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Abstract. This paper is a detailed and self-contained study of the stability

properties of periodic traveling wave solutions of the nonlinear Klein-Gordon

equation utt −uxx +V ′(u) = 0, where u is a scalar-valued function of x and t,
and the potential V (u) is of class C2 and periodic. Stability is considered both

from the point of view of spectral analysis of the linearized problem (spectral
stability analysis) and from the point of view of wave modulation theory (the

strongly nonlinear theory due to Whitham as well as the weakly nonlinear

theory of wave packets). The aim is to develop and present new spectral
stability results for periodic traveling waves, and to make a solid connection

between these results and predictions of the (formal) modulation theory, which

has been developed by others but which we review for completeness.
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1. Introduction

Consider the nonlinear Klein-Gordon equation

utt − uxx + V ′(u) = 0, (1.1)

where u is a scalar function of (x, t) ∈ R × [0,+∞) and the potential V is a real
periodic function. Such potentials are intended as a generalization of the case
V (u) = − cos(u), for which equation (1.1) becomes the well-known sine-Gordon
equation [49] in laboratory coordinates,

utt − uxx + sin(u) = 0. (1.2)
1
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From a different point of view, however, the nonlinear Klein-Gordon equation
(1.1) generalizes the linear relativistic equation for a charged particle in an electro-
magnetic field derived by Klein [32] and Gordon [26]. The sine-Gordon equation
(1.2), in contrast, did not first appear in the context of nonlinear wave propaga-
tion, but rather in the study of the geometry of surfaces with negative Gaussian
curvature [16]. Given the form of the nonlinear term, its name was coined as an
inevitable pun. Thereafter, the sine-Gordon equation has appeared in many phys-
ical applications such as the study of elementary particles [43], the propagation of
crystal dislocations [20], the dynamics of fermions in the Thirring model [13], the
propagation of magnetic flux on a Josephson line [49, 52], the dynamics of DNA
strands [21], and the oscillations of a series of rigid pendula attached to a stretched
rubber band [14], among many others. To sum up, the general form of equation
(1.1) constitutes one of the simplest and most widely applied prototypes of nonlin-
ear wave equations in mathematical physics (an abridged bibliographic literature
list includes [4, 10, 51, 59] and the references therein).

In the context of wave propagation problems, the study of periodic solutions
representing regular trains of waves is of fundamental interest. The existence and
variety of such solutions can be studied by reducing the nonlinear Klein-Gordon
equation (1.1) to an appropriate ordinary differential equation. However, the ques-
tion of stability, that is, the dynamics of solutions initially close to a regular train
of waves, demands the study of (1.1) as an infinite-dimensional dynamical system.

There are two common approaches to the stability question that address os-
tensibly different aspects of the problem. Firstly, one can analyze the nonlinear
initial-value problem governing the difference between an arbitrary solution of the
nonlinear Klein-Gordon equation (1.1) and a given exact solution representing a
train of waves. In the first approximation one typically assumes that the differ-
ence is small and linearizes. The resulting linear equation can in turn be studied
in an appropriate frame of reference by a spectral approach. To our knowledge,
the linearized spectral approach was first taken by Scott [50] in the special case of
the sine-Gordon equation. It turns out that there are serious logical flaws in the
reasoning of [50], but we were recently able to give a completely rigorous spectral
stability analysis of regular trains of waves for the sine-Gordon equation [30]. In
part we obtained these results with the help of an exponential substitution intro-
duced by Scott, but we used the substitution in a new way. While Scott’s prediction
of details of the spectrum proved to be incorrect, we showed that the basic result
of which types of waves are spectrally stable and unstable is indeed as written in
Scott’s paper [50]. Thus we have given the first correct confirmation of a fact long
accepted in the nonlinear wave propagation literature.

A second approach to stability of nonlinear wave trains is based on the idea
that such trains come in families parametrized by constants such as the wave speed
and amplitude. Another way to formulate the stability question is to consider
an initial wave form that locally resembles a regular wave train near each point,
but for which the parameters of the wave vary slowly compared with the wave
length. The study of the dynamics of such slowly modulated wave trains leads
to an asymptotic reduction of the original nonlinear equation (1.1) to a quasilinear
model system of equations, whose suitability (well-posedness) when formulated with
initial conditions leads to a prediction of stability or instability. This approach was
originally developed by Whitham [58, 59] and was also used by Scott [49] to study
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the general nonlinear Klein-Gordon equation (1.1). See also [17, 18, 19, 40, 41].
A different form of modulation theory arises if one assumes that the amplitude
of the modulated waves is small; such weakly nonlinear analysis leads to models
for the dynamics that are equations of nonlinear Schrödinger type for which the
focusing/defocusing dichotomy purports to determine stability.

The goal of this paper is to marry together the two types of stability analysis
described above in the context of regular wave trains for the general nonlinear
Klein-Gordon equation (1.1). On the one hand, this requires that we generalize
the spectral stability analysis we developed in [30] for the special case of the sine-
Gordon equation to more general potentials V . While the methods we introduced
in [30] do not rely heavily on the complete integrability of the sine-Gordon equation,
they also do not all immediately generalize for V (u) 6= − cos(u). For this reason
as well as for completeness and pedagogical clarity, we will give all details of the
spectral analysis for general V , which the reader will find to be refreshingly classical
in nature. On the other hand, to explain the approach of wave modulation, we will
review the calculations originally carried out by Whitham and Scott, and we will
also explain the details of the weakly nonlinear expansion method. Then, to connect
the two approaches, we apply Evans function techniques to analyze the spectrum
near the origin in the complex plane, and we find a common link with modulation
theory by computing the terms in the Taylor expansion of the (Floquet) monodromy
matrix for the spectral stability problem. The main result is the introduction of a
modulational stability index which determines exactly whether the spectral curves
are tangent to the imaginary axis near the origin, or whether they are tangent to two
lines making a nonzero angle with the imaginary axis, and consequently invading the
unstable complex half plane. The latter situation corresponds to a particular type of
linear instability that turns out to correlate precisely with the formal modulational
instability calculation of Whitham (ellipticity of the modulation equations) as well
as to the weakly nonlinear analysis of waves near equilibrium (focusing instability).

There have been several papers recently on the subject of spectral stability prop-
erties of traveling wave solutions of nonlinear equations that, like the Klein-Gordon
equation (1.1), are second-order in time. As the reader will soon see, such prob-
lems require the analysis of eigenvalue problems in which the eigenvalue parameter
does not appear in the usual linear way, and that cannot be reduced to selfadjoint
form. In particular, we draw the reader’s attention to the works of Stanislavova
and Stefanov [53, 54] in this regard. One way that our paper differs from these
works is that due to the periodic nature of the traveling waves we consider and
our interest in determining the stability of these waves to localized perturbations
(perturbations constructed as superpositions of modes with no predetermined fixed
wavelength), we must deal with a spectrum that is fundamentally continuous rather
than discrete. The spectral stability properties of periodic traveling waves in first-
order systems (e.g., the Korteweg-de Vries equation or the nonlinear Schrödinger
equation) have also been studied recently by Hǎrǎguş and Kapitula [27].

The paper is organized as follows. In §2 we study the periodic traveling wave
solutions to (1.1), which come in four types organized in terms of the energy pa-
rameter E and the wave speed c. A natural classification follows, and we analyze
the dependence of the period on the energy E, as this turns out to relate to the con-
nection between spectral stability analysis on the one hand and wave modulation
theory on the other. The next several sections of our paper concern the linearized
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spectral stability analysis of these traveling waves. In §3 we establish the linearized
problem, we define its spectrum and show that it can be computed from a certain
monodromy matrix. Then we establish elementary properties of the spectrum and
interpret it in the context of dynamical stability theory for localized perturbations.
It turns out to be useful to compare the spectrum with that of a related Hill’s
equation (the approach introduced by Scott [50]), details of which are presented
in §4. In §5 we analyze the monodromy matrix in a neighborhood of the origin.
Based on these calculations, in §6 we define two different stability indices that are
capable of detecting (unstable) spectrum in the right half-plane under a certain
non-degeneracy condition. One of these indices detects a special type of spectral
instability that we call a modulational instability. In §7 we complete the stability
analysis for periodic traveling waves by showing spectral stability and instability in
two remaining cases where the instability indices prove to be inconclusive. A brief
summary statement of our main results on spectral stability of periodic traveling
waves for the nonlinear Klein-Gordon equation (1.1) is formulated in §8. With the
spectral stability analysis complete, in §9 we turn to a review of wave modulation
theory both in the strongly nonlinear sense originally developed by Whitham and
in the weakly nonlinear sense. In §9.1 we show that the analytic type of the sys-
tem of quasilinear modulation equations, which is the key ingredient in Whitham’s
fully nonlinear theory of modulated waves and that does not appear to be directly
connected with linearized (spectral) stability, is in fact determined by the modula-
tional instability index. Then, in §9.2 we show that the focusing/defocusing type of
a nonlinear Schrödinger equation arising in the weakly nonlinear modulation theory
of near-equilibrium waves is also determined by the same modulational instability
index. Finally, in §10, we discuss how some of our methods and results can be
extended to other potentials more general than those that we consider in detail.

On notation. We denote complex conjugation with an asterisk (e.g., λ∗) and
denote the real and imaginary parts of a complex number λ by Reλ and Imλ
respectively. We use lowercase boldface roman font to indicate column vectors (e.g.,
w), and with the exception of the identity matrix I and the Pauli matrix σ− we use
upper case boldface roman font to indicate square matrices (e.g., M). Elements
of a matrix M are denoted Mij . Linear operators acting on infinite-dimensional
spaces are indicated with calligraphic letters (e.g., L, T , and H).

2. Structure of periodic wavetrains

2.1. Basic assumptions on V . To facilitate a classification of different types of
traveling waves in the nonlinear Klein-Gordon equation, it is convenient to make
the following assumptions on the periodic potential function V .

Assumption 2.1. The potential function V satisfies the following:

(a) V : R→ R is a periodic function of class C2;
(b) V has exactly two non-degenerate critical points per period.

The Klein-Gordon equation (1.1) involves V ′ and not V directly, so V may be
augmented by an additive constant at no cost. Moreover, by independent scalings
u 7→ αu and (x, t) 7→ (βx, βt) by positive constants α > 0 and β > 0, we may freely
modify the period and amplitude of V . Therefore, without loss of generality we will
make the following additional assumptions.
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Assumption 2.2. The potential V has fundamental period 2π, and

min
u∈R

V (u) = −1 while max
u∈R

V (u) = 1. (2.1)

The maximum and minimum are therefore the only two critical values of V , and
they are each achieved at precisely one non-degenerate critical point per period 2π.

/ Remark 2.3. The sine-Gordon potential V (u) := − cos(u) clearly satisfies all of
the above hypotheses. .

While the above assumptions on V allow for an easier exposition, many of our
results also hold for more general periodic V , and even the assumption of periodicity
of V can be dropped in some cases. Some generalizations along these lines are
discussed in §10.

Equation (1.1) has traveling wave solutions of the form

u(x, t) = f(z), z := x− ct (2.2)

where c ∈ R is the wave speed. In what follows we shall assume that c 6= ±1.
Substituting into (1.1) we readily see that the profile function f : R → R satisfies
the nonlinear ordinary differential equation

(c2 − 1)fzz + V ′(f) = 0. (2.3)

One of the implications of the simple assumptions in force on V is that in the
phase portrait of (2.3) in the (f, fz)-plane, the separatrix composed of the unstable
fixed points (all necessarily of saddle type) and their corresponding stable and
unstable manifolds will be a (multiply) connected set. Indeed, there are no isolated
components of the separatrix, which qualitatively resembles that of the simple
pendulum, consisting of a 2π-periodic array of unstable fixed points on the fz = 0
axis and the heteroclinic orbits connecting them in pairs. See Figure 1.

2.2. Types of periodic traveling waves. All non-equilibrium solutions to (2.3),
with the exception of the heteroclinic orbits in the separatrix, are such that fz is a
non-constant periodic function with some finite (fundamental) period T > 0; thus,
we are interested in solutions f to (2.3) satisfying f(z + T ) = f(z) or f(z + T ) =
f(z)±2π. There are four distinct types of solutions to (2.3) for which fz is periodic.
We will refer to all such solutions of (1.1) as periodic traveling waves.

To begin classifying the periodic traveling waves, notice that the phase portrait
of equation (2.3) is (qualitatively) shifted according to the sign of c2 − 1; indeed a
change of sign of c2 − 1 induces an exchange between the stable and unstable fixed
points. Therefore, the first dichotomy concerns the wave speed.

Definition 2.4 (subluminal and superluminal periodic traveling waves). Each pe-
riodic traveling wave f is of exactly one of the following two types.

(i) If c2 < 1 then f is called a subluminal periodic traveling wave.
(ii) If c2 > 1 then f is called a superluminal periodic traveling wave.

The second dichotomy applies to both super- and subluminal waves and concerns
the nature of the orbit of f in the phase portrait.

Definition 2.5 (librational and rotational periodic traveling waves). Each periodic
traveling wave f is of exactly one of the following two types.
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Figure 1. Phase portraits of equation (2.3) for c = 2 (left) and
c = 1/2 (right), where the potential is V (u) = −0.861[cos(u) +
1
3 sin(2u)], which satisfies Assumptions 2.1 and 2.2. The separatri-
ces are the thicker red curves. (Color online.)

(i) If f(z+ T ) = f(z) for all z ∈ R then f is called a librational wavetrain. Its
orbit in the phase plane is a closed trajectory surrounding a single critical
point of V (u) and it is enclosed by the separatrix. In this case fz is a
function of exactly two zeroes per fundamental period.

(ii) If f(z + T ) = f(z) ± 2π for all z ∈ R then f is called a rotational wave-
train. Its orbit in the phase plane is an open trajectory lying outside of the
separatrix. In this case fz is a function of fixed sign. These waves are also
called kink trains (or antikink trains, depending on the sign of fz) in the
literature.

/ Remark 2.6. In the classical mechanics literature (see Goldstein [25]; see also
[10]) the term rotation (sometimes designated as circulation or revolution) is used
to characterize the kind of periodic motion in which the position is not bounded,
but the momentum is periodic. Increments by a period in the position produce no
essential change in the state of the system. Examples of rotations are the highly-
energetic motions of the simple pendulum in which the pendulum mass perpetually
spins about its pivot point. The name libration is a term borrowed from the as-
tronomical literature describing periodic motions in which both the position and
the momentum are periodic functions with same frequency. Examples of librations
are the relatively small-amplitude oscillations of the simple pendulum about its
gravitationally-stable downward equilibrium. .

Equation (2.3) can be integrated once to obtain

1
2 (c2 − 1)f2z = E − V (f), (2.4)
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where E is an integration constant with the interpretation of total (kinetic plus po-
tential) energy. Given the value of c, it is the energy parameter E that distinguishes
between waves of librational and rotational types.

2.2.1. Superluminal librational waves. Suppose c2 > 1 and |E| < 1. These param-
eter values correspond to librational motion because according to (2.4), f must be
confined to a bounded interval when |E| < 1 in order that the effective potential

Ṽ (f) := (V (f) − E)/(c2 − 1) be non-positive. There is exactly one such maximal
interval per 2π-period of V . Let [f−, f+] denote one such interval (well-defined
modulo 2π). This interval contains exactly one critical point of V , a minimizer
where V = −1 corresponding to a stable equilibrium of (2.3), necessarily in its
interior. We thus have a closed periodic orbit of (2.3) in the (f, fz)-plane, an orbit
that encloses a single stable equilibrium point and that crosses the fz = 0 axis
exactly at the two points f = f±. Each of the closed orbits in the left-hand panel
of Figure 1 is of this type. The amplitude f+ − f− of this solution is strictly less
than 2π.

The orbit is symmetric with respect to reflection in the fz = 0 axis, and the part
of the orbit in the upper half phase plane is given by the graph

fz =

√
2√

c2 − 1

√
E − V (f), f− ≤ f ≤ f+. (2.5)

Integrating dz/df = (fz)
−1, with fz given in terms of f by (2.5), over the interval

f− ≤ f ≤ f+ gives half the value of the fundamental period T of the motion.
Therefore,

T =
√

2
√
c2 − 1

∫ f+

f−

dη√
E − V (η)

. (2.6)

Note that f− and f+ depend on E ∈ (−1, 1) but not on c with c2 > 1. For
example, in the sine-Gordon case with the potential V (u) = − cos(u), the interval
of oscillation is [f−, f+] = [− arccos(−E), arccos(E)] (mod 2π) and the contained
stable equilibrium occurs at f = 0 (mod 2π).

2.2.2. Subluminal librational waves. Likewise, when c2 < 1 and |E| < 1, we have a
system of maximal intervals (complementary to the system [f−, f+] (mod 2π)) of
the form [f+, f− + 2π] (mod 2π) on which E ≤ V (f) and hence effective potential

Ṽ (f) := (V (f) − E)/(c2 − 1) is again non-positive, with the orbit oscillating in
the interval f+ ≤ f ≤ f− + 2π closing about a different equilibrium point, now
a maximizer of V where V = 1. This is also a librational motion, and the closed
orbits illustrated in the right-hand panel of Figure 1 are of this type. The part of
the orbit in the upper half phase plane is given by the graph

fz =

√
2√

1− c2
√
V (f)− E, f+ ≤ f ≤ f− + 2π, (2.7)

and by a similar argument the fundamental period of the librational motion is given
by the formula

T =
√

2
√

1− c2
∫ f−+2π

f+

dη√
V (η)− E

. (2.8)

In the sine-Gordon example with V (u) = − cos(u), we have [f+, f− + 2π] =
[arccos(−E), 2π−arccos(−E)] (mod 2π) and the enclosed stable equilibrium occurs
at f = π (mod 2π).
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We stress that in either of the two librational wave cases, there is exactly one
critical point of V in the interval of oscillation of f . Moreover, as a fundamental
period T can be interpreted as the total length traversed by the parameter z as f
goes from the initial point of this interval to the final point and back again, the
critical point (equilibrium position) will be passed exactly twice per period, i.e.
V ′(f(z)) = 0 exactly twice per period T . The orbit of each librational wave in the
(f, fz)−plane of the phase portrait of equation (2.3) is symmetric with respect to
the f -axis. Lastly, fz = 0 exactly when f coincides with one of the endpoints of its
interval of oscillation. That is, the orbit of the wave in the phase plane crosses the
f -axis at exactly these two points.

2.2.3. Superluminal rotational waves. When c2 > 1 and E > 1, the effective po-
tential Ṽ (f) := (V (f) − E)/(c2 − 1) is strictly negative for all f ∈ R. Hence,
according to (2.4), f is not confined to any bounded interval, and fz has a fixed
sign. These features show that the corresponding motion is of rotational type, and
such motions correspond to the open orbits in the left-hand panel of Figure 1. The
“period” of this motion is defined as the smallest positive value of T for which
f(z+T ) = f(z)±2π holds for all z ∈ R (the choice of sign corresponds to the fixed
sign of fz). Integrating dz/df with respect to f over the representative interval
0 ≤ f ≤ 2π then gives the period as

T =

√
c2 − 1√

2

∫ 2π

0

dη√
E − V (η)

. (2.9)

2.2.4. Subluminal rotational waves. If c2 < 1 and E < −1 the effective potential
Ṽ (f) := (V (f)−E)/(c2−1) is again always strictly negative for all f ∈ R, so again
fz never vanishes and hence has a fixed sign corresponding to rotational motion
in which f changes by 2π over a fundamental “period”. The period in this case is
given by

T =

√
1− c2√

2

∫ 2π

0

dη√
V (η)− E

. (2.10)

The open orbits illustrated in the right-hand panel of Figure 1 correspond to sub-
luminal rotational waves.

2.2.5. Classification scheme. We present the following parametric classification of
periodic traveling wave solutions of (1.1).

Definition 2.7. The open set of (E, c) such that equation (1.1) has at least one
periodic traveling wave solution of one of the four types described above is denoted
G ⊂ R2. We distinguish the following four disjoint open subsets:

Glib
< = {c2 < 1, |E| < 1}, (subluminal librational),

Grot
< = {c2 < 1, E < −1}, (subluminal rotational),

Glib
> = {c2 > 1, |E| < 1}, (superluminal librational),

Grot
> = {c2 > 1, E > 1}, (superluminal rotational),

corresponding to each of the four types of periodic waves and such that G = Glib
< ∪

Grot
< ∪Glib

> ∪Grot
> .
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Due to translation invariance of the Klein-Gordon equation (1.1), i.e., invariance
under x 7→ x − x0, any translate in z of a periodic traveling wave solution is
again a periodic traveling wave solution corresponding to exactly the same values
of the parameters (E, c). Another symmetry of the periodic traveling wave solutions
corresponding to given values of (E, c) is the involution z 7→ −z. For librational
waves, the involution group is a discrete subgroup of the translation group, but for
rotational waves it is an independent symmetry. There are no other symmetries of
the periodic traveling waves for fixed (E, c).

It will be convenient for us to single out a unique solution f(z) of the differential
equation (2.4) for each (E, c) ∈ G. We do this by fixing the initial conditions at
z = 0 as follows. Fix a minimizer u and a maximizer u of V . Then for subluminal
waves, we determine f given (E, c) ∈ G by

f(0) = u, fz(0) > 0, (E, c) ∈ Glib
< ∪Grot

< , (2.11)

while for superluminal waves,

f(0) = u, fz(0) > 0, (E, c) ∈ Glib
> ∪Grot

> . (2.12)

With these conditions, the periodic traveling wave f(z) = f(z;E, c) is well-defined
for (E, c) ∈ G. In the case of rotational waves, we are selecting a particular kink
train (antikink trains are obtained by the involution symmetry).

Lemma 2.8. For each z ∈ R, f(z;E, c) is a function of class C2 of (E, c) ∈ G.

Proof. First, suppose that f is a rotational wave, in which case f = f(z;E, c) may
be obtained for all z ∈ R by inverting the relation

z =

√
|c2 − 1|√

2

∫ f

f(0)

dη√
|E − V (η)|

(2.13)

where either f(0) = u or f(0) = u. The right-hand side is a C3 function of
(f,E, c), and its derivative with respect to f is strictly positive. Hence it follows
by the Implicit Function Theorem that f can be solved for uniquely as a function
of class C3 in (E, c).

For librational waves, we modify the argument as follows. There is a maximal
open interval containing z = 0 on which f is strictly increasing, and for z in this
interval exactly the same argument given above for rotational waves applies. Adding
half the period T produces another open interval of z-values for which f is strictly
decreasing, a case again handled by a simple variation of the same argument. By
periodicity of f with period T it remains to consider the values of z for which
fz = 0. But for such z we have V (f) = E while V ′(f) 6= 0 and we see by the
Implicit Function Theorem that f is a C2 function of E (and is independent of c).
This completes the proof of the Lemma. �

Note that given the assumption that V is twice continuously differentiable, the
only obstruction to f being a class C3 function of (E, c) ∈ G occurs for librational
waves and comes from the points z where fz = 0.

/ Remark 2.9. A degenerate case of periodic traveling waves that is also of physical
importance is the limiting case of waves of infinite velocity, that is, solutions u = f
of the Klein-Gordon equation (1.1) that are independent of x and periodic (modulo
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2π) functions of t. Substituting u(x, t) = f(t) into (1.1), multiplying by ft and
integrating yields the energy conservation law:

1
2f

2
t = E − V (f). (2.14)

Comparing with (2.4), the solutions of (2.14) coincide with the superluminal waves
for c2 = 2, but considered as functions of t rather than the galilean variable z =
x− ct. Both librational (|E| < 1) and rotational (E > 1) motions are possible. .

2.3. Monotonicity of the period T with respect to energy E. The period
T of each type of periodic traveling wave solution of (1.1) depends on both c and

E. The dependence on c is always via multiplication by the factor
√
|c2 − 1|, but

the dependence on E is nontrivial. By straightforward differentiation of (2.9) and
(2.10),

TE =
∂T

∂E
=

1− c2

2
√

2
√
|c2 − 1|

∫ 2π

0

dη

|V (η)− E|3/2
, for f rotational, (2.15)

which proves the following:

Proposition 2.10. For rotational waves, the period T is a strictly monotone func-
tion of the energy, and (c2 − 1)TE < 0.

In the case of librational waves, the limits of integration in the formulae (2.6)
and (2.8) for T (the endpoints of the interval of oscillation for f) depend on E,
and it would appear natural to try to calculate TE via Leibniz’ rule; however the
integrand is singular at the endpoints and hence the rule does not apply in this
context. The problem, however, is not merely technical; for librational waves the
assumptions in force on V are simply insufficient to deduce the sign of TE . In
general, it is possible for the sign of TE to change one or more times within the
librational energy interval |E| < 1.

We now give a condition for which the generic case TE 6= 0 holds. In [11], Chicone
studied classical Hamiltonian flows in the plane for which a family of closed orbits
surrounds an equilibrium point, and obtained a condition on the potential sufficient
to ensure monotonicity of the period with respect to the energy for the orbit family.
More precisely, he studied energy conservation laws of the form

1

2

(
dx

dt

)2

+ Ṽ (x) = Ẽ (2.16)

where Ṽ is a potential function having a non-degenerate local minimum at some
point x0 ∈ R. Consider a periodic solution x = x(t) close enough to the stable

equilibrium x = x0 that there are no other critical points of Ṽ besides x0 for x in
the interval [x−, x+] over which x(t) oscillates. Chicone proved that if the function

N(x) := 6[Ṽ (x)− Ṽ (x0)]Ṽ ′′(x)2 − 3Ṽ ′(x)2Ṽ ′′(x)

− 2[Ṽ (x)− Ṽ (x0)]Ṽ ′(x)Ṽ ′′′(x) (2.17)

is not identically zero and sign semi-definite for all x ∈ [x−, x+], then the fundamen-

tal period T of the periodic orbit x(t) is a monotone function of Ẽ, and TẼ has the

same sign as N . Chicone’s condition is equivalent to the ratio [Ṽ (x)−Ṽ (x0)]/V ′(x)2

being either semi-concave or semi-convex on the interval [x−, x+].
Comparing (2.16) with (2.4) and applying Chicone’s criterion to our problem,

we may obtain sufficient conditions on the Klein-Gordon potential V to guarantee
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that TE is nonzero for all librational waves. Since V has two critical values, each
of which can correspond to a family of stable equilibria depending on the sign of
c2 − 1, we require two different conditions on V . Define

N±(f) := 6[V (f)± 1]V ′′(f)2 − 3V ′(f)2V ′′(f)− 2[V (f)± 1]V ′(f)V ′′′(f). (2.18)

Then Chicone’s theory implies the following:

Proposition 2.11 (Chicone’s criterion). Suppose that V : R → R satisfies the
conditions of Assumptions 2.1 and 2.2. If also V is of class C3 and the functions
N± : R → R are both not identically zero and semidefinite, then TE 6= 0 holds for
all librational waves, and the sign of TE coincides with that of N+ (resp., N−) for
superluminal (resp., subluminal) waves.

/ Remark 2.12. For the sine-Gordon potential, V (u) = − cos(u),

N+(f) = 4(2− cos f) sin4( 1
2f) and N−(f) = −4(2 + cos f) cos4( 1

2f) (2.19)

so N+(f) ≥ 0 and N−(f) ≤ 0 for all f ∈ R. Therefore, by Chicone’s criterion, T
is strictly increasing (resp., decreasing) in E for superluminal (resp., subluminal)
librational waves, i.e., (c2 − 1)TE > 0 holds for all librational waves. .

While Chicone’s criterion is sufficient for monotonicity, we make no claim that it
is necessary. Another condition that is equivalent to monotonicity of T with respect
to E and that can be checked given just the wave profile f itself will be developed
in §5.1.2 (cf. equations (5.25), (5.27), and (5.30)).

/ Remark 2.13. The period T blows up to +∞ as E → sgn (c2 − 1) (the value of
the separatrix). This blowup is consistent with Proposition 2.10 for the rotational
orbits on one side of the separatrix. However, it also guarantees that there always
exist librational orbits close to the separatrix for which T is indeed monotone in E
and moreover, for which (c2 − 1)TE > 0. As will be seen, the stability analysis for
librational waves is most conclusive in the case when (c2 − 1)TE > 0. .

It will also be convenient later for us to have available information about the
sign of TE for librational waves in the limiting case of near-equilibrium oscillations.
In this direction, we have the following:

Proposition 2.14. For a family of librational periodic traveling wave solutions
of the Klein-Gordon equation (1.1) for which f oscillates about a non-degenerate
equilibrium point u0 near which V has four continuous derivatives,

sgn
(

(c2 − 1) TE |E=V (u0)

)
= sgn

(
5V ′′′(u0)2 − 3V ′′(u0)V (4)(u0)

)
. (2.20)

In the setting of potentials V satisfying Assumptions 2.1 and 2.2 we may choose
u0 = u with V (u0) = −1 for c2 > 1 and u0 = u with V (u0) = 1 for c2 < 1.

Proof. We suppose for simplicity that V is analytic near an equilibrium correspond-
ing to one of the non-degenerate critical points of V . Consider first the superluminal
case, in which case f oscillates about a critical point u0 = u for which V ′(u) = 0
but V ′′(u) > 0 (u is a local minimizer of V ). We use Chicone’s substitution [11]
η = m(s) to write the formula (2.6) in the form

T =
√

2
√
c2 − 1

∫ 1

−1

m′(w
√
E − V (u)) dw√
1− w2

, (2.21)
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where m is the analytic and monotone increasing function of s determined uniquely
from the relation

V (m)− V (u) = s2. (2.22)

Note that the function m is independent of E, but m′ is evaluated at the scaled
argument s = w

√
E − V (u) in (2.21). Now if E − V (u) is sufficiently small, the

Taylor series for m′(w
√
E − V (u)) about w = 0 converges uniformly for |w| ≤ 1,

so it may be integrated term-by-term to yield an infinite-series formula for T :

T =
√

2
√
c2 − 1

∞∑
n=0

[
m(2n+1)(0)

(2n)!

∫ 1

−1

w2n dw√
1− w2

]
(E − V (u))n

= π
√

2
√
c2 − 1

[
m′(0) +

∞∑
n=1

(2n− 1)!m(2n+1)(0)

22n−1n!(n− 1)!(2n)!
(E − V (u))n

]
.

(2.23)

Evidently, T is an analytic function of E at E = V (u). Its derivative at the
equilibrium is therefore

TE |E=V (u) =
π

4

√
2
√
c2 − 1m′′′(0). (2.24)

It remains to calculate m′′′(0), a task easily accomplished by repeated implicit
differentiation of (2.22) with respect to s, and then setting s = 0 and m = u. In
this way, we obtain

m′′′(0) =

√
V ′′(u)

2

5V ′′′(u)2 − 3V ′′(u)V (4)(u)

3V ′′(u)4
, (2.25)

from which (2.20) is obvious in the superluminal case c2 > 1.
In the subluminal case, one considers instead oscillations f about a critical point

u0 = u for which V ′(u) = 0 but V ′′(u) < 0 (a local maximizer of V ). Now letting
m be the analytic and monotone increasing function of s near s = 0 defined by the
equation V (u)− V (m) = s2, the relevant formula (2.8) becomes

T =
√

2
√

1− c2
∫ 1

−1

m′(w
√
V (u)− E) dw√
1− w2

. (2.26)

Following the same procedure as in the superluminal case establishes (2.20) in the
subluminal case as well. �

3. The spectral problem

3.1. Definition of resolvent set and spectrum. Let us now consider how a
perturbation of the periodic traveling wave f = f(z) evolves under the Klein-
Gordon equation (1.1). Substituting u = f + v into the Klein-Gordon equation
(1.1) written in the galilean frame associated with the independent variables (z =
x−ct, t) and using the equation (2.3) satisfied by f , one finds that the perturbation
v necessarily satisfies the nonlinear equation

vtt − 2cvzt + (c2 − 1)vzz + V ′(f(z) + v)− V ′(f(z)) = 0. (3.1)

As a leading approximation for small perturbations, we replace (3.1) by its lin-
earization about v = 0 and hence obtain the linear equation

vtt − 2cvzt + (c2 − 1)vzz + V ′′(f(z))v = 0. (3.2)

Since f depends on z but not t, the equation (3.2) admits treatment by separa-
tion of variables, which leads naturally to a spectral problem. Seeking particular
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solutions of (3.2) of the form v(z, t) = w(z)eλt, where λ ∈ C, w satisfies the linear
ordinary differential equation

(c2 − 1)wzz − 2cλwz + (λ2 + V ′′(f(z)))w = 0, (3.3)

in which the complex growth rate λ appears as a (spectral) parameter. Equation
(3.3) will only have a nonzero solution w in a given Banach space X for certain
λ ∈ C, and roughly speaking, these values of λ constitute the spectrum for the
linearized problem (3.2). A necessary condition for the stability of f is that there
are no points of spectrum with Reλ > 0 (which would imply the existence of a
solution v of (3.2) that lies in X as a function of z and grows exponentially in
time). These notions will be made precise shortly.

Following Alexander, Gardner and Jones [2], the spectral problem (3.3) with
w ∈ X can be equivalently regarded as a first order system of the form

wz = A(z, λ)w, (3.4)

where w := (w,wz)
> ∈ Y (Y is a Banach space related to X), and

A(z, λ) :=

 0 1

− (λ2 + V ′′(f(z)))

c2 − 1

2cλ

c2 − 1

 . (3.5)

Note that the coefficient matrix A is periodic in z with period T .
To interpret the problem (3.4) in a more functional analytic setting, we consider

the closed, densely defined operators T (λ) : D ⊂ Y → Y whose action is defined
by

T (λ)w := wz −A(z, λ)w (3.6)

on a domain D dense in Y . The family of operators is parametrized by λ ∈ C, but
the domain D is taken to be independent of λ ∈ C. The resolvent set and spectrum
associated with T are then defined as follows [44, 46].

Definition 3.1 (resolvent set and spectrum of T ). We define the following subsets
of the complex λ-plane:

(i) the resolvent set ζ is defined by

ζ := {λ ∈ C : T (λ) is one-to-one and onto, and T (λ)−1 is bounded};

(ii) the point spectrum σpt is defined by

σpt := {λ ∈ C : T (λ) is Fredholm with zero index and has a non-trivial kernel};

(iii) the essential spectrum σess is defined by

σess := {λ ∈ C : T (λ) is either not Fredholm or has index different from zero}.

The spectrum σ of T is the (disjoint) union of the essential and point spectra,
σ = σess ∪ σpt. Note that since T (λ) is closed for each λ ∈ C, then ζ = C\σ (see,
e.g., [31]).

As it is well-known, the definition of spectra and resolvent associated with peri-
odic waves depends upon the choice of the function space Y . Motivated by the fact
that the sine-Gordon equation is well-posed in Lp spaces [9], here we shall consider

D = H1(R;C2) and Y = L2(R;C2), (3.7)
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which corresponds to studying spectral stability of periodic waves with respect
to spatially localized perturbations in the galilean frame in which the waves are
stationary.

/ Remark 3.2. Observe that the parameter λ appears in (3.3) both quadratically
and linearly, making this spectral problem a non-standard one (that is, it does not
have the form Lw = λw, where L is a differential operator in a Banach space).
Instead, the family of operators T (λ) constitutes a so-called quadratic pencil in the
spectral parameter λ. By introducing auxiliary fields it is possible to reformulate
the spectral problem T (λ)w = 0 as a spectral problem of standard form on an
appropriate tensor product space, but not in such a way that the latter problem
is selfadjoint (we will not take this approach). While it is clear that Definition 3.1
reduces in the special case when T (λ) has the form L − λ to a more standard
definition (in particular σpt is the set of eigenvalues of L), it is sufficiently general
to handle the quadratic pencil defined by (3.6) of interest here. .

It is well-known ([22], see also §4.1) that the L2 spectrum of a differential op-
erator with periodic coefficients contains no eigenvalues. This fact persists for the
quadratic pencil T under the generalized definition of spectra considered here. In-
deed, we have the following.

Lemma 3.3. All L2 spectrum of T defined by (3.6) is purely essential, that is,
σ = σess and σpt is empty.

Proof. Let λ ∈ σpt. Then by definition, T (λ) is Fredholm with zero index and
has a non-trivial kernel. This implies that N := ker T (λ) ⊂ H1(R;C2) is a finite
dimensional Hilbert space. Let us denote S : L2 → L2 as the (unitary) shift
operator with period T , defined as Sw(z) := w(z+T ). Since the coefficient matrix
A(z, λ) is periodic with period T , there holds ST (λ) = T (λ)S in L2, making N

an invariant subspace of S. Let us define Ŝ as the restriction of S to N . Then
Ŝ : N → N is a unitary map in a finite-dimensional Hilbert space. Therefore, Ŝ
must have an eigenvalue α ∈ C such that Sw0 = αw0 for some w0 ∈ N ⊂ L2,
w0 6= 0. Since Ŝ is unitary, we have that |α| = 1, whence

|w0(z + T )| = |(Ŝw0)(z)| = |αw0(z)| = |w0(z)| (3.8)

(here |·| means the Euclidean norm in C2), that is, |w0(z)|2 is T -periodic. But since
w0 6= 0, this is a contradiction with w0 ∈ L2. Thus, σpt is empty and σ = σess. �

3.2. Floquet characterization of the spectrum. The periodic Evans func-
tion. Let F(z, λ) denote the 2×2 identity-normalized fundamental solution matrix
for the differential equation (3.4), i.e., the unique solution of

Fz(z, λ) = A(z, λ)F(z, λ), with initial condition F(0, λ) = I, ∀λ ∈ C. (3.9)

The T -periodicity in z of the coefficient matrix A then implies that

F(z + T, λ) = F(z, λ)M(λ), ∀z ∈ R, where M(λ) := F(T, λ). (3.10)

The matrix M(λ) is called the monodromy matrix for the first-order system (3.4).
The monodromy matrix is really a representation of the linear mapping taking a
given solution w(z, λ) evaluated for z = 0 (mod T ) to its value one period later.
Since the elements of the coefficient matrix A are entire functions of λ, and since
the Picard iterates for F(z, λ) converge uniformly for bounded z, the elements of
the monodromy matrix M(λ) are also entire functions of λ ∈ C. Let µ(λ) denote an
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eigenvalue of M(λ), and let w0(λ) ∈ C2 denote a corresponding (nonzero) eigen-
vector: M(λ)w0(λ) = µ(λ)w0(λ). Then w(z, λ) := F(z, λ)w0(λ) is a nontrivial
solution of the first-order system (3.4) that satisfies

w(z + T, λ) = F(z + T, λ)w0(λ) = F(z, λ)M(λ)w0(λ) (by (3.10))

= µ(λ)F(z, λ)w0(λ) = µ(λ)w(z, λ), ∀z ∈ R.
(3.11)

Thus w(z, λ) is a particular solution that goes into a multiple of itself upon transla-
tion by a period in z. After G. Floquet, such solutions are called Floquet solutions,
and the eigenvalue µ(λ) of the monodromy matrix M(λ) is called a Floquet multi-
plier. If R(λ) denotes any number (determined modulo 2πi) for which eR(λ) = µ(λ),
it is evident that e−R(λ)z/Tw(z, λ) is a T -periodic function of z, or, equivalently
(Bloch’s Theorem) w(z, λ) can be written in the form

w(z, λ) = eR(λ)z/T z(z, λ), where z(z + T, λ) = z(z, λ), ∀z ∈ R. (3.12)

The quantity R(λ) is sometimes called a Floquet exponent. A further consequence
of Floquet theory is that if the first-order system (3.4) has a nontrivial solution
in L∞(R,C2), it is necessarily a linear combination of solutions having Bloch form
(3.12) with R(λ) purely imaginary, that is, it is a superposition of Floquet solutions
corresponding to Floquet multipliers µ(λ) with |µ(λ)| = 1.

The L2(R,C2) spectrum of T given by (3.6) is characterized in terms of the
monodromy matrix as follows.

Proposition 3.4. λ ∈ σ if and only if there exists µ ∈ C with |µ| = 1 such that

D(λ, µ) := det(M(λ)− µI) = 0, (3.13)

that is, at least one of the Floquet multipliers lies on the unit circle.

Proof. According to Lemma 3.3, σ consists entirely of essential spectrum. More-
over, λ ∈ σess if and only if the system (3.4) admits a non-trivial, uniformly bounded
solution [28, pgs. 138–140]. Any such solution is necessarily a linear combination of
Floquet solutions with multipliers µ satisfying |µ| = 1. The condition (3.13) simply
expresses that µ is a Floquet multiplier of the system (3.4). It is not difficult to
verify that T (λ) has a bounded inverse provided all Floquet exponents have non-
zero real part [22, Proposition 2.1]. Hence λ ∈ σ = σess if and only if there exists
a eigenvalue of M(λ), i.e., a solution of the quadratic equation (3.13), of the form
µ = eiθ with θ ∈ R. �

Following the foundational work of R. A. Gardner on stability of periodic waves
[22, 23, 24] we make the following definition.

Definition 3.5 (periodic Evans function). The periodic Evans function is the re-
striction of D(λ, µ) to the unit circle S1 ⊂ C in the second argument, which is to be
regarded as a unitary parameter in this context. Thus, for each θ ∈ R (mod 2π),
D(λ, eiθ) is an entire function of λ ∈ C whose (isolated) zeros are particular points
of the spectrum σ.

The obvious parametrization of the spectrum according to values of µ = eiθ ∈ S1,
or equivalently θ ∈ R (mod 2π) can be made even clearer by introducing the set σθ
of complex numbers λ for which there exists a nontrivial solution of the boundary-
value problem consisting of (3.3) with the boundary condition(

w(T )
wz(T )

)
= eiθ

(
w(0)
wz(0)

)
, θ ∈ R. (3.14)
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Obviously the sets σθ and σθ+2πn coincide for all n ∈ Z. It follows from Proposi-
tion 3.4 that σ may be written as a union of these partial spectra as follows:

σ =
⋃

−π<θ≤π

σθ. (3.15)

Furthermore, it is clear that the set σθ is characterized as the zero set of the
(entire in λ) periodic Evans function D(λ, eiθ) and hence is purely discrete. The
discrete partial spectrum σθ can therefore be detected for fixed θ ∈ R by standard
techniques based on the use of the Argument Principle. However, the study of
localized perturbations requires considering all of the partial spectra σθ at once.

/ Remark 3.6. Note that, in particular, the equation D(λ, 1) = 0 characterizes
the part of the spectrum corresponding to perturbations that are T -periodic, and
hence σ0 is the periodic partial spectrum. Likewise, the equation D(λ,−1) = 0
determines the antiperiodic partial spectrum σπ corresponding to perturbations that
change sign after translation by T in z (and hence that have fundamental period
2T ). The points of σ0 (resp., of σπ) are frequently called periodic eigenvalues
(resp., antiperiodic eigenvalues) although we stress that in neither case do the
corresponding nontrivial solutions of (3.4) belong to L2(R). .

The real angle parameter θ is typically a local coordinate for the spectrum σ as
a real subvariety of the complex λ-plane. This explains the intuition that the L2

spectrum is purely “continuous”, and gives rise to the notion of curves of spectrum:

Proposition 3.7. Suppose that λ0 ∈ σ corresponding to a Floquet multiplier µ0 ∈
S1, and suppose that Dλ(λ0, µ0) 6= 0 and Dµ(λ0, µ0) 6= 0. Then there is a complex
neighborhood U of λ0 such that σ ∩ U is a smooth curve through λ0.

Proof. Since Dλ(λ0, µ0) 6= 0, it follows from the Analytic Implicit Function The-
orem that the characteristic equation D(λ, µ) = 0 may be solved locally for λ as
an analytic function λ = l(µ) of µ ∈ C near µ = µ0 = eiθ0 with l(µ0) = λ0. The
spectrum near λ0 is therefore the image of the map l restricted to the unit circle
near µ0, that is, λ = l(eiθ) for θ ∈ R near θ0. But then Dµ(λ0, µ0) 6= 0 implies that
dl(eiθ)/dθ 6= 0 at θ = θ0, which shows that the parametrization is regular, i.e., the
image is a smooth curve (in fact, an analytic arc) passing through the point λ0. �

/ Remark 3.8. Points of the spectrum σ where at least one of the two first-order
partial derivatives of D(λ, µ) vanishes correspond to singularities of the system of
spectral arcs. The nature of a given singularity can be characterized by a normal
form obtained from the germ of D(λ, µ) near the singularity. For example, if in

suitable local coordinates λ̃ ∈ C and θ̃ ∈ R, the equation D(λ, eiθ) = 0 takes the

normal form λ̃p = θ̃, then σ ∩ U will consist of exactly p analytic arcs crossing at
λ0 separated by equal angles. It turns out that the origin λ = 0 is a point of σ that
requires such specialized analysis, and we will carry this out in detail in §6.2. (See
in particular Remark 6.13.) .

3.3. Basic properties of the spectrum.

3.3.1. Spectral symmetries. The Klein-Gordon equation (1.1) is a real Hamiltonian
system, and this forces certain elementary symmetries on the spectrum σ.

Proposition 3.9. The spectrum σ is symmetric with respect to reflection in the
real and imaginary axes, i.e., if λ ∈ σ, then also λ∗ ∈ σ and −λ ∈ σ (and hence
also −λ∗ ∈ σ).
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Proof. Let λ ∈ σ. Then there exists θ ∈ R for which λ ∈ σθ, that is, there is
a nonzero solution w(z) of the boundary-value problem (3.3) with (3.14). Since
V ′′(f(z)) is a real-valued function, it follows by taking complex conjugates that
w(z)∗ is a nonzero solution of the same boundary-value problem but with eiθ re-
placed by e−iθ and λ replaced by λ∗. It follows that λ∗ ∈ σ−θ ⊂ σ. The fact that
−λ ∈ σ will follow from Lemma 4.7 and Remark 4.13 below. �

The reflection symmetry of σ through the imaginary axis is the one that comes
from the Hamiltonian nature of the Klein-Gordon equation, and it implies that
exponentially growing perturbations are always paired with exponentially decaying
ones, an infinite-dimensional analogue of the fact that all unstable equilibria of a
planar Hamiltonian system are saddle points. The reflection symmetry of σ through
the real axis is a consequence of the reality of the Klein-Gordon equation and its
linearization. Sometimes systems with the four-fold symmetry of the spectrum as
in this case are said to have full Hamiltonian symmetry.

3.3.2. Spectral bounds. We continue by establishing bounds on the part of the spec-
trum σ disjoint from the imaginary axis.

Lemma 3.10. There exists a constant C > 0 depending only on the wave speed
c 6= ±1 and the potential V such that for each λ ∈ σ with Reλ 6= 0, we have:

(i) |λ| ≤ C if c2 < 1 (subluminal case), and
(ii) |Reλ| ≤ C if c2 > 1 (superluminal case).

Proof. Suppose that λ ∈ σ, i.e., there exists θ = θ(λ) ∈ R for which there is a
nontrivial solution w(z) = w(z, λ) of the boundary-value problem (3.3) with (3.14).
Let us denote

〈u, v〉 :=

∫ T

0

u(z)∗v(z) dz, ‖u‖2 = 〈u, u〉 ≥ 0, (3.16)

and let M > 0 be defined by

M := max
u∈R
|V ′′(u)|. (3.17)

Multiplying the differential equation in (3.3) by w(z)∗ and integrating over the
fundamental period interval [0, T ] gives

(c2 − 1)〈w,wzz〉 − 2cλ〈w,wz〉+ λ2‖w‖2 + 〈w, V ′′(f)w〉 = 0. (3.18)

Integrating by parts, taking into account the boundary conditions (3.14), we observe
that

〈w,wzz〉 = −〈wz, wz〉+w∗(T, λ)wz(T, λ)−w∗(0, λ)wz(0, λ) = −‖wz‖2 ∈ R. (3.19)

Moreover, 〈w,wz〉 is purely imaginary:

Re 〈w,wz〉 = 1
2

∫ T

0

(w∗wz + w∗zw) dz = 1
2

∫ T

0

d

dz
|w|2 dz

= 1
2 (|w(T, λ)|2 − |w(0, λ)|2) = 0.

(3.20)

Therefore, taking the imaginary part of (3.18) using Imλ2 = 2(Reλ)(Imλ), and
recalling that Reλ 6= 0 by assumption, we obtain

(Imλ)‖w‖2 = c Im 〈w,wz〉. (3.21)
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Observe also that upon applying the Cauchy-Schwarz inequality to (3.21) we get
|Imλ|‖w‖2 ≤ |c|‖w‖‖wz‖ yielding, in turn,

(Imλ)2‖w‖2 ≤ c2‖wz‖2, (3.22)

because ‖w‖2 > 0. Using the identities (3.19) and (3.20), the real part of equation
(3.18) is

(1− c2)‖wz‖2 + |λ|2‖w‖2 + 〈w, V ′′(f)w〉 = 0, (3.23)

where we have taken into account (3.21) and used Reλ2 = (Reλ)2−(Imλ)2. On the
other hand, we can also multiply the differential equation (3.3) by w∗z and integrate
over the fundamental period [0, T ], which yields

(c2 − 1)〈wz, wzz〉 − 2cλ‖wz‖2 + λ2〈wz, w〉+ 〈wz, V ′′(f)w〉 = 0. (3.24)

According to (3.20), we have 〈wz, w〉 = iIm 〈wz, w〉 = −iIm 〈w,wz〉, and by a
virtually identical calculation, it also holds that Re 〈wz, wzz〉 = 0. Thus, taking
the real part of (3.24) and noticing that Re (λ2〈wz, w〉) = −(Imλ2)Im 〈wz, w〉 =
2(Reλ)(Imλ)Im 〈w,wz〉, we obtain

2(Reλ)
(
c2‖wz‖2 − (Imλ)2‖w‖2

)
= cRe 〈wz, V ′′(f)w〉, (3.25)

where we have multiplied by c and substituted from (3.21). Taking absolute values,
and using the inequality (3.22), we then obtain

2|Reλ|
(
c2‖wz‖2 − (Imλ)2‖w‖2

)
= |c||Re 〈wz, V ′′(f)w〉|. (3.26)

From the Cauchy-Schwarz inequality and ab ≤ 1
2a

2 + 1
2b

2, an upper bound for the
right hand side of (3.26) is

|c||Re 〈wz, V ′′(f)w〉| = |c||Re 〈
√
|c|wz, V ′′(f)

w√
|c|
〉|

≤ |c| ·
(√
|c|‖wz‖

)( M√
|c|
‖w‖

)
≤ 1

2c
2‖wz‖2 + 1

2M‖w‖
2,

(3.27)

where M is defined by (3.17). Therefore, (3.26) implies the inequality

2|Reλ|c2‖wz‖2 ≤ 1
2c

2‖wz‖2 +
(
2|Reλ|(Imλ)2 + 1

2M
)
‖w‖2. (3.28)

To prove statement (i), assume that c2 < 1 (subluminal case). Then equation
(3.23) implies that

|λ|2‖w‖2 ≤ −〈w, V ′′(f)w〉 ≤M‖w‖2. (3.29)

Since ‖w‖ > 0, this yields |λ| ≤
√
M , which completes the proof of statement (i).

To prove statement (ii), assume now that c2 > 1 (superluminal case). Solving
(3.23) for ‖wz‖2 gives

c2‖wz‖2 =

(
c2

c2 − 1

)(
|λ|2‖w‖2 + 〈w, V ′′(f)w〉

)
, (3.30)

and since c2 > 1, this equation immediately implies two inequalities:

c2‖wz‖2 ≥
c2

c2 − 1

(
|λ|2 −M

)
‖w‖2 and c2‖wz‖2 ≤

c2

c2 − 1

(
|λ|2 +M

)
‖w‖2.

(3.31)
Using the first of these inequalities to give a lower bound for the left-hand side
of (3.28), and using the second to give an upper bound for the right-hand side of
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(3.28), yields an inequality which, upon dividing by ‖w‖2 > 0, involves λ but not
w and can be written in the form

2|Reλ| c2

c2 − 1

(
|λ|2 −M − c2 − 1

c2
(Imλ)2

)
≤ 1

2

c2

c2 − 1

(
|λ|2 +M

)
+ 1

2M. (3.32)

Since for c2 > 1 we have

|λ|2 −M − c2 − 1

c2
(Imλ)2 = (Reλ)2 +

1

c2
(Imλ)2 −M ≥ 1

c2
|λ|2 −M, (3.33)

the inequality (3.32) implies also

|Reλ| ≤ 1
4

(
c2 +

Mc4 +Mc2 + (c2 − 1)M

|λ|2 −Mc2

)
. (3.34)

Now, either |λ|2 < 2Mc2, in which case |Reλ| ≤
√

2M |c|, or |λ|2 ≥ 2Mc2, in which
case (3.34) implies

|Reλ| ≤ 1
4

(
2c2 + 1 +

c2 − 1

c2

)
. (3.35)

Hence if c2 > 1 we always have that

|Reλ| ≤ max

{√
2Mc, 14

(
2c2 + 1 +

c2 − 1

c2

)}
(3.36)

which completes the proof of statement (ii). �

3.4. Dynamical interpretation of the spectrum. The linearized Klein-Gordon
equation (3.2) can be treated by Laplace transforms because it has been written in
a galilean frame that makes the traveling wave f stationary. The Laplace transform
pair is:

V (λ) =

∫ ∞
0

v(t)e−λt dt and v(t) =
1

2πi

∫
B

V (λ)eλt dλ (3.37)

where B is a contour (a Bromwich path) in the complex λ-plane that is an upward-
oriented vertical path lying to the right of all singularities of V . Applying the
Laplace transform to (3.2) formulated with localized initial conditions v(·, 0) ∈
H1(R) and vt(·, 0) ∈ L2(R), we obtain

(c2 − 1)Vzz − 2cλVz + (λ2 + V ′′(f(z)))V = λv(z, 0) + vt(z, 0)− 2cvz(z, 0). (3.38)

Recalling the operator T (λ) : D ⊂ Y → Y defined by (3.5) and (3.6), this can be
written as the first-order system

T (λ)

(
V
Vz

)
=

1

c2 − 1

(
0

λv(·, 0) + vt(·, 0)− 2cvz(·, 0)

)
. (3.39)

The given forcing term on the right hand side lies in the space Y = L2(R,C2), and
therefore if λ lies in the resolvent set ζ (see Definition 3.1), we may solve for V
with the help of the bounded inverse T (λ)−1:(

V
Vz

)
=

1

c2 − 1
T (λ)−1

(
0

λv(·, 0) + vt(·, 0)− 2cvz(·, 0)

)
, λ ∈ ζ ⊂ C. (3.40)

Since Lemma 3.10 shows that the spectrum has a bounded real part for all periodic
traveling waves f , we may then recover the solution of the initial-value problem
v(z, t) by applying the inverse Laplace transform formula, because the resolvent set
ζ is guaranteed to contain an appropriate Bromwich path B. It is easy to show by
analyzing the contour integral over B that this yields a solution v lying in H1(R)
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for each t > 0, that is, a spatially localized perturbation remains localized for all
time.

The inverse T (λ)−1 is not only bounded when λ ∈ ζ, but also it is an ana-
lytic mapping from ζ ⊂ C into the Banach space of bounded operators on Y [31].
Cauchy’s Theorem therefore allows the Bromwich path to be deformed arbitrarily
within the resolvent set ζ. To analyze the behavior of the solution v for large time
to determine stability, one deforms B to its left, toward the imaginary axis, as far
as possible. The only obstruction is the spectrum σ ⊂ C, i.e., the complement of
ζ. Generically, points of σ with Reλ > 0 will give contributions to v proportional
to eλt, implying exponential growth of v and hence dynamical instability. The only
way such instabilities can be avoided in general is if σ is confined to the imaginary
axis. This discussion suggests the utility of the following definition:

Definition 3.11 (spectral stability and instability). A periodic traveling wave
solution f of the Klein-Gordon equation (1.1) is said to be spectrally stable if σ ⊂ iR.
Otherwise (i.e., if σ contains points λ with Reλ 6= 0, and hence contains points λ
with Reλ > 0 by Proposition 3.9) f is spectrally unstable.

It is clear that spectral instability is closely related to the exponential growth
of localized solutions of the linearized Klein-Gordon equation (3.2). As usual, the
issue of determining whether spectral stability implies dynamical stability of the
periodic traveling wave f under the fully nonlinear perturbation equation (3.1) is
more subtle and will not be treated here.

3.5. Linearization about periodic traveling waves of infinite speed. Recall
the discussion in Remark 2.9 of t-periodic solutions (modulo 2π) of the Klein-
Gordon equation (1.1) that are independent of x. Although one can think of these
solutions as arising from those parametrized by (E, c) ∈ G in the limit |c| → ∞,
this approach is not well-suited to stability analysis as it has been developed above,
because the co-propagating galilean frame in which we have formulated the stability
problem becomes meaningless in the limit.

On the other hand, one can study the stability properties of the infinite-velocity
solutions in a stationary frame. Indeed, if f = f(t) is such an exact solution,
then the substitution of u = f + v into the Klein-Gordon equation (1.1) yields the
nonlinear equation

vtt − vxx + V ′(f(t) + v)− V ′(f(t)) = 0 (3.41)

governing the perturbation v. Linearizing about v = 0 yields

vtt − vxx + V ′′(f(t))v = 0. (3.42)

Seeking a solution in L2(R,C) as a function of x for each t (for localized pertur-
bations) leads, in view of the fact that the non-constant coefficient V ′′(f(t)) is
independent of x, to a treatment of (3.42) by Fourier transforms. Letting

v̂(k) =
1√
2π

∫
R
v(x)e−ikx dx and v(x) =

1√
2π

∫
R
v̂(k)eikx dk (3.43)

denote the Fourier transform pair, taking the transform in x of (3.42) yields

v̂tt + V ′′(f(t))v̂ = −k2v̂. (3.44)

This ordinary differential equation is an example of Hill’s equation, about which
more will be said in the next section. For now, we simply formulate a definition
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of spectral stability for this limiting case of periodic traveling waves that is an
analogue of Definition 3.11.

Definition 3.12 (spectral stability and instability for infinite speed waves). A non-
trivial t-periodic solution f of the Klein-Gordon equation (1.1) that is independent
of x is spectrally stable if all solutions of (3.44) are polynomially bounded in t for
every k ∈ R. Otherwise, f is spectrally unstable.

4. A related Hill’s equation

In this section, we describe the spectrum of a related Hill’s equation that plays
an important role in the analysis of σ. The method of arriving at this auxiliary
equation is simple: if w is a solution to the differential equation (3.3), then setting
(Scott’s transformation, [50])

y(z) = e−cλz/(c
2−1)w(z) (4.1)

one obtains a solution y of the related equation:

yzz + P (z)y = νy, P (z) :=
V ′′(f(z))

c2 − 1
, ν = ν(λ) :=

(
λ

c2 − 1

)2

. (4.2)

One apparent advantage is that this equation can be interpreted as an eigenvalue
problem of standard form with eigenvalue ν, whereas the differential equation (3.3)
is a quadratic pencil in λ. Moreover, since f(z) is periodic modulo 2π with period
T , we have P (z + T ) = P (z) for all z ∈ R, and hence equation (4.2) is an instance
of Hill’s equation with potential P of period T . The latter equation is well-studied,
hence motivating an attempt to glean information about the spectrum σ of T
related to (3.3) from knowledge of the solutions of Hill’s equation (4.2).

4.1. The Floquet spectrum of Hill’s equation. A general reference for the
material in this section is the book by Magnus and Winkler [34] (see also [37]). Let
H be the formal differential (Hill’s) operator

H :=
d2

dz2
+ P (z), (4.3)

Considering H acting on a suitable dense domain in L2(R,C), Definition 3.1 applies
to the associated linear pencil T H(ν) := H− ν to define the spectrum as a subset
of the complex ν-plane, here denoted ΣH. As a consequence of the fact that H
is essentially selfadjoint with respect to the L2(R,C) inner product, ΣH ⊂ R. By
the same arguments as applied to the quadratic pencil T (see Lemma 3.3 and
§3.2), the spectrum ΣH contains no (L2) eigenvalues and coincides with the Floquet
spectrum obtained as the union of discrete partial spectra ΣH

θ parametrized by θ ∈ R
(mod 2π). The partial spectrum ΣH

θ is the set of complex numbers ν = ν(θ) for
which there exists a nontrivial solution of the boundary-value problem

Hy(z) = ν(θ)y(z),

(
y(T )
yz(T )

)
= eiθ

(
y(0)
yz(0)

)
, θ ∈ R. (4.4)

Again, Σθ = Σθ+2πn for all n ∈ Z. Since P (z) is real, it is clear that ΣH
−θ = ΣH

θ .

The spectrum ΣH is then the union

ΣH :=
⋃

−π<θ≤π

ΣH
θ =

⋃
0≤θ≤π

ΣH
θ . (4.5)
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The numbers ν(0) ∈ ΣH
0 (resp., ν(π) ∈ ΣH

π ) are typically called the periodic eigen-
values (resp., antiperiodic eigenvalues) of Hill’s equation.

Although T has been defined as the smallest number for which fz(z+T ) = fz(z),
it need only be an integer multiple of the fundamental period of P . For example,
in the sine-Gordon case where V (u) = − cos(u), T is equal to the fundamental
period of P for rotational waves, but it is twice the fundamental period of P for
librational waves (and the same is true whenever some translate of V is an even
function). Note, however, that if T0 is the fundamental period of P and T = NT0
for N ∈ Z+, then the partial spectra corresponding to taking the period to be T0
rather than T in (4.4), denoted ΣH0

θ for θ ∈ R, are related to the partial spectra
defined by (4.4) for T = NT0 by ΣH0

θ = ΣH
Nθ. It follows upon taking unions over

θ ∈ R that ΣH0 = ΣH.

/ Remark 4.1. In the study of the spectrum σ of T for the linearized Klein-
Gordon equation, it turns out to be a useful idea to pull back the Hill’s spectrum
ΣH from the complex ν-plane to the complex λ-plane via the relation between these
two spectral variables defined in (4.2). That is, we introduce the subset σH of the
complex λ-plane defined by

λ ∈ σH ⇔ ν = ν(λ) :=

(
λ

c2 − 1

)2

∈ ΣH. (4.6)

Since λ = 0 corresponds to ν = 0, and since the relationship (4.1) between w and y
degenerates to the identity for λ = 0, it holds that 0 ∈ σ if and only if 0 ∈ σH. The
two spectra σ and σH are, however, certainly not equal, although it turns out that
there are relations between them that we will develop shortly. The discrepancy
between these two spectra in spite of the explicit relation (4.1) between (3.3) and

(4.2) appears because the mediating factor e−cλz/(c
2−1) fails to have modulus one

for |Reλ| 6= 0 and hence can convert uniformly bounded solutions into exponentially
growing or decaying solutions and vice-versa. The incorrect identification of σ with
σH was the key logical flaw in [50]. .

The set ΣH ⊂ R is bounded above. It consists of the union of closed intervals

ΣH =

∞⋃
n=0

[ν
(0)
2n+1, ν

(π)
2n+2] ∪ [ν

(π)
2n+1, ν

(0)
2n ] (4.7)

where the sequences ΣH
0 := {ν(0)j }∞j=0 and ΣH

π := {ν(π)j }∞j=1 decrease to −∞ and
satisfy the inequalities

· · · < ν
(π)
4 ≤ ν(π)3 < ν

(0)
2 ≤ ν(0)1 < ν

(π)
2 ≤ ν(π)1 < ν

(0)
0 . (4.8)

/ Remark 4.2. Each of the inequalities ν
(0)
j+1 ≤ ν

(0)
j or ν

(π)
j+1 ≤ ν

(π)
j that holds

strictly indicates the presence of a gap in the Hill’s spectrum. The generic situation
is that all of the inequalities hold strictly, and hence there are an infinite number
of gaps. The theory of so-called finite-gap potentials shows that there are deep
connections with the subject of algebraic geometry that arise when one considers
periodic potentials P for which there are only a finite number of gaps in ΣH. The
most elementary result is that the only periodic potentials P for which there are
no gaps in the spectrum ΣH are the constant potentials [34, Theorem 7.12]. More-
over, if ΣH has exactly one gap, then P is necessarily a non-constant (Weierstraß)
elliptic function, i.e., P ′(z)2 is a cubic polynomial in P (z) (Hochstadt’s Theorem
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[34, Theorem 7.13]). In the one-gap case, Hill’s equation is therefore a special case
of Lamé’s equation, and the elliptic function P corresponds to a Riemann surface
of genus g = 1 (an elliptic curve). More generally, Dubrovin has shown [15] that
if ΣH has exactly n gaps, then P is necessarily a hyperelliptic function of genus
g = n, and P ′(z)2 is a polynomial in P (z) of degree exactly 2g + 1. .

Differentiating with respect to z the equation (2.3) satisfied by f , one easily
verifies that the function y(z) := fz(z) is a nontrivial T -periodic solution of Hill’s
equation with ν = 0. That is, y(z) is a nontrivial solution of the boundary-value

problem (4.4) with θ = 0 and ν = 0. Hence one of the periodic eigenvalues ν
(0)
j

coincides with ν = 0, and the value of j is determined by oscillation theory (see [12,
Theorem 8.3.1] or [34, Theorem 2.14 (Haupt’s Theorem)]1), i.e., by the number of
roots of y(z) = fz(z) per period. If f is a librational wave, then fz has exactly two

zeros per period and hence either ν
(0)
1 = 0 or ν

(0)
2 = 0. On the other hand, if f is

rotational , then fz has no zeros at all and hence ν
(0)
0 = 0. Therefore, we have the

following dichotomy for the Hill’s spectrum ΣH.

• For rotational f , ΣH is a subset of the closed negative half-line, and ν
(0)
0 = 0

belongs to the spectrum.

• For librational f , the positive part of ΣH consists of the intervals [ν
(0)
1 , ν

(π)
2 ]∪

[ν
(π)
1 , ν

(0)
0 ] (which may merge into a single interval if ν

(π)
1 = ν

(π)
2 ). It is pos-

sible that ν
(0)
1 = 0, but not necessary; otherwise ν

(0)
2 = 0 and ν

(0)
1 > 0.

In both cases the negative part of the Hill’s spectrum is unbounded.

/ Remark 4.3. It turns out that for librational waves f , the following facts hold
true.

• If (c2 − 1)TE > 0, then ν
(0)
1 = 0 while ν

(0)
2 < 0. Hence an an interval of

the Hill’s spectrum ΣH abuts the origin ν = 0 on the right and there is a
gap for small negative ν. This is the case for the sine-Gordon equation, cf.
Remark 2.12.

• If (c2 − 1)TE < 0, then ν
(0)
2 = 0 while ν

(0)
1 > 0. Hence an interval of the

Hill’s spectrum ΣH abuts the origin ν = 0 on the left and there is a gap for
small positive ν.

• If TE = 0, then ν
(0)
1 = ν

(0)
2 = 0, and there is no gap in the Hill’s spectrum

near ν = 0.

The reason for this is that the sign of the slope of the Hill discriminant (i.e., the
trace of the monodromy matrix corresponding to (4.2)) at ν = 0 can be computed
in terms of the product (c2 − 1)TE (cf. Remark 6.20). Letting ∆H(ν) denote the
Hill discriminant, the periodic partial spectrum ΣH

0 is characterized as follows:

∆H(ν) = 2 if and only if ν = ν
(0)
j for some j, and ∆H

ν (ν
(0)
j ) = 0 if and only if

ν
(0)
j+1 = ν

(0)
j (i.e., if and only if ν

(0)
j is a periodic eigenvalue of geometric multiplicity

2). Moreover, −2 ≤ ∆H(ν) ≤ 2 is the condition defining ΣH. Thus, the sign of

the derivative ∆H
ν (ν

(0)
j ) determines on which end of a spectral gap ν

(0)
j must lie (or

whether in fact there is no gap there at all). Taken together with the oscillation

1The statement of Haupt’s theorem in [34] contains some typographical errors; the second

sentence of Theorem 2.14 should be corrected to read “if λ = λ′2n−1 or λ = λ′2n, then y has

exactly 2n− 1 zeros in the half-open interval 0 ≤ x < π.”
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theory informed by the number of zeros of fz over a period, this describes precisely
where the periodic eigenvalue ν = 0 falls in the chain of inequalities (4.8). See
Figure 2. .

Figure 2. A qualitative sketch of the spectrum ΣH.

As the boundary-value problem (4.4) is selfadjoint for all real θ and since the
resolvent is compact (Green’s function gθ(z, ξ) = gθ(ξ, z)

∗ is a continuous and
hence Hilbert-Schmidt kernel on [0, T ]2), it follows from the Spectral Theorem that
for each θ ∈ R the nontrivial solutions of (4.4) associated with the values of ν
in the partial spectrum ΣH

θ form an orthogonal basis of L2(0, T ). Moreover the
corresponding generalized Fourier expansion of a smooth function u(z) satisfying
the condition u(z+T ) = eiθu(z) is uniformly convergent. From these facts it follows
that

〈u,Hu〉 ≤ ‖u‖2 max ΣH
θ , ∀u ∈ C2(R), u(z + T ) = eiθu(z), (4.9)

where the inner product is defined in (3.16). Therefore, whenever f is a rotational
wave,

〈u,Hu〉 ≤ 0 ∀u ∈ C2(R), u(z + T ) = eiθu(z), (4.10)

because ΣH
θ ⊂ ΣH ⊂ R−. We summarize the results of this discussion in the

following:

Proposition 4.4. Hill’s differential operator H is negative semidefinite in the case
that f is a rotational traveling wave. For librational traveling waves f , H is indef-
inite.

Finally, we may easily use the theory of Hill’s equation described above to prove
the following result. Recall the notion of spectral stability for traveling waves of
infinite speed described in §3.5, and in particular Definition 3.12.
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Theorem 4.5 (instability criterion for infinite speed waves). A time-periodic so-
lution f of the Klein-Gordon equation (1.1) that is independent of x is spectrally
stable if and only if ΣH ∩ R− = R−, that is, if the part of ΣH on the negative
half-axis has no gaps.

Proof. Referring to the equation (3.44), we see that k ∈ R corresponds to ν =
−k2 ≤ 0. If such a value of ν lies in ΣH, then either it is a periodic or antiperiodic
eigenvalue, in which case the solutions of (3.44) are linearly bounded, or the general
solution of (3.44) is uniformly bounded. On the other hand, if ν does not lie in
the spectrum ΣH, then there exists a solution of (3.44) that grows exponentially
in time. Therefore, to have spectral stability in the sense of Definition 3.12 it is
necessary that the entire negative real axis in the ν-plane consist of spectrum, that
is, all of the inequalities in the sequence (4.8) corresponding to negative ν must
degenerate to equalities. �

Corollary 4.6. All time-periodic and x-independent solutions of the Klein-Gordon
equation (1.1) that are of rotational type are spectrally unstable.

Proof. In the rotational case, ΣH = ΣH ∩ R−, so the criterion of Theorem 4.5
reduces to the condition that ΣH should have no gaps for spectral stability. But f
is necessarily non-constant, so ΣH has at least one gap. �

4.2. Relating spectra. Recall (4.6) defining the set σH in the complex λ-plane
related to the Hill’s spectrum ΣH. It was pointed out in Remark 4.1 that σ 6= σH

despite the simple transformation (4.1) relating the differential equations (3.3) (to
which σ is associated) and (4.2) (to which σH is associated). In particular σH is
necessarily the union of an unbounded subset of the imaginary axis and a bounded
subset (possibly just {0}) of the real axis, but as we will show in §6.2, σ can contain
points not on either the real or imaginary axes. However, we have also shown that
0 ∈ σ ∩ σH, and hence the two sets are not disjoint.

Parallel with the development leading up to (3.10), we write Hill’s equation
(4.2) as a first-order system by introducing the vector unknown y := (y, yz)

T ∈ C2.
Letting FH(z, ν) denote the corresponding fundamental solution matrix normalized
by the initial condition FH(0, ν) = I, the monodromy matrix for Hill’s equation is
defined by MH(ν) := FH(T, ν). Just as the Floquet multipliers µ were defined as
the eigenvalues of M(λ), so are the multipliers µH defined as the eigenvalues of
MH(ν). Note that as both monodromy matrices are 2×2, the multipliers are roots
of a quadratic equation in each case, and hence there are two of them (counted with
multiplicity). The Hill’s spectrum ΣH can be characterized as the set of values of ν
for which at least one of the Floquet multipliers µH(ν) lies on the unit circle in the
complex plane. When ν ∈ R, the Floquet multipliers µH(ν) either are real numbers
or form a complex-conjugate pair, and hence if ν ∈ ΣH ⊂ R, the multipliers are
either a non-real conjugate pair of unit modulus, or they coalesce at µH = 1 (for
periodic eigenvalues ν) or µH = −1 (for antiperiodic eigenvalues ν).

We first establish a result that shows how the Floquet multipliers µ are trans-
formed under an exponential mapping of w that generalizes the one given in (4.1).
Our purpose here is two-fold: firstly we use this result to relate the Floquet multi-
pliers µ and µH, and then we will apply it to complete the proof of Proposition 3.9
(the part asserting that σ = −σ). Let w be a solution of the differential equation
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(3.3), and let a function r = r(z) be defined by the invertible transformation

r(z) = e−α(λ)zw(z), (4.11)

where α depends on λ (and possibly other parameters in the system) but not on z.
Then r satisfies

rzz +

(
2α(λ)− 2λc

c2 − 1

)
rz +

(
α(λ)2 − 2λc

c2 − 1
α(λ) +

λ2 + V ′′(f(z))

c2 − 1

)
r = 0,

(4.12)
which is easily written as a first-order system:

rz = Aα(z, λ)r, r :=

(
r
rz

)
, (4.13)

with coefficient matrix

Aα(z, λ) :=

 0 1
2λc

c2 − 1
α(λ)− α(λ)2 − λ2 + V ′′(f(z))

c2 − 1

2λc

c2 − 1
− 2α(λ)

 . (4.14)

(Notice that if we choose α(λ) = λc/(c2 − 1), then (4.11) reduces to (4.1) and
therefore (4.12) reduces to (4.2).) Let Fα(z, λ) denote the fundamental solution
matrix of (4.13) with initial condition Fα(0, λ) = I, let Mα(λ) := Fα(T, λ) denote
the corresponding monodromy matrix, and let µα denote a Floquet multiplier of
(4.13), i.e., an eigenvalue of Mα(λ).

Lemma 4.7. The following identities hold:

Fα(z, λ) = e−α(λ)zB(λ)F(z, λ)B(λ)−1

Mα(λ) = e−α(λ)TB(λ)M(λ)B(λ)−1,
where B(λ) :=

(
1 0

−α(λ) 1

)
. (4.15)

Furthermore, to each Floquet multiplier µ = µ(λ) there corresponds a Floquet mul-
tiplier µα = µα(λ) via the relation µα(λ) = e−α(λ)Tµ(λ).

Proof. The relation (4.11) connecting solutions w of (3.3) with solutions r of (4.12)
induces a corresponding relation on the vectors w and r solving the first-order
systems (3.4) and (4.13) respectively: r = e−α(λ)zB(λ)w. The first identity in
(4.15) then follows immediately (the final factor of B(λ)−1 fixes the initial condition
for Fα). Evaluating at z = T yields the second identity in (4.15), from which the
statements concerning the multipliers follow by computation of the eigenvalues. �

By taking α(λ) := λc/(c2− 1), Lemma 4.7 yields the following immediate corol-
lary. Let

q :=
cT

c2 − 1
∈ R. (4.16)

Corollary 4.8. The multipliers µ(λ) and µH(ν) are related as follows:

µH(ν(λ)) = e−qλµ(λ), ν(λ) =

(
λ

c2 − 1

)2

. (4.17)

As an application of this result, we now show that σ and σH agree (only) on the
imaginary axis.

Proposition 4.9. σ ∩ iR = σH ∩ iR, and if λ ∈ σ ∩ σH then λ ∈ iR.
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Proof. The first statement follows immediately from Corollary 4.8. To prove the
second statement, suppose that λ ∈ σH , which implies that either λ is real and
nonzero, or purely imaginary. We show that the case that λ is real and nonzero is
inconsistent with λ ∈ σ. Indeed, since λ ∈ σH, the Floquet multipliers µH(ν(λ))
both have unit modulus, and it follows that all solutions of Hill’s equation (4.2) are
either bounded and quasi-periodic or exhibit linear growth (the latter only for ν(λ)
in the periodic or antiperiodic partial spectra). Accounting for the assumption that
Reλ 6= 0, applying the transformation (4.1) (a bijection between the solution spaces
of the differential equations (3.3) and (4.2)) shows that every nonzero solution w
of (3.3) is exponentially unbounded for large |z|. It follows that λ 6∈ σ. �

The proof of Proposition 4.9 used the fact that both Floquet multipliers µH(ν)
of Hill’s equation have unit modulus when ν ∈ ΣH. Quite a different phenomenon
can occur for the spectrum σ, as the following result shows.

Proposition 4.10. Let c 6= 0, and suppose that λ ∈ σ with Re (λ) 6= 0. Then the
Floquet multipliers µ(λ) are distinct, and exactly one of them has unit modulus.

Proof. According to Abel’s Theorem, the product of the Floquet multipliers is

det(M(λ)) = exp

(∫ T

0

tr (A(z, λ)) dz

)
= e2qλ. (4.18)

By assumption, at least one of the multipliers has unit modulus because λ ∈ σ.
If also the other multiplier has unit modulus, then |det(M(λ))| = 1 and therefore
Reλ = 0 because q 6= 0. Hence we arrive at a contradiction, and it follows that the
second multiplier cannot have unit modulus. �

A result that is more specialized but of independent interest is the following:

Proposition 4.11. Let c 6= 0 and suppose that λ ∈ σ is a nonzero real number.
Then λ is either a periodic eigenvalue or an antiperiodic eigenvalue, and the Floquet
multipliers µ(λ) are distinct.

Proof. Since λ ∈ R, the differential equation (3.3) has real coefficients and hence
the multipliers either form a complex-conjugate pair or are both real. Furthermore,
since λ ∈ σ, in the conjugate-pair case both multipliers lie on the unit circle, a
contradiction with Proposition 4.10 because Reλ 6= 0. Therefore, the multipliers
are both real, and λ ∈ σ implies that one of them is ±1. According to Abel’s
Theorem (4.18), the product of the Floquet multipliers is a positive number not
equal to 1 and hence the second multiplier can be neither 1 nor −1. (That the
multipliers are distinct also follows from Proposition 4.10.) �

Next, we consider situations in which the Floquet multipliers of either equation
(3.3) or Hill’s equation (4.2) fail to be distinct.

Proposition 4.12. Let c 6= 0, and suppose that for some λ ∈ C both Floquet
multipliers µ(λ) coincide. Then

(i) both Floquet multipliers µH(ν(λ)) also coincide, and the common values are
µH(ν(λ)) = ±1 and µ(λ) = ±eqλ;

(ii) either λ is real and nonzero and λ 6∈ σ, or λ is imaginary and λ ∈ σ ∩ σH.
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Proof. The fact that the two multipliers µ(λ) of equation (3.3) coincide exactly
when the two multipliers µH(ν(λ)) coincide is a simple consequence of Corollary 4.8.
Applying Abel’s Theorem (4.18) to the system (4.13) with α(λ) = λc/(c2−1) shows
that the product of the multipliers µH is always 1 and therefore if they coincide
they must take the values 1 or −1 (together). Again using Corollary 4.8 shows that
the corresponding coincident value of the multipliers µ must be either eqλ or −eqλ,
which proves (i).

According to (i), ν(λ) ∈ ΣH ⊂ R (being a periodic or antiperiodic eigenvalue),
and it follows that λ ∈ σH. Because ν(λ) ∈ R, either λ is either purely imaginary,
in which case Proposition 4.9 shows that λ ∈ σ, or λ is a nonzero real number. In
the latter case, the fact that the multipliers µ(λ) are not distinct shows that λ 6∈ σ
according to Proposition 4.10. This completes the proof of (ii). �

/ Remark 4.13. As a second application of Lemma 4.7, we now complete the proof
of Proposition 3.9 by showing that λ ∈ σ implies −λ ∈ σ. The transformation (4.11)
with the choice

α(λ) =
2λc

c2 − 1
(4.19)

connects the differential equation (3.3) with the equation (cf. (4.12))

rzz +
2cλ

c2 − 1
rz +

λ2 + V ′′(f(z))

c2 − 1
r = 0, (4.20)

which is simply (3.3) with λ replaced by −λ. Lemma 4.7 therefore implies that the
Floquet multipliers µ(±λ) are related as follows:

µ(−λ) = e−2qλµ(λ). (4.21)

Since tr (M(λ)) is the sum of the multipliers, using (4.18) shows that the function

D̃(λ, µ) related to D(λ, µ) defined by (3.13) by

D̃(λ, µ) :=
e−qλ

µ
D(λ, µ) satisfies D̃(−λ, µ) = D̃(λ, 1/µ). (4.22)

It follows easily that λ ∈ σθ implies −λ ∈ σ−θ (mod 2π) and hence λ ∈ σ implies
−λ ∈ σ. .

Finally, we note that Propositions 4.10, 4.11, and 4.12 have all required the
condition c 6= 0, but much more information is available if c = 0:

Proposition 4.14. If c = 0, then σ = σH.

Proof. If c = 0, then the relation (4.1) reduces to the identity, and hence the
differential equations (3.3) and (4.2) — whose spectra are, respectively, σ and σH

(the latter pulled back to the λ-plane as in (4.6)) — are identical. �

5. Analysis of the monodromy matrix

In this section we study the monodromy matrix M(λ) of equation (3.3) with
the goal of analyzing the L2 spectrum of the problem (3.3) in a neighborhood of
the origin λ = 0. When λ = 0, equation (3.3) coincides with Hill’s equation (4.2),
and hence M(0) = MH(ν(0)) = MH(0). We start by setting λ = 0 and explicitly
finding the fundamental solution matrix F(z, 0) = FH(z, 0). Then we compute the
power series expansion of F(z, λ) based at λ = 0. Since F(z, λ) is entire for bounded
z, this series has an infinite radius of convergence and setting z = T then gives the
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corresponding power series expansion of the monodromy matrix M(λ). This series
is also an asymptotic series in the limit λ→ 0, and hence a finite number of terms
suffice to approximate the spectrum σ in a vicinity of the origin.

5.1. Solutions for λ = 0. Let us assume that the periodic traveling wave solution
u = f of the Klein-Gordon equation (1.1) has been made unique given parameter
values (E, c) ∈ G by the imposition of either (2.11) (for subluminal waves) or (2.12)
(for superluminal waves). The functions u0 : G→ R and v0 : G→ R given by

u0(E, c) := f(0) and v0(E, c) := fz(0) (5.1)

are then well-defined on G. Furthermore, v0 > 0, and u0 is constant on Glib
< ∪Grot

<

and also on Glib
> ∪Grot

> , with different values both satisfying V ′(u0) = 0. It follows
from (2.3) that fzz(0) = 0, and by periodicity, fzz(T ) = 0 also.

5.1.1. First construction of F(z, 0) and M(0).

Lemma 5.1. Suppose that λ = 0. The two-dimensional complex vector space of
solutions to the first-order system (3.4) is spanned by

wz(z) :=

(
fz
fzz

)
and wE(z) :=

(
fE
fEz

)
. (5.2)

Proof. Lemma 2.8 guarantees that f is a C2 function of E and z. Differentiating
equation (2.3) with respect to z yields (c2−1)fzzz +V ′′(f)fz = 0. This proves that
w = wz(z) is a solution to (3.4) when λ = 0. On the other hand, differentiating
(2.3) with respect to E one gets (c2 − 1)fzzE + V ′′(f)fE = 0, proving that w =
wE(z) solves (3.4) for λ = 0 as well. To verify independence of wz(z) and wE(z),
differentiate equation (2.4) with respect to E:

(c2 − 1)fzfzE = 1− V ′(f)fE . (5.3)

Combining this with (2.3), one obtains

det(wz(z),wE(z)) = fzfEz − fEfzz =
1

c2 − 1
6= 0. (5.4)

Hence the Wronskian never vanishes and therefore wz(z) and wE(z) are linearly
independent for all z and for all (E, c) ∈ G. �

Let us define the matrix solution

Q0(z) :=
(
wz(z),wE(z)

)
(5.5)

to the first-order system (3.4) for λ = 0. Since Q0 is invertible by Lemma 5.1, the
normalized fundamental solution matrix for (3.4) at λ = 0 is

F(z, 0) = Q0(z)Q0(0)−1. (5.6)

Note that as a consequence of the Wronskian formula (5.4), Q0(z)−1 is given by

Q0(z)−1 = (c2 − 1)

(
fEz(z) −fE(z)
−fzz(z) fz(z)

)
. (5.7)

The matrix Q0(0) may be expressed in terms of the functions u0 and v0 defined on
G by (5.1) as

Q0(0) =

(
v0 ∂Eu0
0 ∂Ev0

)
=

(
v0 0
0 ∂Ev0

)
, (5.8)
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where ∂E denotes the partial derivative with respect to E, because u0 is piecewise
constant on G. Similarly from (5.7), we have

Q0(0)−1 =

(
(c2 − 1)∂Ev0 0

0 (c2 − 1)v0

)
. (5.9)

(The identity
(c2 − 1)v0∂Ev0 = 1 (5.10)

implied by combining (5.8) and (5.9) can also be obtained by differentiation of
(2.4) with respect to E at z = 0.) It follows from (5.5), (5.6), and (5.9) that the
fundamental solution matrix F(z, 0) is

F(z, 0) =
1

v0

(
fz(z) (c2 − 1)v20fE(z)
fzz(z) (c2 − 1)v20fEz(z)

)
. (5.11)

The corresponding monodromy matrix M(0) is obtained by setting z = T in
F(z, 0). To simplify the resulting formula, we now express fz(T ), fzz(T ), fE(T )
and fEz(T ) in terms of the functions u0 and v0 defined on G. Since fz and fzz are
periodic functions with period T , we obviously have

fz(T ) = fz(0) = v0 and fzz(T ) = fzz(0) = 0. (5.12)

To express fE(T ) and fEz(T ) in terms of u0 and v0, first note that since f(T ) = f(0)
(mod 2π), we may write u0 as u0 = f(T ); differentiation with respect to E and
taking into account that the period T depends on E yields

∂Eu0 = fE(T ) + TEfz(T )

= fE(T ) + TEfz(0) (because fz has period T )

= fE(T ) + TEv0.

(5.13)

Therefore, since u0 is piecewise constant on G,

fE(T ) = −TEv0. (5.14)

Similarly, since fz has period T , we can write v0 = fz(T ), and then differentiation
yields ∂Ev0 = TEfzz(T ) + fEz(T ), and therefore as fzz(T ) = 0,

fEz(T ) = ∂Ev0. (5.15)

Substituting (5.12), (5.14), and (5.15) into M(0) = F(T, 0) with F(z, 0) given by
(5.11), and using the identity (5.10), we obtain the following.

Proposition 5.2. The monodromy matrix M(0) is given by

M(0) =

(
1 −(c2 − 1)TEv

2
0

0 1

)
. (5.16)

In particular, M(0) is not diagonalizable unless TE = 0.

5.1.2. Alternate construction of F(z, 0) and M(0). We can also obtain the (unique)
fundamental solution matrix for λ = 0 and the corresponding (unique) monodromy
matrix by an alternate method that avoids explicit differentiation with respect to
the energy E. Indeed, to obtain F(z, 0), it suffices to find the particular solutions
w1(z) and w2(z) of the differential equation (3.3) for λ = 0, namely

(c2 − 1)wzz + V ′′(f(z))w = 0, (5.17)

that satisfy the initial conditions

w1(0) = w2
z(0) = 1 and w1

z(0) = w2(0) = 0. (5.18)
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Then

F(z, 0) =

(
w1(z) w2(z)
w1
z(z) w2

z(z)

)
. (5.19)

In order to obtain the particular solutions w1(z) and w2(z), we will first develop
the general solution of the differential equation (5.17). In §5.1.1 (cf. Lemma 5.1)
it was observed that one solution of this equation is given by w = fz. The general
solution of this second-order equation is readily obtained by the classical method
of reduction of order, which is based on the substitution w = gfz, where g is to be
regarded as a new unknown. Then g can be found by a quadrature, and the general
solution of (5.17) is

w(z) = Afz(z)

∫ z

0

dy

fz(y)2
+Bfz(z), (5.20)

where A and B are arbitrary constants. It follows from (5.20) that the correspond-
ing formula for the derivative is

wz(z) = Afzz(z)

∫ z

0

dy

fz(y)2
+

A

fz(z)
+Bfzz(z). (5.21)

/ Remark 5.3. Note that since fz(0) 6= 0 according to the normalization (2.11)–
(2.12), the general solution formula (5.20) makes sense in a neighborhood of z = 0,
and for rotational waves of both sub- and superluminal types one has fz(z) 6= 0 for
all z and hence the formula (5.20) requires no additional explication. However, in
the case of librational waves fz(z) will have exactly two zeros within the fundamen-
tal period interval z ∈ (0, T ), and therefore the integrand 1/f2z becomes singular
near these points. On the other hand, the zeros of fz are necessarily simple. Indeed,
fz(z) is a nontrivial solution of the linear second-order equation (5.17), and there-
fore if fz(z0) = fzz(z0) = 0 for some z0 ∈ R, then by the Existence and Uniqueness
Theorem we would also have fz(z) = 0 for all z in contradiction to the nontrivi-
ality of fz. This argument shows that all apparent singularities corresponding to
the zeros of fz in the general solution formula (5.20) for the equation (5.17) are
necessarily removable. Still, care must be taken in the use of the formula (5.20) for
z near roots of fz as will be discussed below in detail. .

To find the constants (A1, B1) and (A2, B2) corresponding to the fundamen-
tal pair of solutions w1(z) and w2(z) respectively, one simply imposes the initial
conditions (5.18). The result of this calculation is that

A1 = 0 and B1 =
1

v0
, while A2 = v0 and B2 = 0. (5.22)

With these values in hand, one obtains a formula for F(z, 0):

F(z, 0) =


fz(z)

v0
v0fz(z)

∫ z

0

dy

fz(y)2

fzz(z)

v0
v0fzz(z)

∫ z

0

dy

fz(y)2
+

v0
fz(z)

 . (5.23)

Now, (5.23) is a valid formula for F(z, 0) for z in any interval containing z =
0 that also contains no zeros of fz. Although the matrix elements will extend
continuously to the nearest zeros of fz (cf. Remark 5.3), formula (5.23) is no longer
correct if z is allowed to pass beyond a zero of fz. Therefore, to allow z to increase
by a period to z = T for the purposes of computing the monodromy matrix, we
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require an alternate formula for F(z, 0) that is valid for z near T . There is only
an issue to be addressed in the librational wave case, because f is monotone for
rotational waves. Hence we consider the librational case in more detail now.

Let f be a librational wave, and let z0 ∈ (0, T ) denote the smallest positive zero
of fz. First suppose that fz is an analytic function of z in some horizontal strip
of the complex plane containing the real axis. Then we must have fzzz(z0) = 0
wherever fz(z0) = 0 (by the differential equation (5.17)), and it follows by a quick
computation that dy/fz(y)2 is a meromorphic differential having a double pole
with zero residue at z0. In this situation, the contour integral

∫ z
0
dy/fz(y)2 defines

a single-valued meromorphic function near z = z0 (with a simple pole). In this
analytic situation, the solution w(z) may be continued to the real interval z > z0
simply by choosing a path of integration from y = 0 to y = z that avoids the double
pole of the integrand at y = z0, and all such paths are equivalent by the Residue
Theorem. Thus, the same solution that is given by (5.20) for z near z = 0 is given
for z near T by

w(z) = Afz(z)

∫ z

T

dy

fz(y)2
+ (B + δA)fz(z), (5.24)

where δ is defined by the formula

δ :=

∫ T

0

dy

fz(y)2
(5.25)

in which the integral is interpreted as a complex contour integral over an arbi-
trary contour in the strip of analyticity of fz that connects the specified endpoints
and avoids the double-pole singularities of the integrand. Note in particular that
although fz(y)−2 is certainly positive for real y ∈ (0, T ), δ need not be positive be-
cause a real path of integration is not allowed if fz has any zeros. Of course (5.24)
and (5.25) are also valid for rotational waves (in which case f is monotone); in this
situation a real path of integration is indeed permitted in (5.25) and consequently
δ > 0.

If the rather special condition of analyticity of fz is dropped, a more general
strategy is to write a different formula for the solution w(z) in each maximal open
subinterval of (0, T ) on which fz 6= 0; in each such interval I one writes

w(z) = AIfz(z)

∫ z

zI

dy

fz(y)2
+BIfz(z), z ∈ I, (5.26)

for some fixed point zI ∈ I. One then chooses the constants AI and BI for the
different subintervals of (0, T ) to obtain continuity of w and wz across each zero
of fz. In this way, one finds after some calculation that exactly the same solution
of (5.17) represented for z near z = 0 by the formula (5.20) is again represented
(regardless of whether f is rotational or librational) for z near z = T by the formula
(5.24), but where the quantity δ is now defined as follows:

δ :=

∫ T

0

(
1

fz(y)2
−

∑
fz(zk)=0

0<zk<T

1

fzz(zk)2(y − zk)2

)
dy

−
∑

fz(zk)=0

0<zk<T

1

fzz(zk)2

(
1

zk
+

1

T − zk

)
. (5.27)
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Here the integral is a real integral. The quantity on the right-hand side should be
regarded as the correct regularization (finite part) of the divergent integral (5.25)
in the case that fz has zeros in (0, T ).

Note that there are either zero (for rotational waves) or two (for librational
waves) terms in each sum. In the case when fz is analytic, the formula (5.27)
reduces to the (expected) simple form (5.25), but this form applies in general and
it also makes very clear that δ is a real quantity that can in principle have any sign.

Given the formula (5.24) and the constants (5.22), we obtain a formula for the
fundamental solution matrix F(z, 0) valid for z near T :

F(z, 0) =


fz(z)

v0
v0fz(z)

∫ z

T

dy

fz(y)2
+ δv0fz(z)

fzz(z)

v0
v0fzz(z)

∫ z

T

dy

fz(y)2
+

v0
fz(z)

 . (5.28)

Substituting z = T into (5.28) yields a second formula for the monodromy matrix
M(0):

M(0) =

(
1 δv20
0 1

)
. (5.29)

Comparing with Proposition 5.2 (noting the uniqueness of the monodromy matrix),
and taking into account that v0 6= 0, we obtain an identity:

δ = −(c2 − 1)TE (5.30)

that could also have been obtained by direct but careful computation of TE from
the formulae (2.6), (2.8), (2.9), and (2.10).

/ Remark 5.4. As an illustration of the direct calculation of δ from (5.27) in
practice, we suppose that f is a librational traveling wave solution of (1.1) with
sine-Gordon potential V (u) = − cos(u). Then as fz has exactly two zeros per
fundamental period T , to calculate δ we should in general use the formula (5.27)
representing the finite part of a divergent integral. As will be seen shortly, however,
fz is an analytic function for real z in the sine-Gordon case that extends to the
complex plane as a meromorphic function (in fact an elliptic function) that satisfies
the functional identity fz(z+ T ) = fz(z). Therefore, it is also possible to calculate
δ by contour integration using the formula (5.25). Let η > 0 be a sufficiently small
number. We choose an integration contour consisting of three segments: a segment
from y = 0 to y = iη followed by a segment from y = iη to y = T + iη followed by
a segment from y = T + iη to y = T . By periodicity of fz(·) the contributions of
the first and third arcs will cancel and we then will have

δ =

∫ T+iη

iη

dy

fz(y)2
. (5.31)

To calculate δ we now represent the integrand in terms of elliptic functions.
First consider the superluminal case, in which f will oscillate about a mean value
of f = 0. Making the substitution

sin( 1
2f(ξ

√
c2 − 1)) =

√
1 + E

2
s(ξ) (5.32)

into equation (2.4) yields(
dξ

ds

)2

=
1

(1− s2)(1−ms2)
, m :=

1 + E

2
∈ (0, 1). (5.33)
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This equation is solved by the Jacobi elliptic function sn (cf.[1, Chapter 22]):

s(ξ) = sn(ξ;m) and hence sin( 1
2f(z)) =

√
m sn

(
z√
c2 − 1

;m

)
. (5.34)

Therefore

fz(z)
2 = 2

E + cos(f(z))

c2 − 1
=

4m

c2 − 1

(
1− sn

(
z√
c2 − 1

;m

)2
)

=
4m

c2 − 1
cn

(
z√
c2 − 1

;m

)2

.

(5.35)

Also, the period T of fz in this case is expressed in terms of the complete elliptic
integral of the first kind K [1, Chapter 19]:

T = 2
√
c2 − 1K, K := K(m). (5.36)

Now let us choose η =
√
c2 − 1K ′ where K ′ := K(1−m). Then using the identity

cn(w + iK ′;m)2 = −dn(w;m)2

sn(w;m)2
(5.37)

we have

δ =

∫ 2
√
c2−1K+i

√
c2−1K′

i
√
c2−1K′

dy

fz(y)2
=
√
c2 − 1

∫ 2K+iK′

iK′

dw

fz(
√
c2 − 1w)2

=
(c2 − 1)3/2

4m

∫ 2K+iK′

iK′

dw

cn(w;m)2

= − (c2 − 1)3/2

4m

∫ 2K

0

sn(v;m)2

dn(v;m)2
dv

(5.38)

Now since dn(v;m) is real and bounded away from zero for real v while sn(v;m) is
real and bounded for real v, it follows that

δ < 0 for superluminal librational waves with V (u) = − cos(u). (5.39)

Exactly the same calculation shows that δ < 0 for subluminal librational waves
as well, since the latter case can be related to the former simply by the mapping
f 7→ f + π. .

5.2. Series expansion of the fundamental solution matrix F(z, λ) about
λ = 0. The Picard iterates for the fundamental solution matrix F(z, λ) converge
uniformly on (z, λ) ∈ [0, T ] ×K, where K ⊂ C is an arbitrary compact set. Since
the coefficient matrix A(z, λ) is entire in λ for each z, it follows that F(z, λ) is
an entire analytic function of λ ∈ C for every z ∈ [0, T ]. Hence the fundamental
solution matrix F(z, λ) has a convergent Taylor expansion about every point of the
complex λ-plane. In particular, the series about the origin has the form

F(z, λ) =

∞∑
n=0

λnFn(z), z ∈ [0, T ] (5.40)

for some coefficient matrices {Fn(z)}∞n=0, and this series has an infinite radius
of convergence. Setting λ = 0 gives F0(z) = F(z, 0), which has already been
computed (two ways) in §5.1. Our current goal is to explicitly compute F1(z) and
F2(z). The benefit of the latter finite computation is that as a convergent power
series, the series (5.40) may equally well be interpreted as an asymptotic series in



SPECTRAL AND MODULATIONAL STABILITY OF KLEIN-GORDON WAVETRAINS 35

the Poincaré sense in the limit λ→ 0. Thus, a finite number of terms are sufficient
to obtain increasing accuracy in this limit, and the order of accuracy is determined
by the number of retained terms. We will also obtain the first few terms of the
corresponding expansion of the monodromy matrix M(λ), simply by evaluation of
the terms of (5.40) for z = T .

Rather than proceed directly, we instead expand the fundamental solution matrix
FH(z, ν) and corresponding monodromy matrix MH(ν) for Hill’s equation (4.2), and
then apply Lemma 4.7 with α(λ) = λc/(c2− 1). The initial-value problem satisfied
by FH(z, ν) is

FH
z (z, ν)−AH(z, ν)FH(z, ν) = 0, FH(0, ν) = I, (5.41)

where the coefficient matrix is entire in the spectral parameter ν and is given by

AH(z, ν) =

(
0 1

ν − P (z) 0

)
, P (z) :=

V ′′(f(z))

c2 − 1
. (5.42)

Again, FH(z, λ) is given by a power series with infinite radius of (uniform, for
z ∈ [0, T ]) convergence:

FH(z, ν) =

∞∑
n=0

νnFH
n (z). (5.43)

Since Hill’s equation (4.2) coincides with the equation (3.3) for λ = 0, the zero-
order term is given by FH

0 (z) = F0(z) = F(z, 0), and it has been obtained already
in §5.1. Setting z = 0 in (5.43), one obtains

∞∑
n=1

νnFH
n (0) = 0, ν ∈ C, (5.44)

because FH(0, ν) = I for all ν. Since ν is arbitrary, it follows that FH
n (0) = 0 for

all n ≥ 1. By collecting the terms with the same powers of ν, it follows that the
subsequent terms in the series (5.43) satisfy the initial-value problems

FH
nz(z)−AH(z, 0)FH

n (z) = σ−FH
n−1(z), FH

n (0) = 0, where σ− :=

(
0 0
1 0

)
, (5.45)

for n ≥ 1. These equations can be solved in turn by means of the method of
variation of parameters, i.e., by making the substitution FH

n (z) = F0(z)Gn(z),
where Gn(z) is to be regarded as a new unknown satisfying the induced initial
condition Gn(0) = 0. Since F0z(z) = AH(z, 0)F0(z), the terms involving the non-
constant coefficient matrix AH(z, 0) cancel, and then Gn(z) can be obtained by a
quadrature. This method results in the following explicit recursive formulae for the
coefficients FH

n (z):

FH
n (z) = F0(z)

∫ z

0

F0(y)−1σ−FH
n−1(y) dy, n ≥ 1. (5.46)

In particular, for n = 1 this gives

FH
1 (z) = F0(z)

∫ z

0

F0(y)−1σ−F0(y) dy, (5.47)

and setting z = T in (5.43) we obtain the corresponding series for MH(ν):

MH(ν) = M(0) +

∞∑
n=1

νnMH
n , MH

1 = M(0)

∫ T

0

F0(y)−1σ−F0(y) dy. (5.48)
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Now, invoking Lemma 4.7 with α(λ) = λc/(c2 − 1), and recalling the quadratic
mapping λ 7→ ν(λ) defined in (4.2), we obtain the first two correction terms in the
series (5.40):

F1(z) =
czF0(z)

c2 − 1
+
c[σ−,F0(z)]

c2 − 1

F2(z) = 1
2

c2z2F0(z)

(c2 − 1)2
+
c2z[σ−,F0(z)]

(c2 − 1)2
− c2σ−F0(z)σ−

(c2 − 1)2

+
F0(z)

(c2 − 1)2

∫ z

0

F0(y)−1σ−F0(y) dy,

(5.49)

where [A,B] := AB − BA denotes the matrix commutator. Setting z = T in
the series formula (5.40) gives the series for the monodromy matrix M(λ), also an
entire function of λ:

M(λ) =

∞∑
n=0

λnMn, Mn := Fn(T ). (5.50)

Of course M0 = F0(T ) = M(0), and this matrix was obtained by two equivalent
calculations in §5.1. From (5.49) we then obtain

M1 = qM(0) +
c[σ−,M(0)]

c2 − 1

M2 = 1
2q

2M(0) +
cq[σ−,M(0)]

c2 − 1
− c2σ−M(0)σ−

(c2 − 1)2

+
M(0)

(c2 − 1)2

∫ T

0

F0(y)−1σ−F0(y) dy.

(5.51)

6. Stability indices

In this section, we use the asymptotic expansion of the monodromy matrix M(λ)
valid for small λ that was obtained in the preceding section to determine stability
properties of the periodic wavetrain f solving the Klein-Gordon equation (1.1).
These stability properties are conveniently described in terms of two indices, or
signs. These provide tests for stability that are easy to implement in practice.

6.1. The parity index. Following Bronski and Johnson [8], we define a parity
index (also called orientation index ) for periodic waves, which is analogous to the
stability index for solitary waves [44, 45]. Basically, it compares the Evans function
near λ = 0 with its asymptotic behavior for large λ along the real line. If the signs
are different, then there must be an odd number of zeroes along the positive real
line, indicating the existence of real unstable eigenvalues.

We have already seen by two different calculations in §5.1 that λ = 0 belongs
to the spectrum σ. In fact, λ = 0 belongs to the periodic partial spectrum σ0, as
both Floquet multipliers coincide at µ = 1 (with the formation of a Jordan block
in the monodromy matrix M(0) in the generic case TE 6= 0). At a physical level,
this is related to the translation invariance of the periodic traveling wave present
because (1.1) is an autonomous equation. Recall (cf. Remark 3.6) that the periodic
eigenvalues (the points of the periodic partial spectrum σ0) are the roots of the
(entire) periodic Evans function D(λ, µ) with µ = 1 ∈ S1, where D is defined in
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(3.13). Expanding out the determinant and setting µ = 1 gives the formula

D(λ, 1) = 1− tr (M(λ)) + det(M(λ)). (6.1)

To define the parity index we will consider the restriction of this formula to λ ∈ R.

Lemma 6.1. The restriction of the periodic Evans function D(λ, 1) to λ ∈ R is a
real-analytic function. Moreover, for λ ∈ R+ with λ� 1 sufficiently large, we have
sgn (D(λ, 1)) = sgn (c2 − 1).

Proof. The system (3.4) has real coefficients whenever λ ∈ R. Therefore the fun-
damental solution matrix F(z, λ) is real for real λ and z ∈ [0, T ]. By evaluation at
z = T the same is true for the elements of the monodromy matrix M(λ), and this
proves the real-analyticity. When λ is large in magnitude, then λ2+V ′′(f(z)) ≈ λ2,
and hence the first-order system (3.4) can be approximated by a constant-coefficient
system:

wz = A∞(λ)w, A∞ :=

 0 1

− λ2

c2 − 1

2cλ

c2 − 1

 . (6.2)

The fundamental solution matrix of this approximating system is the matrix expo-
nential F∞(z, λ) = ezA

∞(λ), and the corresponding monodromy matrix is M∞(λ) =
eTA∞(λ). The eigenvalues of A∞(λ) are λ/(c± 1), and hence those of M∞(λ) are
eλT/(c±1). The periodic Evans function associated with the approximating system
is therefore

D∞(λ, 1) = 1− tr (M∞(λ)) + det(M∞(λ)) = (eλT/(c+1)− 1)(eλT/(c−1)− 1), (6.3)

and this real-valued function of λ ∈ R clearly has the same sign as does c2 − 1
for large positive λ. The coefficient matrix A∞(λ) of system (6.2) is an accurate
approximation of that of the system (3.4) uniformly for z ∈ [0, T ], so the respective
Evans functions D∞(λ, 1) and D(λ, 1) are close to each other in the limit λ → ∞
[44]. This shows that D(λ, 1) has the same sign as does c2 − 1 for λ� 1. �

As is typical for equations with Hamiltonian structure, the first derivative of the
Evans function vanishes at λ = 0, and we need to compute (at least) the second
derivative at the origin to obtain local information for small λ.

Lemma 6.2. The periodic Evans function D(·, 1) : R→ R vanishes to even order
at λ = 0, and satisfies

D(0, 1) = Dλ(0, 1) = 0, Dλλ(0, 1) = 2(q2 − κ), (6.4)

where q is defined by (4.16) and where

κ :=
M12(0)

(c2 − 1)2

∫ T

0

F11(y, 0)2 dy. (6.5)

Proof. Setting µ = 1 in (4.22) shows that e−qλD(λ, 1) is even in λ. Hence if D(λ, 1)
vanishes at the origin it necessarily does so to even order. Recalling (4.18) (which
also shows that the approximation of det(M(λ)) by det(M∞(λ)) in the proof of
Lemma 6.1 is exact) and expanding through order O(λ2) gives

det(M(λ)) = 1 + 2qλ+ 2q2λ2 +O(λ3), λ→ 0. (6.6)

Taking the trace in the series (5.50) with the help of Proposition 5.2 and (5.51),

tr (M(λ)) = 2 + 2qλ+
(
q2 + κ

)
λ2 +O(λ3), λ→ 0. (6.7)
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Substitution of these expansions into (6.1) gives the expansion of the periodic Evans
function about λ = 0 as

D(λ, 1) =
(
q2 − κ

)
λ2 +O(λ3) λ→ 0, (6.8)

and this completes the proof of the Lemma. �

The idea of comparing the behavior of the real-valued function D(·, 1) for large
and small positive λ as described by Lemma 6.1 and Lemma 6.2 respectively sug-
gests the definition of an index relating these two extremes:

Definition 6.3 (parity index γ). Suppose D(·, 1) vanishes to even order 2p ≥ 2 at
λ = 0. The parity (or orientation) index is given by

γ := sgn
(

(c2 − 1)∂2pλ D(0, 1)
)
. (6.9)

We then have the following instability criterion.

Proposition 6.4. If γ = 1 (resp., γ = −1) then the number of positive real
points in the periodic partial spectrum σ0 ⊂ σ, i.e., periodic eigenvalues, is even
(resp., odd) when counted according to multiplicity. In particular, if γ = −1 there
is at least one positive real periodic eigenvalue and hence the underlying periodic
wave f solving the Klein-Gordon equation (1.1) is spectrally unstable, with the
corresponding exponentially growing solution of the linearized equation (3.2) having
the same spatial period T as fz.

Proof. If γ = 1, then D(λ, 1) has the same sign for sufficiently small and sufficiently
large strictly positive λ, while if γ = −1 the signs are opposite for small and large
λ. Since D(λ, 1) is real-analytic for real λ it clearly has an even number of positive
roots for γ = 1 and an odd number of positive roots for γ = −1, with the roots
weighted by their multiplicities. By Proposition 3.4, these roots correspond to
points in the spectrum σ, and since µ = 1, they are periodic eigenvalues. �

The case γ = 1 is, of course, inconclusive for stability, because it only guarantees
that the number of real positive (periodic) eigenvalues is even (possibly zero). This
is why γ is called a parity index [45]. The alternative name of orientation index
is suggested by the way that γ compares the asymptotic directions of the graph of
D(·, 1). We can immediately apply Proposition 6.4 to establish the following:

Theorem 6.5. Let the potential V satisfy Assumptions 2.1 and 2.2. Then, sub-
luminal librational periodic traveling wave solutions of the Klein-Gordon equation
(1.1) for which TE < 0 are spectrally unstable, having a positive real periodic eigen-
value λ ∈ σ0 ⊂ σ.

Proof. We use Proposition 5.2 to express M12(0) in the formula (6.4) for Dλλ(0, 1)
in terms of c and TE . Noting that the integral of F11(y, 0)2 is strictly positive, it
then follows from the hypotheses that (c2−1)TE > 0, and hence that Dλλ(0, 1) > 0
because κ < 0. Hence D(·, 1) vanishes to precisely second order at the origin and
γ = −1 as c2−1 < 0; instability is thus predicted according to Proposition 6.4. �

As a consequence of Remark 2.12, we have the following.

Corollary 6.6. All subluminal librational periodic traveling wave solutions of the
sine-Gordon equation (V (u) = − cos(u)) are spectrally unstable, having a positive
real periodic eigenvalue λ ∈ σ0 ⊂ σ.
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/ Remark 6.7. In the case of superluminal librational waves satisfying instead
TE > 0, the index γ satisfies (by similar arguments) γ = 1. The number of positive
periodic eigenvalues is necessarily even in this case, but as this number can be zero,
instability cannot be concluded. For rotational waves of both types, as well as for
subluminal (resp., superluminal) librational waves with TE > 0 (resp., TE < 0),
Proposition 2.10 indicates that the two terms in the sum (6.4) for Dλλ(0, 1) have
opposite signs, and therefore without further information we cannot even reliably
calculate the index γ for these remaining cases. .

A parallel theory can be developed for the “antiperiodic Evans function”D(λ,−1).
This function is also real-valued for real λ, however it is easy to check that it is
strictly positive for λ = 0 and in the limit λ → ±∞, and therefore the only con-
clusion is that the number of positive real antiperiodic eigenvalues is always even
(possibly zero).

The instability detected by the parity index corresponds to a perturbation with
spatial period T and with strictly positive exponential growth rate λ. A similar
phenomenon occurs in the stability analysis of solitary waves [7, 42], with the cor-
responding Evans function having a root at some real value (growth rate) bounded
away from zero. We will turn out attention next toward the introduction of an
index capable of detecting instabilities of a different type, namely those having
arbitrarily small exponential growth rates.

6.2. The modulational instability index. The asymptotic analysis of the mon-
odromy matrix M(λ) in the limit λ→ 0 already played a role in the theory of the
parity index (cf. Lemma 6.2). Now we revisit the corresponding expansions to ex-
tract information about the behavior of the spectrum σ (and not just the periodic
partial spectrum σ0) in a complex neighborhood of the origin in the complex plane.
We will also compute expansions of the Floquet multipliers near the origin, and of
the function D(λ, µ) in a full complex neighborhood of (λ, µ) = (0, 1).

Recall that, given λ ∈ C, the Floquet multipliers µ = µ(λ) are defined as the
roots of the characteristic equation D(λ, µ) = 0, i.e., they are the eigenvalues of the
monodromy matrix M(λ). The quadratic formula gives the multipliers in the form

µ = µ±(λ) =
1

2

(
tr (M(λ))±

(
(tr (M(λ)))2 − 4 det(M(λ))

)1/2)
. (6.10)

To analyze the multipliers near λ = 0, we first calculate the quadratic discriminant
with the help of the expansions of det(M(λ)) and tr (M(λ)) recorded in (6.6) and
(6.7) respectively. We obtain:

(tr (M(λ)))2 − 4 det(M(λ)) = 4κλ2 +O(λ3), λ→ 0, (6.11)

where κ is given by (6.5).
It is obvious that the quadratic discriminant is an analytic function of λ that

vanishes to at least second order at λ = 0. More generally, it is easy to apply the
reasoning described in Remark 4.13 to show that the quadratic discriminant neces-
sarily vanishes to even order at λ = 0. This implies that, by proper accounting of
the square roots, the two Floquet multipliers may be regarded as analytic functions
of λ in a complex neighborhood of λ = 0. This is an unusual situation in eigenvalue
perturbation theory, given that when λ = 0 the “unperturbed” monodromy matrix
is generally not diagonalizable according to Proposition 5.2. In general, the double
eigenvalue µ(0) = 1 of M(0) would be expected to bifurcate under perturbation in
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a way that can be described by a Puiseux (fractional power) series about λ = 0
[31, pg. 65]. Thanks to the special structure of the differential equation behind the
monodromy matrix, however, this expansion gets simplified into a standard power
series in λ in the present context.

Again using (6.7), the first few terms in the Taylor series about λ = 0 of the
(analytic) Floquet multipliers are:

µ±(λ) = 1 +
(
q ± κ1/2

)
λ+O(λ2), λ→ 0. (6.12)

Noting that κ is proportional to the monodromy matrix element M12(0) by strictly
positive factors because F11(z, 0) is a differentiable function satisfying F11(0, 0) = 1,
this formula motivates the definition of another instability index:

Definition 6.8 (modulational instability index ρ). The modulational instability
index is given by

ρ := sgn (M12(0)), (6.13)

with the understanding that ρ := 0 if M12(0) = 0.

Before we discuss the implications of this definition, we explain how the modu-
lational instability index can be effectively computed. Firstly, according to Propo-
sition 5.2 we have the following:

Proposition 6.9. The modulational instability index ρ may be explicitly expressed
in terms of the wave speed c and the derivative of the period T with respect to energy
E as

ρ = sgn (−(c2 − 1)TE), (6.14)

with the understanding that ρ = 0 if TE = 0. In particular, from Proposition 2.10,
ρ = 1 for rotational waves of any speed.

Next, recall the quantity δ defined in §5.1.2 in terms of the wave profile f either
by the contour integral (5.25) or more generally by the finite-part expression (5.27).
Combining (5.30) with Proposition 6.9 yields another formula for the modulational
instability index ρ:

Proposition 6.10. The modulational instability index ρ may be explicitly expressed
in terms of the wave profile function f alone as

ρ = sgn (δ), (6.15)

with the understanding that ρ = 0 if δ = 0. Here δ is defined in terms of f(·) by
(5.27), or in special situations, by (5.25).

It seems clear that the modulational instability index ρ has something to do
with the spectrum near the origin because it is the sign of κ which appears under
a radical in the small-λ approximation (6.12) of the Floquet multipliers. To make
this precise, we return to the notion that curves of spectrum (cf. Proposition 3.7)
may be parametrized implicitly by θ ∈ R via the equation D(λ, eiθ) = 0. Since the
Floquet multipliers µ bifurcate from µ = 1 corresponding to θ = 0, we will require
an expansion of the analytic function D(λ, eiθ) near (λ, θ) = (0, 0).

Lemma 6.11. The periodic Evans function D(λ, eiθ) is analytic in the variables
(λ, θ) ∈ C2 and has the following expansion in a neighborhood of (λ, θ) = (0, 0):

D(λ, eiθ) = −κλ2 + (iθ − qλ)
2

+O(3), (6.16)
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where O(3) denotes terms of order three or higher in (λ, θ), and where κ and q are
defined by (6.5) and (4.16) respectively.

Proof. This follows from the formula D(λ, eiθ) = e2iθ − tr (M(λ))eiθ + det(M(λ))
upon expanding the exponentials in power series about θ = 0, substituting the
expansions (6.6) and (6.7), and using the definition (6.5). �

Using this expansion of D(λ, eiθ), we analyze how solutions to D(λ, eiθ) = 0 with
(λ, θ) ∈ C × R bifurcate from (0, 0). We will see that the modulational instability
index ρ determines exactly whether or not the spectral curves are tangent to the
imaginary axis at the origin. Since the spectrum is understood in the case c = 0 by
Proposition 4.14, and since q = 0 if and only if c = 0, we will assume that q 6= 0.

Lemma 6.12. If ρ = 1 but κ 6= q2 > 0, then the equation D(λ, eiθ) = 0 para-
metrically describes (for small real θ) two smooth curves passing through the origin
tangent to the imaginary axis in a neighborhood of the origin the complex λ-plane.

If ρ = −1 then the equation D(λ, eiθ) = 0 instead parametrically describes two
distinct smooth curves that cross at the origin with tangent lines making acute
non-zero angles with the imaginary axis.

Proof. The result will follow from an application of the Implicit Function Theorem.
It is easy to check from the expansion (6.16) that while D(λ, eiθ) vanishes for
λ = θ = 0, so does Dλ(λ, eiθ). Therefore we cannot use the Implicit Function
Theorem directly to solve for λ in terms of θ. However, the issue at hand is not
that there is no smooth solution λ = λ(θ) of the equation D(λ, eiθ) = 0, but rather
that there are two such solutions which can be separated by an appropriate change
of coordinates.

Let us introduce the “blow-up” transformation of coordinates

(λ, θ) 7→ (s, θ) where λ = isθ. (6.17)

Substituting λ = isθ into the expansion (6.16) yields D(isθ, eiθ) = θ2D̂(s, θ), where

D̂(s, θ) := κs2 − (1− qs)2 + θR(s, θ), (6.18)

where R is an entire analytic function of its arguments. Omitting the “exceptional
fiber” associated with θ = 0, the equation D = 0 becomes D̂ = 0. We want to
solve for s = s(θ) near θ = 0; since κ 6= 0 and κ 6= q2, when θ = 0, D̂ = 0 is a
quadratic equation in s with two distinct roots s = s±0 := (q±κ1/2)−1. This implies

that both partial derivatives D̂s(s
+
0 , 0) and D̂s(s

−
0 , 0) are nonzero. Therefore, the

Implicit Function Theorem applies and guarantees the existence of two unique
analytic functions s = s±(θ) solving D̂(s±(θ), θ) = 0 for small θ with s±(0) = s±0 .
Recalling the change of coordinates (6.17), there are two curves of spectrum σ
through the origin λ = 0 having parametric form

λ = λ±(θ) := iθs±(θ) = is±0 θ +O(θ2), θ → 0. (6.19)

Note that since s±0 6= 0, these parametric equations both define smooth curves with
well-defined tangents at λ = 0. Finally, we note that s±0 are both real if and only
if κ > 0, in which case both curves of spectrum λ = λ±(θ) passing through the
origin are tangent to the imaginary axis. (It is possible in this case that the two
curves actually coincide.) If instead κ < 0, then s±0 form a complex-conjugate pair
with nonzero real and imaginary parts: s±0 = a ± ib, with a, b 6= 0. Therefore,
the two curves of spectrum λ = λ±(θ) cross at the origin with the tangent lines
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making acute nonzero angles with the imaginary axis of size φ = arctan(|b/a|).
This completes the proof of the lemma. �

If ρ = 0, then it also holds that σ consists locally of two curves tangent to the
imaginary axis at λ = 0, with the degree of tangency increasing with the (even)
order of vanishing of (tr (M(λ)))2 − 4 det(M(λ)) at λ = 0. The local structure of
the spectrum near the origin is illustrated in Figure 3.

Figure 3. A qualitative sketch of the three generic possibilities for
the spectrum σ in a neighborhood of the origin. Left panel: two
curves coincide exactly with the imaginary axis. Center panel: two
distinct curves of spectrum each of which is tangent to the imag-
inary axis. Right panel: two distinct curves of spectrum crossing
the imaginary axis transversely. The left two panels illustrate pos-
sible configurations in the case ρ = 1 with κ 6= q2 or ρ = 0, while
the right-hand panel illustrates the configuration if ρ = −1. In
the terminology of Definition 6.14, the left-hand panel illustrates
modulational stability, the central panel illustrates weak modula-
tional instability, and the right-hand panel illustrates strong mod-
ulational instability.

/ Remark 6.13. The special case when κ = q2 (equivalently, Dλλ(0, 1) = 0 by
(6.4)) is more complicated. If D(·, 1) vanishes at λ = 0 precisely to (even) order
2p > 2, then it can be shown that D(λ, eiθ) has the expansion

D(λ, eiθ) = −θ2 − 2iqλθ + Cλ2p +O(θ3) +O(λθ2) +O(λ2θ) +O(λ2p+1), (6.20)

where

C :=
∂2pλ D(0, 1)

(2p)!
=

(2q)2p − tr (M(2p)(0))

(2p)!
6= 0. (6.21)

When λ = 0, the equation D = 0 has a double root at θ = 0. To unfold this double
root, let θ = tλ for a new unknown t, and obtain D(λ, eitλ) = λ2Ď(λ, t), where

Ď(λ, t) = −t2 − 2iqt+ Cλ2p−2 +O(λt3) +O(λt2) +O(λt) +O(λ2p−1). (6.22)

Omitting the exceptional fiber, we solve Ď(λ, t) = 0 for t when λ is small. At
λ = 0 there are two simple roots, t = −2iq and t = 0, so by the Implicit Function
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Theorem there are two analytic solutions of Ď(λ, t) = 0: t = t1(λ) and t = t2(λ)
satisfying t1(0) = −2iq and t2(0) = 0. The solution t = t2(λ) can be seen to satisfy
t2(λ) = Cλ2p−2/(2iq) + O(λ2p−1) as λ → 0. Returning to the original equation
D(λ, eiθ) = 0 we have found two analytic solutions θ = θ(λ):

θ = θ1(λ) = −2iqλ+O(λ2) and θ = θ2(λ) =
C

2iq
λ2p−1 +O(λ2p). (6.23)

If q 6= 0 (i.e., c 6= 0), then θ = θ1(λ) can be solved for λ to yield a curve of spectrum
given by λ = iθ/(2q) + O(θ2), which is clearly tangent to the imaginary axis for
θ ∈ R. On the other hand, the equation θ = θ2(λ) is a normal form of the type
described in Remark 3.8, and solving for λ in terms of θ one finds 2p− 1 curves of
spectrum crossing at the origin with equal angles, and with one of the curves tangent
to the imaginary axis. Since p > 1, there exist curves of spectrum emanating
from the origin into the left and right half-planes making nonzero angles with the
imaginary axis. Representative plots are shown in Figure 4. The mechanism for the
sudden appearance, as lower-order derivatives of D(·, 1) tend to zero, of spectral
arcs through the origin that are not tangent to iR is the collision of smooth arcs
of unstable spectrum with the origin. Therefore spectral instability is expected not
just for Dλλ(0, 1) = 0 but also for Dλλ(0, 1) sufficiently small. .

Figure 4. The spectrum near the origin when D(·, 1) vanishes to
order 2p with p = 2 (left panel) and p = 3 (center panel). Two
curves are tangent to iR (illustrated as if they coincide with mul-
tiplicity two), and other curves of simple spectrum make nonzero
angles with iR. According to Definition 6.14, strong modulational
instability is predicted for all p > 1. The right panel illustrates the
spectrum near the origin for ∂2λD(0, 1) and ∂4λD(0, 1) both small
but nonzero.

Of course the presence of any spectrum σ that is not purely imaginary implies
spectral instability according to Definition 3.11. The particular type of instability
detected by the condition ρ = −1 is called a modulational instability, for which we
give the following formal definition.

Definition 6.14 (modulational stability and instability). A periodic traveling wave
solution f of the Klein-Gordon equation (1.1) is said to be modulationally unstable
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(or, to have a modulational instability) if for every neighborhood U of the origin
λ = 0, (σ \ iR) ∩ U 6= ∅. Otherwise, f is said to be modulationally stable. For
an angle θ ∈ (0, π/2), let Sθ denote the union of the open sectors given by the
inequalities | arg(λ)| < θ or | arg(−λ)| < θ (note 0 6∈ Sθ). A modulational instability
is called weak if for every θ ∈ (0, π/2) and for every neighborhood U of the origin,
σ ∩ U ∩ Sθ = ∅. A modulational instability that is not weak is called strong.

Note that weak modulational instabilities correspond to the existence of curves
of non-imaginary spectrum arbitrarily close to the origin that are nonetheless tan-
gent to the imaginary axis at the origin. There are two reasons for the terminology
introduced in Definition 6.14. Firstly, the unstable modes associated with the spec-
trum near λ = 0 have Floquet multipliers very close to 1, which in turn implies
that the corresponding Floquet exponents R(λ) (cf. (3.12)) can be chosen to be
very small imaginary numbers. This makes the factor eR(λ)z/T , that modulates
the periodic function z(z, λ) in the Bloch representation of the mode, very slowly-
varying. The complex growth rate λ of the mode is of course very small as well.
Hence the slow exponential growth of such a mode may appear to an observer as
the formation of a slowly-varying modulation on the background of the underlying
unstable periodic wave f . (Note that the combination of slow spatial modulation
and slow instability can only occur for unstable spectrum in a neighborhood of
the origin, which implies that there are no additional instabilities that may appear
as slow spatiotemporal modulations of the unstable wave f that are not captured
by Definition 6.14.) Secondly, as we will show in §9.1 below (cf. Theorem 9.2),
the presence/absence of a modulational instability turns out to be precisely cor-
related with the ellipticity/hyperbolicity of the system of modulation equations
that arise in Whitham’s fully nonlinear theory [59] of slowly-modulated waves. For
this reason in particular, a modulational instability is sometimes called an insta-
bility of Whitham type. There is also a connection between the presence/absence
of a modulational instability and the focusing/defocusing type of a certain nonlin-
ear Schrödinger equation that arises in the weakly nonlinear modulation theory of
near-equilibrium librational waves, as we will see in §9.2 (cf. Theorem 9.3).

Observe also that a periodic traveling wave f can be modulationally stable ac-
cording to Definition 6.14 without being spectrally stable in the sense of Defini-
tion 3.11, because σ may coincide exactly with the imaginary axis in a neighborhood
of the origin while containing values of λ with Reλ 6= 0 elsewhere. For example,
the parity index γ defined in §6.1 is designed to detect points of σ that are real and
not close to the origin, and hence that correspond to unstable modes exhibiting
fairly rapid exponential growth in time. Also, in §7.1 we will show that superlumi-
nal rotational waves are spectrally unstable, although as we will see immediately
they exhibit at worst weak modulational instability in the generic case κ 6= q2 > 0
(and numerics suggest that they are in fact modulationally stable at least in the
sine-Gordon case; see [30]).

Proposition 6.9 and Lemma 6.12 imply the following instability result.

Theorem 6.15. Let V be a potential satisfying Assumptions 2.1 and 2.2. A libra-
tional periodic traveling wave solution of the Klein-Gordon equation (1.1) for which
(c2 − 1)TE > 0 holds is strongly modulationally unstable.

Proof. Computing the modulational instability index in the form given by Propo-
sition 6.9, one has ρ = −1 for all such waves. Hence Lemma 6.12 guarantees the
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existence of two smooth curves of σ crossing at λ = 0, neither of which is tangent
to the imaginary axis. �

Since modulational instability implies spectral instability, we have the following.

Corollary 6.16. All librational waves satisfying (c2 − 1)TE > 0 are spectrally
unstable.

Finally, recalling Remark 2.12, we have the following.

Corollary 6.17. All librational traveling wave solutions of the sine-Gordon equa-
tion (V (u) = − cos(u)) are strongly modulationally unstable and hence spectrally
unstable.

/ Remark 6.18. By Proposition 2.10, the modulational instability index is ρ = 1
for rotational waves of both sub- and superluminal types. Hence in the generic
case of κ 6= q2 > 0, the spectrum σ is locally tangent to the imaginary axis at the
origin λ = 0, but this is inconclusive for stability because these curves could fail
to be confined to the imaginary axis, or because there could be other parts of the
spectrum σ with nonzero real parts far from the origin. In other words, there could
be either a weak modulational instability, or an instability of non-modulational
type, neither of which can be detected by the modulational instability index. In
the special case of κ = q2 > 0, there is a strong modulational instability, according
to Remark 6.13. .

6.3. Application of the modulational instability index to the Hill discrim-
inant. The index ρ has other applications as well. We will now use it to settle an
issue left unresolved earlier (see Remark 4.3). The quantity ∆H(ν) := tr (MH(ν))
is called the Hill discriminant. Evaluating for ν = 0, where the equations (3.3) and
(4.2) coincide, gives ∆H(0) = tr (M(0)) = 2 by Proposition 5.2. The sign of the
derivative ∆H

ν (0) can be computed explicitly:

Lemma 6.19. The Hill discriminant satisfies sgn (∆H
ν (0)) = ρ (and ∆H

ν (0) = 0 if
ρ = 0).

Proof. The monodromy matrix MH(ν) for Hill’s equation was analyzed in a neigh-
borhood of ν = 0 in §5.2, where it was shown that the elements of MH(ν) admit
convergent power series expansions about ν = 0. By differentiation of the power
series formula for MH(ν) given in (5.48), it follows upon setting ν = 0 that

MH
ν (0) = MH

1 = M(0)

∫ T

0

F0(y)−1σ−F0(y) dy. (6.24)

Taking the trace and noting that F0(z) = F(z, 0), one obtains

∆H
ν (0) = M12(0)

∫ T

0

F11(y, 0)2 dy. (6.25)

Since F(z, 0) is a fundamental solution matrix of a system of equations with real
coefficients, and since F(z, 0) is normalized to the identity at z = 0, F11(z) is a
real-valued differentiable function satisfying F11(0, 0) = 1, and hence the integral
is strictly positive. Therefore sgn (∆H

ν (0)) = sgn (M12(0)) = ρ according to Defini-
tion 6.8. �

/ Remark 6.20. Combining Proposition 6.9 with Lemma 6.19 shows that if f is
a librational wave, then
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• ∆H
ν (0) < 0 if (c2 − 1)TE > 0 and hence ν

(0)
2 < ν

(0)
1 = 0;

• ∆H
ν (0) > 0 if (c2 − 1)TE < 0 and hence 0 = ν

(0)
2 < ν

(0)
1 ;

• ∆H
ν (0) = 0 if TE = 0, and hence ν

(0)
2 = ν

(0)
1 = 0.

Here we recall that ν
(0)
1 and ν

(0)
2 are particular periodic eigenvalues of the Hill’s

spectrum for the librational wave f , as defined in §4.1. This concludes the charac-
terization of the Hill’s spectrum ΣH corresponding to librational waves for ν near
ν = 0 (cf. Remark 4.3). .

7. Stability properties of rotational waves

According to Remark 6.7, the parity index γ is not easy to calculate for rotational
waves. According to Remark 6.18, the modulational instability index satisfies ρ = 1
for rotational waves, but unfortunately this is inconclusive for stability. Therefore,
we have so far not been able to determine the spectral stability properties of rota-
tional waves. In this section, we remedy this by proving the following:

Theorem 7.1. Suppose that the potential V satisfies Assumptions 2.1 and 2.2.
Then we have the following:

(i) all periodic traveling waves of the Klein-Gordon equation (1.1) of superlu-
minal rotational type are spectrally unstable;

(ii) all periodic traveling waves of the Klein-Gordon equation (1.1) of sublumi-
nal rotational type are spectrally stable.

The proofs of statements (i) and (ii) are quite different and will be presented
below in §7.1 and §7.2 respectively. The proof of (i) also implies spectral instability
results for certain librational waves; these will be described briefly in Remarks 7.4
and 7.5.

7.1. Superluminal rotational waves. We will prove spectral instability of super-
luminal rotational waves by showing the existence of a point λ ∈ σ with Reλ 6= 0.
Our method is based on the introduction of a spectrum-detecting function G : C→
R defined by

G(λ) := log |µ+(λ)| log |µ−(λ)|, (7.1)

where µ = µ±(λ) are the two Floquet multipliers (eigenvalues of the monodromy
matrix M(λ)) associated with the superluminal rotational wave. The function G
is well-defined on C and continuous, even at the branching points where the two
multipliers degenerate, a fact following from the symmetric fashion in which the
multipliers enter. Moreover, according to Proposition 3.4, G(λ) = 0 if and only if
λ ∈ σ. This fact makes G very similar to an Evans function; however G is most
certainly not analytic at any point — indeed it is a real-valued function of a complex
variable. Analyticity of the Evans function is very useful in certain applications,
especially numerical computations where the Argument Principle can be used to
confine the spectrum by means of evaluation of the Evans function along a system
of curves, resulting in an effective reduction in dimension over an exhaustive search
of the complex plane. However, many other applications exploit mere continuity
of the Evans function (see the argument behind the utility of the parity index γ
described in §6.1, for example). We shall use continuity of G to locate points of
the spectrum σ simply by looking for sign changes and applying the Intermediate
Value Theorem.
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Lemma 7.2. For each rotational periodic traveling wave solution f of equation
(1.1), there exists an imaginary number λ− ∈ iR such that G(λ−) < 0.

Proof. The product of the Floquet multipliers is given by Abel’s Theorem (cf.
(4.18)). Combining this with Corollary 4.8, which relates the Floquet multipliers µ
with those of Hill’s equation, it is easy to show that G can equivalently be rendered
in the form

G(λ) = (qReλ)
2 −

(
log |µH(ν(λ))|

)2
, (7.2)

where q ∈ R is defined by (4.16) and where µH(ν(λ)) denotes any Floquet multiplier
of Hill’s equation (4.2) evaluated at ν = ν(λ). It follows immediately that G(λ) ≤ 0
if Reλ = 0. We will show that the inequality holds strictly for certain λ ∈ iR.

As explained in §4.1, The Hill’s spectrum ΣH contains the point ν = 0 and
for rotational waves f , ν ∈ ΣH implies ν ≤ 0. Since the Hill potential P (z) is
non-constant for all rotational waves, according to Remark 4.2 the Hill’s spectrum
necessarily contains at least one gap, i.e. there exists some ν < 0 such that ν 6∈
ΣH. It follows that there exists a pair ±λ− of nonzero imaginary numbers such
that ν(±λ−) 6∈ ΣH, where the quadratic mapping λ 7→ ν(λ) is defined in (4.2).
Since ν(±λ−) 6∈ ΣH, by definition neither of the corresponding Floquet multipliers
µH(ν(±λ−)) can lie on the unit circle, from which it follows that G(±λ−) < 0 holds
(strict inequality). �

Lemma 7.3. For each superluminal periodic traveling wave solution f of equation
(1.1) there exists a non-imaginary number λ+ ∈ C \ iR such that G(λ+) > 0.

Proof. In the proof of Lemma 6.1 it was shown by comparing the first-order system
(3.4) with its constant-coefficient form (6.2) that the Floquet multipliers µ(λ) satisfy

µ(λ) = µ±(λ) = eλT/(c±1)(1 + o(1)), in the limit λ→∞. (7.3)

Inserting this asymptotic formula to the definition (7.1) of G yields

G(λ) =

(
TReλ

c+ 1
+ o(1)

)(
TReλ

c− 1
+ o(1)

)
, λ→∞, (7.4)

from which it follows that for |Reλ| sufficiently large, sgn (G(λ)) = sgn (c2 − 1).
Therefore, if c2 > 1 there exists λ+ with |Reλ+| large, such that G(λ+) > 0. �

To complete the proof of statement (i) in Theorem 7.1, let C be a simple smooth
curve with endpoints λ± for which Reλ 6= 0 holds for all points of C with the
exception of the endpoint λ−. Let λ = λ(t), −1 ≤ t ≤ 1, be a smooth parametriza-
tion of C for which λ(±1) = λ±. Then g(t) := G(λ(t)) is a continuous function
from [−1, 1] to R, and g(−1) < 0 by Lemma 7.2 (because f is rotational) while
g(1) > 0 by Lemma 7.3 (because f is superluminal). Therefore, by the Intermedi-
ate Value Theorem there exists some t0 ∈ (−1, 1) for which g(t0) = 0, i.e., there
exists some λ0 = λ(t0) with Re (λ0) 6= 0 for which G(λ0) = 0. Hence λ0 ∈ σ and
by Definition 3.11, f is spectrally unstable.

/ Remark 7.4. According to Remark 4.3 and the discussion in §6.3, the additional
assumption that (c2−1)TE > 0 implies that for librational waves of arbitrary finite

speed, ν
(0)
2 < ν

(0)
1 = 0, and hence there is a gap (ν

(0)
2 , ν

(0)
1 ) in the Hill’s spectrum

ΣH for sufficiently small strictly negative ν. Therefore, under the assumption that
(c2 − 1)TE > 0, Lemma 7.2 also holds for librational waves. By exactly the same
argument, we conclude spectral instability of all superluminal librational waves for
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which TE > 0. Of course we already have established spectral instability of such
waves by different means (cf. Theorem 6.15 and Corollary 6.16). Note that even
without the condition TE > 0 it can (and frequently does) happen that ΣH has
negative gaps, in which case spectral instability is again concluded. .

/ Remark 7.5. Note that for any librational wave, the fact that the first periodic

eigenvalue ν
(0)
0 in the Hill’s spectrum ΣH is strictly positive implies, according to

(7.2), that G(λ) > 0 holds at the two nonzero real preimages of ν
(0)
0 under the

quadratic mapping λ→ ν(λ).
Combining this fact with the formula sgn(G(λ)) = sgn(c2−1) holding for Reλ >

0 sufficiently large as shown in the proof of Lemma 7.3 one sees that the continuous
function G(λ) has to vanish somewhere in the right half-plane whenever f is a
subluminal librational wave, and hence all such waves are spectrally unstable.

Likewise, if there is also a gap in the negative part of the Hill’s spectrum ΣH,
then by the same argument as in the proof of Lemma 7.2, G(λ) < 0 when λ is the
imaginary preimage under ν of a point in the gap. Therefore again G changes sign
at some point with Reλ > 0 implying spectral instability of the librational wave.
Hence a negative gap in the Hill’s spectrum ΣH always indicates spectral instability
of a librational wave, regardless of its speed.

Under some conditions it is possible to guarantee a negative gap in the Hill’s
spectrum of a librational wave. Indeed, according to Remark 4.3, if f is a librational
wave then ΣH can have at most two positive gaps (and there are exactly two positive
gaps if (c2 − 1)TE < 0; see the bottom panel of Figure 2 for an illustration).
Furthermore, according to Remark 4.2, as long as P (z) = V ′′(f(z))/(c2 − 1) is
neither constant, nor an elliptic function, nor a hyperelliptic function of genus 2,
then ΣH has at least three gaps in total. Hence, for such f , there exists a negative
gap and therefore spectral instability is deduced. .

7.2. Subluminal rotational waves. We will prove that all subluminal rotational
waves are spectrally stable by a direct calculation showing that λ ∈ σ implies
Reλ = 0. Recall the boundary-value problem (3.3) with boundary condition (3.14)
parametrized by θ ∈ R (mod 2π) and characterizing the partial spectrum σθ ⊂ σ.
The differential equation (3.3) can be written in terms of Hill’s operator H defined
in (4.3) as follows:

(c2 − 1)Hw(z)− 2cλwz(z) + λ2w(z) = 0. (7.5)

Suppose that λ ∈ σ, and therefore that there exists θ ∈ R such that λ ∈ σθ.
Let w ∈ C2(R) denote the corresponding nontrivial solution of the boundary-value
problem consisting of (3.3) subject to (3.14).

Multiplying the differential equation (7.5) through by w(z)∗ and integrating over
the fundamental period [0, T ] gives

(c2 − 1)〈w,Hw〉 − 2imλ+ ‖w‖2λ2 = 0, where m := −ic〈w,wz〉 ∈ R, (7.6)

and the notation 〈·, ·〉 and ‖ · ‖ is defined in (3.16). That m is real follows by
integration by parts using the boundary conditions (3.14) (cf. (3.20)). The relation
(7.6) can be viewed as a quadratic equation for λ; solving this equation for λ in
terms of 〈w,Hw〉, m, and ‖w‖2, we obtain:

λ =
1

‖w‖2
[
im±

√
−m2 − (c2 − 1)‖w‖2〈w,Hw〉

]
. (7.7)
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Because m is real, it follows that Reλ = 0 as long as f is subluminal (implying
c2 − 1 < 0) and f is a rotational wave (implying the negative semidefiniteness
condition 〈w,Hw〉 ≤ 0 according to Proposition 4.4). This completes the proof of
statement (ii) of Theorem 7.1.

The proof of statement (ii) given above resembles a well-known result in the
theory of linearized Hamiltonian systems, which concerns eigenvalue problems of
the form JLu = λu where J is skewadjoint and L is selfadjoint. If J is invertible,
this can be written as a generalized eigenvalue problem: Lu = λJ−1u. The latter
can be reformulated in terms of a linear operator pencil T lin(λ) := L − λJ−1.
Taking the inner product with u yields

〈u,Lu〉 = λ〈u,J−1u〉. (7.8)

If L is a definite operator (positive or negative), then 〈u,Lu〉 6= 0, and hence neither
λ nor 〈u,J−1u〉 can vanish. Therefore λ is a generalized Rayleigh quotient:

λ =
〈u,Lu〉
〈u,J−1u〉

, (7.9)

which by selfadjointness of L and skewadjointness of J (and hence of J−1) is purely
imaginary. This is the easy case of a linearized Hamiltonian eigenvalue problem;
if L is indefinite there generally will be non-imaginary eigenvalues, although the
spectrum is still symmetric with respect to reflection through the imaginary axis.

The formula (7.7) is evidently a further extension of the generalized Rayleigh
quotient (7.9) to the setting of the quadratic pencil T (λ) arising in the linearization
of the (Hamiltonian) Klein-Gordon equation (1.1), and the positivity of (c2 − 1)H
plays the role of the definiteness of L.

8. Summary of spectral stability and instability results

For the convenience of the reader, we now formulate a theorem that summa-
rizes all of the results we have obtained regarding the spectral stability of periodic
traveling waves for the nonlinear Klein-Gordon equation (1.1):

Theorem 8.1 (spectral stability properties of periodic traveling waves). Let V be
a potential satisfying Assumptions 2.1 and 2.2. Then, the families of periodic trav-
eling waves f = f(z;E, c) parametrized by (E, c) ∈ G have the following properties.

(i) Subluminal rotational waves are spectrally stable.
(ii) Superluminal rotational waves are spectrally unstable. Generically, how-

ever, these waves are not strongly modulationally unstable. The spectrum σ
is confined to a vertical strip in the complex plane containing the imaginary
axis.

(iii) Subluminal librational waves are spectrally unstable. If TE < 0 then γ = −1
so there is a positive real periodic eigenvalue in σ, and also ρ = −1 so there
is strong modulational instability. If TE ≥ 0 then generically ρ = 1 so
the wave is not strongly modulationally unstable, and although the parity
index γ is indeterminate there exist positive real points in the spectrum σ
(necessarily periodic or antiperiodic eigenvalues). The unstable spectrum
σ \ iR is bounded.

(iv) Superluminal librational waves are spectrally unstable, provided either
(a) TE > 0, in which case ρ = −1 so there is a strong modulational insta-

bility, or
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(b) TE ≤ 0 but the associated Hill’s spectrum ΣH has a gap in the negative
half-line R− (see Remarks 4.2 and 7.5).

In particular a spectrally stable superluminal librational wave f is necessar-
ily either an elliptic function or a hyperelliptic function of genus 2. Re-
gardless of whether case (a) or (b) holds, the spectrum σ is confined to a
vertical strip in the complex plane containing the imaginary axis.

Furthermore, periodic traveling waves of infinite speed are spectrally stable if and
only if the associated Hill’s spectrum ΣH has no gaps in the negative half-line R−;
in particular all infinite speed rotational waves are spectrally unstable.

Proof. The basic stability results in statements (i) and (ii) were proved in §7 (cf.
Theorem 7.1), and the part of statement (ii) concerning the potential for weak
modulational instability is addressed in Remark 6.18. The quickest proof of the
basic instability result in statement (iii) is to appeal to the argument in the first two
paragraphs of Remark 7.5. The part of statement (iii) concerning the parity index
γ indicating the presence of a non-modulational instability when TE < 0 follows
from Theorem 6.5; for the indeterminacy of the parity index when TE > 0 see
Remark 6.7. The parts of statements (iii) and (iv) concerning strong modulational
instability follow from Theorem 6.15 and Corollary 6.16. The parts of statement
(iv) concerning negative gaps in the Hill spectrum follow from the argument in
Remark 7.5. The parts of statements (ii), (iii), and (iv) concerning bounds on the
unstable spectrum σ follow from Lemma 3.10. Finally, the statement concerning the
stability of waves of infinite speed follows from Theorem 4.5 and Corollary 4.6. �

9. The modulational instability index ρ and formal modulation
theory

9.1. Whitham’s fully nonlinear modulation theory. Here we aim to relate the
modulational instability index ρ introduced in §6.2 to Whitham’s fully nonlinear
theory of slowly modulated periodic waves [58, 59]. We prove that the index ρ
determines the analytical nature of Whitham’s system of modulation equations in
terms of their suitability for determining a well-posed evolution. This calculation
justifies, in a fashion, the terminology introduced in Definition 6.14. For a related
analysis in the case of periodic traveling waves in the generalized Korteweg-de Vries
equation, see Bronski and Johnson [8] and Johnson and Zumbrun [29].

9.1.1. Derivation of Whitham’s modulation equations. Beginning with the seminal
paper [58] in 1965 and continuing for some 20 years, G. B. Whitham introduced,
revisited, and refined a fully nonlinear theory of modulated waves that has made a
very significant impact in the field. The theory produces results that are physically
satisfying and that have been verified in experiments, and it also has a remarkable
mathematical structure, especially when the underlying nonlinear wave equation is
completely integrable (e.g., leading to important examples of quasilinear systems
with an arbitrary number of equations that have several unusual features, including:
(i) they admit diagonalization via special variables called Riemann invariants, and
(ii) general solutions can be represented in implicit form by a technique [55] that
generalizes the classical hodograph transform for 2× 2 systems).

Whitham’s theory is based on the supposition that nonlinear wave equations
that support families of periodic traveling waves should also have other solutions
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that are close to different representatives of the family in different regions of space-
time. In other words, there should be solutions that, near any given (x, t) can be
accurately approximated by a periodic traveling wave solution, but the parameters
that single out the wave from the family might be different for different points (x, t).
Thus, the periodic traveling wave is spatiotemporally modulated, having different
amplitude, wavelength, or frequency at different points (x, t), while still somehow
locally resembling a periodic wavetrain.

The key to making this idea precise at the formal level at least is to consider it
to be an asymptotic theory in the limit where the variation in the wave parameters
(these are the constants E and c in the present context) is very gradual compared to
the fluctuations of the wave itself. The ratio of the microscopic scale (e.g., typical
wavelength) to the macroscopic scale (e.g., characteristic width of a wave packet)
thus becomes a small dimensionless parameter ε, and this makes available a toolbox
of asymptotic methods to study the dynamics of the modulating waves. The goal
of this formal analysis is to deduce effective equations (the modulation equations)
that describe how the parameters vary slowly. Such equations should only involve
quantities that vary on the macroscopic scale.

As he developed his theory, Whitham found several different equivalent ways
to derive the modulation equations. His first approach [58] (we will follow this
in some detail below) was based on period averaging of densities and fluxes of
local conservation laws consistent with the underlying nonlinear wave equation. He
quickly found a second method based on an averaged variational principle [57] that
has additional appeal because the ansatz used for the modulating wave includes
global phase information that was not captured by his original approach. One
can also apply directly the method of multiple scales to the underlying nonlinear
wave equation and obtain the modulation equations as solvability conditions for the
existence of uniformly bounded corrections to the leading-order modulated wave
ansatz. This last approach can apply also to weakly dissipative systems that do
not have conservation laws or a Lagrangian formulation.

We now give a brief formal derivation of the modulation equations following
Whitham’s original method [58] (see [10, 52, 59] and the references therein for
information about other approaches). The Klein-Gordon equation (1.1) implies the
following local conservation laws [3, 47]:

D1[u]t + F1[u]x = 0 and D2[u]t + F2[u]x = 0 (9.1)

where the densities Dj [u] and fluxes Fj [u] are

D1[u] := 1
2u

2
t + 1

2u
2
x + V (u)

D2[u] := −utux
and

F1[u] := −utux
F2[u] := 1

2u
2
t + 1

2u
2
x − V (u).

(9.2)

Whitham argues that if the wavetrain represented by the parameters (E, c) ∈ G is
slowly modulated, so that E and c become slowly-varying functions of (x, t), the
conservation laws (9.1) should govern (at leading order) the functions E = E(x, t)
and c = c(x, t) after simply replacing the densities and fluxes by their averages over
one period of the wave. The procedure is therefore the following: for each fixed
choice of (E, c) ∈ G, we first replace u(x, t) by the exact periodic traveling wave
u = f(z;E, c) in Dj [u] and Fj [u] and therefore obtain T -periodic functions of z
that can be averaged over a period. The corresponding averages are functions of
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(E, c) ∈ G given by

〈D1〉(E, c) :=
1

T

∫ T

0

(
1
2 (c2 + 1)fz(z;E, c)

2 + V (f(z;E, c))
)
dz

〈D2〉(E, c) :=
c

T

∫ T

0

fz(z;E, c)
2 dz

(9.3)

and

〈F1〉(E, c) :=
c

T

∫ T

0

fz(z;E, c)
2 dz

〈F2〉(E, c) :=
1

T

∫ T

0

(
1
2 (c2 + 1)fz(z;E, c)

2 − V (f(z;E, c))
)
dz.

(9.4)

Then, one allows (E, c) to depend smoothly on (x, t) and Whitham’s modulation
equations are (by definition, really)

〈D1〉t + 〈F1〉x = 0 and 〈D2〉t + 〈F2〉x = 0. (9.5)

The averaged densities and fluxes may be represented in terms of the function

W (E, c) := (c2 − 1)

∫ T

0

fz(z;E, c)
2 dz. (9.6)

Indeed, using (2.4) to eliminate V (f) for constant (E, c) in the definitions (9.3)–
(9.4), the definition (9.6) yields

〈D1〉 =
W

(c2 − 1)T
+ E, 〈F1〉 = 〈D2〉 =

cW

(c2 − 1)T
, and 〈F2〉 =

c2W

(c2 − 1)T
− E.

(9.7)
Here we recall that the period T also is a function of (E, c) ∈ G.

The function W = W (E, c) has a number of properties useful for simplifying and
analyzing the modulation equations that result from substituting (9.7) into (9.5):

Lemma 9.1. Suppose that (E, c) ∈ G (any of the four disjoint open components
Glib
< , Grot

< , Glib
> , or Grot

> ). Then W = W (E, c) defined by (9.6) satisfies:

(i)

sgn (W ) = sgn (c2 − 1); (9.8)

(ii)

Wc =
cW

c2 − 1
and Wcc = − W

(c2 − 1)2
; (9.9)

(iii)

WE = T. (9.10)

Proof. The statement (i) is obvious from the definition (9.6). To prove statements
(ii) and (iii), we rewrite W using the differential identity f2z dz = fz df . More
precisely, for rotational waves where fz > 0 for all z, we solve for fz in terms of f
by taking a positive square root in (2.4) and therefore obtain

W (E, c) =
√

2(c2 − 1)

∫ 2π

0

√
E − V (f)

c2 − 1
df, (E, c) ∈ Grot

< ∪Grot
> , (9.11)
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because f increases by 2π over the period T . For librational waves we may represent
W as twice the integral over half the period and assume that fz > 0 holds over the
half-period of integration. Therefore,

W (E, c) = 2
√

2(c2 − 1)

∫ f+(E)

f−(E)

√
E − V (f)

c2 − 1
df, (E, c) ∈ Glib

> , (9.12)

and

W (E, c) = 2
√

2(c2 − 1)

∫ f−(E)+2π

f+(E)

√
E − V (f)

c2 − 1
df, (E, c) ∈ Glib

< . (9.13)

In each case, the identities (9.9) are easy to establish from these formulae, which
proves (ii). To prove (iii), one differentiates with respect to E (using Leibniz’ for-
mula in the librational cases, but noting that the contributions from the endpoints
of the interval of integration vanish because V (f± (mod 2π)) = E by definition of
f±) and compares with (2.6), (2.8), (2.9), and (2.10). �

We now simplify the modulation equations by the following systematic steps.
First, use (9.10) to eliminate the period T , putting them in the form(

W (E, c)

(c2 − 1)WE(E, c)
+ E

)
t

+

(
cW (E, c)

(c2 − 1)WE(E, c)

)
x

= 0,(
cW (E, c)

(c2 − 1)WE(E, c)

)
t

+

(
c2W (E, c)

(c2 − 1)WE(E, c)
− E

)
x

= 0.

(9.14)

Next, apply the chain rule to isolate the coefficients of the partial derivatives Ex,t
and cx,t. This places the system in obvious quasilinear form:

T(E, c)

(
E
c

)
t

+ X(E, c)

(
E
c

)
x

= 0, (9.15)

where, after clearing out a scalar denominator and using (9.9) to eliminate all
partial derivatives of W with respect to c, the coefficient matrices are given by

T(E, c) :=

(
(c2 − 1)c2(c2W 2

E −WWEE) −2c3WWE

(c2 − 1)c(W 2
E −WWEE) −(c2 + 1)WWE

)
(9.16)

and

X(E, c) :=

(
(c2 − 1)c3(W 2

E −WWEE) −(c2 + 1)c2WWE

(c2 − 1)(W 2
E − c2WWEE) −2cWWE

)
. (9.17)

Finally, inverting T(E, c), the modulation equations take the form(
E
c

)
t

+ U(E, c)

(
E
c

)
x

= 0, (9.18)

with coefficient matrix U(E, c) given by

U(E, c) :=
1

c2W 2
E +WWEE

(
(W 2

E +WWEE)c −WWE

(c2 − 1)2WEWEE (W 2
E +WWEE)c

)
. (9.19)
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9.1.2. Interpretation of Whitham’s modulation equations. Relation to the modula-
tional instability index ρ. The Whitham system of modulation equations, say taken
in the quasilinear form (9.18), is supposed to describe the slow variation of the pa-
rameters (E, c) determining the shape and period of the periodic traveling wave
profile f = f(z;E, c). If this system is to describe the evolution in time t of ini-
tially given modulation profiles E(x, 0) = E0(x) and c(x, 0) = c0(x) in a suitable
function space, then the correct application of the theory is to pose the Cauchy
initial value problem for the system (9.18) with the given initial data. For a general
reference for the theory of such initial-value problems, see [33].

The basic tool for treating quasilinear systems like (9.18) is to apply the method
of characteristics, and the first step is the calculation of the characteristic velocities,
which are defined as the eigenvalues of the coefficient matrix U(E, c). The essential
dichotomy that arises is that the eigenvalues of the real matrix U(E, c) are either
real or they form a complex-conjugate pair. In the real (resp., complex-conjugate)
case the system (9.18) is said to be hyperbolic (resp., elliptic) at (E, c). The key
result in the theory is that the Cauchy initial-value problem is (locally) well-posed
if and only if the system is hyperbolic at (E0(x), c0(x)) for all x ∈ R. Whitham in-
terprets the hyperbolicity of the system (9.18) as a kind of modulational stability of
the family of periodic traveling waves that is spatially modulated at t = 0, because
the modulation equations make a well-defined prediction at least locally in time for
the evolution of the given initial modulation profiles (E0(·), c0(·)). By contrast, in
the elliptic case, there is generally no solution for t > 0 of the initial-value problem
at all, even in the roughest spaces of generalized functions (distributions). Indeed,
if one linearizes (9.18) about a constant state by “freezing” the coefficient matrix
U, the linearized system can be treated by Fourier transforms and in the elliptic
case the Fourier mode eikx experiences exponential growth in time t with a rate
that itself grows as k → ∞. This preferentially amplifies the tails of the Fourier
transform so that after an infinitesimal time, the Fourier transform of the solution
is not the image of any tempered distribution. This severe amplification effect again
suggests an instability in the underlying nonlinear wave equation (1.1).

Here, we make the interpretation of the hyperbolic/elliptic dichotomy in terms
of stability precise with the following result:

Theorem 9.2. Suppose c2W 2
E + WWEE 6= 0. Whitham’s system of modulation

equations (9.18) is hyperbolic (resp., elliptic) if and only if ρ = 1 (resp., ρ = −1),
where ρ is the modulational instability index (cf. Definition 6.8 in §6.2).

Proof. The characteristic velocities v are obtained as the eigenvalues of U(E, c):

v =
(W 2

E +WWEE)c±
√
−(c2 − 1)2WW 2

EWEE

c2W 2
E +WWEE

. (9.20)

Obviously, these are real numbers if and only if WWEE ≤ 0. But according to
Lemma 9.1, sgn (WWEE) = sgn ((c2 − 1)TE). Comparing with the form of the
modulational instability index ρ given in Proposition 6.9, the proof is complete. �

Note that if TE = 0, then simultaneously ρ = 0 and the Whitham system
is on the borderline between the hyperbolic and elliptic cases with a double real
characteristic velocity. Also, since c2W 2

E + WWEE = 1
2 (c2 − 1)2Dλλ(0, 1), the

singular case for the Whitham equations corresponds also to (strong) modulational
instability according to Remark 6.13.



SPECTRAL AND MODULATIONAL STABILITY OF KLEIN-GORDON WAVETRAINS 55

Theorem 9.2 analytically confirms in the case of the Klein-Gordon equation (1.1)
what is (at least in full generality) mathematical folklore: if the Whitham modu-
lation system is elliptic, then the underlying periodic traveling wave is spectrally
unstable. The relationship between the nature of the Whitham modulation sys-
tem and the linear stability properties of waves has been explored in various other
contexts as well. See, for example, [8, 29, 39].

9.2. Weakly nonlinear modulation theory for librational waves. Consider
a family of librational periodic traveling waves for the Klein-Gordon equation (1.1)
for which the orbits surround a single equilibrium point f = u0 in the phase portrait
of (2.3) in the (f, fz)-plane. Such a family admits a different type of formal modu-
lation theory based on the assumption that the orbits are close to equilibrium. In
contrast to the quasilinear system (9.18), this weakly nonlinear modulation theory
yields instead a model equation of nonlinear Schrödinger type governing a slowly-
varying complex envelope of an underlying (librational) carrier wave. Here we will
deduce the nonlinear Schrödinger equation, discuss the properties of its solutions
and how they depend on the signs of the coefficients, and then we will again make
a connection with the modulational instability index ρ introduced in §6.2.

9.2.1. Derivation of the cubic nonlinear Schrödinger equation. Let u0 be a non-
degenerate critical point of the potential V , and assume that V has a sufficient
number of continuous derivatives near u0. We suppose that the solution u(x, t) of
the Klein-Gordon equation (1.1) is close to equilibrium by introducing an artificial
small parameter ε > 0 and writing u = u0+εU . We will develop a formal asymptotic
expansion for U in the limit ε → 0 with the use of the method of multiple scales
[38, Chapter 10]. Specifically, we seek U as a function U = U(X0, X1, T0, T1, T2; ε)
depending on the “fast” variables X0 = x and T0 = t as well as the “slow” variables
X1 = εx, T1 = εt, and T2 = ε2t. By the chain rule, the Klein-Gordon equation
becomes a partial differential equation in 5 independent variables:

UT0T0
+ 2εUT0T1

+ ε2 [2UT0T2
+ UT1T1

] + 2ε3UT1T2
+ ε4UT2T2

− UX0X0 − 2εUX0X1 − ε2UX1X1 + ε−1V ′(u0 + εU) = 0. (9.21)

Expanding V in a Taylor series about u0 yields

LU + ε
[
2UT0T1

− 2UX0X1
+ 1

2V
′′′(u0)U2

]
+ ε2

[
2UT0T2

+ UT1T1
− UX1X1

+ 1
6V

(4)(u0)U3
]

= O(ε3), (9.22)

where the linear operator L is defined by LU := UT0T0
− UX0X0

+ V ′′(u0)U . We
next suppose that U has an asymptotic power series expansion in ε of the form

U = U [0] + εU [1] + ε2U [2] +O(ε3), ε→ 0. (9.23)

Equating the terms in (9.22) corresponding to the same powers of ε leads to a
hierarchy of equations governing the terms U [n], beginning with:

LU [0] = 0, (9.24)

LU [1] = −2U
[0]
T0T1

+ 2U
[0]
X0X1

− 1
2V
′′′(u0)U [0]2, (9.25)



56 C.K.R.T. JONES, R. MARANGELL, P.D. MILLER, AND R.G. PLAZA

LU [2] = −2U
[1]
T0T1

+ 2U
[1]
X0X1

− V ′′′(u0)U [0]U [1]

− 2U
[0]
T0T2
− U [0]

T1T1
+ U

[0]
X1X1

− 1
6V

(4)(u0)U [0]3. (9.26)

The idea behind the method of multiple scales is to solve these equations in
order, choosing the dependence on the slow scales X1, T1, and T2 so as to ensure
that U [n] is bounded (in the parlance of the method, we wish to avoid secular terms
in the solution). We begin by taking a solution of (9.24) in the form

U [0] = Aeiθ +~, A = A(X1, T1, T2), θ := kX0 − ωT0, (9.27)

where the symbol ~ indicates the complex conjugate of the preceding term. This is
a wavetrain solution of the Klein-Gordon equation linearized about the equilibrium
u0 as long as the wavenumber k and the frequency ω are linked by the linear
dispersion relation

ω2 = k2 + V ′′(u0). (9.28)

With this solution in hand, we see that (9.25) takes the form

LU [1] = − 1
2V
′′′(u0)A2e2iθ + 2i [ωAT1 + kAX1 ] eiθ

− V ′′′(u0)|A|2 − 2i
[
ωA∗T1

+ kA∗X1

]
e−iθ − 1

2V
′′′(u0)A∗2e−2iθ. (9.29)

It can be shown that U [1] will be bounded as a function of the fast time T0 if and
only if the terms proportional to the fundamental harmonics e±iθ are not present
on the right-hand side. Noting that implicit differentiation of (9.28) with respect
to k gives k/ω = ω′(k), we avoid secular terms by demanding that the envelope
A(X1, T1, T2) satisfy the equation

AT1 + ω′(k)AX1 = 0. (9.30)

This equation shows that the envelope A moves rigidly to the right (for fixed T2) at
the linear group velocity ω′(k) associated with the carrier wave eiθ with wavenumber
k and frequency ω = ω(k). A particular solution for U [1] is then

U [1] =
1
2V
′′′(u0)A2

4ω2 − 4k2 − V ′′(u0)
e2iθ − V ′′′(u0)

V ′′(u0)
|A|2 +

1
2V
′′′(u0)A∗2

4ω2 − 4k2 − V ′′(u0)
e−2iθ

=
V ′′′(u0)A2

6V ′′(u0)
e2iθ − V ′′′(u0)

V ′′(u0)
|A|2 +

V ′′′(u0)A∗2

6V ′′(u0)
e−2iθ,

(9.31)

where we have used the dispersion relation (9.28) to eliminate ω2 − k2. While it is
possible to include homogeneous terms proportional to the fundamental harmonics
e±iθ, these add nothing further since the amplitude A is still undetermined. Next,
we apply similar reasoning to (9.26), which takes the form

LU [2] =

[
2iωAT2 −AT1T1 +AX1X1 +

5V ′′′(u0)2 − 3V ′′(u0)V (4)(u0)

6V ′′(u0)
|A|2A

]
eiθ

+~+ other harmonics, (9.32)

where the other harmonics are terms with (X0, T0)-dependence proportional to
einθ for n 6= ±1. Such terms cannot cause U [2] to grow as a function of T0, but the
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forcing terms proportional to e±iθ must be removed if U [2] is to remain bounded.
We therefore insist that in addition to (9.30), A should satisfy the equation

2iωAT2 −AT1T1 +AX1X1 +
5V ′′′(u0)2 − 3V ′′(u0)V (4)(u0)

6V ′′(u0)
|A|2A = 0. (9.33)

It is best to go into a frame of reference moving with the group velocity by intro-
ducing the variables ζ := X1 − ω′(k)T1, T1, and τ := T2, and writing a(ζ, T1, τ) =
A(X1, T1, T2). Then, (9.30) simply reads aT1

= 0, so in fact a = a(ζ, τ). Also, since
differentiation of (9.28) twice implicitly with respect to k gives ω′(k)2+ω(k)ω′′(k) =
1, the equation (9.33) can be written in the form

iaτ + 1
2ω
′′(k)aζζ + β|a|2a = 0, β :=

5V ′′′(u0)2 − 3V ′′(u0)V (4)(u0)

12ω(k)V ′′(u0)
. (9.34)

Therefore, the slow modulation of the complex amplitude in the frame moving with
the linear group velocity obeys the cubic nonlinear Schrödinger equation (9.34).

The above derivation can be simultaneously viewed as a special case of and a
higher-order generalization of Whitham’s theory as developed in §9.1. Indeed, if we
consider near-equilibrium librational waves, then the phase velocity of the wavetrain
is nearly constant (c ≈ ω/k), and so is the energy (E ≈ V (u0)). Linearizing
Whitham’s modulational system (9.18) about these constant states amounts to
replacing the matrix U(E, c) by its constant limit U(V (u0), ω/k). In this limit, it
is easy to check that W → 0, and hence

U(V (u0), ω/k) =

(
ω′(k) 0(ω

k
− ω′(k)

)2 TE
T

ω′(k)

)
, (9.35)

where T and TE are evaluated at c = ω/k and E = V (u0). Clearly, the char-
acteristic velocities degenerate to the linear group velocity ω′(k) in this limit. In
particular, upon linearization, the equation governing E decouples:

Et + ω′(k)Ex = 0. (9.36)

The energy can be expressed in terms of the complex amplitude A by substituting
f = u0 + ε(Aeiθ +~)+O(ε2) into (2.4); using the dispersion relation (9.28) and the
substitution c = ω/k+O(ε) yields E = V (u0) + 2ε2V ′′(u0)|A|2 +O(ε3). Therefore,
(9.36) implies

(|A|2)T1
+ ω′(k)(|A|2)X1

= 0 (9.37)

in the limit ε → 0. Of course this equation can be obtained from (9.30) simply
by multiplying by A∗ and taking the real part. In this way, the statement that
the envelope propagates with the linear group velocity can be seen as arising from
the Whitham theory in a special limiting case. Now, recalling that the dynamical
interpretation of the Whitham system is inconclusive in the degenerate case where
the characteristic velocities agree, it is natural to try to go to higher order in the
linearization to attempt to determine the fate of the modulated near-equilibrium
librational wave. Going to higher order brings in a balance between nonlinearity
and linear dispersion (the latter is not present in the Whitham system at all) that
results in the cubic nonlinear Schrödinger equation (9.34). Therefore, while (9.30)
can be viewed as a reduction of the Whitham modulational system (9.18) in a
special case, (9.34) can be viewed as a higher-order generalization thereof in the
same limiting case.
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9.2.2. Interpretation of the cubic Schrödinger equation. Relation to the modula-
tional instability index ρ. The initial-value problem for the nonlinear Schrödinger
equation (9.34) is the search for a solution a(ζ, τ) for τ > 0 corresponding to given
initial data a(ζ, 0). Unlike the quasilinear Whitham modulational system (9.18),
the initial-value problem for (9.34) can be solved globally for general initial data.
In fact, the cubic nonlinear Schrödinger equation is well-known to be an integrable
system, and the initial-value problem can be solved by means of an associated
inverse-scattering transform. On the other hand, solutions of the equation (9.34)
behave quite differently depending on the sign of βω′′(k). In the defocusing case cor-
responding to βω′′(k) < 0, an initially localized wave packet will gradually spread
and disperse, but for large time (i.e., large τ) the solution a(ζ, τ) will qualitatively
resemble the initial condition, a situation that can be interpreted as another kind
of modulational stability of the carrier wave. On the other hand, in the focusing
case corresponding to βω′′(k) > 0, an initially localized wave packet will break
apart into smaller components (“bright” solitons) that move apart with distinct
velocities, a situation that can be interpreted as a sort of modulational instability.
In the weakly nonlinear context, the fact that one has a slowly-varying envelope
A = a(ε(x − ω′(k)t), ε2t) modulating a carrier wave of fixed wavenumber k yields
a natural interpretation in the Fourier domain: the instability corresponds to the
broadening of an initially narrow Fourier spectrum peaked at the wavenumber k.
Such instabilities are sometimes called sideband instabilities, or by a connection
with water wave theory, instabilities of Benjamin-Feir type [5].

We may easily relate this dichotomy of behavior to the modulational instability
index ρ introduced in §6.2.

Theorem 9.3. Let u0 be a non-degenerate critical point of V . The nonlinear
Schrödinger equation (9.34) governing weakly nonlinear modulations of librational
periodic traveling waves of the Klein-Gordon equation (1.1) that are near the equi-
librium u0 is of focusing (resp., defocusing) type if and only if ρ = −1 (resp., ρ = 1),
where ρ is the modulational instability index (cf. Definition 6.13 in §6.2).

Proof. Eliminating the group velocity ω′(k) between the identities k/ω(k) = ω′(k)
and ω′(k)2 + ω(k)ω′′(k) = 1 yields

ω′′(k) =
ω(k)2 − k2

ω(k)3
=
V ′′(u0)

ω(k)3
. (9.38)

Therefore, recalling the definition of β in (9.34),

βω′′(k) =
5V ′′′(u0)2 − 3V ′′(u0)V (4)(u0)

12ω(k)4
. (9.39)

From Proposition 2.14 it then follows that

sgn (βω′′(k)) = sgn
(

(c2 − 1) TE |E=V (u0)

)
. (9.40)

Applying Proposition 6.9 then shows that indeed sgn (βω′′(k)) = −sgn (ρ). �

10. Extensions

While we have made precise assumptions on the potential function V in the
Klein-Gordon equation (1.1), these were made primarily to keep the exposition as
simple as possible. Indeed, many of our results also carry over to potentials that
violate one or more of the key assumptions.
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10.1. More complicated periodic potentials. Suppose that V : R → R is
a smooth 2π-periodic function, but now suppose also that V has more than two
critical points per period. Generically there will be as many critical values as critical
points, so we may assume that the absolute maximum and minimum of V (we may
still choose them to be ±1 without loss of generality) are achieved exactly once per
period. The key new feature that is introduced in this situation is that there are
now multiple families of librational waves, as separatrices associated with the new
critical values other than ±1 appear in the phase portrait of equation (2.4). At a
given speed c, several distinct librational orbits can now coexist at the same value
of the energy E, isolated from one another by components of the new system of
separatrices, illustrated in Figure 6 with blue curves (color online).

Figure 5. Phase portraits of equation (2.4) corresponding to c =
2 (left) and c = 1/2 (right) for a potential V (u) = −0.568[cos(u)−
sin(2u)] that has four critical points per period. The separatrices
associated with the critical values ±1 are shown in red, and the
separatrices associated with critical values lying within the open
interval (−1, 1) are shown in blue. (Color online.)

Some of the families of librational orbits will surround neutrally stable fixed
points (local minima of the effective potential), and such families are amenable
to Chicone’s theory of sufficient conditions for the monotonicity of the period T
of such orbits as a function of the energy E. However, for potentials with more
than two critical values per period there will now also be a family of librational
orbits that are trapped between two separatrices, e.g., the red and blue curves in
Figure 6 (color online). The period function for such a family of orbits cannot be
monotone as a function of E, because the period has to tend to +∞ as E tends
to either of the distinct critical values corresponding to the enclosing separatrices.
As pointed out in Remark 2.13 however, the librational orbits that are near the
separatrix that stands between the librational and rotational orbits will necessarily
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satisfy (c2 − 1)TE > 0, and hence those results we have presented that depend on
this condition will be applicable.

The situation for librational waves is certainly made more complicated in the
presence of additional critical values of V , as there are now many families of or-
bits to consider, each of which will have its own period function T with its own
monotonicity properties. This is the only new feature, however, and otherwise the
theory goes through unchanged. Additionally, there is no effect whatsoever on the
theory regarding rotational waves. We summarize these results as follows:

Theorem 10.1. Let V be a potential satisfying only condition (a) of Assump-
tion 2.1, normalized for convenience according to Assumption 2.2. Then the con-
clusions of Theorem 8.1 continue to hold provided that TE is calculated separately
for each family of librational waves that may coexist at the same value of E.

10.2. Non-periodic potentials. Now we consider the effect of dropping periodic-
ity of the potential V in the Klein-Gordon equation (1.1). The most obvious feature
of such non-periodic potentials is that there can no longer be any periodic traveling
waves of rotational type at all (even for bounded V ). All periodic traveling waves
are therefore of librational type in such a situation. Phase portraits for equation
(2.4) corresponding to a quartic potential are illustrated in Figure 6.

Figure 6. Phase portraits of equation (2.4) for c = 2 (left) and
c = 1/2 (right) for a quartic potential V (u) = 1

2u
2 − 1

4u
4. Of

course, these are just the phase portraits of different types of Duff-
ing oscillators. There is one family of librational waves for c2 > 1
and there are three families of librational waves for c2 < 1.

Aside from this point, however, the stability theory of any family of librational
periodic waves is exactly the same as in the case of periodic potentials, with the
sole exception being that without an a priori bound on the potential V (cf. (3.17))
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the spectral bounds established in Lemma 3.10 may not hold. Therefore we have
the following result.

Theorem 10.2. Suppose that V : R→ R is a function of class C2, and suppose that
for a fixed wave speed c 6= ±1 there exists a family of librational periodic traveling
wave solutions to the nonlinear Klein-Gordon equation parametrized locally by the
energy E on which they depend smoothly. Then, except for the assertions that
σ \ iR is bounded for subluminal waves and Reσ is bounded for superluminal waves,
statements (iii) and (iv) of Theorem 8.1 characterize the spectral stability properties
of the family of waves. Also, librational waves of infinite speed are spectrally stable
if and only if the associated Hill’s spectrum ΣH has no negative gaps.

For polynomial potentials V , Chicone’s theory is particularly convenient to apply
to determine whether a family of librational orbits that surround a stable fixed point
(as is the case for the family of orbits in the left-hand panel of Figure 6 and for
both families of orbits in the right-hand panel of Figure 6). For example, one may
consider cubic nonlinearities arising from a quartic double-well potential:

V ′(u) = au+ bu3 or V (u) = 1
2au

2 + 1
4bu

4 (10.1)

with a, b 6= 0. Such potentials are important in the theory of the Klein-Gordon
equation (1.1) as it arises in models for magnetic fluid theory [36], nonlinear meson
theory [48], solid state physics [6], and in classical sine-Gordon and φ4-field theories
[35]. The stability of periodic traveling waves for equation (1.1) with this type of
potential has been studied by Weissman [56], Murakami [40] and Parkes [41], among
others.

After a simple calculation one may show that

V (u)

V ′(u)2
=

1

2a
− 3b

4a2
u2 +O(u4), (10.2)

for |u| � 1. Therefore, by the criterion of Chicone [11], the period of the librational
oscillations surrounding the critical point u = 0 (assuming that (c2 − 1)b < 0
making this point a local minimum of the effective potential) will be monotone in
a neighborhood of zero inasmuch as b 6= 0. (The sign of the cubic term determines
whether the nonlinear modification of the Hooke’s law spring constant makes the
spring “harder” or “softer”, and it is physically reasonable that it should determine
whether the period gets longer or shorter with increasing amplitude.) In any case,
knowledge of the sign of TE , however it is obtained, allows many of our results to
be applied to this case immediately. For example, according to Remark 2.13, one
automatically has (c2 − 1)TE > 0 near the outermost separatrix bounding each
family of librational orbits. Therefore, while we leave the details to the interested
reader, it is in principle possible to recover, for example, the modulational instability
observations of Parkes [41] for periodic waves near u = 0 for the cubic nonlinearity
from a calculation of the modulational instability index ρ.
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Apdo. Postal 20-726, C.P. 01000 México D.F. (Mexico)
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