα = 1), asset digitals (when α = 1jk resulting in Xα = Xjk)

and general power (or turbo) payoffs otherwise. These payoffs are contingent

on a wide selection of possible exercise scenarios determined principally by

the exercise condition matrix A. The importance of the matrix A is illus-

trated in the example below and the many applications that follow. The

term log
(

xA/a
)

in Eq(19) is simply a shorthand notation for the vector

(A log x − log a).

Example 2

As an example of an M-binary consider the derivative with expiry payoff

VT (X) =
√

X1X2 I(
√

X1X3 >X2)I(X4 <a)

This is an M-binary with n = 4, m = 2, payoff vector X = (X1, X2, X3, X4)
′

and payoff parameter set P = [α, a, S, A] where

α =









1
2
1
2

0
0









; a =

(

1
a

)

; S =

(

1 0
0 −1

)

; A =

(

1
2 −1 1

2 0
0 0 0 1

)

�
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It is also worth noting that calculations are considerably reduced if A = In

is an n−dimensional identity matrix. This leads to the direct equivalences

D = Σ and C = R. In such cases the exercise conditions are simple: i.e.

exercise is determined by whether asset prices at certain monitoring times

are above or below a corresponding exercise price. We shall meet several

examples (as in Example 2 above) where A is not an identity matrix and the

corresponding exercise condition is non-simple.

5 Applications

In order to apply Theorem 1 to price a multi-asset, multi-period exotic option

it is necessary to carry out some preparatory steps, as described below.

1. Static Replication

The first step is to assign the parameter set A for the given asset dynam-

ics and construct the payoff vector X. In all the ensuing applications

we shall assume that A has a structure of the form of Eq(1) and for

simplicity we set all dividend yields qi = 0. Then represent the option

payoff at expiry T as a portfolio (or linear combination) of M−binaries

each of the algebraic form of Eq(16).

2. Specify Binary Inputs

For each such M-binary obtain the dimension, tenor and payoff param-

eter sets: D, T and P defined in Section 2. Many of these quantities will

be dual-index vectors and matrices based on the structure of the payoff

vector X = Xik. Recall that it doesn’t matter how the components

are assembled into X, as long as all similar quantities are assembled

the same way.

The asset parameter set A determines the additional quantities [µ, Σ, Γ]

defined respectively by Eqs(14), (15) and (21). Similarly, the tenor set
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T allows calculation of the time dependent correlation coefficients τkl

defined by Eq(11).

3. Compute the Outputs

The third step is to compute the output parameters [β, D, d, C] from

Eqs (18), (22), (19) and (20) and obtain the price V (x, t) from Eq(17).

Finally, the exotic option price will be equal to the combined price of

the replicating portfolio of these M−binaries .

We basically adopt this three step procedure in all the applications that

follow.

5.1 Asset and Bond Binaries

Consider first a class of generalised asset and bond type binary options 6 with

simple exercise conditions. These have often be used as building blocks for

more complex exotics. Assume the tenor and dimension structures of Eqs(2)

and (3) with T = TM .

On the expiry date T , the bond binary pays one unit of cash provided the

prices X = Xik = Xi(Tk), are above (or below) corresponding exercise prices

a = aik. The payoff and exercise dimensions are equal and assumed to have

value n, not necessarily equal to NM . For these binaries, two of the four

payoff parameters are fixed: α = 0 and A = In. We therefore use the symbol

B(x, t; S, a) to refer to this bond binary.

The asset binary, similarly referred to by the symbol Aj(x, t; S, a), is identical

to the above except that it pays one unit of asset-j at the expiry date T . Its

payoff differs only in the value of the parameter α = 1jM .

6These are also known as asset-or-nothing and cash-or-nothing options.
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Calculations for the bond-type M-binary :

Inputs:

VT (X) = B(X, T ; S, a) = In(SX >Sa)

D = [N, M, n, n]

P = [0, a, S, In]

[µ, Σ, Γ] = [(r − 1
2σ

2
i )τk, diag(σi

√
τk), ρijσiσj min(τk, τl)]

where i, j ∈ IN , k, l ∈ IM and τk = Tk − t.

Outputs:

β = e−rτ ; τ = T − t

D = Σ

d = [log(xi/aik) + (r − 1
2σ

2
i )τk]/σi

√
τk = d′

ik (say)

C = R = ρijτkl

Hence, the present value of this M-binary given by Eq(17), is

B(x, t; S, a) = e−rτ Nn(Sd′

ik; SRS). (23)

For the corresponding asset binary, the payoff is

VT = Aj(X, T ; S, a) = XjMIn(SX >Sa)

We assume that XjM is also one of the components of the exercise condition;

it is a simple matter to handle the alternative case, by making an appropriate

change in the exercise condition matrix A. This has payoff index vector

α = 1jM , otherwise all other input parameters are as for the bond binary

above. A similar calculation then leads to the expression

Aj(x, t; S, a) = xj Nn(Sdik; SRS) (24)

where dik = d′

ik + ρijσj

√
τk.
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(a) Multi-asset, Single-period bond and asset binaries

When there is only a single period (M = 1) we may drop all the time indices

k, l and the above formulae reduce to

B(x, t; S, a) = e−rτ Nn(Sd′

i; SRS) (25)

Aj(x, t; S, a) = xj Nn(S[d′

i + ρijσj

√
τ ]; SRS) (26)

where τ = (T − t), d′

i = [log(xi/ai) + (r − 1
2σ

2
i )τ ]/σi

√
τ and R = ρij.

(b) Single-asset, multi-period bond and asset binaries

When there is only a single asset (N = 1) we may drop all the asset indices

i, j to get

B(x, t; S, a) = e−rτ Nn(Sd′

k; SRS) (27)

A(x, t; S, a) = xNn(Sdk; SRS) (28)

with [dk, d
′

k] = [log(x/ak) + (r ± 1
2σ

2)τk]/σ
√

τk and R = τkl.

(c) Single-asset, single-period bond and asset binaries

In the simplest case where N = M = 1 we reduce to 1-asset, 1-period binaries

which are the well known Black-Scholes components of standard European

call and put options:

A(x, t; s, a) = xN (sd) and B(x, t; a) = e−rτN (sd′) (29)

respectively with s = ±1 and [d, d′] = [log(x/a) + (r ± 1
2σ

2)τ ]/σ
√

τ .

(d) Compound Options

The bond and asset type binaries derived above can be used to price related

derivatives. We illustrate this idea with a standard call-on-call compound

option. Let c denote the strike price of the compound option exercised at

T1, and a2 the strike price of the underlying call option exercised at T2 > T1.

Let x = a1 denote the solution of: C(x, T2 − T1; a2) = c where the left side
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of this equation denotes the standard Black-Scholes price of a strike a2 call

option with time (T2 − T1) remaining to expiry. The compound option will

be exercised at T1 if and only if X1 > a1. Hence the final payoff of the

compound option at time T = T2 can be written in the form 7

V (x, T2) = [(X2 − a2)
+ − cer(τ2−τ1)] I(X1 >a1)

= (X2 − a2)I(X1 >a1)I(X2 >a2) − cer(τ2−τ1)
I(X1 >a1). (30)

This is a portfolio of asset and bond type binaries considered in parts (b)

and (c) above with m = 1 and m = 2. We can therefore write down the

present value of this portfolio in terms of uni-variate and bi-variate normals:

V (x, t) = xN (d1, d2; ρ) − a2e
−rτ2N (d′

1, d
′

2; ρ) − ce−rτ1N (d′

1) (31)

where ρ = τ12 =
√

τ1/τ2 and the notation is that of Eqs(27) and (28). This

formula is the well-known result first derived by Geske (1979).

(e) Multiple strike reset options

These options have recently been priced in the Black-Scholes framework by

Liao and Wang (2003). A reset call option involves a single-asset and a

multi-period payoff of the form VT = [X(T ) − K]+ where

K =







k0 if Xmin > a1

ki if ai+1 < Xmin ≤ ai; i = 1, 2, · · · , (p − 1)
kp if Xmin ≤ ap

(32)

Xmin = min(X1, X2, · · · , Xn−1) and Xi = X(Ti) are the monitored asset

prices at n−1 pre-determined reset dates Ti with T1 < T2 < · · · < Tn−1 < T .

The ki are the reset strike prices and the ai are a decreasing set of discrete

‘ladder prices’. It follows that

VT =

p
∑

i=0

(XT − ki)
+

I(ai+1 < Xmin ≤ ai)

7The exponential multiplying c is the future value factor at time T2 for a cash payment
at time T1.
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with a0 = ∞ and ap+1 = 0. Let Tn = T and define X as the n−dimensional

payoff vector with components Xi, i ∈ In. Then it is a relatively straight

forward matter to express this payoff as a portfolio of single-asset, multi-

period asset and bond type binaries defined in part(b) above. This is readily

achieved using the identity

I(ai+1 < Xmin ≤ ai)I(XT >k) = In(X > âi) − In(X >ai) (33)

where ai = (ai, ai, . . . , ai, ki)
′ and âi = (ai, ai, . . . , ai, ki−1)

′.

Eqs(27) and (28) then give the price of the multiple reset call option as the

present value of this portfolio. We do not write the explicit formula down

but remark that the representation we get appears to be considerably simpler

than the one stated by Liao and Wang (2003).

5.2 Discrete Geometric Mean Asian Options

Prices for these options in the Black-Scholes framework are also well known,

for both discrete and continuous time monitoring. We shall derive here two

formulas for discretely monitored geometric mean Asian call options (one a

fixed strike, the other a floating strike). These examples provide strong evi-

dence of the utility of the fundamental formula for pricing exotics. Further-

more, they illustrate perhaps the simplest cases where the exercise condition

matrix A is not an identity matrix.

While it is common to have the monitoring times equally spaced, this is by

no means essential. We therefore assume there is a single asset and that the

n monitored time periods Tk, (1 ≤ k ≤ n) are arbitrarily spaced. Geomet-

ric mean Asian options have payoffs at time T ≥ Tn which depend on the

geometric mean

Gn = n
√

X1X2 · · ·Xn (34)
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where Xk = X(Tk) is the observed asset price at time Tk. Since t < T1 in

our set-up, the first monitored price has yet to be observed. It is not difficult

to include monitored prices prior to t, and this leads to only slightly more

complicated expressions.

(a) Fixed Strike Call

The payoff for a fixed strike k, geometric mean Asian call option is given by

VT (X) = (Gn − k)+. This expression can be decomposed into the difference

of two M−binaries : V1 = GnI(Gn >k) and V2 = kI(Gn >k). We investigate

V1 in detail.

Inputs:

V1(X, T ) = GnI(Gn >k)

D = [1, n, n, 1]

P = [
1

n
1, k, 1,

1

n
1′]

[µ, Σ, Γ] = [(r − 1
2σ

2)τk, σdiag(
√

τk), σ2 min(τk, τl)]; τk = Tk − t

Outputs:

β = e−r(τ−τ̄ )−
1
2σ2(τ̄−τ̂); τ̄ =

1

n

∑

k

τk; τ̂ =
1

n2

∑

k,l

min(τk, τl)

D = σ
√

τ̂

d = d′ + σ
√

τ̂ ; d′ = [log(x/k) + (r − 1
2σ

2)τ̄ ]/σ
√

τ̂

C = 1

V1(x, t) = βxN (d).

The calculation for the second term V2(x, t) is very similar, with α now being

replaced by a zero vector. This results in V2(x, t) = ke−rτN (d′). The final
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expression for the fixed strike, geometric mean Asian call option price is

therefore:

V (x, t) = xe−r(τ−τ̄ )−
1
2σ2(τ̄−τ̂)N (d) − ke−rτN (d′). (35)

(b) Floating Strike Call 8

The floating strike geometric mean Asian call option has an expiry T ≥ Tn

payoff given by VT = (Xn − Gn)+. Hence the geometric mean acts as the

strike price of an otherwise standard call option. This too can be decomposed

into two M−binaries :

VT = XnI(GnX−1
n <1) − GnI(GnX

−1
n <1).

Of particular interest here are the associated expressions for the parameters

S, A and a so that the exercise condition is equivalent to: SXA > Sa. We

also find: S = −1, A = ( 1
n
1 − 1n)′, a = 1 and x = x1. With these pa-

rameters it is evident that the term log(xA/a) vanishes identically. Straight

forward calculations then lead to the expression:

V (x, t) = x
[

N (−d) − e−r(τn−τ̄)+
1
2σ2(τ̂−τ̄) N (−d′)

]

(36)

where

d = (r + 1
2σ

2)(τ̄ − τn)/σ
√

s; d′ = [(r − 1
2σ

2)(τ̄ − τn) + σ2(τ̂ − τ̄)]/σ
√

s

and s = (τn + τ̂ − 2τ̄ ).

5.3 Quality Options

We define a quality option as any derivative whose payoff depends on the

maximum or minimum of multiple asset prices at a fixed expiry T . Assume

there are n correlated assets and a single period T coinciding with the expiry

date of the option. In particular, a quality binary option Qs
p(x, t; k) pays one

8This particular derivative does not seem to have been priced in the literature.
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unit of asset p (say), with p ∈ In, provided this is the maximum (if s = 1),

or the minimum (if s = −1), of all the asset values at time T and a given

amount of cash k. In order to price these binaries Theorem 2 is very useful,

as it shows how to construct the required exercise condition matrix A and

associated exercise price vector a.

Theorem 2

Let X ∈ Vn and let k be a positive scalar. Then for any integer p ∈ In, the

statement Xp = max / min(X, k) is equivalent to sXAp > sap where s = +1

corresponds to the maximum, s = −1 to the minimum and Ap ∈ Ann, ap ∈
Vn have components

Aij =







1 if j = p
−1 if i = j 6= p

0 otherwise
ai =

{

k if i = p
1 if i 6= p

i, j ∈ In (37)

The proof of this result is also relegated to the Appendix. �

Theorem 2 allows us to write the quality binary payoff in the form of a simple

M-binary :

Qs
p(X, T ; k) = Xp In(sXAp >sap). (38)

The most interesting part of the calculations is that for the correlation matrix.

With Γ = ρijσiσjτ , Cp = D−1
p (ApΓA′

p)D
−1
p and D2

p = diag(ApΓA′

p) we obtain

the symmetric correlation matrix Cp with components

Cij =











1 for i = j
σp−ρipσi

σip
for i 6= j = p

σ2

ip+σ2

jp−σ2

ij

2σipσjp
for i 6= j 6= p

(39)

and σ2
ij = σ2

i + σ2
j − 2ρijσiσj for all i, j.

Then with the choices α = 1p and S = sIn, the general binary option formula

(17), for any t < T , results in the expression

Qs
p(x, t; k) = xp Nn(sdp; Cp) (40)
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where dp is the vector with components

di =







[

log(xp/k) + (r + 1
2σ

2
p)τ

]

/σp

√
τ for i = p

[

log(xp/xi) + 1
2σ

2
ipτ

]

/σip

√
τ for i 6= p.

(41)

(a) Best and Worst Options

Two well known quality options are the ‘best’ and ‘worst’ options on n assets

and k units of cash, with expiry payoff:

Qs(X, T ; k) =

{

max(X, k) if s = 1
min(X, k) if s = −1.

(42)

Each of these payoffs can also be written as a portfolio of quality binaries

and a bond type M-binary (considered in Section 5.1):

Qs(X, T ; k) =

n
∑

p=1

XpIn(sX
Ap >sap) + kIn(sX <sk1)

=

n
∑

p=1

Qs
p(X, T ; k) + kB(X , T ;−sIn, k1). (43)

It follows that the present value of these options can be expressed as

Qs(x, t; k) =
n

∑

p=1

Qs
p(x, t; k) + kB(x, t;−sIn, k1). (44)

Eq(40) can be substituted into the first term while the last term is a special

case of Eq(25) with S = −sIn and a = k1.

(b) Call/Put on the max/min of several assets

A call (put) option on the maximum (minimum) of several assets and its

relatives have been considered by several authors including (Johnson 1987

and Rich and Chance 1993). Our analysis above provides expressions for

these prices in terms of quality binaries as follows. The payoff for a call

option on the maximum is given by

Cmax(X, T ; k) = [max(X) − k]+ = max(X, k) − k. (45)
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Hence for any t < T we can write down from Eq(44) the pricing formula

Cmax(x, t; k) =

n
∑

p=1

Q+
p (x, t; k) + kB(x, t;−In, k1) − ke−rτ . (46)

Similarly, the corresponding results for a put option on the minimum are:

Pmin(X, T ; k) = [k − min(X)]+ = k − min(X, k) (47)

and

Pmin(x, t; k) = ke−rτ −
n

∑

p=1

Q−

p (x, t; k) − kB(x, t; In, k1). (48)

These expressions of course agree with previously published formulations of

the problem, albeit in a very different notation, and obtained by a very dif-

ferent method.

Formulae for a call option on the minimum and a put option on the maximum

are easily obtained by a similar construction, so we are content to skip the

details.

5.4 Discrete lookback options

Suppose there is a single asset, whose price Xi = X(Ti) is monitored at

the increasing sequence of times Ti for i ∈ In. Derivatives whose payoffs at

expiry T ≥ Tn depend on the maximum or minimum value of Xi are called

discrete lookback options. It is clear that these options are the single-asset,

multi-period counterparts of the multi-asset, single-period quality options

considered in the previous sub-section. We shall consider here the case of

a binary option that pays Xp provided Xp = max(X, k) where k is a fixed

amount of cash 9. The payoff for this lookback binary is then

L(x, T ; k) = Xp In(XAp >ap) (49)

9The fixed cash k can also be thought of as the currently (i.e. time t) observed maxi-
mum asset price.
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where Ap, ap are defined in Theorem 2 with indices referring to times rather

than assets.

Since the analysis using Eq(17) of the Main Theorem is very similar to that

for the quality binary, we leave out the details and simply state the result.

The main difference occurs in the covariance matrix Γ which must now be

replaced by Γ = σ2 min(τi, τj). We ultimately obtain the result:

L(x, t; k) = xe−r(τ−τp) Nn(dp; Cp) (50)

where dp is the vector with components

di =







[

log(x/k) + (r + 1
2σ

2)τp

]

/σ
√

τp for i = p
1
σ
(r + 1

2σ
2)
√

τp − τi for i < p
− 1

σ
(r − 1

2σ
2)
√

τi − τp for i > p
(51)

and Cp is the symmetric correlation matrix with components

Cij =































1 for i = j

(1 − τi/τp)
1
2 for i < j = p

[(τi − τp)/(τj − τp)]
1
2 for p < i < j

[(τp − τj)/(τp − τi)]
1
2 for i < j < p

0 for i < p < j

(52)

Related lookback options, such as fixed strike lookback calls and puts can

now be priced in terms of portfolios of these lookback binaries.

5.5 Discrete Barrier Options

As a final illustration of our fundamental pricing formula Eq(17) we consider

a multi-asset, multi-period down-and-out discrete barrier call option. At ex-

piry T the strike a option is assumed to pay [max{Xi(T )} − a]+ provided

Xik > bi for a given set of discrete barrier prices bi. Thus if any of the asset

prices Xik = Xi(Tk) (i ∈ IN , k ∈ IM as usual) falls below the barrier level,

the contract is immediately knocked out; if Xik stays above the barrier level
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for all monitoring times Tk the contract pays a call option on the maximum

asset price recorded at the expiry date T > TM .

This option is certainly not a simple one and its pricing would, under stan-

dard methods of analysis, present a great challenge. The fundamental for-

mula derived in this paper allows its calculation in just a few steps.

First we write its expiry payoff in the form

V (X, T ; a, b) = [max{Xi(T )} − a]+ Im(Xi(Tk)>bi) (53)

where m is the barrier exercise dimension. The Main Theorem tells us that

the only task is to write this expression as the sum of M−binaries and iden-

tify the associated parameters.

In order to do this, define the payoff vector X as a collection of the m

asset prices Xb = Xi(Tk) used for barrier monitoring and the N prices

XT = Xi(T ) that determine the call option payoff. The partitioned pay-

off vector X = [Xb, XT ]′ has dimension n = (m + N).

Using the identity (max XT − a)+ ≡ max(XT , a) − a and the results of

Section 5.3 on pricing quality options, we can write the payoff (53) in the

required form as

V (X, T ; a, b) =

N
∑

p=1

Xα∗

p In(XA∗

p >a∗

p) + aIn(S∗X >S∗c∗) − aIm(Xb >b)

(54)

where

α∗

p =

(

0
1p

)

; A∗

p =

(

Im 0
0 Ap

)

; a∗

p =

(

b

ap

)

S∗ =

(

Im 0
0 −IN

)

; c∗ =

(

b

a1

)
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and b = bik = bi for all k. The first term in Eq(54) is the sum of general

M−binaries considered in the Main Theorem, while the second and third

terms are bond type M−binaries considered in Section 5.1. The present

value of this payoff can therefore be obtained by employing the principle of

static replication and results in the expression

V (x, t; a, b) =
N

∑

p=1

xpNn(d
∗

p; C∗

p) + aB(x, t; S∗, c∗) − aB(x, t; Im, b) (55)

where (d∗

p, C∗

p) are determined from Theorem 1 with (A, a) replaced by

(A∗

p, a
∗

p); and the bond type B terms are given explicitly by Eq(23). Little

would be served by expanding the details of this representation any further,

so we are content to leave the solution in the stated form of Eq(55).

6 Conclusion

Theorem 1 stated in Section 4 is the main result of this paper. It provides

a versatile formula for pricing a very general multi-asset, multi-period exotic

binary option (our M-binary ) which we have demonstrated is a fundamen-

tal component of many of the exotics published in the literature. The basic

idea, very much in the spirit of Ingersoll (2000), is to decompose an option’s

expiry payoff into portfolios of M−binaries and invoke the principle of static

replication to obtain an arbitrage-free price for the present value of the op-

tion. Each M-binary expiry payoff has the very specific 4-parameter form:

Xα
Im(SXA > Sa). These parameters, [α, A, a, S] together with the dual

asset-time correlation matrix R of Eq(11) and monitoring time structure Tk,

provide sufficient scope to match a great variety of exotic option payoffs.

The exercise condition matrix A plays a particularly important role. If it

is different from an identity matrix, it is responsible for generating changes

in the correlation structure, which in turn has an important bearing on the

eventual pricing formula. An interesting observation is that the dimension

of the multi-variate normal for each component binary is determined only by
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the exercise dimension m, and not by the payoff dimension n or the number

of assets N or time periods M .

The pricing formula itself Eq(17), is quite complex and may in certain cir-

cumstances involve considerable calculation. However, although we have

concentrated in this paper on analytical solutions, the formula can readily

be coded up for numerical computation, particularly with matrix oriented

programming languages such as Matlab and Mathematica.

To illustrate the power and versatility of the formula, we have priced many

well known exotic options and also a new one of very great complexity:

namely, a discretely monitored call barrier option on the maximum of N

assets. This option includes both a multi-asset payoff and multi-period mon-

itoring.

Extensions of the general formula Eq(17) are underway to allow similar pric-

ing of continuously monitored multi-asset barrier and lookback options.
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A Appendix

In this Appendix we prove the two Theorems stated in Sections 4 and 5.3.

Theorem 1 (Section 4)

The proof of the Main Theorem depends on the three Lemmas listed below.

The first deals with option pricing theory; the second and third deal with

specific properties of Gaussian random vectors.

Lemma 1 In a complete, arbitrage-free, multi-asset market the discounted

price of any derivative contract is a martingale with respect to the

28



risk-neutral measure. This leads to the well-known pricing formula

(Harrison and Pliska 1981)

V (x, t) = e−r(T−t)
E{VT (X)|X(t) = x}. (A1)

Lemma 2 Let c ∈ Vn be a constant vector, Z ∈ Gn(R) a Gaussian random

vector with positive definite correlation matrix R and let F (Z) be a

scalar function of n variables. Then

E{ec′Z F (Z)} = e
1
2 c

′Rc
E{F (Z + Rc)}. (A2)

We like to term this result the Gaussian Shift Theorem because the

mean has been ‘shifted’ from zero to Rc. The proof is fairly elementary

and involves little more than the following identity for multi-variate

Gaussian pdf’s:

φ(z − Rc) ≡ ec
′z−

1
2c

′Rcφ(z)

where φ(z) = exp(− 1
2z

′R−1z) and K is the usual normalising constant.

This Lemma can also be shown to be equivalent to expectation under

a change of measure.

Lemma 3 For any matrix B ∈ Amn of rank m ≤ n, a vector b ∈ Vm and a

Gaussian random vector Z ∈ Gn(R) with correlation matrix R,

E{Im(BZ <b)} = Nm(D−1b; D−1(BRB′)D−1) (A3)

where D2 = diag(BRB′). This Lemma is also easily proved noting

that BZ ∈ Gm with covariance matrix BRB ′. The diagonal matrix D

provides the normalisation to an m−dimensional correlation matrix.

Proof of Main Theorem

From the payoff function Eq(16) for an M-binary and Lemma 1 we have

V (x, t) = e−rτ
E{Xα

Im(SXA >Sa)|X(t) = x}; τ = T − t

= e−rτ
E{Xα

Im(SA log X >S log a)|X(t) = x}.
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For log-normal asset price dynamics described by Eq(13) we first obtain

Xα = xα exp{α′µ + (Σα)′Z}

Then using Lemma 2 with c = Σα, the last equation for V (x, t) can be

written as

V (x, t) = xαe−rτ+α′µ
E{ec′ZIm(SA(log x + µ + ΣZ)>S log a)}

= βxα E{Im(SAΣ(Z + RΣα)>−S[log(xA/a) + Aµ])}
= βxα E{Im(−(SAΣ)Z <S[log(xA/a) + A(µ + Γα)])}

Finally, from Lemma 3 with B = −(SAΣ) we get

V (x, t) = βxαNm(Sd; SCS)

where β, Γ, d and C have all been defined in Section 4.

This completes the proof of Theorem 1. �

Theorem 2 (Section 5.3)

Partition vector X ∈ Vn in the form X = (Xp, X̄p)
′ where (X̄p)i = Xi ∈ Vn−1

for all i 6= p. That is, asset−p is moved to the first element of X. Partitioning

matrix Ap and vector ap in the same way, we write:

Ap =

(

1 0′

1 −In−1

)

; ap =

(

k
1

)

. (A4)

It follows that

sXAp > sap

⇒ sAp log X > s log ap

⇒ s

(

1 0′

1 −In−1

) (

log Xp

log X̄p

)

> s

(

log k
0

)

⇒ s

(

log Xp

log Xp1 − log X̄p

)

> s

(

log k
0

)

⇒ s

(

Xp

Xp1

)

> s

(

k
X̄p

)
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The last line demonstrates that Xp = max(X, k) if s = 1 and Xp =

min(X, k) if s = −1 and Theorem 2 is proved. �

—oOo—
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