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Abstract. A nonlinear Schrödinger equation arising from light propagation down

an inhomogeneous medium is considered. The inhomogeneity is reflected through

a non-uniform coefficient of the non-linear term in the equation. In particular, a

combination of self-focusing and self-defocusing nonlinearity, with the self-defocusing

region localized in a finite interval, is investigated. Using numerical computations, the

extension of linear eigenmodes of the corresponding linearized system into nonlinear

states is established, particularly nonlinear continuations of the fundamental state and

the first excited state. The (in)stability of the states is also numerically calculated,

from which it is obtained that symmetric nonlinear solutions become unstable beyond

a critical threshold norm. Instability of the symmetric states is then investigated

analytically through the application of a topological argument. Determination of

instability of positive symmetric states is reduced to simple geometric properties of the

composite phase plane orbit of the standing wave. Further the topological argument

is applied to higher excited states and instability is again reduced to straightforward

geometric calculations. For a relatively high norm, it is observed that asymmetric

states bifurcate from the symmetric ones. The stability and instability of asymmetric

states is also considered.
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1. Introduction

Inhomogeneities can act as an effective trapping to collective excitations in nonlinear

media. In the field of nonlinear integrated optics, the first theoretical works on guided

waves by an interface between a linear and nonlinear medium appeared in [19, 1, 33, 20].

Various stationary wave profiles propagating along nonlinear planar optical guides in

a layered structure are then extensively considered (see, e.g., [2, 13, 26, 4, 29] and

references therein). When the inhomogeneities are periodic, one will obtain discrete

waveguide arrays, which have become an independent topic of interest [17]. A next

fundamental question is whether or not the standing waves are stable to propagation

along the nonlinear waveguide.

The stability of stationary nonlinear Schrödinger waves in homogeneous media was

first considered by Vakhitov and Kolokolov [38, 16]. Using variational arguments,

a criterion was derived relating the soliton linear stability and the slope of the

corresponding power-dispersion curve, i.e. the known Vakhitov-Kolokolov condition.

The method was later rigorously justified by Weinstein in [39], and in [10]. Subsequent

studies extend the condition for various situations, including inhomogeneous problems

[14, 34, 35, 36, 37, 21] (see also a recent brief review [28] and references therein).

An interesting waveguide system was proposed in [35], consisting of a self-focusing

Schrödinger equation and a self-defocusing type inhomogeneity with finite length. It

is experimentally feasible to fabricate such a waveguide using the current technology

as self-focusing and self-defocusing can be achieved in the same medium, structure,

and wavelength [22]. In the context of a Bose-Einstein condensation [6, 9, 3, 8, 5],

which is also modeled by a nonlinear Schrödinger equation [11, 24], such a sign-

changing nonlinearity coefficient can be created by spatially varying the condensate’s

atomic scattering length making the so-called collisionally inhomogeneous nonlinearity

[31, 32, 25].

Tran [35] extended the work of, e.g., [2, 14], in which the inhomogeneity is linear. In

[35] the self-defocusing inhomogeneity has a small nonlinearity coefficient, such that the

characteristics of the stationary solutions are closely related to the corresponding linear

problem. The system was later studied by Leon [18], where the nonlinearity coefficient

of the inhomogeneity was of the same order as the self-focusing regions. Analytical

solutions of stable symmetric solutions below a threshold amplitude were derived in

terms of Jacobian elliptic functions [18].

We study the existence and stability of symmetric and asymmetric solutions,

particularly the fundamental and the first excited mode, when the nonlinearity

coefficient of the defocusing inhomogeneity is of the same order as the focusing bounding

regions. We show that continuing from the linear limit solutions, there is a saddle-node

bifurcation at which the symmetric mode becomes unstable and asymmetric modes

emerge. Even though it is similar to the results reported in [35], there is a significant

difference where the asymmetric positive solutions are all stable in their existence region.

Moreover, [35] only considers positive solutions. Besides determining the instability of



Localized standing waves in inhomogeneous Schrödinger equations 3

symmetric solutions numerically, we also show it analytically using topological argument

techniques as developed in [14, 15]. We also comment on the inapplicability of the

analytical techniques to asymmetric solutions.

In Section 2, the governing equations are discussed and the corresponding linear

eigenvalue problem is derived. In Section 3, we consider the linear limit of the equations,

where a transcendental equation determining the bifurcation points of nonuniform

solutions from the uniform solution u = 0 is derived. In the same section, numerical

continuations of the fundamental and the first excited state from the linear limit to

nonlinear states are presented. The linear (in)stability of the numerically obtained

(symmetric and asymmetric) solutions is then determined numerically by solving the

corresponding linear eigenvalue problem. The instability of the symmetric solutions are

analyzed analytically in Section 4 using a topological argument. In Section 5 we consider

some asymmetric solutions.

2. Mathematical model

We consider the following governing system of differential equations

iΨt +Ψxx + |Ψ|2Ψ = VΨ |x| > L,

iΨt +Ψxx − η|Ψ|2Ψ = 0 |x| < L,
(1)

where the ‘outer’ and the ‘inner’ equation has focusing and defocusing (η > 0) type

nonlinearity, respectively, and L is a positive real parameter representing half the length

of the waveguide. The norm

N =

∫ ∞

−∞
|Ψ(x, t)|2 dx,

which is physically related to the intensity power of the electromagnetic field in the

context of nonlinear optics or the number of atoms in Bose-Einstein condensates is

conserved.

To study standing waves of (1), we pass to a rotating frame and consider solutions

of the form Ψ(x, t) = e−iωtψ(x, t). We then have

iψt + ψxx + |ψ|2ψ = (V − ω)ψ |x| > L,

iψt + ψxx − η|ψ|2ψ = −ωψ |x| < L.
(2)

Standing wave solutions of (1) will be steady-state solutions to (2). In the following,

the parameter η is taken to be η = 1. We consider real, t independent solutions u(x) to

the ODE:

uxx = (V − ω)u− u3 |x| > L,

uxx = −ωu+ u3 |x| < L.
(3)

To obtain solutions that decay to 0 as x → ±∞, the condition that V − ω > 0 is

required, with ω ∈ R. We will also require that ux → 0 as x → ±∞. To establish the

instability of a standing wave solution we linearize (2) about a solution to (3). Writing
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ψ = u(x) + ǫ
(

(r(x) + is(x))eλt + (r(x)⋆ + is(x)⋆)eλ
⋆t
)

and retaining terms linear in ǫ

leads to the eigenvalue problem

λ

(

r

s

)

=

(

0 D−
−D+ 0

)(

r

s

)

=M

(

r

s

)

, (4)

where the linear operators D+ and D− are defined as

D+ =
∂2

∂x2 − (V − ω) + 3u2, |x| > L,
∂2

∂x2 + ω − 3u2, |x| < L,
(5)

D− =
∂2

∂x2 − (V − ω) + u2, |x| > L,
∂2

∂x2 + ω − u2, |x| < L.
(6)

It is then clear that the presence of an eigenvalue of M with positive real part implies

instability.

3. Linear states and their continuation
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Figure 1. Bifurcation points of non-uniform solutions from the zero solution u ≡ 0 in

the (L, ω)-plane for V = 1. The insets present a sketch of the corresponding solution

u(x) along the first two branches.

In the small limit of u(x), the governing equation (3) is reduced to the linearized

system

uxx = (V − ω)u |x| > L,

uxx = −ωu |x| < L,
(7)

which can be simply solved analytically to yield

u(x) =











e−
√
V−ω|x|, x < −L,

ce cos(
√
ωx) + co sin(

√
ωx), |x| < L,

cre
−
√
V−ω|x|, x > L.

(8)

From the natural continuity conditions at the points of discontinuity

u(±L+) = u(±L−), ux(±L+) = ux(±L−),
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one will obtain that the parameters of the linear states above will have to satisfy the

transcendental equation

√
V − ω

(

1− 2 cos2(
√
ωL)

)

=
1

2

(

V√
ω
− 2

√
ω

)

sin(2
√
ωL). (9)

This equation determines bifurcation points of non-uniform states from the zero solution.

A plot of (9) for V = 1 is given in Fig. 1.

Starting from a bifurcation point, as the parameter ω varies, the corresponding

linear limit solution will deform and nonlinear terms will play a role. Even though one

can still represent the continued solutions in terms of the Jacobian elliptic functions

[18], here we solely use numerical computations. A pseudo-arclength method is used

to follow the existence curve of a solution as a parameter is varied. We have solved

Eqs. (3)–(4) numerically to study the existence and the stability of localized standing

waves, where a central finite difference is used to approximate the Laplacian with a

relatively fine discretization. In particular, we consider the first two branches of linear

limits shown in Fig. 1.

3.1. Positive solutions
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Figure 2. (Color online) The norm N as a function of ω for the first (positive) state

corresponding to the first branch in Fig. 1. As ω increases from the bifurcation point

ω ≈ 0.265, there is a bifurcation at which the state becomes unstable. In addition to

the symmetric positive states, there is also a stable asymmetric state along the middle

(solid blue) branch. Solid and dashed curve represents stable and unstable solutions,

respectively.

First, we consider the continuation of the linear state corresponding to the first

branch. For illustrative purposes, we take V = 1 and L = 2, i.e. the fundamental

state mode originates from ω ≈ 0.265. In Fig. 2, we present the numerically obtained

continuation of the linear positive solution as ω varies.

At the bifurcation point, the linear state is expected to be stable, similar to the zero

uniform state u(x) ≡ 0. As ω increases, the norm N of the solution increases as well.



Localized standing waves in inhomogeneous Schrödinger equations 6

By appealing to the work of [10, 27, 39], we obtain that the solution along this branch

is stable. In Fig. 3(a), we depict a solution corresponding to point A in Fig. 2 and its

eigenvalue structure in the complex plane, where one can see that all the eigenvalues

are on the imaginary line.
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Figure 3. Profile of solutions at points indicated as A–D in Fig. 2 and their eigenvalue

structures in the complex plane. The phase-portraits of the solutions in each panel are

presented in Fig. A1.

As the parameter ω is increased further, there is a bifurcation at which the existence

curve reverses direction. Symmetric solutions are unstable along this branch. Two

solutions and their eigenvalues in the complex plane corresponding to point B and C

are shown in Figs. 3(b) and (c), respectively. One can note that the instability of the

solutions are due to the presence of a pair of eigenvalues with nonzero real part.

Interestingly, in addition to the symmetric states, at the bifurcation point where

symmetric states become unstable, there is an existence curve emerging, corresponding

to some numerically stable asymmetric states. A solution indicated as point D in Fig.

2 is presented in Fig. 3(d).

Figure 2 is similar to Fig. 1 in [35], which is for the case of relatively small η > 0.

Writing (V − ω) →W 2 and −ω → (W 2 − V 2) and L = 1, the time independent system
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Figure 4. Time dynamics of solutions at points indicated as B and C in Fig. 2. Shown

is the top view of |Ψ(x, t)|2.

of (2) becomes the same as Eq. (1) in [35]. One important difference is that in our case,

asymmetric solutions are all (at least numerically) stable in their existence domain.

When a solution is unstable, it is certainly of interest to see the dynamics near it.

Here, we have solved the time-dependent governing equation (1) using a Runge-Kutta

method. Depicted in Figs. 4(a) and (b) are the dynamics of solution (b) and (c) in Fig.

3, respectively, perturbed initially by small random disturbances. Shown is the modulus

|ψ(x, t)|2. One can clearly see that the instability of solution in Fig. 3(b) manifests in

the form of spontaneous symmetry breaking, while the instability of the solution in Fig.

3(c) is in the form of a soliton generation, similar to that reported before in [18].

3.2. First excited state

We have considered as well solutions bifurcating from the first excited corresponding to

the second branch in Fig. 1. For the same V and L as above, this state bifurcates from

the point ω ≈ 0.898. We depict in Fig. 5 the continuation of this state as ω varies.

As the parameter ω increases from the bifurcation point, one will obtain a

numerically stable symmetric state. When the parameter is increased further, there

will also be a ‘direction reversal’ point, where the symmetric state becomes unstable,

similar to the case of fundamental state solutions above. Shown in Fig. 6(a) is an

example of this state and its spectrum in the complex plane.

Besides similarities with the previous case, we also observed several differences

here. These include the fact that there are now more than one existence branches

corresponding to asymmetric solutions. Presented in Fig. 6(b) is a solution along the

first asymmetric branch, indicated as point B in Fig. 5, and its eigenvalue structure. As

a comparison, we also plot in Fig. 6(c) and (d) the symmetric and asymmetric solution

from point C and D in Fig. 5, respectively, and their eigenvalues in the complex plane.
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Figure 5. The same as Fig. 2, but for the first excited state, corresponding to the

second branch in Fig. 1. The bifurcation point of the linear state is ω ≈ 0.898.

The two asymmetric solutions from point B and D above are clearly different.

By viewing this first excited state as composed of two static out-of-phase solitons, the

asymmetric solution B can be seen as composed of two solitons with one of them spatially

displaced, while the solution D can be viewed as composed of two solitons with different

amplitude.

It is also interesting to note that the asymmetric solution D is not always

numerically unstable in its existence region. Numerically, we observed a region of

stability and of instability for this asymmetric state, depicted as a solid and dashed

line respectively in Fig. 5. In Fig. 6(e), we present an unstable asymmetric state and

its spectra, where one can see the presence of two pairs of eigenvalues with nonzero real

part.

Typical time dynamics of unstable solutions for this case is presented in Fig. 7.

In particular, we plot the dynamics of asymmetric solutions B and E under random

perturbations. The dynamics in time of solution C is similar to that of solution B.

4. Unstable symmetric solutions past the bifurcation point

In the following, we will analytically prove the instability of symmetric solutions past

the ‘direction reversal’ point above. To show instability of the standing waves, we will

show that M has a real positive eigenvalue. This is done by applying the main theorem

of [15]. As in [15], the domains of the operators D− and D+ will be H1(R). For rigorous

results concerning the existence of such solutions, see for example [7] and [30].

It can be shown that the following quantities are well defined (see [15]):

P = the number of positive eigenvalues of D+

Q = the number of positive eigenvalues of D−.

We then have the following:
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Figure 6. Profile of solutions and their corresponding eigenvalue structure in the

complex plane at points indicated as A–D in Fig. 5. The solution phase-portraits are

shown in Fig. A2.
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Figure 7. The dynamics in time of solutions at points indicated as B and E in Fig.

5, respectively. Shown is the top view of |Ψ(x, t)|2.

Theorem 1 ([15]). If P − Q 6= 0, 1, there is a real positive eigenvalue of the operator

M .

From Sturm-Liouville theory, P and Q can be determined by considering solutions

of D+v = 0 and D−v = 0, respectively. In fact, they are the number of zeros of the

associated solution v. Notice that D−v = 0 is actually satisfied by the standing wave

itself, and that D+v = 0 is the equation of variations of the standing wave equation. It

follows that:

Q = the number of zeros of the standing wave u(x).

P = the number of zeros of a solution to the variational equation along u(x).

We will focus first on the case when we have a positive localized steady state solution,

i.e. Q = 0.

4.1. Positive solutions

The idea is to use a dynamical systems point of view, and geometric properties of the

solution curves in the phase portrait to establish when P ≥ 2. The t independent

solutions to equation (2) can be represented by composite phase portraits constructed

by a superpositioning of the phase portraits of the ‘outer’ system:

ux = y, yx = (V − ω)u− u3, (10)

and the ‘inner’ one:

ux = y, yx = −ωu+ u3. (11)
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We can view the composite picture as a single, non-autonomous system with phase plane

given by:

ux = y,

yx =

{

(V − ω)u− u3, |x| > L,

−ωu+ u3, |x| < L.

(12)

In the phase plane of (10), the outer system admits a soliton solution, given by the

equation:

y2 = (V − ω)u2 − u4

2
, (13)

while the inner system (11) admits a heteroclinic orbit in the phase plane given by:

y2 = −ωu2 + u4

2
+
ω2

2
. (14)

The conditions that u and ux decay to zero as x goes to±∞, mean that in the superposed

phase portraits, all steady-state solutions that we are interested in will lie on the soliton

curve as x→ ±∞.

Solution curves of the inner system are given by:

y2 = −ωu2 + u4

2
+ C. (15)

The solutions we are interested in will travel in the phase plane out from the origin along

the homoclinic orbit of the outer system described by (13) and then ‘flip’ to the inner

system for 2L units of x, and then ‘flip’ back to the outer system along the homoclinic

orbit. Define (u0, y0) as the point in the phase plane of (12) where the solution initially

flips from the outer to the inner system, and define (u1, y1) as the point in the phase

plane where the solution returns to the outer system. Using this notation we can write

the equation of the part of the solution curve in the inner system in the (composite)

phase plane as:

y2 = −ωu2 + u4

2
+ V u20 − u40. (16)

As the parameters, V and ω vary, the relative position of the homoclinic orbit

described by (13) and the heteroclinic orbit described in (14) will change. We consider

the qualitative and numerical differences that occur for various values of L corresponding

to different configurations of the potential V and the frequency ω. Namely when the

curves described by (14) and (13) are ‘close’ together (c.f. figure 8), linearly unstable

standing wave solutions to (1) appear.

Theorem 2. Unstable positive localized solutions to (1) occur whenever ω

V
< 3

4
. The

unstable positive symmetric solutions are the ones which are symmetric in the phase

plane with respect to the u-axis and leave the homoclinic orbit at a point (u0, y0) satisfying
√

V

2
< u0.
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Figure 8. Part of an unstable orbit that appears when the heteroclinic orbit of the

inner system (the black dashed line given by equation (14) - colour online) is ‘close’

relative to the homoclinic orbit of the inner system (the blue dashed line given by

equation (13)). The dot represents the jumping off point. The black arrows represent

the direction of travel in the phase plane. The orbit follows first the blue curve and

then jumps to the red curve. As ω
V

decreases the blue dashed line will cross the black

dashed line and unstable orbits of the second type will appear (See figure 9(b) for an

example of such an orbit).

The theorem will be proved by showing that P ≥ 2 for such a solution. From

Sturm-Liouville theory we have that P will be the number of zeros of a solution to the

variational equation D+v = 0 satisfying the boundary conditions v → 0 as x → −∞.

A solution to the variational equation associated with a solution of (3) can be found by

following a tangent vector around the orbit under the flow of the linear equations (19).

Satisfying the initial conditions means the solution will be a tangent vector to the orbit

of the solution of (3) in the phase plane until the discontinuity of (3). The number of

zeros of such a solution can be found by determining the number of times that such a

vector must pass through the vertical as the base point ranges over the entire orbit.

Denote by bO(u, y) = (bO1 (u, y), b
O
2 (u, y)) a tangent vector to the homoclinic orbit of

the outer system at the point (u, y), and let bI(u, y) = (bI1(u, y), b
I
2(u, y)), be a tangent

vector to an orbit of the inner system at the point (u, y). As (u, y) varies along the

homoclinic orbit, bO(u, y) = (p, q) solves the linear system:

px = q,

qx = (V − ω)p− 3u2p,
(17)

while bI(u, y) solves the linear system:

px = q,

qx = −ωp+ 3u2p,
(18)

as (u, y) travels along a curve given by (15) The composite linear variational equation

is then given by

px = q,

qx =

{

(V − ω)p− 3u2p, |x| > L,

−ωp+ 3u2p, |x| < L.

(19)
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We denote the explicit vectors, bO(u0, y0) and b
I(u1, y1), by β

O and βI respectively. Let

FO and F I denote the flow of the outer (10) and inner (11) systems respectively and

ΦO and ΦI denote the variational flow of the outer and inner systems along solutions.

If d(u, y) = (d1(u, y), d2(u, y)) is a vector in the tangent space of the phase plane at the

point (u, y), and if (u, y) is flowed under FO and F I to FO(u, y) and F I(u, y) respectively,

let ΦO(d)(FO(u, y)), ΦI(d)(F I(u, y)) denote the image of the vector d under the flow of

the outer and inner variational systems respectively.

Before moving to the proof of the theorem we need two geometric facts about the

flows ΦO and ΦI . For further reference and proofs of the following see for example [23]

or [12].

Fact 1. The variational flows ΦO and ΦI map the tangent line to a solution to (10)

and (11) at a point (u, y), to the tangent space of the solution at the point FO(u, y) and

F I(u, y) respectively.

Fact 2. The flows ΦO and ΦI are orientation preserving.

This second fact is reflected in the following way; if b(u, y) = (b1(u, y), b2(u, y)) and

d(u, y) = (d1(u, y), d2(u, y)) are two vectors tangent to the phase space at (u, y), then

the sign of the cross product of the two vectors is unchanged under the flows. That is:

sgn(b(u, y)× d(u, y)) = sgn(ΦO(b)(FO(u, y))× ΦO(d)(FO(u, y))) (20)

For every point in the orbit of the flow FO. The above also holds with the outer flow

replaced by the inner flow.

A consequence of these two facts for the system of interest is the following lemma:

Lemma 3. If d(u, y) is a vector in the tangent space to the phase plane of the homoclinic

orbit at the point (u, y), with u > 0 such that d(u, y)× bO(u, y) > 0, then

lim
x→∞

ΦO(
d

|d|)(F
O(u, y)) = k

(

1√
V − ω

)

(21)

where k is a positive real number.

Proof. Because bO(u, y) is a tangent vector to the homoclinic orbit, and u > 0,

lim
x→∞

ΦO(
bO

|bO|)(F
O(u, y)) = lim

x→∞

bO

|bO|(F
O(u, y)) =

1√
1 + V − ω

(

−1√
V − ω

)

(22)

and since d is not tangent to the homoclinic orbit,

lim
x→∞

ΦO(
d

|d|)(F
O(u, y)) = k

(

1√
V − ω

)

, (23)

where k is some real number. This is because

(

1√
V − ω

)

is the unstable asymptotic

eigenvector of (17). But from the first and second fact we have that

0 < lim
x→∞

ΦO(
d

|d|)(F
O(u, y))× bO

|bO|(F
O(u, y)) =

2k
√
V − ω√

1 + V − ω
, (24)
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which means that k must be positive.

In order to determine the number of zeroes of a solution to D+v = 0, and v → 0 as

x → −∞, we need to determine the number of times a vector gets pushed through the

vertical by the flow as its base point moves along the orbit. In order to count this, we

break the orbit up into three parts. These are when x < −L, |x| < L and x > L. Let A1

denote the number of zeros of the solution to the variational equation as the basepoint

corresponds to the range x < −L, A2 the number for |x| < L, and A3 for x > L. We

have the following:

• The number A1 is the number of times bO(u, y), a vector tangent to the homoclinic

orbit passes through the vertical as (u, y) travels from (0, 0) along the homoclinic

orbit of the outer system to the point (u0, y0).

• The number A2 is the number of times ΦI(βO)(u, y) passes through the vertical as

(u, y) travels from (u0, y0) along the path y2 = u4

2
− ωu2 + V u20 − u40 to the point

(u1, y1).

• The number A3 is the number of times ΦO(ΦI(βO)(u1, y1))(u, y) passes through the

vertical as (u, y) travels along the homoclinic orbit of the outer system from (u1, y1)

to (0, 0).

The number of zeros of a solution of (19) will then be P = A1 +A2 +A3. Theorem

1 then says that if u(x) > 0 and if A1 + A2 + A3 ≥ 2, then the underlying orbit in the

phase plane represents an unstable standing wave solution of (1). We are now ready to

prove Theorem 2.

Proof of Theorem 2. We have two cases to consider, the first is when
√

V

2
< u0 <

√
ω

and the second is when u0 >
√
ω. In both cases however u0 >

√
V − ω.

Case 1. Here
√

V

2
< u0 <

√
ω. An example is as in figure 9(a). Note that in this

case y0 > 0. We show that A2 ≥ 1 andA2+A3 ≥ 2, so the solution represents an unstable

standing wave. First we show that A2 ≥ 1. Notice that βO = (y0, (V − ω)u0 − u30),

and that the first coordinate is positive while the second coordinate of βO is negative

since V

2
< u0 <

√
ω. Now notice that bI(u0, y0) = (y0, u

3
0 − ωu0), and again in the

second coordinate we have that u0 >
√
V − ω. This means that βO × bI(u0, y0) =

y0u0(2u
2
0 − V ) > 0, because u0 >

√

V

2
and y0 is positive. Now we flow both vectors

along the inner system until we get to the point where the solution to the original

equation crosses the u axis in the phase plane of the system described by (12). Denote

this point by (umax, 0). We then have the following:

0 < ΦI(βO)(umax, 0)× bI(umax, 0) = (u3max − ωumax)Φ
I

1(β
O)(umax, 0).

Since u0 <
√
w this means that umax =

√

ω −
√

ω2 + 2(V u20 + u40) <
√
ω and so the

first coordinate of ΦI(βO)(umax, 0), Φ
I
1(β

O)(umax, 0) < 0. But this means that the flow

has pushed the original tangent vector to the homoclinic orbit through the vertical at

least once by this point, since the sign of the first coordinate has changed, so A2 ≥ 1.
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(a)

(b)

Figure 9. (a) An unstable orbit of the first type. The dashed line is the homoclinic

orbit of the outer system. The dot represents the jumping off point. The black arrows

represent the image of a tangent vector to a solution under the variational flows ΦO,I

at various values. (b) An unstable orbit of the second type. The dot represents the

jumping off point. The black arrow represents where Φ(bO) stops being tangent to

the orbit of the solution.

To study A3, we must determine the number of times that ΦO(ΦI(βO)(u1, y1))(u, y)

passes through the vertical as the base point travels along the homoclinic orbit from

(u1, y1) to (0, 0). We first apply the result of the lemma to the vector βI . Observe that

βI = (−y0, u30 − ωu0), (since in this case (u1, y1) = (u0,−y0)) and that the first, and

second coordinates of βI are negative. Now βI × bO(u1, y1) = y1(V u1 − 2u31) > 0, since

u1 = u0 >
√

V

2
. So applying the result of lemma 3 means that there is a point on the

homoclinic orbit (u′, y′) say, where ΦO(βI)(u′, y′) is pointing vertically upward. Write

ΦO(βI)(u′, y′) := (0, a), with a positive. Now we apply the fact that the variational

flows are orientation preserving. We have

0 < ΦO(ΦI(βO)(u1, y1))(u
′, y′)× (0, a) = a(ΦO

1 (Φ
I(βO)(u1, y1))(u

′, y′))

which means that the first coordinate of ΦO(ΦI(βO)(u1, y1))(u
′, y′) must be positive at

this point. The first coordinate under the variational flow ΦI
1(β

O) was shown to be



Localized standing waves in inhomogeneous Schrödinger equations 16

negative above, so this means that the vector ΦI(βO) must have either passed through

the vertical once more, or been pushed through the vertical by ΦO, by this point, so

A2 + A3 ≥ 2.

Thus we have that the number of zeros to the variational equation must be greater

than or equal to two, so the corresponding orbit must represent an unstable standing

wave.

Case 2 In this instance u0 >
√
ω. An example of the phase portrait of an orbit of

this type is in figure 9(b). Here we remark that since u0 >
√
ω this means that y0 must

be negative. In this case we show that A1 ≥ 1 and that A1 + A2 + A3 ≥ 2.

To see that A1 ≥ 1, we note that the tangent line to the homoclinic orbit is

vertical when the homoclinic orbit crosses the u axis. As the base point moves along

the homoclinic orbit from (0, 0) to (u0, y0), it must cross the u axis, so A1 ≥ 1.

Now we study A3. Call the point where the homoclinic orbit crosses the u-axis

(umax, 0). Note that β
O = (y0, (V −w)u0−u30) and that the sign of the first coordinate

is negative. The sign of ΦI(βO)(u1, y1) × bO(u1, y1) can be either positive, negative or

zero. If it is positive apply lemma 3 to see that

lim
x→∞

ΦO(ΦI(βO)(u1, y1))(u, y)

|ΦO(ΦI(βO)(u1, y1))(u, y)|
=

(

k

k
√
V − ω

)

,

where k is positive, so the flow must have pushed the vector through the vertical once

more, since the first coordinate in the limiting vector is positive. Thus A1+A2+A3 ≥ 2.

If ΦI(βO)(u1, y1)× bO(u1, y1) = 0, then ΦI(βO)(u1, y1) is tangent to the homoclinic

orbit at (u1, y1). But the flow ΦO maps tangent vectors to tangent vectors, so

ΦO(ΦI(βO)(u1, y1))(umax, 0) is vertical in this case, so in this case one can see directly

that A3 ≥ 1.

Lastly if ΦI(βO)(u1, y1)× bO(u1, y1) < 0, then denote bO(umax, 0) := (0,−a) where
a is some positive number. We then have

0 > ΦO(ΦI(βO)(u1, y1))(umax, 0)× (0,−a) = (−a)ΦO

1 (Φ
I(βO)(u1, y1))(umax, 0).

This means that the first coordinate of the image of the vector under the flow is positive,

so the vector must have passed through the vertical at some point. Thus A1+A2+A3 ≥ 2

in this case as well.

So we have that for solutions of this type the number of zeros of the associated

variational equation is greater than or equal to two. This completes the proof of the

theorem.

Remark 1. Solutions shown in Fig. 3(b) and (c) (see also the corresponding phase-

portraits in Fig. A1(b) and (c)) belong respectively to case 1 and 2 in the proof of

Theorem 2 above. Let ς ∈ R be the real part of a λ in the spectrum of D+ such that

D+v(x) = λv(x). In Fig. 10 we plot the numerically obtained spectral parameter ς > 0

of symmetric solutions along the upper branch of Fig. 2 as a function of ω, from which

one can see that P = 2 indeed.
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Figure 10. The spectrum ς > 0 of D+ for unstable symmetric solutions along the

upper branch in Fig. 2 as a function of ω. The inset zooms in on a small region clearly

showing that there are two curves.

So far we have been primarily concerned with positive solutions to (3), but Theorem

1 applies equally well to standing waves u(x) which are not strictly positive, so long

as they are smooth enough and both u and ux tend to 0 as x → ±∞. Likewise, the

techniques used to calculate P in the proof of Theorem 2 do not require that the solution

be positive. As such, we can apply Theorem 1, and the techniques above to establish

the linear instability of some excited states with Q ≥ 1. The first excited standing wave

we will deal with has Q = 1.

4.2. First excited unstable states

We will consider steady state solutions with the following properties

(i) The switch from the outer to the inner system takes place in the phase plane at

(u0, y0), with y0 < 0 and 0 < u0 <
√

V

2
.

(ii) The solution returns to the outer homoclinic orbit at the point (u1, y1) = (−u0, y0).
Such a solution will be symmetric with respect to the y axis in the phase plane, and

such solutions exist for all values of V and ω. An example of the phase portrait of such

a solution can bee seen in figure 11(a).

Corollary 4. Let u(x) be as above, then P ≥ 3 and so we have a linearly unstable

standing wave to equation (1).

In order to prove the corollary, we need the following lemma, which is the analogue

to lemma 3 in the half of the phase plane where u < 0.

Lemma 5. If d(u, y) is a vector in the tangent space to the phase plane of the homoclinic

orbit at the point (u, y), with u < 0 such that d(u, y)× bO(u, y) > 0, then

lim
x→∞

ΦO(
d

|d|)(F
O(u, y)) = k

(

1√
V − ω

)

(25)
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(a)

(b)

Figure 11. (a) An unstable orbit where P = 3 and Q = 1. (b) An unstable orbit

where P = 2k + 3 and Q = 2k + 1 and k ≥ 1. The number k describes the number of

periods the solution stays in the inner periodic orbit.

where k is a negative real number.

The proof is exactly the same as in the proof of lemma 3, except that:

lim
x→∞

ΦO(
bO

|bO|)(F
O(u, y)) = lim

x→∞

bO

|bO|(F
O(u, y))

=
1

−
√
1 + V − ω

(

−1√
V − ω

)

(26)

because we are in the left half plane. This change of sign therefore changes the sign of

k.

It is straightforward to calculate that A1 ≥ 1. This is done in exactly the same

way as in the proof of the second case of theorem 2. Similarly, as in the second case

of theorem 2, one shows that A1 + A2 + A3 = P ≥ 3. This is done by using the cross

product of the appropriate vectors under the flows of the outer system, showing that the

first coordinate of the tangent vector under the flow of the variational equation is first

positive, then negative, then positive, and finally ends up negative because of lemma 5.

These three sign changes mean that the vector has passed through the vertical at least

three times, and hence we have an unstable standing wave.
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Figure 12. (a) A sketch of symmetric orbits with P ≥ 2 and Q = 1. (b) The same as

in Fig. 10, but for unstable symmetric solutions in Fig. 5.

Remark 2. The solution shown in Fig. 6(a) (see the corresponding phase-portrait in

Fig. A2(a)) belongs to the class of solutions discussed in Corollary 4. Nevertheless,

the symmetric solution corresponding to point C in Fig. 5 (cf. Fig. 6(c) and its phase-

portrait A2(c)) does not belong to the same class of solutions. In the phase-space, the

orbit of the latter solution is sketched in Fig. 12(a). This is similar to the configuration

of the orbit in Corollary 4, which is a symmetric (about the u-axis) solution in the phase

space with the properties ω

V
< 2

3
, y0 < 0 and (u1, y1) = (−u0, y0), but here u0 <

√

V

2
.

In this case, the inner orbit lies outside the heteroclinic orbit of the inner system. In

this configuration, we have that Q = 1 and P ≥ 2. This implies that the above method

cannot be used to prove the instability of such a solution. In Fig. 12(b), we plot the

positive spectrum ς > 0 of the operator D+ for unstable symmetric solutions in Fig.

5, where one can see that P = 3 only in some interval. We conjecture that the break

down of our method occurs at the points where the branch containing point B and that

containing points D and E emerge with the main branch corresponding to symmetric
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solutions.

4.3. Higher order excited states

We remark that there are certain choices of V and ω, and u0 such that the inner part

of the superimposed phase portrait will be part of a periodic orbit of the inner system.

This applies for example if we keep the (u0, y0) and (u1, y1) = (−u0, y0) as in corollary

4. We can allow the trajectory to follow the periodic orbit for as many periods as we

like, and can calculate the net effect on the stability of the standing wave as a whole.

One can show that if the base point travels along the inner orbit described by (16) from

(u1, y1) for exactly one period, the solution to the variational equation will have exactly

2 more zeros, as will the original solution. Thus for each period P = Q = 2, and so

we still have an unstable excited solution. In this way we are capable of constructing

unstable excited solutions with 2k + 1 zeros for an arbitrary k. Figure 11(b) is a phase

portrait for such a standing wave solution.

It remains to determine which choices of V , w, and u0 that will produce such an

excited state. Using the geometry of the superposed phase portraits we have that such

an excited steady state solution will exist when

ω

V
<
√

1

2
and u0 <

√

V−
√
V 2−2ω2

2
, or

ω

V
>
√

1

2
and u0 <

√

V

2
.

(27)

The above technique can be used to create a higher order excited state whenever the

inner part of the phase curve is part of a periodic orbit. We can simply follow the period

as many times as is necessary and the higher order state will have the same difference

of P and Q. Thus if we begin with an unstable state where P = P0 and Q = Q0 being

the initial values for P and Q and the inner part of the orbit is periodic (for another

example c.f. figure(9(a))), we can produce higher order unstable states with P = 2k+P0

and Q = 2k +Q0, and for all integer values of k we will still have an unstable state.

5. Asymmetric states

The techniques described and used in the section above cannot be applied to the

asymmetric states considered in this paper because such states do not satisfy the

condition in theorem 1. As particular examples, we consider two solutions with Q = 0

and Q = 1.

For positive solutions Q = 0, when ω

V
< 3

4
, asymmetric orbits will be present. An

example of the phase portrait of a positive asymmetric solution is in Fig. 13(a). For

this case, it can be calculated that P ≥ 1. The profile shown in Fig. 3(c) with its

phase-portrait depicted in Fig. A1(c) belongs to this class of asymmetric solutions. As

we know numerically that asymmetric positive solutions are stable (see Fig. 3), it is

expected that Theorem 1 should not apply here. It is then interesting to know whether

the stability can be established analytically.
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(a)

(b)

Figure 13. (a) An asymmetric orbit with P ≥ 1 and Q = 0. (b) An asymmetric orbit

with P = 2 and Q = 1.

Numerically (not shown here) we observed that P = 1 for the asymmetric positive

state. If one could show analytically that P = 1 indeed, one would be able to prove

the stability using the theorem presented in [35]. Nonetheless, the solution stability is

expected and predicted using the method of [21].

Excited asymmetric orbits where P = 2 and Q = 1 can occur for all configurations

of V and w. Such an orbit is described by the following properties. If ω

V
< 3

2
, then for the

point of departure (u0, y0), we have that u0 <
√

V

2
and y0 < 0. The orbit then travels

through the y axis in the phase plane and reconnects with the outer orbit at the point

(u1, y1) where u1 < 0 and y1 > 0. Moreover, in this configuration of V and ω, the only

type of inner orbit that can produce such an asymmetric solution happens to be periodic

and symmetric about the line y = u in the phase plane. Thus (u1, y1) = (−u0,−y0), and
the original vector tangent to the homoclinic orbit (βO) gets mapped by the variational

flow of the inner orbit to the tangent space of the homoclinic orbit at the point (u1, y1).

Thus we know

lim
x→∞

ΦO(ΦI(βO)(u1, y1))(u, y)

|ΦO(ΦI(βO)(u1, y1))(u, y)|
=

(

−k
k
√
V − ω

)

.

That is the limit under the variational flow of the vector which was originally tangent
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to the homoclinic orbit is the stable subspace of the variational flow at the critical point

at the origin. We can therefore only conclude that P is exactly 2. If we are in the case

where ω

V
> 3

2
, and 0 < u0 <

√

V

2
, then we can exploit the same symmetry conditions

as above for such asymmetric solutions, even concluding the limit of the variational

solution under the tangent flow as the stable subspace of the critical point at the origin.

An example of one such orbit is in figure 13(b), which is a sketch of the profile shown

in Figs. 6(d) and (e). If however, ω

V
> 3

2
and u0 >

√

V

2
, then no such periodic orbits

exist, i.e. there is no connected inner orbit where (u0, y0) and (u1, y1) could have the

aforementioned properties.

6. Summary

We have considered a nonlinear Schrödinger equation with a non-uniform nonlinearity

coefficient. In particular, we have investigated a Schrödinger equation with self-

defocusing nonlinearity bounded by self-focusing one. The present work extended the

results of [35, 21, 18]. We have established analytically the instability of symmetric states

beyond a critical norm through the application of a topological argument developed in

[15]. Even though the technique does not definitively establish instability in the case

of the asymmetric states considered in this paper, we have numerically established the

stability of some positive asymmetric states. The analytical (in)stability of asymmetric

higher-order modes remains an open problem, which is proposed to be studied in the

future.

Appendix A. Phase portraits

In Fig. 3, the solution profiles corresponding to points A–D in Fig. 2 are shown in the

physical space. The corresponding phase-portraits of the solutions are presented in Fig.

A1. The phase-portraits of solutions shown in Fig. 6 are depicted in Fig. A2.
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Figure A1. Phase portraits of solutions at points indicated as A–D in Fig. 2 (see also

Fig. 3).
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