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Dancing for a decision: 
a matrix model for nest-site choice by honeybees 
Mary R. Myerscough 
School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia 
(m. myerscough maths. usyd. edu. au) 

A mathematical model is formulated for decision making by honeybees during nest-site choice, using a 

population matrix model. This model explains how the observed dynamics of the nest-site scouts' dancing 
can reliably lead to a choice of the best nest site available. 
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1. INTRODUCTION 

In the spring a swarm of honeybees (Apis mellifera) may 
leave the hive and settle in a cluster nearby while scouts 
search for a suitable cavity for a new home. A scout that 
finds a suitable nest site returns to the swarm and seeks 
to recruit other scouts to visit the site. Scouts communi- 
cate the location and quality of the site by dancing 
(Lindauer 1961; Camazine et al. 1999; Seeley & Buhrman 
1999, 2001) in a way similar to that by which foragers 
communicate the presence and quality of forage patches 
(see Seeley 1995; Seeley et al. 2000). While the colony is 
house hunting many scouts may be dancing on the swarm 
for many different sites, but eventually nearly all the 
dances are for a single site and the swarm sets off to settle 
in the chosen nest site. 

Scouts' assessment of site quality covers several factors 
(Seeley 1977; Seeley & Morse 1978). Only 22% or fewer 
of individual scouts visit more than one site (Camazine et 
al. 1999; Seeley & Buhrman 1999) and it is highly unlikely 
that direct comparisons of sites by individual scouts play 
any part in the swarm's choice of a new home (Visscher & 
Camazine 1999). Even with most scouts visiting just one 
site, the dynamics of the dancing alone enables the swarm 
to choose a good site. Scouts that return from a high- 
quality site dance vigorously with faster return phases 
between waggle runs and with more waggle runs per dance 
than scouts returning from poorer sites (Seeley & Buhr- 
man 2001). The number of waggle runs in each dance 
performed by each scout, generally speaking, declines with 
every successive return to the swarm, independently of the 
quality of the nest site (Seeley & Buhrman 1999) and each 
scout will eventually stop dancing, although she may con- 
tinue to visit the nest site (Camazine et al. 1999). In 
almost every case the swarm is able to come to a decision 
on where to live and will choose the best site of those 
advertised by dancers on the swarm (Lindauer 1961; 
Seeley & Buhrman 2001). 

This swarm decision-making process has previously 
been modelled by Britton et al. (2002), using a differential 

equation formulation, incorporating ideas from decision 
theory and epidemiology. The scouts are modelled as a 
population with individuals who switch from one site to 
another or from being committed to a choice to being 
uncommitted. The model does not explore how the mech- 
anics of the dance communication reliably produces a 
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unanimous decision for a good site. In this paper, I explore 
the effects of observed dance behaviour during nest-site 
selection, by using a model that tracks both scout numbers 
and the number of dances for different sites. I present 
theory that explains how the scouts' dancing behaviour 
can reliably produce a good unanimous decision even 

though each scout only knows about a single site. 

2. CONSTRUCTING A MODEL FOR SITE 
SELECTION BY DANCING 

(a) The general structure of the model 
To formulate a model for the dynamics of scout dancing 

and nest-site choice, I focus both on the dances and on 
number of the scouts and examine how the dances decay 
(or age) and propagate (or reproduce) on the swarm. 

Seeley & Buhrman (1999) observed that, generally 
speaking, the number of waggle runs was less each time a 

particular scout returned from the nest site that she was 
advertising and that after some time a scout might stop 
dancing altogether, even if she was dancing for the site 
that was eventually chosen. Therefore, I assume in the 
model that the number of waggle runs in a scout's dance 
decreases after each successive visit to the nest site and 
ceases after a certain number of visits, denoted by Vf. 
Scouts may also abandon dancing for a site at any visit 
with the probability p,. Here, I assume that Px is constant. 
However, Px may vary, depending on how many dances a 
scout has performed, without affecting the overall con- 
clusions of the model. I also assume, following the obser- 
vations of Seeley & Buhrman (2001), that the better the 

quality of the nest site, the higher the number of waggle 
runs that a scout performs at any given visit. Dances 
recruit other scouts to nest sites and these new recruits in 
turn come back to the swarm and dance. Therefore, in 
some sense, the dances reproduce themselves. 

Given that dances can be considered to decay and to 

reproduce in this way, the whole process of information 
exchange through dancing can be recast in a population 
biology format with populations of dances for different 
sites. Within each population, different dances can age, as 
the scout repeatedly visits the site; die, if the scout stops 
dancing for the site; or reproduce when the scout recruits 
new dancers to the site. I track these dance populations 
by tracking the number of scouts performing dances of 
different ages for each site. 
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If I assume that all dances are synchronized with each 
other, then the dancing dynamics can be represented by 
using Leslie matrices. This is equivalent to saying that the 
dances are like populations that reproduce once per sea- 
son rather than continuously throughout the year. The 
effect of this assumption is to standardize the time 
between dances; it eliminates the effects of travel times 
and delays owing to bad weather, night-time or other fac- 
tors. Modelling dancing in this way, therefore, implicitly 
assumes that none of these factors are of primary impor- 
tance in the process of choosing a nest site and that it 
makes no fundamental difference to swarm decision- 

making whether dances are distributed continuously in 
time or occur synchronously. 

(b) Dancing behaviour of scouts 
The observations of Seeley & Buhrman (1999, 2001) 

showed that the number of waggle runs that a scout per- 
formed on her return to the swarm depended on the qual- 
ity of the site that she was advertising and the number of 
times that she had previously danced for that site. A scout 

dancing for a high-quality site performed more waggle 
runs per dance and performed more waggle runs per 
second than a scout dancing for a site of moderate quality 
(Seeley & Buhrman 2001). The number of waggle runs 

performed per dance also declined at each successive 
return to the swarm (Seeley & Buhrman 1999). The 
scouts can therefore be divided into different populations 
with each population dancing for a different site. For a 

given population, the number of waggle runs W(m) in the 
mth dance that the scout performs could, for example, be 
modelled, mathematically by 

W(m) = f(Q)exp(-m/k), (2.1) 

where k is a constant and f(Q) describes how the number 
of waggle runs depends on the quality of the site Q. As 
the number of waggle runs increases with site quality, f(Q) 
must increase as Q increases. Equation (2.1) represents 
the number of waggle runs as decreasing exponentially 
with dance number until the final visit when m = vf. This 
is irrespective of the quality of the site. Fig. 8 in Seeley & 
Buhrman (1999) indicates that this is a reasonable 

assumption. 
Other expressions for W(m) will work equally well pro- 

vided that W(m) increases with Q and, to reflect obser- 
vations of dancing scouts, decreases with m. 

(c) Recruiting new scouts 
Visscher & Camazine (1999) observed that potential 

recruits choose at random which dance they will follow. 
In addition, I assume that there is a constant probability 
Pr, of a potential scout on the dance floor being recruited 
by a single waggle run. Then the number of scouts 
recruited to a particular site, say site i, is 

total number probability of 
of potential scouts on x recruiting one scout 

the dance floor per waggle run 

total number of waggle runs for site i 
total number of waggle runs for all sites 

This means that, in the model, new scouts are more likely 
to be recruited to good sites, as these dances contain more 

waggle runs, and are more likely to be recruited to sites 
that are being advertised by more scouts as the total num- 
ber of waggle runs for these sites is high. If we denote the 
number of scouts doing their mth dance for site i at time 
t by bi(m, t), the number of waggle runs in the mth dance 
for site i by Wi(m), and the total number of potential 
scouts on the dance floor by ndf then we can write the 
number of scouts recruited to site i in each synchronized 
dance episode as 

E Wi(m)bi(m,t) 
m 

ndfPr ( = ndfP 

i (m (m,t)) 

, (2.2) 

Wi(m)bi(m,t) 
m 

Wtot(t) 

where Wt,t(t) = XE(Wi(m)bi(m,t)). 
i m 

(d) Putting it all together 
If we assume that all dances are synchronized, we can 

construct a Leslie matrix model which will allow us to find 
the number of scouts for site i at time t, given that we 
know the number of scouts dancing for all the sites at the 

previous dancing episode at t- 1. As of the nature of the 
model, t is always an integer and denotes the number of 
the dance episode. So, we have 

b(1,t)\ / ndfPrWi(l) ndfprWi(2) ndfPr W(3) 
Wtot(t- 1) Wtot(t- 1) W",,t(t- 1) 

b, (2,t) 1 - p 0 0 

b(3,t) 0 1 -Px 0 

\b(vf,t)l \ 0 . 

... 
dfPW(Vf) / b,(l,t - 1) \ 

Wto(t - 1) 

.. 0 b,(2,t- 1) 

... 0 bz(3,t- 1) 

1 -Px 0 / \bi(vf,t 1)/ 

(2.3) 

This describes the changes over time in the numbers of 
scouts dancing for each site. In principle this model could 
be used to perform simulations to explore how the popu- 
lations of scouts dancing for different sources evolve. It is 
far more useful and illuminating, however, to perform a 

general analysis using tools from the mathematical theory 
of Leslie matrix models. 

3. OUTCOMES OF THE MODEL 

The total population Pi(t) of scouts dancing for site i at 
time t is given by 

Pi(t) = bi,( t) + bi(2,t) + b(3,t) + ... + bi(vf,t) 

= Xbi(m,t). 
m 

(3.1) 

If the dominant eigenvalue Ad of the matrix in equation 
(2.3) is greater than 1, this population will increase expo- 
nentially (at a rate proportional to Al). If the dominant 

eigenvalue is less than 1, the population of scouts dancing 
for site i will decrease exponentially. For the entire swarm 
the population of dancers for some sites might be decreas- 

ing while populations of dancers for other sites are increas- 

ing. At the end of the site-selection process Seeley & 
Buhrman (1999) observed that only one site was adver- 
tised. The populations of dancers for other sites had all 
declined to zero. 

The eigenvalues, A, of the matrix are given by the 
characteristic equation 

Proc. R. Soc. Lond. B (2003) 



Dancingfor a decision M. R. Myerscough 579 

Avf - ndf 
Wi(1)"(vf-1) (1 - px ) Wi (2)A(vf - 2) 
Wto(t) i 

2t7( (t) i 

ndf ( - * - ndf 

W. I (t) ?F, (t) 

(see Rorres & Anton 1977). This can be rewritten in terms 
of qi, which is a function of A 

qi() i(l)(l-P) Wi(2)(1 - 
p)2 

A 

+ Wi(3)(1 - 

A3 

Wtot (t) 

ndf 

-p 

pD0 3 Wi (vf) (1 - 
px)Vf 

+ ... + 
Avf Avf 

(3.3) 

If p, is not constant but varies between dance episodes, 
then the powers of (1 - px) in equation (3.3) will instead 
be products of terms of the form (1 - p(m)) where p, is 
a function of visit number m. 

Every different site will have its own version of qi but 
the expression on the right-hand side of the equation is 
the same for every site at any given time. This expression 
will change with time as the number of scouts at each site 
and the distribution of their dance ages changes with time. 
On the other hand, the expression for qi(A) does not 

change with time but does depend on the quality of the 
site, because Wi(m) is a function of site quality. 

Figure 1 illustrates the qi(A) curves for different sites. 
The time-varying quantity Wtot(t)/ndf, where Wtot(t) is 
defined in equation (2.2), is represented by a straight hori- 
zontal line. The dominant eigenvalue for each site is given 
by the value of A, where the q curve for that site intersects 
the Wtot(t)/ndf line. If more than one site has a dominant 

eigenvalue greater than one, then the number of scouts 

dancing for each such site increases. Hence, with time, 
Wtot(t) will increase and ndf may decrease as more scouts 
are recruited to these sites. (If there are lots of sites with 
Ad < 1 then Wtot may initially decrease, but as time pro- 
gresses it will start to increase.) This means that the 

Wtot/ndf line will move upwards as Wtot increases or ndf 
decreases, while the qi(A) curves stay fixed. As a result the 
dominant eigenvalue Ad for each site, that is the value of 
A where the qi curves and the line intersect, will decrease. 
So as W,ot increases, the dominant eigenvalue for some 
sites will move from being greater than 1 (with the number 
of scouts dancing for that site increasing) to less than 1 

(when the number of scouts dancing for that site will 

decrease). Eventually, provided that the qi curves are suf- 

ficiently well separated, there will only be one site left that 
has an increasing number of scouts dancing for it. This 
will become the chosen site. The positions of the qi curves 
are determined by the number of waggles in each dance 

typically performed by returning scouts, that is Wi, with 

Wi greater the further right the curve. 
If there is no site whose quality is high enough for its 

associated dominant eigenvalue to be greater than 1, then 
the numbers of scouts dancing for all sites will decline as 
the number of dancers at each site declines. This will 
lower Wt,t/ndf until one site has Ad > 1. The number of 
dances for this site will then increase while dances for 
other sites continue to decline. Hence, this analysis pre- 
dicts that the site for which the scouts dance most vigor- 
ously should always be the chosen site, regardless of the 

w 
low tot 

ndf 

0 A1 1 22 

2 

23 

(b) 

0 lI 22 23 

Figure 1. Diagram illustrating how the dominant eigenvalues 
change as W,,,/ndf increases. The qi curves are independent 
of time and remain fixed. The dominant eigenvalues for 
each site are A1, A2 and A3, respectively, and are determined 
by the values of A where the dashed line intersects the qi 
curves. (a) For a low value of Wtot/ndf two sites have Ad. 
(b) As Wtot/ndf increases, A2 becomes less than one for the 
lower quality site 2. 

number or quality of alternative sites that the scouts are 

advertising. 

4. COMMENTS AND CAVEATS 

(a) The role of dance attrition 
Both Camazine et al. (1999) and Seeley & Buhrman 

(1999, 2001) observed that scouts dance vigorously on 
first visiting a site but later the number of circuits in their 
dances declines until they cease dancing altogether. They 
may continue to visit the site but once dancing has 

stopped they have no role in propagating the dance. Is 
dance attrition necessary for this model and how does it 

operate within the model? 
Ideas from population biology give insight into the 

effects of dance attrition. For a population to survive, each 
individual must, on average, at least replace itself, other- 
wise the population eventually becomes extinct. Here, 
scouts dancing for less favoured sites are not able to each 
recruit one or more new dancers to the site and so eventu- 

ally the dance becomes extinct. Dancers for good sites, 
however, do, on average, recruit at least one new dancer 
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each and so the dance continues to exist. As the decision- 

making progresses it becomes harder to recruit dancers as 
the pool of potential scouts becomes smaller and so dances 
for all but the best site eventually become extinct. 

From a more mathematical perspective, the expression 
for qi(A) is, in mathematical terms, a polynomial in 1/A. 
The properties of this polynomial are dependent on the 
behaviour of the scouts advertising nest sites. If scouts 
continued dancing then this polynomial would be infinite; 
it would go on forever with higher and higher powers of 
1/A. When A > 1 then each succeeding term would get 
smaller and the polynomial would tend to a limit that can 

easily be graphed as the curve qi. However, if A < 1 then 
the polynomial would not sum to a finite limit unless 
Wi(m)(1 - p) rapidly became smaller as m increased, to 
balance the increasing powers of 1/A. Hence, either there 
is a maximum number of times a scout dances or the num- 
ber of circuits that a scout covers in each successive dance 
must drop off rapidly or there is a finite probability that 
a scout will abandon dancing after each visit. This argu- 
ment is somewhat technical; however, the main point is 
that without dance attrition this model cannot be properly 
formulated or applied. 

(b) Randomness and start-up effects 
The model represents a highly simplified version of 

swarm decision making by dancing. In addition to the obvi- 
ous assumption that dances occur synchronously, the 
model has the implicit assumptions that there are no ran- 
dom effects in the propagation of dances on the swarm and 
that the swarm's decision is only reached once the age- 
structure of the dances has settled down to its equilibrium 
structure (Caswell 1989), so that the balance of different 

aged dances for a particular site is not changing, only the 
total number of dances. Only at this stage is the dominant 

eigenvalue a guaranteed indicator of the outcome of the 
model. Clearly, the population of scouts dancing for a good 
site that is discovered late in the decision-making process 
may not reach this equilibrium before the decision is made. 
Hence, the results of the model may not apply in this case. 

Random effects can be introduced into the decision- 

making process through individual differences in scouts' 

dancing; through different scouts assessing the quality of 
a site differently; or through random effects when bees on 
the swarm follow dances. In the model, such random 
effects would, broadly speaking, tend to smear out the qi 
curves, making them fuzzy lines rather than sharp lines 
and hence reduce the clear-cut nature of the decision that 
the model predicts. This model, however, being based on 
discrete individuals, can be readily adapted to take 
account of various sources of random behaviour. 

5. DISCUSSION 

(a) The model and observed bee behaviour 
The matrix formulation of this model predicts that once 

scouts have settled down to dance for a particular site then 
either the number of dancers for that site will be growing 
exponentially (for Ad > 1) or be declining exponentially 
(for Ad < 1). The model further predicts that the number 
of dancers for a particular site can grow and then decline 
as the total numbers of dancers increases. This 

exponential growth prediction agrees well with obser- 

vations of Camazine et al. (1999) of a swarm, dancing for 
two similar sites that reached a point where dances for the 
favoured site increased exponentially while dances for the 
unsuccessful site levelled off. The model is also consonant 
with the diagrams of swarm dancing presented by Lin- 
dauer (1961) and Seeley & Buhrman (1999) where the 
number of dances for the successful site are observed to 
grow during most periods of observations while the num- 
ber of dances for unsuccessful sites may grow initially but 
eventually declines until no dances are observed for 
those sites. 

The model predicts that the single, best site will be 
chosen but swarms have been observed where the bees 
either cannot choose between sites (Lindauer 1961) or do 
not choose the best site that scouts have visited (Seeley & 
Buhrman 2001). 

If we assume, in the first case, that the scouts have 
found two nest sites of very similar quality more or less 
simultaneously, then dances for both sites will settle down 
at about the same time and will have very similar qi(A) 
curves. Hence, it would be highly likely that the number 
of scouts dancing for each of these sites would both be 
growing or both declining, given that randomness in real 
swarms would be likely to smear out the qi(A) curves. 

In the second case, where the bees chose the lower qual- 
ity site over the high-quality site, the relative times of dis- 
covery of the sites and the vigour of the first few dancers 
may have had a significant impact on the swarm's choice. 
It is apparent from the data presented by Seeley & Buhr- 
man (2001) that the high-quality site was discovered after 
the lower quality site and by the time that the number of 
scouts (and hence, I infer, the number of dances) for the 
lower quality site started to grow rapidly, recruitment to 
the high-quality site had barely begun and probably not 
settled down to the point where the age-structure of the 
dances had reached equilibrium. Seeley & Buhrman make 
the remark, in fact, that dancing for the high-quality site 
was noticeably weak. 

This model indicates that the numbers of potential 
scouts on the swarm may influence the time that the col- 
ony needs to make a decision. If potential scouts are 
removed this reduces ndf in the model and raises the hori- 
zontal Wtot/ndf line in figure 1 and speeds up decision mak- 
ing. Alternatively, if scouts that are already dancing are 
removed then this will depress the Wtot/ndf line and 
decision making will take longer. In fact, if dancers are 
continually removed then the swarm may never come to 
a decision. 

(b) Comparison of dancing for nest sites with 
dancing for forage sites 

Advertising and recruiting foragers to forage sites 
appears to be similar to recruiting scouts to nest sites but 
has essentially different aims and outcomes. In selecting a 
nest site, the colony is making a single choice among 
resources that mostly do not vary over the time that the 
decision is being made; in foraging the colony distributes 
its foragers over several sites, whose properties may change 
significantly over a few days or during the course of a sin- 
gle day, in such a way as to maximize the amount of nectar 
brought into the hive (Seeley 1995). Therefore, the dur- 
ation and liveliness of foragers' dances may change as the 
quality of the source changes (Seeley et al. 2000) or as the 

Proc. R. Soc. Lond. B (2003) 



Dancingfor a decision M. R. Myerscough 581 

number of available unloaders inside the hive varies 

(Seeley 1995). Hence, in a corresponding model for forag- 
ing, the polynomials qi(A) would not be fixed but would be 

changing continually with time as the foragers dynamically 
assess the perceived quality of the source that they are 

advertising. As foragers continue dancing as long as their 
source is profitable and the nectar that they collect is in 
demand (Seeley 1994), the number of waggle runs W(m) 
does not necessarily decline with each successive return to 
the hive. Hence, the nature of the qi(A) polynomials will 
be quite different in a foraging model compared with the 
nest-site selection model. 

(c) Consensus versus quorum sensing 
This model implicitly assumes that a nest site is chosen 

by reaching a consensus among the dancing scouts 

although it could be adapted to model decision making by 
quorum sensing. Although it is known that the ant Lepto- 
thorax albipennis uses quorum sensing to select among nest 
sites (Pratt et al. 2002) the experimental evidence for bees 
is not yet available although experiments are underway 
(Seeley 2002). There is no obvious reason why ant and 

honeybee behaviour in nest-site choice should be the 
same-ants and bees use different methods to recruit for- 

agers, for example. If bees are using consensus decision 

making rather than quorum sensing, it is easier to under- 
stand why dance attrition occurs. Dance attrition is vital 
for reaching consensus but not for reaching a quorum 
where the first site to attract a certain number of visitors 
would be selected, regardless of what is happening at other 
sites. In fact, dance attrition would tend to increase the 
time needed to reach a quorum. This may be useful in 

allowing time for scouts to find alternative sites, but will 
also increase the time that the swarm remains in an 

exposed position in the open air. 

(d) Formulating models for swarm decision 

making 
When constructing a model, the type of formulation 

that is chosen for the model should reflect the scale and 
nature of the process which is being modelled. Models for 

self-organization in social insects are rich and structurally 
diverse because social insect behaviour occurs mostly on 
intermediate spatial scales, where the effects of the indi- 
viduals cannot be smoothly averaged out, but nor can 

every individual be modelled explicitly. Some insect 
behaviour can be well represented by differential equation 
models which give a smooth representation of the colony; 
for example the heat flow through a stationary swarm of 
bees (Myerscough 1993; Watmough & Camazine 1995) 
or forager recruitment in a large colony of small ants 
(Beekman et al. 2001). Other types of colonial behaviour 
have been successfully modelled by using two different 

types of formulation; for example honeybee foraging, 
where De Vries & Biesmeijer (1998) use individually ori- 
ented models whereas Camazine & Sneyd (1991) and 
Cox & Myerscough (2003) use differential-equation 
formulations. Some colony behaviours must be modelled 
at an individual level as the important behaviours are aver- 

aged away if a higher-level approach, such as differential 

equations, is used. Crowding-based models, where insects 
have finite size, is one example of this (O'Toole et al. 

1999). Each approach emphasizes a different aspect of the 
actual system that is being modelled. 

The model of Britton et al. (2002) for swarm decision 

making uses a differential-equation formulation to get a 

grand, overall perspective of the decision-making pro- 
cesses. This model is easy to formulate, easy to analyse 
and fits in well with previous work on decision making. 
The differential-equation formulation, however, makes it 
difficult to model aspects of the decision process that are 

specific to honeybees, such as the dynamics of the scout 
dances and the detailed mechanics of how the scouts use 
dances to convey and assess information. The differential- 

equation model predicts that there are regions in para- 
meter space where a deadlock is reached with stable num- 
bers of scouts dancing for each of two sites. It also predicts 
that under some circumstances support for all sites will 
die away when all sites are poor quality and then no 
decision will be made. These outcomes of the differential- 

equation model indicate that this model has not com- 

pletely captured all the important mechanics of the bees' 
decision making. The emphasis on scouts switching 
allegiance from one site to another is also, perhaps, a little 
too strong, given that Visscher & Camazine (1999) con- 
clude that removing switchers from the system makes no 
difference to either the speed or the accuracy of the bees' 
decision making. 

I have chosen here to use a formulation that allows the 
individual scouts, and hence the number of waggle runs 

advertising each site, to be counted, although individuals 
are not tracked explicitly, as is done in many individual- 
based models. This allows the observed dance behaviour 
that is specific to scouts advertising nest sites to be incor- 

porated into the model. This model also describes the flow 
of information that is contained in the waggle runs as the 

decision-making process proceeds and shows how the 
transmission of information on lower-quality sites decays 
while information on high-quality sites spreads increas- 

ingly rapidly. Scouts that continue to visit a site but do 
not dance also carry information. This model is flexible 
and could easily be extended to monitor information held 

by non-dancers. This formulation can also be readily 
adapted to model information flows during foraging for 
food. 

Indeed, the combination of flexibility and robustness is 
a strength of this population-matrix model. It can easily 
represent many different groups of scouts, each dancing 
for a different source, but at the same time predicts that 
one site will always be chosen. This choice will be made 

regardless of the quality of the available sites; the swarm 
is able to choose the best of a bad lot as well as choosing 
from high-quality sites. 

Finally, what insight does this modelling give into the 
nature and behaviour of individual honeybees? For the 

decision-making process to work as modelled it is essential 
that scouts' dances decline with each successive visit or 
cease altogether after a certain number of dances. Less 

obviously, each scout must also have an innate ability to 

accurately assess the quality of a site and tune her dancing 
appropriately. This assessment must be the same or very 
similar from bee to bee. Without this innate similarity 
between all the scouts, a decision process where each 
scout only has information about one site could not con- 

sistently agree on the best site. 
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