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Abstract. We study the spectral stability properties of periodic traveling
waves in the sine-Gordon equation, including waves of both subluminal and

superluminal propagation velocities as well as waves of both librational and
rotational types. We prove that only subluminal rotational waves are spectrally

stable and establish exponential instability in the other three cases. Our proof

corrects a frequently cited one given by Scott [Sco69b].

1. Introduction

Consider the sine-Gordon equation [Sco69a] in laboratory coordinates,

utt − uxx + sinu = 0, (1.1)

where u is a scalar and (x, t) ∈ R× [0,+∞). Although it first appeared in the study
of the geometry of surfaces with negative Gaussian curvature (see [Eis09]), the sine-
Gordon equation describes a great variety of physical phenomena as well, such as
the propagation of magnetic flux on a Josephson line [Sco69a], elementary particles
[PS62], modeling of fermions in the Thirring model [Col75], the propagation of
crystal dislocations [FK39], and the oscillations of an array of rigid pendula rotating
under gravity about a common axis with nearest-neighbor torque coupling [Dra83],
among others. A comprehensive account of these and other physical applications
can be found in the review article by Barone et al. [BEMS71].

Our paper is concerned with the linearized (spectral) stability of the family of
periodic traveling wave solutions to the sine-Gordon equation (1.1). To describe
general traveling wave solutions, one first goes into a frame of reference moving with
constant velocity c, which in turn amounts to rewriting (1.1) in the new independent
variables z = x− ct and τ = t. Thus with u(x, t) = v(z, τ),

(c2 − 1)vzz − 2cvzτ + vττ + sin(v) = 0. (1.2)

In what follows, we will always assume that c 6= ±1. A traveling wave solution of the
sine-Gordon equation (1.1) is by definition a stationary (τ -independent) solution
of (1.2). Making the ansatz v(z, τ) = f(z) implies that f solves the nonlinear
pendulum equation, that is, the ordinary differential equation

(c2 − 1)f ′′(z) + sin(f(z)) = 0, ′ :=
d

dz
. (1.3)
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The pendulum equation (1.3) can be integrated once to obtain:

1

2
(c2 − 1)f ′(z)2 + 1− cos(f(z)) = E (1.4)

where E is a constant of integration (the total energy). Clearly, these equations
are invariant under the shift f(z) 7→ f(z) + 2π.

Definition 1.1 (Wave speed dichotomy of traveling waves). Traveling wave so-
lutions f(z) with wave speeds satisfying c2 < 1 (respectively c2 > 1) are called
subluminal (respectively superluminal).

Representative phase portraits corresponding to subluminal and superluminal
traveling waves are illustrated in Figure 1. It is easy to confirm that except for

f

df/dz

(a) Subluminal waves: c2 < 1

f

df/dz

(b) Superluminal waves: c2 > 1

Figure 1. Phase portraits of the pendulum equation (1.3) show-
ing both librational waves (closed orbits inside the separatrix) and
rotational waves (orbits outside the separatrix). The separatrix is
depicted by a dotted curve.

solutions corresponding to the separatrices, all traveling wave solutions f(z) are
periodic modulo 2π. The second dichotomy for such traveling waves is the following.

Definition 1.2 (Energy dichotomy of periodic traveling waves). Solutions f(z)
to the pendulum equation (1.3) whose orbits in the phase plane lie outside the
separatrix are called rotational waves. Solutions whose orbits in the phase plane
are within the separatrix are called librational waves.

It is easy to see that librational waves correspond to energies in the range 0 <
E < 2 and rotational waves correspond to energies with either E < 0 (in the
subluminal case) or E > 2 (in the superluminal case).

Remark 1.3. In classical mechanics (cf. Goldstein [Gol80]; see also [BM12]) the
term libration is borrowed from the astronomical literature describing periodic mo-
tions in which both the position and the momentum are periodic functions with
same frequency. The term rotation (sometimes also called circulation or revolu-
tion) is used to characterize the kind of periodic motion in which the momentum
is periodic but the position is no longer bounded. Increments by a period in the
position, however, produce no essential change in the state of the system. In the
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sequel we will refer to both librational and rotational waves as “periodic traveling
waves,” regardless of whether or not f returns to the same value.

To study the stability of the periodic traveling wave f , we make the substitution
v(z, τ) := f(z) + w(z, τ) in (1.2) and consider the implied behavior of the pertur-
bation w(z, τ). In the simplest approximation as the perturbation is initially small,
we linearize about w = 0 to obtain the following:

(c2 − 1)wzz − 2cwzτ + wττ + cos(f(z))w = 0. (1.5)

We seek separated solutions with exponential growth rate λ ∈ C of the form

w(z, τ) = p(z)eλτ , (1.6)

which reduces (1.5) to a linear ordinary differential equation for p:

p′′ − 2cγλp′ + γ
[
λ2 + cos(f(z))

]
p = 0, ′ :=

d

dz
(P)

where γ is defined as:

γ :=
1

c2 − 1
. (1.7)

For all periodic traveling waves f(z), equation (P) has periodic coefficients. Let
T , the fundamental period of f , denote the smallest positive number for which
f(z + T ) = f(z) (mod 2π).

Definition 1.4. We say that λ ∈ C is a temporal eigenvalue if there exists a solution
to (P) which is bounded for all z ∈ R. The set of all temporal eigenvalues is called
the spectrum of equation (P), and is denoted σ(P).

Remark 1.5. We pause here for some brief remarks on the terminology used in
Definition 1.4, and to draw attention to some further remarks later on.

First we note that, as it is stated, Definition 1.4 in relation to equation (P) is a
nonstandard eigenvalue problem. Rather than a linear eigenvalue parameter, and
an equation of the form Av = λv, we have a quadratic operator pencil (see Remark
1.9). This leads us to take a more classical, applied mathematics approach to the
problem.

Secondly, it should be noted that our eigenfunctions are not in L2(R) but rather
Cb(R), the space of continuous and bounded functions on R. Whether or not we
can infer the full L2(R) spectrum requires more work (see Remark 1.11) and is
key in moving from spectral stability analysis to full linear and nonlinear stability
analysis. However, as the focus of the paper is the former, we fear going too far
afield on this tangential matter.

Finally, we remark that our eigenvalues as given in Definition 1.4 are not isolated.
Given the periodicity of cos(f(z)), we can approach this issue in the standard way;
by following the construction of equation (3.6), we see that the spectrum σ(P)
decomposes into a one parameter family of (Bloch) eigenvalues each of which is
isolated in the appropriate function space. Considering them as such was not
necessary for any of the results in this paper, however such a construction is useful
when (1.1) is generalized to a nonlinear Klein-Gordon with arbitrary potential V
(see [JMMP13]).

Definition 1.6. Let f(z) be a periodic traveling wave solution of the sine-Gordon
equation. We say that f(z) is (temporally spectrally) stable provided that there are
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no temporal eigenvalues in the right half plane. If there is a temporal eigenvalue in
the right half plane, we say that f(z) is (temporally spectrally) unstable.

The spectrum σ(P) has the following four-fold symmetry.

Proposition 1.7. σ(P) = σ(P)
∗

= −σ(P) = −σ(P)
∗
.

Proof. Suppose λ is such that there exists a bounded solution p(z) to equation
(P). By taking the complex conjugate of equation (P) we see that p(z)∗ solves
equation (P) when λ = λ∗. Moreover p(z)∗ is bounded if p(z) is for all z ∈ R.
Thus λ∗ is in the spectrum. Likewise for −λ, we observe that for all types of
periodic traveling waves under consideration, there exists some z0 ∈ R, such that
cos(f(z−z0)) = cos(f(z0−z)). Without loss of generality (by choice of origin for z
in the autonomous equation (1.3)), we may assume that z0 = 0, that is, cos(f(z))
is an even function of z. Thus, if λ ∈ σ(P), substitution of the bounded function
p(−z) into equation (P) shows that −λ is in the spectrum as well. Combining these
last two results completes the proof. �

Remark 1.8. The significance of Proposition 1.7 is that the spectral problem (P)
has so-called full Hamiltonian symmetry. Of course this means that spectral insta-
bility corresponds to the existence of a temporal eigenvalue with nonzero (positive
or negative) real part. Proposition 1.7 also holds for the spectrum corresponding
to periodic traveling waves in more general Klein-Gordon type equations with po-
tential V , and while the argument that σ(P)

∗
= σ(P) goes through unchanged, the

proof of the fact that σ(P) = −σ(P) is different in general because for rotational
waves V ′′(f(z)) (which plays the role of cos(f(z)) in the Klein-Gordon case) is not
generally even about any z0. See [JMMP13] for more details.

Remark 1.9. Under the substitution λ = iζ, equation (P) can be written in
terms of a (formally) selfadjoint quadratic operator pencil L(ζ) given by L(ζ) :=
ζ2L2 + ζL1 + L0, where

L2 := −γ, L1 := −2cγ · i d
dz
, L0 :=

d2

dz2
+ γ cos(f(z)). (1.8)

Indeed, it is easy to see that (P) can be written simply as L(ζ)p = 0. In general, a
spectral problem for a polynomial operator pencil can be reformulated as a genuine
eigenvalue problem for an operator acting on an appropriate Cartesian product of
the base space. Upon setting p0 = p and p1 = λp, we can easily rewrite (P) in the
form

Lf

(
p0
p1

)
= λ

(
p0
p1

)
, Lf :=

(
0 1

−(c2 − 1)∂zz − cos(f(z)) 2c∂z

)
. (1.9)

The matrix operator Lf is frequently called the companion matrix to the pencil
L. In principle, these observations make available the theory of Krein signatures
associated to the purely imaginary temporal eigenvalues, which can in turn be
used to locate non-imaginary points of σ(P) corresponding to instability. Indeed,
an alternate proof of Lemma 4.1 below can be given in terms of Krein signature
theory. See [KM12] and the references therein for further information.

We are now ready to formulate our main result. We emphasize that stability is
meant in the sense of Definition 1.6.

Theorem 1.10. Subluminal rotational waves are stable. Superluminal rotational
waves are unstable. Both sub- and superluminal librational waves are unstable.
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In Figure 2 we show numerically computed spectra for each of the four types of
periodic traveling waves. The structure of σ(P), including details of the behavior
near the origin in the λ-plane will be described (also for a more general class of
nonlinear Klein-Gordon type equations) in a subsequent work [JMMP13].

Remark 1.11. The complete stability analysis of periodic traveling wave solutions
of the sine-Gordon equation (1.1) requires two additional nontrivial steps. First,
one requires some analogue of the spectral theorem guaranteeing completeness of
the set of nonzero solutions p(z) of equation (P) corresponding to λ ∈ σ(P). This
would allow the general solution w(z, τ) of the Cauchy initial-value problem for the
linearized sine-Gordon equation (1.5) to be expressed uniquely as an integral over
σ(P) of factorized solutions w(z, τ) = p(z)eλτ . Second, one must prove that w(z, τ)
is a good approximation to the solution v(z, τ) of (1.2) with the same initial data,
i.e. one must prove nonlinear stability. However, the notion of spectral stability is
the essential starting point for both of these next steps.

It should also be said that the kind of stability problem we have in mind from the
start is the analysis of the effect of perturbations to initial data at τ = t = 0 that
are small in an appropriate function space. A quite different approach would be to
exploit the invariance of the sine-Gordon equation (1.1) under the Poincaré group of
Lorentz boosts to make the traveling wave stationary. This latter approach has the
advantage of avoiding altogether the first-order derivatives in equation (P) arising
from the use of a Galilean boost (under which (1.1) is not invariant) to make the
wave stationary; however this method only applies for subluminal traveling waves,
and moreover physically one is then perturbing the traveling wave on a space-like
hypersurface different from the line t = 0.

To our knowledge, Scott [Sco69b] was the first to consider the stability of periodic
traveling wave solutions to the sine-Gordon equation. His final conclusion of which
cases are stable, as well as which are not, turns out to have been correct; however,
it was based on a claim that we show here was not correct. Scott claimed that
the spectrum was, in every case, contained in the union of the real or imaginary
axes. This is unfortunately not correct, as we will show, and it is the fact the
spectrum cannot be so easily constrained that makes this a difficult problem. Scott
made the observation that equation (P) can be converted by a simple exponential
substitution

q(z) = p(z)e−cγλz, (1.10)

into Hill’s equation with spectral parameter µ:

q′′ + γ cos(f(z))q = µq, µ := γ2λ2 =

(
λ

c2 − 1

)2

. (Q)

This method is advantageous in that Hill’s equation has been well-studied, and
there is a large body of related work dating to the late 19th century (see, for ex-
ample, [MW66] and the references therein). Using this connection and information
about the spectrum of Hill’s equation, Scott attempted to deduce the location of
σ(P) in the complex plane. Unfortunately, the argument in [Sco69b] assumes that
the transformation (1.10) is isospectral, i.e. that the exponential factor e−cγλz is
harmless. As the spectral problem for equation (Q) was posed on Cb(R), this is not
generally true unless λ is purely imaginary (as we will prove below; see Corollary 3.2
and Lemma 3.3). This led to an erroneous calculation of σ(P) in [Sco69b]. The



6 C.K.R.T. JONES, R. MARANGELL, P.D. MILLER, AND R.G. PLAZA

Figure 2. Numerical plots of the spectrum σ(P) in the complex
λ-plane representative of the four types of periodic traveling waves.
Top row: subluminal waves. Bottom row: superluminal waves.
Left column: rotational waves. Right column: librational waves.
To compute the part of σ(P) on the imaginary axis it is useful to
use Corollary 3.2 below to reduce the problem to the calculation
of the trace of the monodromy matrix for Hill’s equation (Q). To
compute the non-imaginary part of σ(P) one can look for the zero
level curve of Gp(λ) to be defined below (see (3.36)).

statement of Theorem 1.10 is in fact rather well-known in the nonlinear waves com-
munity (see, for example the influential textbook by Whitham [Whi99] which cites
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[Sco69b]), however to our knowledge there is to date no correct proof in the litera-
ture. Our goal in this paper is to give a completely rigorous proof of Theorem 1.10,
properly accounting for the effect of the exponential factor in the transformation
(1.10).

The rest of our paper is organized as follows. In §2 we define the basic notions
of spectral analysis for the problems (P) and (Q). Then in §3 we present some
fundamental relations between the spectra of problems (P) and (Q) and we also
recall the most important properties of Floquet theory for Hill’s equation. At this
point we will have all of the tools in place to give the proof of Theorem 1.10, all
details of which are presented in §4. Finally, in §5 we give some auxiliary results
describing aspects of the structure of the spectrum of equation (P) in the complex
λ-plane. In particular these results show that the spectrum of (P) is not necessarily
confined to the real and imaginary axes as was suggested in the paper [Sco69b]. For
the reader’s convenience, in an appendix we gather some results about how problem
(Q) can be reduced to Lamé’s equation and implications for the corresponding
Floquet spectrum.

2. The Eigenvalue Problem

2.1. Floquet theory for equations (P) and (Q). Consider a general first-order
2× 2 system with periodic coefficients, of the form

F′(z;λ) = A(z;λ)F(z;λ), A(z + T ;λ) = A(z;λ). (2.1)

Here, the matrix A(z;λ) is entire in λ for each z ∈ R. The Floquet theory of
this equation is based on the analysis of the fundamental solution matrix F(z;λ)
satisfying (2.1) and the initial condition F(0;λ) := I. The relevant quantities are
defined as follows.

Definition 2.1. The matrix M(λ) := F(T ;λ) is called the monodromy matrix for
equation (2.1). We denote the trace and determinant of the monodromy matrix by
∆(λ) := M11(λ)+M22(λ) and D(λ) := M11(λ)M22(λ)−M12(λ)M21(λ) respectively.
The discriminant is the quantity ∆(λ)2 − 4D(λ).

Frequently, Abel’s identity can be used to calculate a closed form forD(λ):

D(λ) = exp

(∫ T

0

tr (A(z;λ)) dz

)
. (2.2)

Equation (P) can be written in the form of equation (2.1):(
p
p′

)′
= Ap(z;λ)

(
p
p′

)
, Ap(z;λ) :=

(
0 1

−γ(λ2 + cos(f(z))) 2cγλ

)
. (2.3)

Note that since f(z) is periodic modulo 2π, cos(f(z)) is also periodic. We denote the
quantities defined in Definition 2.1 corresponding to equation (P) or equivalently
(2.3) using the subscript “p”.

Definition 2.2. The Floquet multipliers ρ = ρ(λ) of equation (P) are the (spatial)
eigenvalues of the monodromy matrix Mp(λ), i.e., they solve the quadratic equation
ρ2 −∆p(λ)ρ+Dp(λ) = 0.

The next proposition is a standard result from Floquet theory (e.g. see [Chi99]):
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Proposition 2.3. The complex number λ is a temporal eigenvalue, i.e. belongs
to the spectrum σ(P), if and only if at least one of the Floquet multipliers ρ has
modulus 1: |ρ| = 1.

For this reason we sometimes refer to σ(P) as the Floquet spectrum (of (P)).
The relation between equations (P) and (Q) given by (1.10) allows us to rein-

terpret the spectrum σ(P) as originally defined in Definition 1.4:

Proposition 2.4. The Floquet spectrum σ(P) consists of exactly those λ ∈ C such
that there is a solution q(z) to (Q) for which q(z)ecγλz is bounded for all z ∈ R.

Just as for (P) we can write (Q) as a system with periodic coefficients:(
q
q′

)′
= Aq(z;λ)

(
q
q′

)
Aq(z;λ) :=

(
0 1

µ− γ cos(f(z)) 0

)
. (2.4)

We denote the quantities defined in Definition 2.1 corresponding to equation (Q)
or equivalently (2.4) using the subscript “q”.

Definition 2.5. The Floquet multipliers η = η(λ) of equation (Q) are the (spatial)
eigenvalues of the monodromy matrix Mq(λ), i.e., they solve the quadratic equation
η2 −∆q(λ)η +Dq(λ) = 0.

The definition parallel to Definition 1.4 but tailored to (Q) is the following.

Definition 2.6. The (Floquet) spectrum σ(Q) of equation (Q) is the set of λ ∈ C
such that there exists a bounded (on R) solution q(z) to equation (Q) with µ =
(γλ)2. Equivalently, λ ∈ σ(Q) if and only if at least one of the Floquet multipliers
η has modulus 1: |η| = 1.

From equations (2.3) and (2.4) and formula (2.2) we have for all λ ∈ C

Dp(λ) = e2cγλT and Dq(λ) = 1. (2.5)

Remark 2.7. We stress here that in general σ(P) is not the same as σ(Q). It is an
elementary fact from Hill’s equation theory [MW66] that the spectral problem (Q)
is self-adjoint, and hence σ(Q) is confined to the real and imaginary axes, as µ must
be real in order for there to exist a bounded solution to equation (Q). However, it
is evident from Figure 2 that σ(P) can have points that are neither purely real nor
purely imaginary. Moreover, λ ∈ σ(P) corresponds to the existence of a solution
to (Q) exhibiting a certain growth rate for z ∈ R, and it is important to keep in
mind that in determining stability of traveling wave solutions to the sine-Gordon
equation, it is not the Floquet spectrum of (Q) per se that will explicitly indicate
stability, as the latter corresponds to solutions of (Q) bounded for z ∈ R.

On the other hand, the Floquet spectra of (P) and (Q) are related as we will
show in §3.1.

Remark 2.8. It is not in general true that the fundamental period T of f will
coincide with the smallest period of equation (2.3). For rotational waves they
do in fact coincide, but for librational waves it is straightforward to see that T
is actually twice the minimal period of cos(f(z)). In computing the monodromy
matrix M(λ) for equations (P) or (Q), we will always use the fundamental period
T of f , regardless of whether or not it is also the minimal period of (P) or (Q).
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Remark 2.9. Note that the function ∆q(λ) as given in Definition 2.1 is frequently
called the Hill discriminant or sometimes just the discriminant [MW66]. We wish
to emphasize that as such, this is not the discriminant ∆q(λ)2 − 4Dq(λ) of the
characteristic polynomial of the monodromy matrix Mq(λ). The reason for our
terminology is that the discriminant of the characteristic polynomial of Mp(λ) plays
an important role in the analysis that follows but unlike that of Mq(λ) it is non-
trivially related to the corresponding trace, and we wish to use parallel language
for equations (P) and (Q).

3. Fundamental Properties of the Floquet Spectra

The purpose of introducing Hill’s equation (Q) is that much is known about
it and its Floquet spectrum. An aim of this section is to state and prove those
results which give us some information about the structure of the Floquet spectra
of equations (P) and (Q), but which are not dependent on knowing the type of the
periodic traveling wave f(z) (i.e. sub- or superluminal, rotational or librational).

3.1. Relating the spectra of equations (P) and (Q). We will begin by relating
the Floquet multipliers of (P) and (Q).

Lemma 3.1. The values {ρ+(λ), ρ−(λ)} are the Floquet multipliers of (P) if and
only if the corresponding values {η+(λ), η−(λ)} := {e−cγλT ρ+(λ), e−cγλT ρ−(λ)} are
the Floquet multipliers of (Q).

Proof. Let p and q be solutions to (P) and (Q) respectively, related by equa-
tion (1.10): q = pe−cγλz. We have:(

q
q′

)
= e−cγλzH(λ)

(
p
p′

)
where H(λ) :=

(
1 0
−cγλ 1

)
. (3.1)

Recall the fundamental solution matrices Fp,q(z;λ), solving equations (2.3) or (2.4)
with the initial conditions Fp,q(0;λ) = I. We let Q(z;λ) be the matrix of functions
given by

Q(z;λ) := e−cγλzH(λ)Fp(z;λ). (3.2)

We observe that Q(z;λ) is a matrix solution to (Q) satisfying Q(0;λ) = H(λ). This
means that we can write

Q(z;λ) = Fq(z;λ)H(λ). (3.3)

Equating these last two expressions and evaluating at z = T , and using the fact
that det(H(λ)) = 1, we can then write

Mq(λ) = e−cγλTH(λ)Mp(λ)H(λ)−1. (3.4)

The eigenvalues {η+(λ), η−(λ)} of the left-hand side (Floquet multipliers of (Q))
must therefore equal the eigenvalues {e−cγλT ρ+(λ), e−cγλT ρ−(λ)} of the right-hand
side (where {ρ+(λ), ρ−(λ)} are the Floquet multipliers of (P)). �

Corollary 3.2. The imaginary number λ = iβ, β ∈ R, is in the Floquet spectrum
of (P) if and only if it is in the Floquet spectrum of (Q).

The Floquet spectra of (P) and (Q) therefore agree on the imaginary axis. The
next lemma says that it is the only place where this occurs.

Lemma 3.3. Suppose that λ ∈ σ(P) ∩ σ(Q). Then λ is purely imaginary.
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Proof. Suppose that λ is in the Floquet spectrum of (Q). Then in particular every
nonzero solution of (Q) is bounded away from zero infinitely often as |z| → ∞, z ∈
R. Equation (1.10) then implies that every non-zero solution to (P) is exponentially
unbounded, and hence λ /∈ σ(P), unless λ is purely imaginary. �

We now illustrate some of the main differences between σ(P) and σ(Q). It
follows directly from the fact that Dq(λ) = 1 that if λ ∈ σ(Q), then both Floquet
multipliers of (Q) lie on the unit circle. However for (P) we have instead the
following.

Lemma 3.4. Assume that c 6= 0 (in addition to c2 6= 1). Let λ ∈ σ(P) and suppose
that Re (λ) 6= 0. Then one and only one of the Floquet multipliers of (P) will lie
on the unit circle.

Proof. Let ρ±(λ) denote the Floquet multipliers of equation (P). Equation (2.5)
implies that |ρ+(λ)| · |ρ−(λ)| = e2cγTRe(λ). If λ ∈ σ(P), then one of the factors on
the left hand side is equal to 1. But if Re (λ) 6= 0, then the other factor cannot also
be equal to 1. �

Lemma 3.5. Assume that c 6= 0 (in addition to c2 6= 1). Suppose λ ∈ R \ {0} is in
the Floquet spectrum of (P). Then one of the Floquet multipliers of (P) satisfies
ρ2 = 1, i.e., λ is either a periodic (ρ = 1) or antiperiodic (ρ = −1) temporal
eigenvalue.

Note that by contrast if λ ∈ σ(Q) is real and nonzero it is not in general a periodic
or antiperiodic Floquet eigenvalue of Hill’s equation (Q).

Proof. Equation (2.5) implies that the product of the Floquet multipliers of (P) is
positive, and is explicitly given by e2cγλT 6= 1. Since λ ∈ R, the Floquet multipliers
are either real or form a complex-conjugate pair. The latter case can be ruled out
because for λ ∈ σ(P) the product of the (necessarily unimodular) multipliers would
equal 1. So the multipliers are both real and since λ ∈ σ(P) one of them must be
±1, in which case the other is given by ±e2cγλT 6= ±1. �

We take a moment here to highlight some of the consequences for the Floquet
spectra of equations (P) and (Q) that are due to the past few results.

Proposition 3.6. Let λ be a point where the discriminant of (P) vanishes, i.e.
the Floquet multipliers are equal. Denote the equal values by ρ. Then

(1) The Floquet multipliers of (Q) are also equal. Denoting the equal values
by η, we have that η = ±1 and correspondingly ρ = ±ecγλT .

(2) λ is either real or purely imaginary. If it is real and non-zero, then λ /∈
σ(P), while if it is purely imaginary (including zero), then λ ∈ σ(P).

Proof. The fact that the Floquet multipliers of (Q) are equal follows from Lemma 3.1.
Formula (2.5) implies that η2 = Dq(λ) = 1, hence η = ±1. Applying Lemma 3.1
again implies that ρ = ±ecγλT . Since |η| = 1, we have λ ∈ σ(Q), and by self-
adjointness of (Q), this means that Im

(
λ2
)

= 0. Corollary 3.2 and Lemma 3.3
together imply the dichotomy in statement (2). �
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3.2. The spectrum of equation (Q). A general reference for the Hill’s equation
theory in this section is Magnus and Winkler [MW66]. Consider the Hill’s operator

L :=
d2

dz2
+ γ cos(f(z)), (3.5)

where f(z) is the T -periodic (mod 2π) traveling wave solution of the sine-Gordon
equation about which we are linearizing. The spectrum σ(Q) is characterized by
nonzero solutions q of

Lq(z) = µ(θ)q(z), q(z + T ) = eiθq(z), (3.6)

where θ is a real phase angle. (Recall the relation µ = γ2λ2; in this section we will
consider µ rather than λ as the key spectral parameter for Hill’s equation (Q).)

The numbers µ(0) correspond to the periodic eigenvalues of (Q), while the num-
bers µ(π) correspond to the antiperiodic eigenvalues. The set of µ(θ) ∈ R for which
there exists a nontrivial solution of (3.6) will be denoted Σθ(Q). Since cos(f(z))
is real, it is clear that Σ−θ(Q) = Σθ(Q). The Floquet spectrum σ(Q) is related to
the union of these sets over θ as follows:

γ2σ(Q)
2

= Σ(Q) :=
⋃

−π<θ≤π

Σθ(Q). (3.7)

The µ-Floquet spectrum Σ(Q) of Hill’s operator (3.5) is bounded above. It consists
of the union of closed intervals

Σ(Q) =

∞⋃
n=0

[µ
(0)
2n+1, µ

(π)
2n+2] ∪ [µ

(π)
2n+1, µ

(0)
2n ] (3.8)

where the sequences Σ0(Q) := {µ(0)
j } and Σπ(Q) := {µ(π)

j } decrease to −∞ and
satisfy the inequalities

· · · < µ
(π)
4 ≤ µ(π)

3 < µ
(0)
2 ≤ µ(0)

1 < µ
(π)
2 ≤ µ(π)

1 < µ
(0)
0 . (3.9)

The function f ′(z) is a nontrivial T -periodic solution (θ = 0) when µ = 0, that

is, Lf ′(z) = 0, and f ′(z + T ) = f ′(z). Hence one of the periodic eigenvalues µ
(0)
j

coincides with µ = 0, and the value of j is determined by oscillation theory (see
[MW66, Thm. 2.14 (Haupt’s Theorem)]1 or [CL55, Thm. 8.3.1]). For librational

f , f ′(z) has exactly two zeros per period and hence either µ
(0)
1 = 0 or µ

(0)
2 = 0.

On the other hand, for rotational f , f ′(z) has no zeros at all and hence µ
(0)
0 = 0.

Therefore, we have the following dichotomy for the spectrum of Hill’s equation:

• For librational f , the positive part of the µ-Floquet spectrum Σ(Q) consists

of the intervals [µ
(0)
1 , µ

(π)
2 ] ∪ [µ

(π)
1 , µ

(0)
0 ] (which may merge into a single

interval if µ
(π)
1 = µ

(π)
2 ). It is possible that µ

(0)
1 = 0, but not necessary;

otherwise µ
(0)
2 = 0 and µ

(0)
1 > 0.

• For rotational f , the µ-Floquet spectrum Σ(Q) is a subset of the closed

negative µ half-line, and µ
(0)
0 = 0 belongs to the spectrum.

1The statement of Haupt’s theorem in [MW66] contains some typographical errors; the second

sentence of Theorem 2.14 should be corrected to read “If λ = λ′2n−1 or λ = λ′2n, then y has

exactly 2n− 1 zeros in the half-open interval 0 ≤ x < π.”
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In both cases the µ-Floquet spectrum has an unbounded negative part and consists
of bands separated by gaps. The bands correspond to |∆q| ≤ 2, and the gaps

correspond to |∆q| > 2. Whether or not µ
(0)
1 = 0 for librational waves can be

resolved as follows.

Lemma 3.7. Let f(z) be a librational traveling wave of the sine-Gordon equation.

Then 0 = µ
(0)
1 > µ

(0)
2 .

Proof. We begin by characterizing the dependence of the fundamental period T
on c and E. Since f(z) is a librational traveling wave, we have 0 < E < 2. By
integrating (1.4) along the appropriate orbits inside the separatrix, we obtain:

T =


√

2(c2 − 1)P (E), c2 > 1

√
2(1− c2)P (2− E), c2 < 1,

(3.10)

where

P (E) := 2

∫ arccos(1−E)

0

df√
E − 1 + cos(f)

. (3.11)

(The subluminal period formula follows from the superluminal period formula by
the substitution f 7→ f + π.)

Now, since λ = 0 is a periodic eigenvalue of (Q), we have ∆q = 2 when µ = 0
and in this case there are two alternatives:

µ
(0)
1 = 0 > µ

(0)
2 ⇔ d

dµ
∆q

∣∣∣∣
µ=0

< 0 or µ
(0)
2 = 0 ≤ µ(0)

1 ⇔ d

dµ
∆q

∣∣∣∣
µ=0

≥ 0,

(3.12)
so it is enough to show that

d

dµ
∆q

∣∣∣∣
µ=0

< 0. (3.13)

In order to establish (3.13), we will first show that the monodromy matrix of
equation (Q) takes the form:

Mq(0) =

(
1 −v0(E, c)2(c2 − 1)TE
0 1

)
, (3.14)

where v0(E, c) is a real non-zero constant related to the function f(z) that will be
defined below, and where TE = ∂T/∂E.

To prove (3.14), fix a wave speed c 6= ±1 and a total energy E ∈ (0, 2). Let
f(z;E, c) be the periodic wave uniquely determined modulo 2π from equation (1.3),
having total energy E, and for which

fz(0;E, c) > 0 and sin(f(0;E, c)) = 0. (3.15)

We claim that when µ = 0 the two-dimensional vector space of solutions to (2.4) is
spanned by the following (subscripts denote partial derivatives):(

fz
fzz

)
and

(
fE
fEz

)
(3.16)

To see this, first differentiate equation (1.3) with respect to either z or E to see
that both vectors solve equation (2.4) for µ = 0. Then to prove independence,
differentiate equation (1.4) with respect to E to get

(c2 − 1)fzfzE = 1− fE sin(f). (3.17)
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Using this and (1.3) gives∣∣∣∣ fz fE
fzz fEz

∣∣∣∣ = fzfEz − fEfzz = γ =
1

c2 − 1
6= 0. (3.18)

We may therefore define a fundamental solution matrix at µ = 0 by:

Q(z, 0) =

(
fz(z;E, c) fE(z;E, c)
fzz(z;E, c) fEz(z;E, c)

)
. (3.19)

Of course the unique fundamental solution matrix Fq(z, 0) satisfying Fq(0, 0) = I
can then be expressed as Fq(z, 0) = Q(z, 0)Q(0, 0)−1. In particular, by setting
z = T we can thus write the monodromy matrix at µ = 0 as

Mq(0) = Fq(T, 0) = Q(T, 0)Q(0, 0)−1. (3.20)

Next we wish to explicitly relate Q(T, 0) with Q(0, 0). Denote the initial values of
f and fz as follows:

u0(E, c) := f(0;E, c) = f(T ;E, c),

v0(E, c) := fz(0;E, c) = fz(T ;E, c).
(3.21)

Differentiate the initial conditions (3.21) with respect to E to get that

∂Eu0 = fE(T ;E, c) + TEfz(T ;E, c)

= fE(T ;E, c) + TEfz(0;E, c)

= fE(T ;E, c) + TEv0(E, c)

(3.22)

and

fEz(0;E, c) = ∂Ev0(E, c) = TEfzz(T ;E, c) + fEz(T ;E, c). (3.23)

Using periodicity of f and sin(f), equation (1.3) and the initial conditions (3.15)
imply that

fzz(T ;E, c) = −γ sin(f(0;E, c)) = 0. (3.24)

Combining these observations, we conclude:

Q(0, 0) =

(
fz(0;E, c) fE(0;E, c)
fzz(0;E, c) fEz(0;E, c)

)
=

(
v0(E, c) ∂Eu0(E, c)

0 ∂Ev0(E, c)

)
,

(3.25)

and likewise,

Q(T, 0) =

(
fz(T ;E, c) fE(T ;E, c)
fzz(T ;E, c) fEz(T ;E, c)

)
=

(
v0(E, c) ∂Eu0(E, c)− TEv0(E, c)

0 ∂Ev0(E, c)

)
= Q(0, 0) +

(
0 −TEv0(E, c)
0 0

)
.

(3.26)

Using these in (3.20) along with det(Q(0, 0)) = γ yields (3.14).
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Now, differentiation2 of the equation F′q(z, λ) = Aq(z, λ)Fq(z, λ) (cf. equation

(2.4)) with respect to µ = γ2λ2 gives

F′q,µ(z, λ)− Aq(z, λ)Fq,µ(z, λ) = Aq,µ(z, λ)Fq(z, λ) =

(
0 0
1 0

)
Fq(z, λ). (3.27)

The general solution of this equation is obtained by variation of parameters, that
is, by the substitution Fq,µ(z, λ) = Fq(z, λ)W(z, λ) for some new unknown matrix
W(z, λ). Note that the initial condition Fq(0, λ) = I, ∀λ implies that W(0, λ) = 0.
It follows easily (also using det(Fq(z, λ)) = 1) that

Fq,µ(z, λ) = Fq(z, λ)

∫ z

0

(
−Fq,11(ζ, λ)Fq,12(ζ, λ) −Fq,12(ζ, λ)2

Fq,11(ζ, λ)2 Fq,11(ζ, λ)Fq,12(ζ, λ)

)
dζ.

(3.28)
Setting z = T and taking the trace gives

d

dµ
∆q = (Mq,22(λ)−Mq,11(λ))

∫ T

0

Fq,11(ζ, λ)Fq,12(ζ, λ) dζ

−Mq,21(λ)

∫ T

0

Fq,12(ζ, λ)2 dζ + Mq,12(λ)

∫ T

0

Fq,11(ζ, λ)2 dζ. (3.29)

Upon taking λ = 0 (and hence µ = 0) and using (3.14) we see that

d

dµ
∆q

∣∣∣∣
µ=0

= −v0(E, c)2(c2 − 1)TE

∫ T

0

Fq,11(ζ, 0)2 dζ. (3.30)

Because Fq(z, λ) is real-valued for all µ ∈ R and Fq,11(z, 0) does not vanish identi-
cally for 0 < z < T because Fq,11(0, 0) = 1, we easily conclude that

sgn

(
d

dµ
∆q

∣∣∣∣
µ=0

)
= − sgn

(
(c2 − 1)TE

)
, (3.31)

where we have used the fact that v0(E, c) 6= 0.
Finally, we show that the inequality

(c2 − 1)TE > 0 (3.32)

holds strictly for all librational waves regardless of speed. The proof is by direct
computation of TE . Recalling (3.10), we compute P ′(E) as follows: since 0 < E < 2,
and hence arccos(1 − E) < π, we can make the substitution w = cos(f) implying

dw = − sin(f) df = −
√

1− w2 df and hence obtain:

P (E) = 2

∫ 1

1−E

dw√
(1− w2)(E − 1 + w)

. (3.33)

Next, making the substitution w = E(u− 1) + 1, so that dw = E du, yields:

P (E) = 2

∫ 1

0

du√
−E(u− 1)2 − 2(u− 1)

√
u
. (3.34)

It is now easy to take the derivative with respect to E:

P ′(E) =

∫ 1

0

(u− 1)2du

(−E(u− 1)2 − 2(u− 1))
3
2
√
u
> 0. (3.35)

This immediately implies (3.32) and hence completes the proof of the lemma. �

2This part of the argument follows closely [MW66, pp. 15–18].
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Remark 3.8. We note here that identity (3.31) in Lemma 3.7, which connects
the non-degeneracy of the operator L to the non-vanishing of the quantity TE has
been established in other contexts. For example, in terms of traveling waves in the
generalized Korteweg-de Vries equation, see [Joh09], and for its appearance in the
study of periodic waves in the nonlinear Schrödinger equation see [GH07].

Because (Q) can in fact be written as the ν = 1 form of Lamé’s equation (see
the Appendix for details) the structure of the Floquet spectrum Σ(Q) (for both
librational and rotational waves) is even simpler as there is exactly one (open) gap.

Figure 3. A qualitative illustration of the values µ for which there
exists a bounded solution to equation (Q). The fact that there is a
single gap corresponds to the fact that (Q) is reducible to Lamé’s
equation. The placement of the band gap in the librational wave
case is due to the fact that in this case d∆q/dµ < 0 at µ = 0.
The Floquet spectrum of (Q) in the λ-plane is obtained from two
copies of the µ-spectrum by the relation λ = ±|γ|−1µ1/2.

Another consequence of the preceding analysis is that it gives us a qualitative
picture of the trace ∆q for real values of µ. The following result applies to all four
types of periodic traveling waves of the sine-Gordon equation:

Corollary 3.9. For each periodic traveling wave f , there exists a point µ∗ < 0 for
which |∆q| > 2 at µ = µ∗, and therefore there exist two nonzero imaginary points
λ = ±iβ∗, β∗ > 0, µ∗ = (iγβ∗)

2, that are not in the spectrum of (Q).

Remark 3.10. Actually, we have shown something stronger, namely the existence
of an open interval on the negative real line where |∆q| > 2, and hence the existence
of two intervals in iR not in Σ(Q). This difference is not necessary to the proof of
Theorem 1.10 however, and we have formulated Corollary 3.9 in its current form
as a matter of taste.

For µ inside the first spectral gap we have that |∆q| > 2. Figure 4 verifies that
µ = 0 is the largest periodic eigenvalue in the rotational case, while it is the second
largest in the librational case.

To finish off this section, we introduce another pair of functions which will prove
useful in later stability calculations. Let ρ± (respectively η±) denote the Floquet
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Μ

Dq
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4

(a) rotational (subluminal)

Μ

Dq

-2.0 -1.5 -1.0 -0.5 0.5 1.0

-3

-2

-1

1

2

3

4

(b) librational (superluminal)

Figure 4. The graph of ∆q for real values of µ. As in Lemma

3.7 and equation (3.13), it can be seen that µ
(0)
1 = 0 and that

d∆q/dµ < 0 at µ = 0 in the librational wave case. Left panel:

c = 1/
√

3, E = 4.92. Right panel: c =
√

3, E = 1.

multipliers of (P) (respectively of (Q)). Define the maps Gp,q : C→ R by

Gp(λ) := log |ρ+(λ)| log |ρ−(λ)|
Gq(λ) := log |η+(λ)| log |η−(λ)|.

(3.36)

Lemma 3.11 (Important properties of Gp and Gq). The functions Gp : C → R
and Gq : C→ R are continuous, and λ ∈ σ(P) (respectively λ ∈ σ(Q)) if and only
if Gp(λ) = 0 (respectively Gq(λ) = 0). Also,

Gq(λ) ≤ 0, ∀λ ∈ C (3.37)

and
Gp(λ) = (Re (cγλT ))2 +Gq(λ), ∀λ ∈ C. (3.38)

Proof. As roots of the characteristic polynomial of a 2× 2 matrix with entries ana-
lytic in λ, the Floquet multipliers η±(λ) and ρ±(λ) are analytic with the exception
of square-root type branch points at the isolated zeros of the associated (entire) dis-
criminant, and a system of branch cuts connecting them. Moreover, the multipliers
are well-defined precisely at each such branch point. Upon crossing such a branch
cut, the two multipliers are simply permuted, and hence any continuous symmet-
ric function of the two multipliers can be continuously extended to the system of
branch cuts. It only remains to point out that the logarithms are continuous as the
multipliers are necessarily nonzero due to (2.5). The statement that the functions
Gp and Gq detect the Floquet spectra of (P) and (Q) respectively follows directly
from Proposition 2.3 and Definition 2.6.

The inequality (3.37) follows from (2.5), which implies that the Floquet multi-
pliers of (Q) are reciprocals of each other. The identity (3.38) also follows from the
reciprocal nature of the Floquet multipliers of (Q) together with Lemma 3.1. �

We conclude this section by deducing the sign of Gp(λ) at certain special points
in the complex plane.

Lemma 3.12. For each periodic traveling wave there exists β∗ > 0 such that
Gp(±iβ∗) < 0.
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Proof. Let β∗ > 0 be as in the statement of Corollary 3.9. Since λ = iβ∗ is imagi-
nary, it follows from (3.38) that Gp(iβ∗) = Gq(iβ∗). But according to Corollary 3.9,
iβ∗ 6∈ σ(Q) and hence from Lemma 3.11 we have Gq(iβ∗) 6= 0. But from (3.37) it
follows that in fact Gq(iβ∗) < 0 and hence Gp(iβ∗) = Gq(iβ∗) < 0 as desired. �

Lemma 3.13. For each librational traveling wave there exists α∗ ∈ σ(Q) real and
positive, and if in addition c 6= 0, then Gp(α∗) > 0 for all such α∗.

Proof. The fact that there exist real and strictly positive points α∗ in the Floquet

spectrum of (Q) for librational waves is a consequence of µ
(0)
0 > 0 and the rela-

tion µ = (γλ)2. To see that Gp(α∗) > 0, apply (3.38) with the observation that
Gq(α∗) = 0 and using c 6= 0. �

Lemma 3.14. Let Re (λ) be sufficiently large in magnitude. Then sgn(Gp(λ)) =
sgn(γ), i.e. Gp(λ) > 0 for superluminal waves and Gp(λ) < 0 for subluminal waves.

Proof. The coefficient cos(f(z)) is evidently negligible compared with λ2 in equation
(P), and it can be shown that the Floquet multipliers of (P) satisfy

log(ρ±(λ)) = γλT (c± 1) +O(1), λ→∞. (3.39)

Therefore, directly from the definition (3.36) of Gp(λ) we see that

Gp(λ) = [γRe (λ)T (c+ 1) +O(1)] [γRe (λ)T (c− 1) +O(1)]

= γRe (λ)2T 2 +O(Re (λ)), λ→∞,
(3.40)

where we have used the definition (1.7) of γ. The leading term dominates for Re (λ)
sufficiently large, and therefore the proof is complete. �

Remark 3.15. The function Gp is useful not only in studying spectral stability
of periodic traveling waves, but also in numerically finding the curves of spectrum.
Indeed Figure 2 was made by finding the zero locus of the function Gp(λ) with the
appropriate parameters. In this way, Gp is a non-analytic but continuous analogue
of an Evans function capturing in one fell swoop the temporal eigenvalues for all
real values of the phase θ of the (unimodular) Floquet multiplier ρ. This should
be contrasted with the so-called periodic Evans function F (λ; θ) [Gar93]. For each
θ ∈ R, F (λ; θ) is an analytic function of λ whose (isolated) zeros are those temporal
eigenvalues for which there exists a unimodular Floquet multiplier ρ with phase θ.

4. Stability and Instability of Periodic Traveling Waves

We are now ready to determine the stability and instability of the four types
of periodic traveling waves. The proof of Theorem 1.10 follows from Lemma 4.1,
Lemma 4.2, and Lemma 4.3 that we formulate and prove in this section.

4.1. Stability.

Lemma 4.1 (Spectral stability of subluminal rotational waves). Let f(z) be a
subluminal rotational wave. Then σ(P) is purely imaginary.

Proof. Recall the Hill’s operator L defined by (3.5) in §3.2, and the corresponding
Hill’s equation eigenvalue problem (3.6) parametrized by θ ∈ R. The eigenvalue
problem (3.6) is selfadjoint for all real θ and since the resolvent is compact (Green’s
function gθ(z, ξ) = gθ(ξ, z)

∗ is a continuous and hence Hilbert-Schmidt kernel on
[0, T ]2), it follows from the spectral theorem that for each θ ∈ R the eigenfunctions
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associated with points µ ∈ Σθ(Q) form an orthonormal basis of L2(0, T ). Moreover
the corresponding generalized Fourier expansion of a smooth function w(z) satisfy-
ing the condition w(z + T ) = eiθw(z) is uniformly convergent. From these facts it
follows that

〈w,Lw〉 ≤ ‖w‖2 max Σθ(Q) ∀w ∈ C(2)(R), w(z + T ) = eiθw(z), (4.1)

where

〈w,Lw〉 :=

∫ T

0

w(z)∗Lw(z) dz and ‖w‖2 :=

∫ T

0

|w(z)|2 dz ≥ 0. (4.2)

It follows from (4.1) that for rotational f ,

〈w,Lw〉 ≤ 0 ∀w ∈ C(2)(R), w(z + T ) = eiθw(z), (4.3)

because Σθ(Q) ⊂ R−. That is, L is negative semidefinite in this case (it is strictly
negative definite for θ 6= 0 (mod 2π)). On the other hand, for librational f , L is
indefinite.

We re-write the equation (P) in terms of Hill’s operator L as

(c2 − 1)Lp(z)− 2cλ
dp

dz
(z) + λ2p(z) = 0, (4.4)

and thus bounded on R solutions will satisfy

p(z + T ) = eiθp(z), for θ ∈ R. (4.5)

For a given θ ∈ R, we define σθ(P) ⊂ C to be the set of complex λ for which
there exists a nontrivial solution to (4.4) satisfying the boundary condition (4.5).
The Floquet spectrum of (P) is the union over θ of these sets:

σ(P) =
⋃

−π<θ≤π

σθ(P). (4.6)

Suppose λ ∈ σ(P). Then there exists θ ∈ R, such that in fact λ ∈ σθ(P).
Let p ∈ C(2)(R) denote the corresponding eigenfunction satisfying (4.4) and (4.5).
Then, multiplying the differential equation through by p(z)∗ and integrating over
the fundamental period [0, T ] gives

(c2 − 1)〈p, Lp〉 − 2imλ+ ‖p‖2λ2 = 0, (4.7)

where

m := −ic
∫ T

0

p(z)∗
dp

dz
(z) dz ∈ R. (4.8)

That m is real follows by integration by parts using the θ-periodicity condition
satisfied by p. The relation (4.7) can be viewed as a quadratic equation for λ.
Expressing λ in terms of 〈p, Lp〉, m, and ‖p‖2, we have:

λ =
1

‖p‖2
[
im±

√
−m2 − (c2 − 1)‖p‖2〈p, Lp〉

]
, (4.9)

and given the reality of m these values are clearly purely imaginary as long as
c2 < 1 (the subluminal case) and f is a rotational wave (implying the negative
semidefiniteness condition 〈p, Lp〉 ≤ 0 according to (4.3)). �
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4.2. Instability. Instability of the sub- and superluminal librational waves and of
the superluminal rotational waves is, in each case, a consequence of the continuity
of the function Gp defined by (3.36) and the Intermediate Value Theorem.

Lemma 4.2 (Spectral instability of librational waves). Let f(z) be a librational
wave. Then there exists a temporal eigenvalue λ∗ ∈ σ(P) with Re (λ∗) > 0.

Proof. If c = 0, then it is obvious that (1.10) is the identity transformation and
hence equations (P) and (Q) coincide implying σ(P) = σ(Q). Lemma 3.13 then
implies the existence of a real positive temporal eigenvalue λ∗ = α∗ > 0.

If c 6= 0 (but c2 6= 1), let β∗ > 0 be as in the statement of Lemma 3.12 and
let α∗ > 0 be as in the statement of Lemma 3.13. Choose a continuous mapping
(parametrized curve) λ : [0, 1]→ C for which λ(0) = λ0 := iβ∗ and λ(1) = λ1 := α∗,
and for which Re (λ(t)) > 0 for 0 < t ≤ 1. (To be concrete, one might select the
straight line λ(t) = λ0(1 − t) + λ1t.) Then Gp(λ(t)) is a continuous function
from [0, 1] to R, and Gp(λ(0)) < 0 from Lemma 3.12 while Gp(λ(1)) > 0 from
Lemma 3.13. It follows from the Intermediate Value Theorem that there exists
t∗ ∈ (0, 1) such that Gp(λ(t∗)) = 0, and therefore λ∗ := λ(t∗) has a positive real
part and λ∗ ∈ σ(P). �

The main idea of the proof is illustrated in the left-hand panel of Figure 5.

Figure 5. Left: the spectrum σ(Q) for a librational wave shown
in bold (red), and a curve λ = λ(t) connecting λ0 = iβ∗ at which
Gp < 0 with λ1 = α∗ > 0 at which Gp > 0, resulting in a root λ∗
of Gp (point of σ(P)) in the right half-plane. Right: the spectrum
σ(Q) for a rotational wave shown in bold (red), and a curve λ =
λ(t) connecting λ0 = iβ∗ at which Gp < 0 with a point λ1 with
Re (λ1)� 1 at which Gp > 0 if the wave is superluminal, resulting
in a root λ∗ of Gp in the right half-plane.

Lemma 4.3 (Spectral instability of superluminal rotational waves). Let f(z) be a
rotational wave and suppose that c2 > 1. Then there exists a temporal eigenvalue
λ∗ ∈ σ(P) with Re (λ∗) > 0.
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Proof. Again take β∗ > 0 as in the statement of Lemma 3.12 so that with λ0 :=
iβ∗ we have Gp(λ0) < 0. Pick λ1 with Re (λ1) > 0 so large that according to
Lemma 3.14 we have Gp(λ1) > 0 (because c2 > 1). Choosing any continuous
curve λ : [0, 1] → C with λ(0) = λ0, λ(1) = λ1, and Re (λ(t)) > 0 for 0 < t ≤ 1
and applying the Intermediate Value Theorem to Gp(λ(t)), the rest of the proof is
exactly as in that of Lemma 4.2. �

The proof is illustrated in the right-hand panel of Figure 5. Combining Lemma 4.1,
Lemma 4.2, and Lemma 4.3 completes the proof of Theorem 1.10.

5. Some Results on the Structure of the Floquet Spectrum

In this final section, we go beyond the basic (in)stability result of Theorem 1.10
to deduce some qualitative features of the Floquet spectrum σ(P) that can be easily
obtained by virtually the same methodology already in place. The first result in
this direction is the following.

Proposition 5.1. Let f(z) be a subluminal librational wave. Then there exists a
positive real temporal eigenvalue λ∗ ∈ σ(P), and one of the corresponding Floquet
multipliers satisfies ρ(λ∗) = 1 (i.e. λ∗ is a periodic Floquet eigenvalue of (P)).

Proof. If c = 0, then equations (P) and (Q) coincide and hence the positive real

periodic eigenvalue λ∗ := (µ
(0)
0 /γ2)1/2 > 0 of (Q) is also a point of σ(P). Therefore

both Floquet mulipliers of the equivalent problems (P) and (Q) are equal to 1 for
λ = λ∗ > 0.

If c 6= 0, let λ0 := α∗(µ
(0)
0 /γ2)1/2 > 0 be as in the statement of Lemma 3.13,

so that as λ0 is the most positive real point in σ(Q) we have Gp(λ0) > 0. Let
λ1 > 0 be so large that by Lemma 3.14 we have Gp(λ1) < 0 (because the wave is
subluminal and hence γ < 0). Then applying the Intermediate Value Theorem to
the continuous function Gp(λ0(1 − t) + λ1t) we find a root t∗ ∈ (0, 1), and since
λ∗ := λ0(1 − t∗) + λ1t∗ > 0, it is a strictly positive real temporal eigenvalue of
(P). It follows from Lemma 3.5 that λ∗ must be either a periodic or antiperiodic
temporal eigenvalue of (P). To see that λ∗ is in fact a periodic eigenvalue, note
that since λ0 is the most positive real value for which the Floquet multipliers η
of Hill’s equation (Q) coincide (with value η = 1), it follows from Lemma 3.1
that the Floquet multipliers ρ of equation (P) are coincident at λ0 with value
ρ = ecγλ0T > 0 and are distinct for all λ > λ0, either forming a distinct real pair or
a complex-conjugate pair. From (3.39) in the proof of Lemma 3.14 it is clear that
for sufficiently large real λ the multipliers are real and distinct, and it follows that
they are in fact real and distinct for all λ > λ0. From (2.5) it is obvious that the
product of the real multipliers ρ is positive for all λ ∈ R and therefore they have the
same definite sign (positive, by consideration of the degenerate value for λ = λ0)
for all λ ≥ λ0. Since one of the multipliers ρ satisfies ρ2 = 1 for λ = λ∗ > λ0 it
follows that in fact ρ = 1 > 0. �

The next result concerns the nature of the spectrum σ(P) near the origin in the
complex λ-plane; temporal eigenvalues can only accumulate at λ = 0 (see Figure
6).

Proposition 5.2. Let f be a librational wave of any speed c 6= ±1, and let σ(P)
◦

denote the corresponding Floquet spectrum of (P) with points in the union of the
real and imaginary λ-axes omitted. There is an open neighborhood U of the origin
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such that λ = 0 is the only limit point of σ(P)
◦ ∩ U lying in the union of the real

and imaginary axes.

Proof. By Proposition 1.7 it suffices to consider the part of σ(P)
◦

in the first quad-
rant of the complex λ-plane. Let λ0 = iβ∗ with β∗ > 0 being as in the statement of
Lemma 3.12 and let λ1 = α∗ with α∗ > 0 being as in the statement of Lemma 3.13.
Let U be an open disk centered at the origin with radius 1

2 min{|λ0|, |λ1|}.
We first prove that there exist limit points of σ(P)

◦
on the union of the real and

imaginary λ-axes. Consider the one-parameter family of curves connecting λ0 with
λ1 with parameter p > 0: λ = λp(t) := λ0(1 − t)p + λ1t

p for 0 ≤ t ≤ 1. Exactly
as in the proof of Lemma 4.2, the Intermediate Value Theorem provides for each
p > 0 a point λ = λ∗,p ∈ σ(P) that is an interior point of the curve λ = λp(t) (see
the left-hand panel of Figure 6). As a bounded subset of C, the sequence {λ∗,p}∞p=1

has limit points, and as the curve λ = λp(t) with 0 ≤ t ≤ 1 approaches the union
of the real segment [0, α∗] and the imaginary segment [0, iβ∗] as p → ∞, the limit
points of the sequence necessarily lie on this union of segments.

Now let λ denote any limit point of σ(P)
◦

lying on the union of the segments
[0, α∗] and [0, iβ∗]. Because σ(P) is a closed set, it follows that λ ∈ σ(P) as well.
If Im (λ) > 0 and Re (λ) = 0, then as Im (λ) < β∗ we have λ 6∈ σ(Q) which by
Corollary 3.2 contradicts the fact that λ ∈ σ(P). On the other hand, if Re (λ) > 0
and Im (λ) = 0, then as Re (λ) < α∗ we have λ ∈ σ(Q) which by Lemma 3.3
contradicts again the fact that λ ∈ σ(P). It therefore follows that λ = 0. �

Figure 6. Left: a magnification of the neighborhood of the origin
from the left-hand panel of Figure 5 showing the family λ = λp(t)
of curves from the proof of Proposition 5.2 and the corresponding
points λ∗,p ∈ σ(P) converging to the origin. Right: the local struc-
ture of the spectrum near the origin for librational waves (both sub-
and superluminal) consists of a union of two crossing analytic arcs.

It is an easy consequence of the fact that the elements of the monodromy matrix
Mp(λ) are entire analytic functions of λ that for each R > 0, σ(P)∩ {|λ| < R} is a
finite union of analytic arcs (arcs of spectrum). Together with Proposition 5.2 this
implies that for R > 0 sufficiently small, σ(P)∩{|λ| < R} is a finite union of arcs of
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spectrum meeting at the origin and having the full Hamiltonian symmetry implied
by Proposition 1.7. To deduce further details of the local structure of σ(P) near
λ = 0 (for example the number of arcs of spectrum meeting at the origin and their
asymptotic form in the limit of small |λ|) requires methods beyond those presented
in this paper. However, in a forthcoming paper [JMMP13] we carry out a complete
local analysis by computing the Taylor expansion of Mp(λ) about λ = 0, and this
method shows that for librational waves, σ(P) near the origin consists of exactly
two curves crossing transversely with opposite slopes as illustrated qualitatively
in the right-hand panel of Figure 6. The nature of the Floquet spectrum near the
origin is of crucial importance in relating spectral stability/instability to Whitham’s
so-called modulational stability criterion [Whi99] (see also [JZ10]).
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Appendix: Writing (Q) as Lamé’s Equation

Lamé’s equation [DLMF, §29.2(i)] is

d2w

dζ2
+ (h− ν(ν + 1)k2sn2(ζ, k))w = 0, (5.1)

where ν ≥ − 1
2 and k ∈ (0, 1) is an elliptic modulus, and where sn(ζ, k) denotes

the Jacobi elliptic function with argument z and modulus k, which satisfies the
first-order nonlinear equation [DLMF, §22.13(ii)](

du

dζ

)2

= (1− u2)(1− k2u2). (5.2)

The fact that elliptic functions are involved essentially follows from (1.4) satisfied
by the traveling wave profile f(z). The calculations are slightly different for each
of the four types of periodic traveling waves.

Subluminal (γ < 0) rotational (E < 0) waves. Consider the relation

cos(f(z)) = −1 + 2u2. (5.3)

Differentiating (5.3), squaring, using the Pythagorean identity sin2(f)+cos2(f) = 1,
and substituting again from (5.3) yields the equation

4

(
du

dz

)2

= (1− u2)

(
df

dz

)2

. (5.4)

Next, substitution of (5.3) into (1.4) gives(
df

dz

)2

= −2γ(2− E)(1− k2u2), k :=

√
2

2− E
∈ (0, 1). (5.5)
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Eliminating f ′(z)2 therefore yields (5.2) with ζ = [ 12 (−γ)(2 − E)]1/2(z − z0) for
arbitrary constant z0 ∈ R, and hence

u = sn

([
1

2
(−γ)(2− E)

]1/2
(z − z0),

√
2

2− E

)
. (5.6)

With the use of (5.3) it is then clear that (Q) takes the form of Lamé’s equation
(5.1) with

k :=

√
2

2− E
, h := k2

[
1− 2µ

(−γ)

]
, ζ :=

[
1

2
(−γ)(2− E)

]1/2
(z − z0), ν = 1.

(5.7)

Superluminal (γ > 0) rotational (E > 2) waves. Consider instead the relation

cos(f(z)) = 1− 2u2, (5.8)

which by the same steps as in the subluminal rotational case implies (5.4). Using
(5.8) in (1.4) gives(

df

dz

)2

= 2γE(1− k2u2), k :=

√
2

E
∈ (0, 1). (5.9)

Using this to eliminate f ′(z)2 from (5.4) then yields (5.2) with ζ = [ 12γE]1/2(z−z0)
for constant z0 ∈ R. Therefore

u = sn

([
1

2
γE

]1/2
(z − z0),

√
2

E

)
, (5.10)

and using (5.8) shows that in this case (Q) is also of the form of Lamé’s equation
(5.1) with

k :=

√
2

E
, h := k2

[
1− µ

γ

]
, ζ :=

[
1

2
γE

]1/2
(z − z0), ν = 1. (5.11)

Subluminal (γ < 0) librational (0 < E < 2) waves. The correct substitution
in this case is

cos(f(z)) = −1 + (2− E)u2 (5.12)

which in combination with (1.4) leads to (5.2) with k = [ 12 (2− E)]1/2 ∈ (0, 1) and

ζ = [−γ]1/2(z − z0) and hence

u = sn

(
[−γ]

1/2
(z − z0),

√
2− E

2

)
. (5.13)

Using (5.12) then shows that (Q) takes the form of Lamé’s equation (5.1) with

k :=

√
2− E

2
, h := 1− µ

(−γ)
, ζ := [−γ]1/2(z − z0), ν = 1. (5.14)
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Superluminal (γ > 0) librational (0 < E < 2) waves. Finally, in this case we
use

cos(f(z)) = 1− Eu2, (5.15)

which together with (1.4) gives (5.2) with k = [ 12E]1/2 ∈ (0, 1) and ζ = γ1/2(z−z0).
Therefore

u = sn

(
γ1/2(z − z0),

√
E

2

)
. (5.16)

Combining this result with (5.15) shows that (Q) is again Lamé’s equation (5.1)
with

k :=

√
E

2
, h := 1− µ

γ
, ζ := γ1/2(z − z0), ν = 1. (5.17)

The Floquet spectrum of Lamé’s equation for ν = 1. In all four cases we
have Lamé’s equation (5.1) with the constant parameter ν = 1. The Floquet
spectrum of Lamé’s equation is well-understood, and the relevant information can
be found in [DLMF, §29.3(i)–(ii), §29.9]. In passing from the notation of [DLMF]
to our notation, we need to recall the relationship between µ and h in each case
(note in particular that dh/dµ < 0 in all cases) and also keep in mind that for
both types of librational waves the fundamental period T we use to compute the
monodromy actually corresponds to twice the fundamental period of the coefficient
in Lamé’s equation. It then follows that since ν = 1, the only open gap in Σ(Q) (not

counting the “trivial gap” µ > µ
(0)
0 ) is the interval µ

(π)
2 < µ < µ

(π)
1 for both types

of rotational waves and the interval µ
(0)
2 < µ < µ

(0)
1 for both types of librational

waves. These exact results are illustrated in Figure 3.
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