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Abstract

We show that the ground state in the Fisher–KPP model on a compact metric
graph with Dirichlet conditions on boundary vertices is either trivial (zero) or non-
trivial and strictly positive. For positive initial data, we prove that the trivial ground
state is globally asymptotically stable if the edges of the metric graph are uniformly
small and the nontrivial ground state is globally asymptotically stable if the edges are
uniformly large. For the intermediate case, we find a sharp criterion for the existence,
uniqueness and global asymptotic stability of the trivial versus nontrivial ground state.
Besides standard methods based on the comparison theory, energy minimizers, and
the lowest eigenvalue of the graph Laplacian, we develop a novel method based on the
period function for differential equations to characterize the nontrivial ground state
in the particular case of flower graphs.

1 Introduction

Let Γ be a compact metric graph with finitely many edges of finite lengths. We assume
that Γ is connected and there is at least one pendant (an edge with a boundary vertex not
connected to any other edge). Let u(t, x) : [0,∞)× Γ → R be the state variable satisfying
the initial-value problem for the normalized Fisher–KPP equation{

ut = ∆Γu+ u(1− u), t > 0,
u|t=0 = u0,

(1.1)

where ∆Γ is the Laplacian operator defined pointwisely on each edge of the graph Γ subject
to the suitable conditions at vertices and the quadratic nonlinearity u(1−u) is also defined
poinwisely on each edge of the graph.

We use Dirichlet conditions (i.e. u = 0) on the boundary vertices of the pendant(s). For
all other (interior) vertices of the graph Γ, we use the Neumann–Kirchhoff (NK) conditions
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(continuity of u and the zero sum of outward normal derivatives of u to each edge connecting
the vertex). The graph Laplacian ∆Γ is a self-adjoint operator in L2(Γ) with the domain
D(∆Γ) defined in H2(Γ) pointwisely subject to the boundary conditions above.

1.1 Motivations

Parabolic models on the metric graphs such as the Fisher–KPP, Keller–Segel, and chemo-
taxis models have been considered in [BGKS14, BNR14, GN15, CC17, JPS19, DLPZ20] due
to their applications to river networks, optical fibers, and other bio-engineering systems.
Analysis of well-posedness of the Keller–Segel model on a compact metric graph was devel-
oped in [SSS25] based on the previous study of the heat kernel estimates in [BGM21, BHJ23].

Existence and stability of nonconstant states on compact metric graphs have been stud-
ied in [Yan01, IK21, Ish22, MM25] for various models of mathematical biology. Bifurcations
and asymptotic stability of the constant states in the Keller–Segel model, which includes
the Fisher–KPP model, were recently studied in [SSS24] subject to the NK conditions. Due
to the Dirichlet conditions at the open vertices, the set of steady states on the metric graph
Γ considered here is more complicated than in [SSS24] and includes both the trivial (zero)
states and the nontrivial (positive and nonconstant) states.

Spreading speeds of a propagation front were also studied on unbounded metric graphs.
It was shown in [FHT21] that the spreading speed may be slower than the limiting speed
of the homogeneous Fisher-KPP model if the metric graph is an infinite random tree.
Furthermore, front propagation may be blocked by the steady states pinned to the vertices
of the graphs. This phenomenon was shown in a bistable reaction–difussion system for
the star graphs in [JM19, JM21] and for the tree graphs in [JM24, LM24]. Generalized
traveling waves of the Fisher-KPP model on infinite metric graphs were recently considered
in [SSS26]. Our work on the compact metric graphs does not cover the propagation fronts,
but we point out that the concept of traveling waves can be introduced for the Fisher–
KPP, Keller–Segel and other reaction–diffusion models on the periodic (unbounded) metric
graphs as is done for the nonlinear Schrödinger (NLS) model in [LCPS25].

The purpose of this work is to find the precise conditions on the existence and asymptotic
stability of the nontrivial (strictly positive) state of the Fisher–KPP model on the compact
metric graph Γ. Besides the standard tools based on the comparison principle, energy
minimizers, and the lowest eigenvalue of the graph Laplacian, we also use the period function
for periodic orbits to characterize all nontrivial states in the class of flower graphs with
multiple loops.

The period function was pioneered in [KMPX21, NP20] (see review in [KNP22]) in the
context of the NLS model with the cubic nonlinearity. It has been used to study multiple
(positive and nonpositive) steady states of the NLS model in the tadpole and other looping
edge graphs in [AP24a, AP24b, ACT24, ACT25]. However, the Fisher–KPP model has a
quadradic nonlinearity, for which new estimates on the period function are needed.

One of the technical novelties of our paper is the estimates on the period function
to control periodic orbits near the homoclinic orbits. The method of [BMP21] to study
the Dirichlet–to–Neumann map for the periodic orbits near the homoclinic orbits relies on
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the asymptotic expansion of the elliptic functions near the hyperbolic functions, and we
show that a much simpler study can be developed by analyzing weakly singular integrals
arising in the definition of the period function. We have also checked that the leading-order
corrections in the asymptotic expansions of the elliptic functions cancel out for the quadratic
nonlinearity, so that the method based on analysis of the weakly singular integrals is the
only realistic tool to estimate the Dirichlet–to–Neumann map in the Fisher–KPP model.

The new method based on the period function recovers the conclusions based on the
classical methods. Moreover, it is applicable to a more general class of the reaction-diffusion
models for which the classical methods might not be applicable. As a drawback, the period
function can only be introduced for the second-order differential equations and the method
is dependent on the structure of the graph Γ.

1.2 Main results

Since the Fisher–KPP equation is a gradient system, we have the free energy

H(u) =
1

2

∫
Γ

[(∇Γu)
2 − u2]dx+

1

3

∫
Γ

u3dx, (1.2)

such that ut = − δH
δu
. The free energy H(u) is well defined for u ∈ H1

0 (Γ), where H
1
0 (Γ) is

defined pointwisely on edges of Γ with Dirichlet conditions at the boundary vertices and the
continuity conditions at the interior vertices. The mapping (0,∞) ∋ t 7→ H(u(t, ·)) ∈ R is
decreasing along every solution u(t, ·) ∈ H1

0 (Γ), t ∈ (0,∞) which exists if u0 := u(0, ·) ≥ 0,
see Theorem 1. Hence, we define the function space

H0 =
{
u ∈ H1

0 (Γ) : u ≥ 0
}

(1.3)

and consider the minimization of the free energy H(u) given by (1.2) on H0. The Euler–
Lagrange equation for the critical points of H(u) is given by the elliptic equation

−∆Γu = u(1− u), u ∈ D(∆Γ), (1.4)

where D(Γ) ⊂ H1
0 (Γ) is defined in H2(Γ) pointwisely on edges of Γ subject to the boundary

conditions of H1
0 (Γ) and the additional conditions on the sum of outward normal derivatives

being zero at the interior vertices of the graph Γ. Since Γ consists of line segments in one
spatial dimension and the NK conditions are natural boundary conditions for minimization
of H(u), every weak solution of −∆Γu = u(1−u) in H1

0 (Γ) is a strong solution of the elliptic
equation (1.4) and vice versa. We define steady states as solutions of the Euler–Lagrange
equation (1.4) and ground states as minimizers of the energy H(u).

Let {Lj} be the set of lengths of edges of the graph Γ. The main results of this work
are summarized as follows.

1. There is a unique global attractor of the initial-value problem (1.1) for every u0 ∈ H0.
See Theorems 1 and 2. The attractor is either trivial or nontrivial depending whether
the principal eigenvalue λ0(Γ) of −∆Γ in L2(Γ) is greater or smaller than one.
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2. There exists L0 > 0 such that if maxj Lj < L0, then the trivial (zero) ground state is
a global attractor of the dynamics for initial data u0 ∈ H0. The zero ground state is
a minimizer of the energy H(u) in H0 at the zero level. See Corallary 1.

3. For every j-th edge of length Lj, there is L
(0)
j ∈ [0,∞) such that for every Lj > L

(0)
j , a

strictly positive ground state (vanishing only at the boundary vertices due to Dirichlet
conditions) is a global attractor of the dynamics for initial data u0 ∈ H0\{0}. The
strictly positive ground state is a minimizer of the energy H(u) in H0 at a negative
level. See Corollary 2.

4. There exist L∗ > L0 such that if Lmin := minj Lj > L∗, then the unique, strictly
positive gound state u∗ satisfies

∥u∗ − 1∥L∞(Γ0) ≤ Ce−Lmin , (1.5)

where C is a positive constant and Γ0 is the part of Γ without the pendants. See
Theorem 3.

5. Consider a particular flower graph shown in Figure 1, which consists of a line segment
[0, L] connected to N loops of different lengths [0, L1], [0, L2], . . . , [0, LN ] with a
Dirichlet condition at the boundary vertex and the NK condition at the interior vertex.
For every L > L∗ = L∗(L1, L2, . . . , LN) given by

L∗(L1, L2, . . . , LN) = arccot

(
2

N∑
j=1

tan(Lj)

)
. (1.6)

there exists a unique, strictly positive ground state. See Theorems 4, 5, and 6 for
the interval [0, L] (with L1 = L2 = · · · = LN = 0), the symmetric flower graph (with
L1 = L2 = · · · = LN = L0 > 0), and the general flower graph, respectively.

Figure 1: Left: A tadpole graph (N = 1). Center: A flower graph with three loops of equal
length (N = 3). Right: A flower graph with three loops of unequal length (N = 3).

4



1.3 Organization of the paper

We start in Section 2 by studying how eigenvalues of −∆Γ in L2(Γ) depend on the edge
lengths of the graph Γ. We show that every eigenvalue is monotonically decreasing of the
length parameter for each edge of the graph Γ, see Lemma 1. Furthermore, eigenvalues of
−∆Γ diverge to ∞ (converge to 0) if the edge lengths shrink to 0 (expand to ∞) uniformly,
see Lemma 2. These results are relevant because the sharp criterion separating the existence
of the trivial and nontrivial ground states is λ0(Γ) = 1, where λ0(Γ) is the lowest eigenvalue
of −∆Γ in L2(Γ).

In Section 3, we use the comparison principle for elliptic equations to show that the range
of the steady states is in [0, 1], see Lemma 3. The sharp criterion of λ0(Γ) = 1 separating
the trivial minimizers of energy for λ0(Γ) ≥ 1 and the nontrivial minimizers of energy for
λ0(Γ) ∈ (0, 1) is shown in Lemma 4. Furthermore, we show that the trivial ground state
is the only steady state for λ0(Γ) ≥ 1 in Lemma 5 and that the nontrivial ground state is
strictly positive on all points of Γ except for the boundary vertices in Lemma 6. By using
the comparison principle for parabolic equations in Proposition 1 and the Sturm’s theory
for eigenvalues of the stationary Schrödinger equation in Proposition 2, we give the proof
of the global well-posedness in Theorem 1 and the global asymptotic stability of the trivial
and nontrivial ground states in Theorem 2, respectively. Corollaries 1 and 2 show that
the trivial ground state arises if the lengths of the graph Γ are uniformly small and the
nontrivial ground state arises if at least one edge of the graph Γ is long.

In Section 4, we introduce two period functions for the periodic orbits and give the
monotonicity results for each of the period functions in Lemmas 7 and 9. The asymptotic
behavior of one of the two period functions near the homoclinic orbit is particularly impor-
tant for graphs with long edges. It is obtained in Lemma 8, where we avoid using elliptic
functions and study the period function by using its definition as a weakly singular integral.
The asymptotic behavior of both period functions near the center point is also important
for the threshold criterion λ0(Γ) = 1 and it is obtained in Lemma 10. As an application of
Lemma 8, we provide an alternate proof of the existence of a unique, strictly positive ground
state in the limit of long graphs in Theorem 3, where we also demonstrate the exponential
smallness of the ground state satisfying the bound (1.5).

Finally, a dynamical system approach is used in Section 5 to characterize the ground
state for the flower graphs. We again apply the two period functions with the properties
in Lemmas 7 and 9 to obtain the existence of a unique, strictly positive ground state for
the interval [0, L] in Theorem 4, for the symmetric flower graph in Theorem 5, and for
the general flower graph in Theorem 6. We also show in Proposition 3 that the threshold
criterion λ0(Γ) = 1 in Lemma 4 can be recovered alternatively by using the asymptotic
behavior of the two period functions near the center point in Lemma 10,

2 Eigenvalues of the graph Laplacian

Since the graph Γ is compact, the spectrum of −∆Γ in L2(Γ) consists of isolated eigenvalues
(Theorem 3.1.1 in [BK13]). We show that each simple eigenvalue of −∆Γ is a monotonically
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decreasing function of each edge length and it is strictly monotone if the eigenfunction in
the corresponding edge is nonzero.

Lemma 1. Let the lengths {Lj} of edges {ej} be fixed except for one edge parameterized
as [0, L]. Let λ(Γ) ≥ 0 be a simple eigenvalue of −∆Γ in L2(Γ) with the corresponding
eigenfunction Ψ : Γ → R in D(∆Γ). Then, λ(Γ) is a C

1 function of L satisfying

dλ(Γ)

dL
= −|ψ′(L)|2 − λ(Γ)|ψ(L)|2 ≤ 0, (2.1)

where ψ(x) : [0, L] → R is the component of the eigenfunction Ψ on the edge [0, L].

Proof. Since λ(Γ) is a simple eigenvalue of −∆Γ in L2(Γ) with the corresponding eigenfunc-
tion Ψ : Γ → R in D(∆Γ), we have

λ(Γ) =

∫
Γ

|∇ΓΨ|2dx, if

∫
Γ

|Ψ|2dx = 1. (2.2)

By perturbation theory, if λ(Γ) is a simple eigenvalue, then λ(Γ) and Ψ : Γ → R are C1

functions of parameter L. It follows from the Neumann–Kirchhoff conditions at the vertex
vL which corresponds to x = L of the edge [0, L] that{

ψ(L) = Ψ(vL),
ψ′(L) +

∑
e→vL

Ψ′(vL) = 0,
(2.3)

where Ψ′(vL) denotes the outward derivative at vL from e → vL. By differentiating (2.3),
we get that ∂Ψ

∂L
satisfies the same boundary conditions as Ψ at every other vertex, whereas

at the vertex vL it satisfies

ψ′(L) +
∂ψ(L)

∂L
=
∂Ψ(vL)

∂L
. (2.4)

By differentiating the L2 constraint in (2.2), we get

|ψ(L)|2 + 2

∫
Γ

Ψ
∂Ψ

∂L
dx = 0. (2.5)

By differentiating λ(Γ) in (2.2) and integrating by parts, we get

dλ(Γ)

dL
= |ψ′(L)|2 + 2

∫
Γ

∇ΓΨ
∂∇ΓΨ

∂L
dx

= |ψ′(L)|2 + 2ψ′(L)
∂ψ(L)

∂L
+ 2

∑
e→vL

Ψ′(vL)
∂Ψ(vL)

∂L
− 2

∫
Γ

(∆ΓΨ)
∂Ψ

∂L
dx, (2.6)

where the contributions from all other vertices disappear due to the boundary conditions.
Substituting (2.4) and (2.5) into (2.6) and using the second condition in (2.3), we obtain

dλ(Γ)

dL
= |ψ′(L)|2 + 2ψ′(L)

∂ψ(L)

∂L
+ 2

∂Ψ(vL)

∂L

∑
e→vL

Ψ′(vL) + 2λ(Γ)

∫
Γ

Ψ
∂Ψ

∂L
dx

= −|ψ′(L)|2 + 2
∂Ψ(vL)

∂L

[
ψ′(L) +

∑
e→vL

Ψ′(vL)

]
− λ(Γ)|ψ(L)|2

= −|ψ′(L)|2 − λ(Γ)|ψ(L)|2.
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The right-hand side is negative since λ(Γ) ≥ 0.

Remark 1. The statement of Lemma 1 extends to the pendant [0, L] with the Dirichlet
condition at x = L. In this case, the derivative equation (2.1) holds with ψ(L) = 0 and the
statement corresponds to Proposition 3.1.5 in [BK13].

Remark 2. For the lowest eigenvalue λ0(Γ), the eigenfunction Ψ : Γ → R is positive
because it is obtained from the variational principle (Rayleigh quotient):

λ0(Γ) = inf
Ψ∈H1

0 (Γ)

{∫
Γ

|∇ΓΨ|2dx :

∫
Γ

|Ψ|2dx = 1

}
, (2.7)

see Theorem 5.2.6 in [BK13]. Moreover, Ψ may only vanish at the boundary vertices due
to the Dirichlet conditions. Indeed, if it vanishes at an interior point of one edge and
is not identically zero, then its derivative is nonzero at the same point and, hence, the
eigenfunction changes the sign, a contradiction. If it vanishes at an interior vertex, then
the zero sum of outward normal derivatives implies that the eigenfunction is negative at
some edges connecting the interior vertex, a contradiction. Hence Ψ(x) > 0 for every x ∈ Γ
excluding the boundary vertices. As a result, |ψ′(L)|2+λ0(Γ)|ψ(L)|2 > 0 and it follows from
(2.1) that λ0(Γ) is a strictly monotonically decreasing function of L.

If all edge lengths are uniformly scaled by parameter L, then we get the following
elementary result, in consistency with Lemma 1.

Lemma 2. Let the set of lengths {Lj} be given by Lj = Lℓj with {ℓj} independent of L > 0.
Then eigenvalues λ(Γ) of −∆Γ are given by λ(Γ) = L−2µ(Γ̃), where µ(Γ̃) are eigenvalues
of −∆Γ̃ for the rescaled graph Γ̃ with lengths {ℓj}.

Proof. With appropriate parameterization of each edge ej of Γ as [0, Lj], we can use the
scaling transformation Ψ(x) = Φ(y) with y := x

L
so that each edge ẽj of Γ̃ is now parame-

terized as [0, ℓj]. By the chain rule, −∆ΓΨ = λ(Γ)Ψ becomes −L−2∆Γ̃Φ = λ(Γ)Φ. Hence
µ(Γ̃) = L2λ(Γ) satisfies −∆Γ̃Φ = µ(Γ̃)Φ, which is independent of L > 0.

3 Asymptotically stable minimizers of energy

We consider minimizers of the energy H(u) given by (1.2) in the function space H0 given
by (1.3). First, we show that the positivity constraint in H0 ⊂ H1

0 (Γ) is compatible with
solutions of the Euler–Lagrange equation (1.4).

Lemma 3. Let u ∈ D(∆Γ) be a solution to the elliptic equation (1.4). Then, it satisfies

0 ≤ u(x) ≤ 1 for every x ∈ Γ.

Proof. Solutions of the Laplace equation on metric graphs, ∆Γφ = 0, φ ∈ D(∆Γ), satisfy
the same maximum principle as solutions of the Laplace equation in open regions of RN , see
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Appendix B in [BMP21]. Consequently, the comparison principle for the nonlinear elliptic
equations extends from the open regions [McO02, Section 13.2] to the compact connected
metric graphs. In particular, if f ∈ C∞(R) and if u± ∈ H2(Γ) are solutions of

−∆Γu+ + f(u+) ≥ 0 in Γ,
u+ satisfies NK conditions on interior vertices,
u+ ≥ 0 on boundary vertices,

(3.1)

and 
−∆Γu− + f(u−) ≤ 0 in Γ,
u− satisfies NK conditions on interior vertices,
u− ≤ 0 on boundary vertices,

(3.2)

then a solution u ∈ H2(Γ) of
−∆Γu+ f(u) = 0 in Γ,
u satisfies NK conditions on interior vertices,
u = 0 on boundary vertices,

(3.3)

satisfies u− ≤ u ≤ u+ everywhere in Γ. Picking solutions u+ = 1 and u− = 0 of (3.1) and
(3.2), respectively, with f(u) := −u(1−u), proves the assertion for the solution of (3.3).

Remark 3. Among solutions of the Euler–Lagrange equation (1.4) in Lemma 3, we dis-
tinguish between the trivial (zero) solution and a nontrivial (positive) solution satisfying
u(x) > 0 for at least some x ∈ Γ.

The following lemma gives the explicit threshold criterion on the existence of a nontrivial
minimizer of energy H(u) in H0. The threshold criterion is given by λ0(Γ) = 1, where λ0(Γ)
is the lowest eigenvalue of −∆Γ in L2(Γ).

Lemma 4. Let λ0(Γ) be the lowest eigenvalue of −∆Γ in L2(Γ). If λ0(Γ) ≥ 1, then the
infimum of H(u) in H0 is attained at u = 0 for which H(0) = 0. If λ0(Γ) ∈ (0, 1), then the
infimum of H(u) in H0 is attained at u = u∗ ≥ 0 for which H(u∗) < 0.

Proof. Recall from the Rayleigh quotient (2.7) that∫
Γ

(∇Γu)
2dx ≥ λ0(Γ)∥u∥2L2(Γ), ∀u ∈ H1

0 (Γ).

If λ0(Γ) ≥ 1, then we have for every u ∈ H0,

H(u) ≥ 1

2

∫
Γ

[(∇Γu)
2 − u2]dx

≥ (λ0(Γ)− 1) ∥u∥2L2(Γ),
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hence H(u) ≥ 0 and H(u) = 0 is attained at u = 0 in Γ. If λ0(Γ) ∈ (0, 1), then H(u) is
bounded from below in H0 by a negative level since

H(u) ≥ −1

2

∫
Γ

u2dx+
1

3

∫
Γ

u3dx

≥ −1

6

∑
j

Lj,

where {Lj} are lengths of {ej}. Since Γ is compact, there exists a minimizer u∗ ∈ H0 which
attains an infimum of H(u). Since u = 0 is a saddle point of H(u) if λ0(Γ) ∈ (0, 1) due
to the second derivative test, then we have u∗ ≥ 0 such that u∗ is not identically zero and
H(u∗) < 0 = H(0).

The following two lemmas give some refined results complementing Lemma 4. The first
one is to show that there are no other steady states of the elliptic equation (1.4) in H0 for
λ0(Γ) ≥ 1. It is based on the contradiction argument (see, e.g., [Hen81]). The second one is
to ensure that the nontrivial ground state for λ0(Γ) ∈ (0, 1) is strictly positive for all points
of Γ except for the boundary vertices.

Lemma 5. The trivial ground state u = 0 is the unique steady state of the elliptic equation
(1.4) in H0 for λ0(Γ) ≥ 1.

Proof. Multiplying (1.4) by u and integrating over Γ by parts, we obtain∫
Γ

u3dx =

∫
Γ

u(∆Γu+ u)dx

=

∫
Γ

(u2 − |∇Γu|2)dx

≤ (1− λ0(Γ))

∫
Γ

u2dx

≤ 0.

Since u ≥ 0 in H0 and
∫
Γ
u3dx ≤ 0, then u ≡ 0 for every solution of (1.4) if λ0(Γ) ≥ 1.

Lemma 6. The nontrivial ground state u = u∗ in H0 for λ0(Γ) ∈ (0, 1) is strictly positive
for all points of Γ except for the boundary vertices.

Proof. Let φ0 be the eigenfunction of −∆Γ for the lowest eigenvalue λ0(Γ). Then, u ≥
u− := Cφ0 by the comparison principle for the elliptic equations in the proof of Lemma 3
if C := (1− λ0(Γ))/maxx∈Γ φ0(x) since

∆Γu− = C∆Γφ0

= −Cλ0(Γ)φ0

= −Cφ0 + C(1− λ0(Γ))φ0

≥ −Cφ0 + C2φ2
0

= −u− + u2−,
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where we have used positivity of φ0 on Γ. Since u− ∈ D(∆Γ) and u− > 0 for all points of
Γ except for the boundary vertices, see Remark 2, it follows that u∗ ≥ u− > 0 for all such
points of Γ.

We can now apply the previous results to study the selection of the ground state on
a compact connected metric graph Γ in the time evolution of the Fisher–KPP equation
(1.1). For our analysis, we use the comparison principle for parabolic equations and the
Sturm theory for stationary Schrödinger equations which are widely known in open domains.
We rewrite these two results for compact connected metric graphs in the following two
propositions.

Proposition 1. Let Γ be a compact connected metric graph. Assume that f ∈ C∞(R) and
u, u ∈ C0([0,∞), H2(Γ)) are solutions of

ut −∆Γu+ f(u) ≥ 0 in Γ, t > 0,
u satisfies NK conditions on interior vertices, t > 0,
u ≥ 0 on boundary vertices, t > 0,
u|t=0 ≥ u0, in Γ

(3.4)

and 
ut −∆Γu+ f(u) ≤ 0 in Γ, t > 0,
u satisfies NK conditions on interior vertices, t > 0,
u ≤ 0 on boundary vertices, t > 0,
u|t=0 ≤ u0, in Γ

(3.5)

Then, a solution u ∈ C0([0,∞), H2(Γ)) of
ut −∆Γu+ f(u) = 0 in Γ, t > 0,
u satisfies NK conditions on interior vertices, t > 0,
u = 0 on boundary vertices, t > 0,
u|t=0 = u0, in Γ

(3.6)

satisfies u−(t, ·) ≤ u(t, ·) ≤ u(t, ·) on Γ for every t ≥ 0.

Proof. The comparison principle holds for metric graphs since solutions of the Laplace
equation on metric graphs, ∆Γφ = 0, φ ∈ D(∆Γ), satisfy the same maximum principle as
solutions of the Laplace equation in open regions of RN , see Appendix B in [BMP21]. See
Section 11.1 in [McO02].

Proposition 2. Let Γ be a compact connected metric graph and µ0(V ) be the lowest eigen-
value of the stationary Schrödinger equation

−∆ΓΨ+ VΨ = µΨ, Ψ ∈ D(∆Γ), (3.7)

where V (x) : Γ → R is a bounded potential. If V1(x) ≤ V2(x) for all x on the interior of Γ
and V1(x) < V2(x) for some x in an open set in Γ, then we have µ0(V1) < µ0(V2).
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Proof. We normalize ∥Ψ∥L2(Γ) = 1 and use the Rayleigh quotient for the lowest eigenvalue.
This yields

µ0(V1) = inf
Ψ∈H1

0 (Γ)
⟨(−∆Γ + V1)Ψ,Ψ⟩ < inf

Ψ∈H1
0 (Γ)

⟨(−∆Γ + V2)Ψ,Ψ⟩ = µ0(V2),

where we have used the strict positivity of Ψ ∈ D(∆Γ) for the lowest eigenvalue of the
Schrödinger equation (3.7).

The first main result describes the global well-posedness and the existence of a global at-
tractor for the Fisher–KPP equation (1.1) with the initial data in H0. It uses the arguments
in Section 11.3 of [McO02] extended to compact connected metric graphs.

Theorem 1. For every initial data u0 ∈ H0, there exists a unique solution u ∈ C0([0,∞),H0)
to the Fisher–KPP equation (1.1) which depends continuously on the initial data. Moreover,
there is a u∗ ∈ H0 such that u(t, ·) → u∗ in H1

0 (Γ) as t→ +∞.

Proof. The operator e−t∆Γ : H1
0 (Γ) → H1

0 (Γ) is bounded for every t ≥ 0 and H1
0 (Γ) is a

Banach algebra with respect to pointwise multiplication. Since the Fisher–KPP equation
is a semi-linear equation, the contraction mapping principle gives a unique local solution
u ∈ C0([0, t0], H

1
0 (Γ)) to the initial-value problem (1.1) for some t0 ∈ (0,∞). Continuous

dependence on the initial data follows from the contraction principle.
By the comparison principle in Proposition 1, if u0 ∈ H0, then u = 0 is a subsolution

of u so that u(t, ·) ∈ H0 for every t ∈ [0, t0]. On the other hand, by Sobolev embedding of
H1

0 (Γ) into L
∞(Γ), if u0 ∈ H0, then there is C > 0 such that u0(x) ≤ C for all x ∈ Γ. Let

u be a solution of the initial-value problem{
ut = u(1− u), t > 0,
u(0) = C,

(3.8)

By the comparison principle in Proposition 1, u is a supersolution of u so that

u(t, x) ≤ u(t), for all x ∈ Γ and t ∈ [0, t0]. (3.9)

It follows from (3.8) for any C > 0 that there exists a unique function u(t) ∈ C1([0,∞))
such that lim

t→+∞
u(t) = 1. Since the graph Γ is compact, the L2(Γ) norm of the unique local

solution u ∈ C0([0, t0],H0) remains bounded in the limit t → t0. Furthermore, since the
Fisher–KPP equation is also a gradient model, we have

d

dt
H(u(t, ·)) = −

∫
Γ

(
δH

δu

)2

dx ≤ 0, t ∈ (0, t0), (3.10)

Due to monotonicity of H(u(t, ·)) in (3.10) and the bound

∥∇u(t, ·)∥2L2(Γ) ≤ ∥u(t, ·)∥2L2(Γ) + 2H(u(t, ·)), (3.11)
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the H1
0 (Γ) norm of the unique local solution u ∈ C0([0, t0],H0) remains bounded in the

limit t → t0. Hence, the unique local solution in H0 can be extended globally for every
t ∈ [0,∞) as u ∈ C0([0,∞),H0).

To show the existence of the global attractor u∗ = lim
t→+∞

u(t, ·) inH0, we use the fact that

the H1
0 (Γ) norm of the global solution u ∈ C0([0,∞),H0) remains bounded as t→ +∞ due

to the global bound on ∥u(t, ·)∥L2(Γ) following from (3.9) with lim
t→+∞

u(t) = 1, monotonicity

of H(u(t, ·)) in t, and the bound (3.11). Since H(u) is bounded from below in H0 by Lemma
4 and the graph Γ is compact, we must have u(t, ·) → u∗ in H0 as t → +∞, where u∗ is a
steady state solution to the elliptic equation (1.4).

Theorem 1 establishes the existence of a unique global solution u ∈ C0([0,∞),H0) to
the initial-value problem (1.1) and the existence of a global attractor u∗ ∈ H0. If there is a
unique steady state in the positive solutions of the elliptic equation (1.4), then there exists
a unique global attractor of the initial-value problem (1.1) for all initial data in H0\{0},
which coincides with the ground state in Lemma 4 for the global minimum of H(u). If
λ0(Γ) ≥ 1, the unique global attractor is trivial by Lemma 5. If λ0(Γ) < 1, the ground state
of H(u) is strictly positive by Lemma 6, but we need to prove that the global attractor is
unique to coincide with the ground state of H(u). The following theorem gives the result on
uniqueness of the global attractor in the Fisher–KPP equation (1.1). The proof expands the
arguments in Corollary 2.2 and Propositions 3.1 and 3.2 of [CC04] for compact connected
metric graphs.

Theorem 2. Let λ0(Γ) be the lowest eigenvalue of −∆Γ in L2(Γ). If λ0(Γ) ≥ 1, then
u = 0 is a unique global attractor to the initial-value problem (1.1) for every u0 ∈ H0.
If λ0(Γ) < 1, then the strictly positive ground state u∗ ∈ H0 of H(u) is a unique global
attractor to the initial-value problem (1.1) for every u0 ∈ H0\{0}.

Proof. For λ0(Γ) ≥ 1, the result follows by Lemma 5 and Theorem 1. For λ0(Γ) < 1, we
consider a solution u to the initial-value problem (1.1) with initial condition u|t=0 = εφ0 for
some ε > 0, where φ0 is a strictly positive eigenfunction of −∆Γ for the lowest eigenvalue
λ0(Γ) in L

2(Γ). Then, it follows from (1.2) that

H(u|t=0) =
1

2
(λ0(Γ)− 1) ε2∥φ0∥2L2(Γ) +

1

3
ε3∥φ0∥3L3(Γ)

and we can select a sufficiently small value of ε > 0 such that H(u|t=0) < 0. It follows
from the monotonicity (3.10) that H(u(t, ·)) ≤ H(u|t=0) < 0 so that the attractor for u,
denoted as u∗, is nontrivial, which exists by Theorem 1. By the preservation of positivity,
u∗ ∈ H0 and since u∗ is a steady state of the elliptic problem (1.4), we have by Lemma 6
that u∗(x) > 0 for all x ∈ Γ except for the boundary vertices.

Let u ∈ C0([0,∞),H0) be a solution to the initial-value problem (1.1) and assume first
that u0(x) > 0 for every x ∈ Γ except for the boundary vertices. Then, we can always choose
ε > 0 so that εφ0(x) ≤ u0(x) for all x ∈ Γ. By the comparison principle in Proposition 1,
u is a subsolution to u so that u(t, x) ≤ u(t, x) for all (t, x) ∈ [0,∞) × Γ. The attractor

12



u∗ = lim
t→+∞

u(t, ·) exists by Theorem 1 and it follows from the comparison principle that

u∗(x) ≤ u∗(x) for all x ∈ Γ. Now, we consider two Schrödinger equations similar to (3.7):

−∆Γψ + (u∗ − 1)ψ = 0, ψ ∈ D(∆Γ)

and
−∆Γψ + (u∗ − 1)ψ = 0, ψ ∈ D(∆Γ),

which are satisfied by ψ = u∗ and ψ = u∗ respectively. Hence, µ0(u∗ − 1) = µ0(u∗ − 1) = 0
for the lowest eigenvalue of the Schrodinger equation (3.7) associated with the potentials
V1 = u∗ − 1 and V2 = u∗ − 1. If u∗(x) < u∗(x) for some x in an open set in Γ, then
we get a contradiction with µ0(u∗ − 1) < µ0(u∗ − 1) following from Proposition 2. This
proves that u∗(x) = u∗(x) for all x ∈ Γ, hence the global attractor for every global solution
u ∈ C0([0,∞),H0) is unique as long as u0(x) > 0 for every x ∈ Γ except for the boundary
vertices.

Let u ∈ C0([0,∞),H0) be a solution to the initial-value problem (1.1) and assume now
that u0 ∈ H0 may vanish at some points of Γ other than the boundary vertices but u0 ̸= 0
identically. Then we can advance the solution u(t, ·) forward in time for some t0 > 0, and
by the strong maximum principle we have that the solution u(t, ·) is positive everywhere
except the boundary vertices. Then we can choose again ε > 0 such that εφ0(x) ≤ u(t0, x)
for all x ∈ Γ and use u(t − t0, ·) with u(0, ·) = εφ0 as a subsolution to u(t − t0, ·) for
t ≥ t0. As a result, we again obtain a unique global attractor for every global solution
u ∈ C0([0,∞),H0) with u0 ∈ H0 as long as u0 ̸= 0 identically.

Remark 4. For λ0(Γ) > 1, we can show that u = 0 is a unique global attractor for every
u0 ∈ H0 by using the comparison principle in Proposition 1. To do so, we consider the
function u(x, t) = Ce(1−λ0(Γ))tφ0(x), where φ0 is a strictly positive eigenfunction of −∆Γ for
the lowest eigenvalue λ0(Γ) in L

2(Γ). We observe that

ut = (1− λ0(Γ))u ≥ ∆Γu+ u(1− u). (3.12)

If u ∈ C0([0,∞),H0) is any solution to the initial-value problem (1.1), then we can always
choose a sufficient large value of C such that u0(x) ≤ Cφ0(x) for all x ∈ Γ. By the
comparison principle in Proposition 1, u is a supersolution to u so that u(t, x) ≤ u(t, x) for
all (t, x) ∈ [0,∞)× Γ and we get

lim
t→∞

u(t, x) ≤ lim
t→∞

u(t, x) = 0, for every x ∈ Γ.

However, this argument is not sufficient for λ0(Γ) = 1 since in this case, u is t-independent
and only shows that ∥u(t, ·)∥L∞(Γ) is globally bounded as t→ +∞.

Theorems 1 and 2 reduce the existence of a nontrivial global attractor to determining
whether or not the lowest eigenvalue λ0(Γ) is greater or less than 1. This precise condition
can be satisfied depending on the edge lengths of the graph Γ, as the following two corollaries
demonstrate.
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Corollary 1. There is L0 > 0 such that if maxj Lj < L0, then u = 0 is a unique global
attractor for every u0 ∈ H0.

Proof. By Lemma 2, λ0(Γ) → +∞ as L → 0 after rescaling Lj = Lℓj for L-independent
{ℓj}. Then, there is L0 > 0 such that λ0(Γ) > 1 for maxj Lj < L0 and Theorem 2
applies.

Corollary 2. For every j-th edge of length Lj, there is L
(0)
j ∈ [0,∞) such that for every

Lj > L
(0)
j with this j, the strictly positive ground state of H(u) is a unique global attractor

for every u ∈ H0\{0}.

Proof. By Lemma 1 and Remark 2, λ0(Γ) is strictly monotonically decreasing with respect
to Lj. Moreover, λ0(Γ) → 0 as Lj → ∞ because it is bounded from below by 0 and it
cannot converge to a positive level since the spectrum of −∆Γ with Lj = ∞ includes a
continuous spectrum at [0,∞). Therefore, either λ0(Γ) ∈ (0, 1] in the limit Lj → 0 in which

case L
(0)
j = 0 or λ0(Γ) > 1 in the limit Lj → 0 in which case L

(0)
j > 0 and λ0(Γ) ∈ (0, 1) for

Lj > L
(0)
j . In either case, Theorem 2 applies.

4 Period functions for the positive ground state

The purpose of the period functions is to characterize the nontrivial (positive) ground state
more precisely. The period functions for cubic differential equations on metric graphs were
introduced in our previous work [KMPX21]. Here we extend the method to the quadratic
differential equations, where many details are different, including the asymptotic expansion
of the period function in the limit of long graphs.

Let us consider the integral curves of the second-order equation

u′′(x) + u(x)− u(x)2 = 0, u(x) : R → R. (4.1)

If Lmin = minj Lj is large, the ground state u∗ is locally close to 1 on Γ0, where Γ0 is the
part of the metric graph Γ without the pendants with the boundary vertices. Therefore, it
makes sense to rewrite the second-order equation (4.1) for u = 1− ũ with

ũ′′(x)− ũ(x) + ũ(x)2 = 0, ũ(x) : R → R. (4.2)

In what follows, we introduce two period functions for the second-order equation (4.2).

4.1 The period function to the point (p, q)

Let (p, q) ∈ (0, 1) × (−∞, 0) be a point on the phase plane of the second-order equation
(4.2) which admits a saddle point at (0, 0) and a center point at (1, 0). We are considering
an integral curve which corresponds to the constant value of the first-order invariant

E(ũ, ṽ) = ṽ2 − ũ2 +
2

3
ũ3, ṽ :=

dũ

dx
, (4.3)
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starting with the initial point (ũ, ṽ) = (1, q̃) and ending at a point (ũ, ṽ) = (p, q), where
q̃ = q̃(p, q) < 0 is found from

E(p, q) = q2 − p2 +
2

3
p3 = q̃2 − 1

3
⇒ q̃(p, q) = −

√
q2 +

1

3
− p2 +

2

3
p3. (4.4)

The period function for the part of the integral curve connecting the two points is given by

T (p, q) =

∫ 1

p

du

v
, v :=

√
E(p, q) + A(u), A(u) := u2 − 2

3
u3. (4.5)

Figure 2 shows the part of the integral curve between the points (1, q̃) and (p, q).

Figure 2: An example of the period function T (p, q) given by (4.5) in terms of the phase
portrait obtained from the level curves of E(ũ, ṽ) given by (4.3). The homoclinic orbit is in
blue, the integral curve from (1, q̃) to (p, q) is in magenta, and the other orbits are in gray.

The following lemma gives the monotonicity of T (p, q) with respect to two independent
parameters (p, q).

Lemma 7. For every (p, q) ∈ (0, 1)× (−∞, 0), we have

∂T

∂p
< 0,

∂T

∂q
> 0. (4.6)

Proof. Since p > 0 and q < 0 for the part of the integral curve, we can differentiate T (p, q)
by using (4.5) directly and obtain

∂T

∂p
= p(1− p)

∫ 1

p

du

v3
+

1

q
, (4.7)

∂T

∂q
= −q

∫ 1

p

du

v3
, (4.8)
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where we have used
∂E

∂p
= −2p(1− p),

∂E

∂q
= 2q, (4.9)

and v|u=p = −q. Since (p, q) ∈ (0, 1)× (−∞, 0), it follows from (4.8) that ∂T
∂q
> 0, whereas

the sign of ∂T
∂p

is not conclusive from (4.7). In order to complete the proof of (4.6), we

renormalize the weak singularity of the integrand in (4.5) by using

[E(p, q) + A(1)]T (p, q) =

∫ 1

p

v2 − [A(u)− A(1)]

v
du

=

∫ 1

p

vdu−
∫ 1

p

A(u)− A(1)

v
du,

where E(p, q) + A(1) > 0 for every E(p, q) ∈ (−1
3
, 0) since A(1) = 1

3
. Along the integral

curve E(p, q) = E(u, v), we have by the chain rule

d

[
A(u)− A(1)

A′(u)
v

]
=

(
1− A′′(u)[A(u)− A(1)]

[A′(u)]2

)
vdu+

A(u)− A(1)

2v
du,

which yields

[E(p, q) + A(1)]T (p, q) =

∫ 1

p

(
3− 2A′′(u)[A(u)− A(1)]

[A′(u)]2

)
vdu− 2

A(u)− A(1)

A′(u)
v

∣∣∣∣u=1

u=p

.

Since

A(u)− A(1) = −1

3
(1− u)2(1 + 2u), A′(u) = 2u(1− u),

the last term is zero at u = 1. At u = p, we get v = −q which yields

[E(p, q) + A(1)]T (p, q) =

∫ 1

p

(
3− 2A′′(u)[A(u)− A(1)]

[A′(u)]2

)
vdu+

(1− p)(1 + 2p)

3p
q.

The right-hand side is now continuously differentiable in (p, q) from which we obtain

[E(p, q) + A(1)]
∂T

∂p
= −p(1− p)

∫ 1

p

(
1− 2A′′(u)[A(u)− A(1)]

[A′(u)]2

)
du

v

+ q

(
3− 2A′′(p)[A(p)− A(1)]

[A′(p)]2

)
+ q

d

dp

(1− p)(1 + 2p)

3p

= −p(1− p)

∫ 1

p

1− u2

3u2v
du+ q (4.10)

and

[E(p, q) + A(1)]
∂T

∂q
= q

∫ 1

p

(
1− 2A′′(u)[A(u)− A(1)]

[A′(u)]2

)
du

v
+

(1− p)(1 + 2p)

3p

= q

∫ 1

p

1− u2

3u2v
du+

(1− p)(1 + 2p)

3p
, (4.11)
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where we have used (4.9) and the definition of T and A(p) in (4.5). Since E(p, q)+A(1) > 0
for (p, q) ∈ (0, 1)× (−∞, 0), we have ∂T

∂p
< 0 from (4.10).

The asymptotic behavior of T (p, q) near (0, 0) is obtained in the following lemma. It is
used in the proof of Theorem 3 below.

Lemma 8. The period function T (p, q) in Lemma 7 satisfies the limit

lim
q=Qp, p→0+

p
∂T

∂p
=

−1

1−Q
= − lim

q=Qp, p→0+
p
∂T

∂q
, (4.12)

where Q ∈ (−∞, 0) is fixed. Moreover, T (p, q) satisfies the asymptotic expansion

T (p, q) = − ln

(
p− q

12

)
− x0 +O(p), as p→ 0+, q = Qp, (4.13)

where x0 = 2arccosh
(√

3√
2

)
.

Proof. To get the limits (4.12), we set q = Qp with fixed Q ∈ (−∞, 0), multiply the
expression (4.10) by 3p and take the limit p→ 0+:

lim
p→0+

p
∂T

∂p
= − lim

p→0+
p2
∫ 1

p

1− u2

u2
√

(Q2 − 1)p2 + u2 + 2
3
(p3 − u3)

du

= − lim
p→0+

∫ 1/p

1

1− p2x2

x2
√
x2 +Q2 − 1 + 2

3
p(1− x3)

dx,

where we substituted u = px. The integrand is absolutely convergent for every p > 0 and
the limiting integral is also convergent. Therefore, by Lebesque’s Dominated Convergence
Theorem, we obtain

lim
p→0+

p
∂T

∂p
= −

∫ ∞

1

dx

x2
√
x2 +Q2 − 1

dx = − 1

1−Q
, (4.14)

which yields the first limit in (4.12). Computations of the explicit integral are different
between Q ∈ (−∞,−1), Q = −1, and Q ∈ (−1, 0) and are performed as follows

Q ∈ (−∞,−1) : −
∫ ∞

1

dx

x2
√
x2 +Q2 − 1

= − 1

Q2 − 1

∫ ∞

arcsinh(1/
√

Q2−1)

dy

sinh2(y)
=

1

Q− 1
,

Q = −1 : −
∫ ∞

1

dx

x2
√
x2

=
1

2x2

∣∣∣∣x→∞

x=1

= −1

2
,

Q ∈ (−1, 0) : −
∫ ∞

1

dx

x2
√
x2 − (1−Q2)

= − 1

1−Q2

∫ ∞

arccosh(1/
√

1−Q2)

dy

cosh2(y)
= − 1

1−Q
,
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To get the second limit in (4.12), we obtain similarly from (4.11) that

lim
p→0+

p
∂T

∂q
= Q lim

p→0+
p2
∫ 1

p

1− u2

u2v
du+ lim

p→0+
(1− p)(1 + 2p)

= Q

∫ ∞

1

dx

x2
√
x2 +Q2 − 1

+ 1

=
1

1−Q
. (4.15)

Returning to the original variables (p, q), we have from (4.14) and (4.15) that

∂T

∂p
∼ − 1

p− q
,

∂T

∂q
∼ 1

p− q
,

which yields the asymptotic expansion

T (p, q) = C0 − ln(p− q) + T̃ (p, q), (4.16)

where C0 is a uniquely specified constant and T̃ (p, q) is the remainder term to be estimated.
To compute the constant C0 in (4.16), we recall the following solution of the second-order

equation (4.2) for the homoclinic orbit with E(p, q) = 0:

ũ(x) =
3

2
sech2

(
x+ x0

2

)
,

where x0 ∈ R is arbitrary. As x→ +∞, we get the expansion

ũ(x) = 6e−(x+x0) +O(e−2(x+x0)).

Consider now the solution ũ(x) on the interval [0, L] from (ũ(0), ũ′(0)) = (1,− 1√
3
) to

(ũ(L), ũ′(L)) = (pL, qL). From (ũ(0), ũ′(0)) = (1,− 1√
3
), we obtain the unique value for

x0:

sech2
(x0
2

)
=

2

3
⇒ x0 = 2arccosh

(√
3√
2

)
> 0.

From (ũ(L), ũ′(L)) = (pL, qL), we obtain the expansion

pL = 6e−(L+x0) +O(e−2(L+x0)), qL = −6e−(L+x0) +O(e−2(L+x0)), as L→ ∞. (4.17)

By using expansions (4.16) and (4.17) in T (pL, qL) = L, we obtain

L = C0 − ln(12) + L+ x0 +O(e−L), as L→ ∞. (4.18)

It follows from (4.18) that C0 = ln(12) − x0 since the constant C0 is independent of the
parameter L. This yields the asymptotic expansion (4.13), provided that T̃ (p, q) = O(p) as
p→ 0+, q = Qp.
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Finally, we justify the reminder term T̃ (p, q) in (4.16). We rewrite (4.10) as

p
∂T

∂p
= − p2(1− p)

1 + 3(q2 − p2) + 2p3

∫ 1

p

1− u2

u2
√
q2 − p2 + u2 + 2

3
(p3 − u3)

du+
3pq

1 + 3(q2 − p2) + 2p3

= −p2[1 +O(p)]

∫ 1

p

1− u2

u2
√

(Q2 − 1)p2 + u2 + 2
3
(p3 − u3)

du+O(p2),

as p→ 0+ and q = Qp→ 0−. We need to prove that

−p2
∫ 1

p

1− u2

u2
√

(Q2 − 1)p2 + u2 + 2
3
(p3 − u3)

du = − 1

1−Q
+O(p).

To show this, we write

− p2
∫ 1

p

1− u2

u2
√

(Q2 − 1)p2 + u2 + 2
3
(p3 − u3)

du

= −p2
∫ 1

p

du

u2
√

(Q2 − 1)p2 + u2 + 2
3
(p3 − u3)

+ p2T (p, q),

where p2T (p, q) = O(p2| ln(p)|) is much smaller than O(p) due to the leading-order term in
(4.16). On the other hand, we use the same substitution u = px and obtain

−p2
∫ 1

p

du

u2
√
(Q2 − 1)p2 + u2 + 2

3
(p3 − u3)

= −
∫ 1/p

1

dx

x2
√
x2 +Q2 − 1 + 2

3
p(1− x3)

= −
∫ 1/p

1

dx

x2
√
x2 +Q2 − 1

+ Rem,

where

Rem =

∫ 1/p

1

dx

x2
√
x2 +Q2 − 1

−
∫ 1/p

1

dx

x2
√
x2 +Q2 − 1 + 2

3
p(1− x3)

=
2

3
p

∫ 1/p

1

(1− x3)dx

x2AB(A+B)
,

with A :=
√
x2 +Q2 − 1 and B :=

√
x2 +Q2 − 1 + 2

3
p(1− x3). By the same Lebesgue’s

Dominated Convergence Theorem, we have

lim
p→0+

∫ 1/p

1

(1− x3)dx

x2AB(A+B)
=

∫ ∞

1

(1− x3)dx

2x2
√
[x2 +Q2 − 1]3

<∞,
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which proves that Rem = O(p) as p→ 0+. Finally, we have

−
∫ 1/p

1

dx

x2
√
x2 +Q2 − 1

= −
∫ ∞

1

dx

x2
√
x2 +Q2 − 1

+

∫ ∞

1/p

dx

x2
√
x2 +Q2 − 1

,

where the first term is − 1
1−Q

according to the explicit computation above and the second

term is of the order of O(p2). Thus, we have proven that

p
∂T

∂p
= − 1

1−Q
+O(p) as p→ 0+, q = Qp,

which suggests in view of (4.16) that ∂T̃
∂p

= O(1) so that T̃ (p, q) = O(p) as p→ 0+.

Remark 5. It follows from (4.7) and (4.8) that the period function T (p, q) satisfies the
first-order PDE

q
∂T

∂p
+ p(1− p)

∂T

∂q
= 1.

The leading-order part of the asymptotic expansion (4.16) satisfies the truncated equation

T (0)(p, q) = C0 − ln(p− q) : q
∂T (0)

∂p
+ p

∂T (0)

∂q
= 1,

whereas the remainder term T̃ (p, q) satisfies

q
∂T̃

∂p
+ p(1− p)

∂T̃

∂q
= p2

∂T (0)

∂q
=

p2

p− q
= O(p) (4.19)

as p → 0+ and q = Qp. The estimates of Lemma 8 for T̃ (p, q) = O(p) are compatible
with (4.19). However, equation (4.19) is not useful for the analysis of the remainder terms
because the homogeneous solutions of (4.19) may exhibit strong singularities as p→ 0+ and
q = Qp.

Remark 6. The asymptotic behavior of the period function T (p, q) is similar to (4.13) but
for the second-order equation with the cubic power was obtained in [KP21] based on the
explicit expansion of Jacobi elliptic functions with respect to the elliptic modulus near a
homoclinic orbit, which was studied in [BMP21]. However, we have found for the second-
order equation (4.2) with the quadratic power that the explicit expansion of Jacobi elliptic
functions for the solution ũ = ũ(x) yields vanishing first-order corrections with respect to
the elliptic modulus. As a result, the asymptotic behavior of T (p, q) is obtained in Lemma
8 by studying the weakly singular integrals directly.

4.2 The period function from the point (p, q)

Let (p, q) ∈ (0, 1)×(−∞, 0) be again a point on the phase plane of the second-order equation
(4.2). We are now considering the integral curve between the points (p, q) and (p0, 0), where
p0 = p0(p, q) ∈ (0, 1) is uniquely found from the implicit equation given by

E(p, q) = q2 − p2 +
2

3
p3 = −p20 +

2

3
p30.
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The period function for this part of the integral curve between the two points is given by

T0(p, q) =

∫ p

p0

du

v
, v =

√
E(p, q) + A(u), A(u) = u2 − 2

3
u3. (4.20)

Figure 3 shows the part of the integral curve between points (p, q) and (p0, 0).

Figure 3: An example of the period function T0(p, q) given by (4.20) in terms of the phase
portrait obtained from the level curves of E(ũ, ṽ) given by (4.3). The homoclinic orbit is in
blue, the integral curve from (p, q) to (p0, 0) is in green, and the other orbits are in gray.

The following lemma gives the monotonicity of T0(p, q) with respect to two independent
parameters (p, q).

Lemma 9. For every (p, q) ∈ (0, 1)× (−∞, 0), we have

∂T0
∂q

< 0. (4.21)

Moreover, if (p, q) ∈ (0, 1
2
]× (−∞, 0), then

∂T0
∂p

< 0. (4.22)

Proof. Similarly to the proof of Lemma 7, we write

[E(p, q) + A(1)]T0(p, q) =

∫ p

p0

(
3− 2A′′(u)[A(u)− A(1)]

[A′(u)]2

)
vdu− (1− p)(1 + 2p)

3p
q.

The right-hand side is continuously differentiable in (p, q) from which we obtain

[E(p, q) + A(1)]
∂T0
∂p

= −p(1− p)

∫ p

p0

1− u2

3u2v
du− q (4.23)
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and

[E(p, q) + A(1)]
∂T0
∂q

= q

∫ p

p0

1− u2

3u2v
du− (1− p)(1 + 2p)

3p
. (4.24)

Since E(p, q) +A(1) > 0 for (p, q) ∈ (0, 1)× (−∞, 0), we have ∂T0

∂q
< 0, which yields (4.21).

To get monotonicity of T0 with respect to p, we also obtain

E(p, q)T0(p, q) =

∫ p

p0

(
3− 2A′′(u)A(u)

[A′(u)]2

)
vdu+

p(3− 2p)

3(1− p)
q,

which is allowed for the integral on [p0, p] with 0 < p0 < p < 1. Differentiating in p yields
now

E(p, q)
∂T0
∂p

= −p(1− p)

∫ p

p0

[
1− 2A′′(u)A(u)

[A′(u)]2

]
du

v

− q

[
3− 2A′′(p)A(p)

[A′(p)]2

]
+ q

d

dp

p(3− 2p)

3(1− p)

= −p(1− p)

∫ p

p0

u(2− u)

3(1− u)2v
du− q. (4.25)

The right-hand sides of both (4.23) and (4.25) contain the sum of a negative and a positive
term. By subtracting one expression from another, the positive term −q is canceled out
and we obtain

∂T0
∂p

= −p(1− p)

∫ p

p0

(1− 2u)

u2(1− u)2v
du,

where we have used that A(1) = 1
3
. The right-hand side is strictly negative if p ∈ (0, 1

2
] for

which 1− 2u ≥ 0 for u ∈ [p0, p]. This yields (4.22).

The following lemma gives the singular behavior of the two period functions T (p, q) and
T0(p, q) as (p, q) → (1, 0). It is used in the proof of Proposition 3 below.

Lemma 10. Let T (p, q) and T0(p, q) be defined by (4.5) and (4.20), respectively. Then,
T (p, q) satisfies the asymptotic expansion

T (p, q) = arcsin
1− p√

(1− p)2 + q2
+O(|1− p|), as p→ 1−, q = Q(1− p), (4.26)

whereas T0(p, q) has the limit

lim
q=Q(1−p),p→1−

T0(p, q) =
π

2
− arcsin

1− p√
(1− p)2 + q2

, (4.27)

where Q ∈ (−∞, 0) is fixed.
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Proof. We obtain from (4.4) and (4.5) that

T (p, q) =

∫ 1

p

du√
q2 − p2 + 2

3
p3 + u2 − 2

3
u3

=

∫ 0

p−1

dx√
(1− p)2 + q2 − x2 − 2

3
(1− p)3 − 2

3
x3

=

∫ 0

arcsin p−1√
(1−p)2+q2

cos(t)dt√
cos2(t)− 2

3
(1−p)3

(1−p)2+q2
− 2

3

√
(1− p)2 + q2 sin(t)3

=

∫ 0

− arcsin 1√
1+Q2

cos(t)dt√
cos2(t)− 2

3
(1−p)
1+Q2 − 2

3

√
1 +Q2(1− p) sin(t)3

,

where we have used substitutions u = 1 + x and x =
√
q2 + (1− p)2 sin(t) as well as

q = Q(1 − p) with fixed Q ∈ (−∞, 0). The limit p → 1− is now well defined due to
Lebesgue’s Dominated Convergence Theorem and yields

lim
q=Q(1−p),p→1−

T (p, q) = arcsin
1√

1 +Q2
,

which gives the leading-order term in (4.26). Similarly, we have

T0(p, q) =

∫ 1

p0

du√
q2 − p2 + 2

3
p3 + u2 − 2

3
u3

=

∫ − arcsin 1√
1+Q2

− arcsin
1−p0

(1−p)
√

1+Q2

cos(t)dt√
cos2(t)− 2

3
(1−p)
1+Q2 − 2

3

√
1 +Q2(1− p) sin(t)3

,

where we have used the definition

(1− p0)
2 − 2

3
(1− p0)

3 = (1− p)2 − 2

3
(1− p)3 + q2

Since

lim
q=Q(1−p),p→1−

1− p0
1− p

=
√

1 +Q2,

we obtain

lim
q=Q(1−p),p→1−

T0(p, q) =
π

2
− arcsin

1√
1 +Q2

.

which gives the limit in (4.27).
In order to justify the reminder term in (4.26), we write

Rem := T (p, q)− arcsin
1− p√

(1− p)2 + q2

=
2(1− p)

3(1 +Q2)

∫ 0

− arcsin 1√
1+Q2

1 + (1 +Q2)3/2 sin3(t)

A[cos(t) + A]
dt,
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where A :=
√

cos2(t)− 2
3
(1−p)
1+Q2 − 2

3

√
1 +Q2(1− p) sin(t)3. The integral converges for every

fixed Q ∈ (−∞, 0) with the limit justified by Lebesgue’s Dominated Convergence Theorem:

lim
p→1−

∫ 0

− arcsin 1√
1+Q2

1 + (1 +Q2)3/2 sin3(t)

A[cos(t) + A]
dt =

∫ 0

− arcsin 1√
1+Q2

1 + (1 +Q2)3/2 sin3(t)

2 cos2(t)
dt <∞.

Hence, the remainder term in (4.26) is of the order of O(|1− p|).

Remark 7. The justification of the remainder term developed for T (p, q) in the proof of
Lemma 10 does not work for T0(p, q) since the lower limit of integration converges to π

2

as p → 1− and the integral of 1/ cos2(t) diverges at the lower limit. Hence, Lebesgue’s
Dominated Convergence Theorem cannot be used and the order of the remainder term is
not obtained. However, we are only using the limit (4.27) in the proof of Proposition 3.

4.3 The unique positive state in the limit of long graphs

Based on Lemma 8 and the linear estimates from [BMP21], we obtain another proof of the
uniqueness of the ground state as well as the exponential smallness of the ground state in
the limit of long graphs.

Theorem 3. There exist L∗ > L0 such that if Lmin := minj Lj > L∗, then the positive
ground state u∗ of H(u) is unique and satisfies

∥u∗ − 1∥L∞(Γ0) ≤ Ce−Lmin , (4.28)

where C is a positive constant and Γ0 is the part of Γ without the pendants.

Proof. Consider the subset V0 of interior vertices V = {vj} of the graph Γ which are also the
boundary vertices between the set of pendants denoted by P0 and Γ0 = Γ\P0. We add the
inhomogeneous Dirichlet conditions pj = ũ(vj) ≥ 0 at vj ∈ V0 ⊂ V , where ũ(x) = 1− u(x).
The proof is obtained by partioning the graph Γ into Γ0 and P0 with two elliptic equations:

−∆Γ0ũ+ ũ = ũ2 in Γ0,
ũ satisfies NK conditions on V \V0,
ũ(vj) = pj ≥ 0, vj ∈ V0,

(4.29)

and 
−ũ′′(x) + ũ(x) = ũ(x)2 in P0,
ũ satisfies Dirichlet condition on the boundary vertices,
ũ(vj) = pj ≥ 0, vj ∈ V0.

(4.30)

In what follows, we obtain the unique solutions on Γ0 and on P0 for any given p⃗ := {pj}vj∈V0

defined in a ball of small radius p0 such that ∥p⃗∥ ≤ p0. The elliptic equation (1.4) on the
graph Γ is satisfied if p⃗ is uniquely found from the NK conditions on V0.

By Theorem 2.9 in [BMP21] (modified from the cubic to quadratic nonlinearities), there
exist C0 > 0, p0 > 0, L∗ > 0 such that if Lmin = minj Lj > L∗, then for every p⃗ such that
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∥p⃗∥ ≤ p0, there exists a unique solution ũ ∈ D(∆Γ0) of the boundary-value problem (4.29)
in the class of functions with ũ(x) ∈ [0, 1] for every x ∈ Γ0. Moreover, the solution satisfies
the estimates

∥ũ∥L∞(Γ0) ≤ C0∥p⃗∥ (4.31)

and
|qj − djpj| ≤ C0

(
∥p⃗∥e−Lmin + ∥p⃗∥2

)
, vj ∈ V0, (4.32)

where qj is the Neumann data (the sum of outward derivatives from Γ0) at the vertex vj
and dj is the degree of the vertex vj ∈ V0.

By Lemma 7, there exists a unique solution ũ ∈ C∞([0, Lj]) of the boundary-value
problem (4.30) for each ej ∈ P0 parameterized by [0, Lj] with

(ũ(0), ũ′(0)) = (1, q̃j) and (ũ(Lj), ũ
′(Lj)) = (pj, qj)

in the class of functions monotonically decreasing on [0, Lj], where q̃j is obtained from (4.4)
and qj is obtained from T (pj, qj) = Lj, where T (p, q) is defined in (4.5). Moreover, it follows
from (4.13) that qj satisfies the expansion

qj = pj − 12e−Lj−x0 +O(e−2Lj), (4.33)

where x0 = 2arccosh
(√

3√
2

)
is not important in the limit of large Lj.

Assume that the vertex vj ∈ V0 hasmj pendants in the set P0 connected to it. It remains
to satisfy the flux conditions at the vertices vj ∈ V0 from the sum of all outward derivatives
from all mj pendants of P0 and all dj edges of V0 that connect to vj. By using (4.32) and
(4.33), we obtain

djpj +O(∥p⃗∥e−Lmin + ∥p⃗∥2) +mjpj − 12
∑
ℓj→vj

e−Lj−x0 +O(e−2Lmin) = 0,

where the remainder terms are C1 functions with respect to parameters p⃗ and the notation
ℓj → vj only includes pendants of P0 connected to the vertex vj. By the implicit function
theorem, there exists a unique solution in the small ball ∥p⃗∥ ≤ p0 for sufficiently small
p0 > 0 such that

pj =
12

dj +mj

∑
ℓj→vj

e−Lj−x0 +O(e−2Lmin). (4.34)

This proves the uniqueness of solutions in the class of functions with u(x) ∈ [0, 1] for x ∈ Γ.
The bound (4.28) follows from the bound (4.31).

Remark 8. Depending on the value of pj in (4.34), we can find qj from (4.33) either inside
the homoclinic orbit if qj ∈ (−pj, 0) or outside the homoclinic orbit if qj ∈ (−∞,−pj).
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5 The positive ground state in flower graphs

We construct the unique positive ground state in the particular case of a flower graph. We
also illustrate the utility of the two period functions introduced in Section 4 for proving
uniqueness of the positive ground state for λ0(Γ) ∈ (0, 1).

A general flower graph is obtained for loops of different lengths. It generalizes particular
examples of the interval graph, the tadpole graph, and the flower graph with loops of equal
length, see Figure 1. For transparency of computations, we consider examples of flower
graphs in increasing order.

5.1 The interval [0, L]

We assume the Dirichlet condition at 0 and the Neumann condition at L. Positive solutions
can be parameterized by p ∈ (0, 1) in the period function T (p, q) defined in (4.5) with q = 0.
Based on the monotonicity of T (p, 0) with respect to p in Lemma 7, we immediately get
the following result.

Theorem 4. Let Γ = [0, L] with u(0) = 0 and u′(L) = 0. Then, the positive ground state
exists for every L ∈ (π

2
,∞) and is unique.

Proof. For q = 0, we have explicitly

∂T

∂p
= − p

(1− p)(1 + 2p)

∫ 1

p

1− u2

u2v
du.

Hence the mapping (0, 1) ∋ p → T (p, 0) ∈ R is strictly monotonically decreasing. Fur-
thermore, limp→0 T (p, 0) = ∞ since the integral curve is a part of the homoclinic orbit as
E(p, 0) → 0− and

lim
p→1

T (p, 0) = lim
p→1

∫ 1

p

du√
u2 − p2 + 2

3
(p3 − u3)

= lim
p̃→0

∫ p̃

0

dũ√
p̃2 − ũ2 + 2

3
(ũ3 − p̃3)

= lim
p̃→0

∫ 1

0

dx√
1− x2 + 2

3
p̃(x3 − 1)

=

∫ 1

0

dx√
1− x2

=
π

2
,

where we used the substitutions ũ = 1−u, p̃ = 1−p, and ũ = p̃x, and Lebesgue’s Dominated
Convergence Theorem. Thus for every L ∈ (π

2
,∞), there is a unique p ∈ (0, 1) and a unique

integral curve with E(p, 0) = E(u, v) for the positive ground state.
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5.2 A symmetric flower graph

A symmetric flower graph consists of the line segment [0, L] with the Dirichlet condition at
the boundary vertex at x = 0 and N equal loops parameterized as [−L0, L0] and connected
at the interior vertex at x = L with the NK conditions:{

ũ(L) = ũj(−L0) = ũj(L0), 1 ≤ j ≤ N,

ũ′(L) +
∑N

j=1 ũ
′
j(L0)− ũ′j(−L0) = 0,

(5.1)

where ũ(x) : [0, L] → R and ũj(x) : [−L0, L0] → R, 1 ≤ j ≤ N are the components on
the line segment and on the N equal loops, respectively. Each component satisfies the
second-order equation (4.2) on each edge of the flower graph.

Let (p, q) ∈ (0, 1) × (−∞, 0) be parameters of the point on the phase plane for the
boundary conditions p = ũ(L) and q = ũ′(L) defined from T (p, q) = L, where T (p, q) is the
first period function introduced in (4.5). The strictly positive ground state is necessarily
described by the identical and even functions ũj = ũ0, where ũ0(x) : [−L0, L0] → R satisfies
the boundary conditions ũ0(±L0) = p and ũ′0(±L0) = ∓ q

2N
due to the NK conditions (5.1).

The second period function introduced in (4.20) gives the second condition T0(p,
q
2N

) = L0

for the existence of the strictly positive ground state on the flower graph. Combining
together, the existence of the strictly positive ground state is equivalent to finding a root
(p, q) ∈ (0, 1)× (−∞, 0) of the system of two equations:

T (p, q) = L, T0

(
p,

q

2N

)
= L0. (5.2)

The following theorem employs monotonicity of the two period functions (4.5) and (4.20)
in Lemmas 7 and 9, respectively, in order to prove uniqueness of the positive ground state.

Theorem 5. Let Γ = [0, L]×[−L0, L0]× · · · × [−L0, L0]︸ ︷︷ ︸
N times

be the symmetric flower graph with

the Dirichlet condition at the boundary vertex and the NK conditions (5.1) at the interior
vertex. Then, there exists a simply connected region Ω ∈ R+ × R+ such that the positive
ground state exists for every (L,L0) ∈ Ω and is unique.

Proof. We need to compute a solution (p, q) ∈ (0, 1)×(−∞, 0) of the two nonlinear equations
(5.2) for a given point (L,L0) ∈ R+ × R+. To show invertibility of the transformation
(p, q) → (L,L0), we compute its Jacobian from the derivatives of the period functions
T (p, q) and T0(p,

q
2N

) with respect to (p, q). It follows from (4.10), (4.11), (4.23), and (4.24)
that

[E(p, q) + A(1)]
∂T

∂p
= −p(1− p)I1 + q,

[E(p, q) + A(1)]
∂T

∂q
= qI1 +

(1− p)(1 + 2p)

3p
,

[E
(
p,

q

2N

)
+ A(1)]

∂T0
∂p

= −p(1− p)I2 −
q

2N
,

[E
(
p,

q

2N

)
+ A(1)]

∂T0
∂q

=
q

4N2
I2 −

(1− p)(1 + 2p)

6Np
.
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where

I1 :=

∫ 1

p

1− u2

3u2
√
E(p, q) + A(u)

du, I2 :=

∫ p

p0

1− u2

3u2
√
E(p, q

2N
) + A(u)

du. (5.3)

We obtain from here that

∆(p, q) := [E(p, q) + A(1)][E
(
p,

q

2N

)
+ A(1)]

(
∂T

∂p

∂T0
∂q

− ∂T

∂q

∂T0
∂p

)
=

(
1− 1

4N2

)
qp(1− p)I1I2 +

1

2N
I1[E(p, q) + A(1)] + I2[E

(
p,

q

2N

)
+ A(1)]

=

(
1− 1

4N2

)
p(1− p)

[
qI1 +

(1− p)(1 + 2p)

3p

]
I2 +

1

4N2
(2NI1 + I2)[E(p, q) + A(1)],

where we have used that

E
(
p,

q

2N

)
+ A(1)−

(
1− 1

4N2

)
(1− p)2(1 + 2p)

3
=

1

4N2
[E(p, q) + A(1)].

Every term in the final expression for ∆(p, q) is positive since ∂T
∂q
> 0 in (4.11) and E(p, q)+

A(1) > 0. Thus, the Jacobian is positive for every (p, q) ∈ (0, 1)× (−∞, 0) so that, by the
inverse function theorem, there exists a unique solution for (p, q) ∈ (0, 1) × (−∞, 0) for
every (L,L0) from a suitable existence region Ω ∈ R+ × R+. The region Ω is a simply
connected range of the transformation (p, q) → (L,L0).

Remark 9. By Theorem 3, there exists a unique positive ground state for any given (suf-
ficiently large) L and L0. Hence, the existence region Ω is bounded from below near (0, 0)
but extends along every ray for (L,L0) in R+ × R+. Moreover, it follows from (4.30) and
(4.34) that

p =
12

1 + 2N
e−L−x0 +O(e−2Lmin) and q = − 24N

1 + 2N
e−L−x0 +O(e−2Lmin),

in the limit of large Lmin = min(L,L0). Since q ∈ (−∞,−p), the part of the solution
ũ(x) : [0, L] → R in the pendant with the Dirichlet condition is defined outside the homoclinic
orbit on the phase plane for every N ≥ 1 if Lmin is sufficiently large.

Remark 10. If either L → 0 or L0 → 0, the existence of the positive ground state on
the flower graph reduces to the existence problem on the segments [0, L] or [0, L0] with one
Dirichlet and one Neumann boundary condition. Indeed, if L0 = 0, then q = 0 and the
system (5.2) reduces to the only equation T (p, 0) = L and if L = 0, then p = 1 and the
system (5.2) reduces to the only equation

T0

(
1,

q

2N

)
= T (p0(q), 0) = L0,
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where p0 = p0(q) ∈ (0, 1) is uniquely obtained from solutions of the cubic equation

q2

4N2
− 1

3
= −p20 +

2

3
p30.

By Theorem 4, the existence region is bounded for L > π
2
if L0 = 0 and for L0 >

π
2
if L = 0.

The lower boundary of Ω is a curve in the (L,L0) plane which connects the points (π
2
, 0)

and (0, π
2
) such that the positive ground state exists if the point (L,L0) is located in Ω above

the curve.

To get the lower boundary of the existence region Ω described in Remark 10, we need
to use the asymptotic expressions for T (p, q) and T0(p, q) as (p, q) → (1, 0) in Lemma 10.
Indeed, by Theorem 5, the mapping (p, q) → (L,L0) is invertible, hence the boundaries of Ω
in the (L,L0) plane correspond to the boundaries of the vertical semi-strip (0, 1)× (−∞, 0)
in the (p, q) plane. By Remark 10, the top boundary at p ∈ (0, 1), q = 0 is mapped to the
boundary of Ω for L ∈

(
π
2
,∞
)
, L0 = 0 and the right boundary at p = 1, q ∈ (−∞, 0) is

mapped to the boundary of Ω for L = 0, L0 ∈
(
π
2
,∞
)
. The lower boundary of Ω corresponds

to the singular behavior of the two period functions at (p, q) = (1, 0), that is, at the center
point of the second-order equation (4.2). Figure 4 illustrates the region (0, 1)× (−∞, 0) in
the (p, q) plane (left panel) and the region Ω in the (L0, L) plane with the lower boundary
of Ω for N = 1 and N = 5 (right panel).

0 0.5 1 p

-4

-2

0q

0 1 2 3 L
0

0

1

2

3

L

N = 1N = 5

Figure 4: The existence region on the (p, q) plane (left) and on the (L0, L) plane (right).
The lower boundary of Ω is shown for N = 1 and N = 5. As N is increased, the curve
approaches the axes.

The following proposition gives the lower boundary of Ω based on Lemma 10.

Proposition 3. The lower boundary of the existence region Ω ⊂ R+ × R+ is given by

L0 = arctan
cot(L)

2N
, (5.4)

and it connects L0 = 0 for L = π
2
and L0 =

π
2
if L = 0.

Proof. We can solve the first equation of the system (5.2) for q = qL(p) with fixed L > 0
thanks to the monotonicity of the period function T (p, q) in Lemma 7, where qL(p) ∈
(−∞, 0) is a unique solution of

T (p, qL(p)) = L.
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Substituting the result into the second equation of the system (5.2) yields

T0

(
p,
qL(p)

2N

)
= L0,

which can be uniquely solved for (L,L0) ∈ Ω by Theorem 5. The lower bound of the
existence region Ω is defined by

L0 = min
p∈[0,1]

T0

(
p,
qL(p)

2N

)
= lim

p→1−
T0

(
p,
qL(p)

2N

)
, (5.5)

where we have used the argument that the lower bound corresponds to the corner point
(p, q) = (1, 0) in the boundary of the vertical semi-strip (0, 1)× (−∞, 0) in the (p, q) plane
mapped into the (L,L0)-plane, see Figure 4. By the asymptotic expression (4.26), we
compute the function qL(p) as p→ 1− from

L = arcsin
1− p√

(1− p)2 + qL(p)2
+O(|1− p|).

This yields

1− p√
(1− p)2 + qL(p)2

= sin (L+O(|1− p|)) ⇒ qL(p) = − cot(L)(1− p) +O((1− p)2),

where L ∈
(
0, π

2

)
due to restriction qL(p) = Q(1− p) with Q ∈ (−∞, 0). By using the limit

(4.27) in (5.5), we obtain

L0 =
π

2
− lim

p→1−
arcsin

1− p√
(1− p)2 + qL(p)2

4N2

=
π

2
− arcsin

1√
1 + cot(L)2

4N2

,

which yields (5.4) by using elementary trigonometric identities.

Remark 11. By Lemma 4, the lower boundary of Ω can be found from the threshold con-
dition λ0(Γ) = 1, where λ0(Γ) is the lowest eigenvalue of −∆Γ in L2(Γ). We can show
that this definition coincides with the expression (5.4) in Proposition 3. The solution of
−∆ΓΨ = λ0(Γ)Ψ is given pointwisely as

ψ(x) = sin(
√
λ0(Γ)x), x ∈ (0, L)

to satisfy the Dirichlet condition at x = 0 and

ψ0(x) =
sin(

√
λ0(Γ)L)

cos(
√
λ0(Γ)L0)

cos(
√
λ0(Γ)x), x ∈ (−L0, L0),
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to satisfy the symmetry condition in the loops and the first NK condition in (5.1). The
second NK condition in (5.1) yields

tan(
√
λ0(Γ)L0) =

1

2N
cot(

√
λ0(Γ)L), (5.6)

which admits a unique root for λ0(Γ) in
(
0,min{ π2

4L2
0
, π2

4L2}
)
. It is easy to show that λ0(Γ)

is monotonically decreasing with either L or L0, in agreement with Lemma 1. Comparing
(5.4) and (5.6) implies that λ0(Γ) = 1 at the lower boundary of Ω.

Remark 12. It follows from (5.4) that L0 decreases as N increases for fixed L and L
decreases as N increases for fixed L0. Hence, the lower boundary of the existence region
Ω approaches the axis in the (L,L0) plane as N increases. Figure 4 (right) illustrates this
phenomenon for N = 1 and N = 5. This implies that the positive ground state exists in a
large region Ω for the flower graph with more loops.

Figure 5 illustrates the construction of the positive ground state on the tadpole graph
with N = 1 by using parts of two integral curves of the second-order equation (4.2).

Figure 5: The positive ground state on a tadpole graph with a stem of length L = 0.8 and
a loop of half-length L0 = 0.75. Left: parts of two integral curves on the phase plane (ũ, ṽ).
Center: a plot in variables (x, u(x)) side by side. Right: a (3D)-plot showing the solution
on the tadpole graph.

5.3 A general flower graph

For a general flower graph with loops of different half-lengths {Lj}Nj=1, we introduce the
following parameters

p = ũ(L) = ũj(−Lj) = ũj(Lj), 1 ≤ j ≤ N

and
qj = ũ′j(−Lj) = −ũ′j(Lj), 1 ≤ j ≤ N.

The NK conditions are satisfied if

q = ũ′(L) = 2
N∑
j=1

qj.
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The solution is defined by roots of the system of (N + 1) equations:

T

(
p, 2

N∑
j=1

qj

)
= L, T0(p, qj) = Lj, 1 ≤ j ≤ N, (5.7)

where T and T0 are the two period functions introduced in (4.5) and (4.20), respectively.
We intend to prove that the mapping (p, q1, . . . , qN) → (L,L1, . . . , LN) is invertible

so that for every given point (L,L1, . . . , LN) in an open region Ω ⊂ RN+1
+ , there exists a

unique solution for (p, q1, . . . , qN) ∈ (0, 1)×(−∞, 0)×· · ·×(−∞, 0). This gives the uniquely
specified positive ground state in the existence region Ω defined by the invertible mapping

(0, 1)× (−∞, 0)× · · · × (−∞, 0) ∋ (p, q1, . . . , qN) → (L,L1, . . . , LN) ∈ Ω ⊂ RN+1
+ .

The following theorem gives the result based on the monotonicity of the two period functions
(4.5) and (4.20) in Lemmas 7 and 9, respectively,

Theorem 6. Let Γ = [0, L] × [−L1, L1] × · · · × [−LN , LN ] be the flower graph with the
Dirichlet condition at x = 0 and the NK condition at the interior vertex. Then, there is
a simply connected region Ω ∈ RN+1

+ such that the positive ground state exists for every
(L,L1, . . . , LN) ∈ Ω and is unique.

Proof. The Jacobian of the transformation (p, q1, . . . , qN) → (L,L1, . . . , LN) is

J :=

∣∣∣∣∣∣∣∣∣∣

∂T
∂p

2∂T
∂q

. . . 2∂T
∂q

∂T
(1)
0

∂p

∂T
(1)
0

∂q1
. . . 0

...
... . . .

...
∂T

(N)
0

∂p
0 . . .

∂T
(N)
0

∂qN

∣∣∣∣∣∣∣∣∣∣
,

where T
(j)
0 denotes T0(p, qj). Expanding the Jacobian yields

J =
∂T

∂p

N∏
j=1

∂T
(j)
0

∂qj
− 2

∂T

∂q

N∑
j=1

∂T
(j)
0

∂p

∏
k ̸=j

∂T
(k)
0

∂qk
. (5.8)

We will prove that J ̸= 0 and sgn(J) = (−1)N+1. By the monotonicity results (4.6) and
(4.21), the first term in (5.8) has the required sign. However, the second term in (5.8) has
the required sign for p ∈

(
0, 1

2

]
due to (4.22) but is generally inconclusive for p ∈

(
1
2
, 1
)
. To

make it conclusive for every N ≥ 2, we define again

∆ := [E(p, q) + A(1)]
N∏
j=1

[E(p, qj) + A(1)]J

= (−p(1− p)I + q)
N∏
j=1

(
qjIj −

(1− p)(1 + 2p)

3p

)

− 2

(
qI +

(1− p)(1 + 2p)

3p

) N∑
j=1

(−p(1− p)Ij − qj)
∏
k ̸=j

(
qkIk −

(1− p)(1 + 2p)

3p

)
,
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where the positive integrals I and {Ij}Nj=1 are defined similarly to (5.3). We will now show
that ∆ can be written as a sum of terms, each is nonzero and has the sign of (−1)N+1. This
is definitely true for

−p(1− p)I
N∏
j=1

(
qjIj −

(1− p)(1 + 2p)

3p

)
,

+2p(1− p)

(
qI +

(1− p)(1 + 2p)

3p

) N∑
j=1

Ij

∏
k ̸=j

(
qkIk −

(1− p)(1 + 2p)

3p

)
,

and

+2qI
N∑
j=1

qj
∏
k ̸=j

(
qkIk −

(1− p)(1 + 2p)

3p

)
because qI + (1−p)(1+2p)

3p
> 0 and qjIj − (1−p)(1+2p)

3p
< 0 by (4.6) and (4.21), respectively,

whereas p ∈ (0, 1) and q ∈ (−∞, 0). The remaining terms are combined together as

F (p̂) := q
N∏
j=1

(qjIj − p̂) + 2p̂
N∑
j=1

qj
∏
k ̸=j

(qkIk − p̂) , p̂ :=
(1− p)(1 + 2p)

3p
,

where the second term has the wrong signs of (−1)N . It is clear that F is a polynomial in
p̂ with the highest term p̂N being zero because

(−p̂)N
[
q − 2

N∑
j=1

qj

]
= 0.

Hence, F is a polynomial of degree N − 1 in p̂ and we show that every coefficient of this
polynomial is nonzero and has the sign of (−1)N−1:

(−p̂)N−1 : q
N∑
j=1

qjIj − 2
N∑
j=1

qj
∑
k ̸=j

qkIk =
N∑
j=1

qjIj

(
q − 2

∑
k ̸=j

qk

)
> 0

(−p̂)N−2 : q

N∑
j=1

∑
k>j

qjqkIjIk − 2
N∑
j=1

qj
∑
k ̸=j

qkIk

∑
m>k

qmIm =
N∑
j=1

∑
k>j

qjqkIjIk

(
q −

∑
m ̸=j,k

qm

)
< 0

...
...

(−p̂)1 : q

N∑
j=1

∏
k ̸=j

qkIk − 2
N∑
j=1

qj
∑
k ̸=j

qkIk =
N∑
j=1

(q − 2qj)
∏
k ̸=j

qkIk,

(−p̂)0 : q

N∏
j=1

qkIk,
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where the last coefficient has the sign of (−1)N+1 and the coefficient for (−p̂)1 has the sign
of (−1)N . Hence, every coefficient of F (p̂) has the sign of (−1)N+1, whereas p̂ > 0. This
proves that ∆ is nonzero and has the sign of (−1)N+1.

Remark 13. The lower boundary of the simply connected region Ω ∈ RN+1
+ is given by the

condition λ0(Γ) = 1, where λ0(Γ) is the lowest eigenvalue of −∆Γ in L2(Γ). The solution
of −∆ΓΨ = λ0(Γ)Ψ in Remark 11 is generalized as

ψ(x) = sin(
√
λ0(Γ)x), x ∈ (0, L)

and

ψj(x) =
sin(

√
λ0(Γ)L)

cos(
√
λ0(Γ)Lj)

cos(
√
λ0(Γ)x), x ∈ (−Lj, Lj), j = 1, . . . , N.

The NK condition is satisfied if and only if λ0(Γ) is found from the transcendental equation

2
N∑
j=1

tan(
√
λ0(Γ)Lj) = cot(

√
λ0(Γ)L).

Since λ0(Γ) is monotonically decreasing with respect to (L,L1, . . . , LN) by Lemma 1, the
lower boundary of the existence region Ω can be parameterized as L = L(L1, . . . , LN) given
by

L(L1, L2, . . . , LN) = arccot

(
2

N∑
j=1

tan(Lj)

)
. (5.9)

The surface for the lower boundary of Ω for N = 2 is shown in Figure 6.

Figure 6: A plot of the lower boundary (5.9) for N = 2 in the (L1, L2, L) space. The corner
points are

(
π
2
, 0, 0

)
,
(
0, π

2
, 0
)
, and

(
0, 0, π

2

)
.

Figure 7 illustrates the construction of the positive ground state on the flower graph with
N = 2 with L1 ̸= L2 by using parts of three integral curves of the second-order equation
(4.2). For the parameter values of (L1, L2, L), a part of the integral curve for the pendant
lies outside the homoclinic orbit, see Remark 9.
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Figure 7: The positive ground state on a flower graph with a stem of length L = 0.51 and
two loops of half-lengths L1 = 0.8 and L2 = 0.5. Left: parts of three integral curves on the
phase plane (ũ, ṽ). Center: a plot in variables (x, u(x)) side by side. Right: a (3D)-plot
showing the solution on the flower graph.
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