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Abstract

Scalar transport in a time-periodic 3D incompressible potential
flow is studied in the context of Lagrangian chaos in a reori-
ented 3D dipole flow. A mixture of chaotic dynamics and reg-
ular KAM-tubes are observed, and particles reside on adiabatic
surfaces rather than invariant surfaces. The factors controlling
the adiabatic surfaces are investigated, for instance the presence
of hyperbolic periodic points acts as a local accelerant to dy-
namics, yet also forms a barrier to transport. The adiabatic
surfaces provide a mechanism for 3D scalar transport and the
possibility of global chaos.

Introduction

Transport of a passive scalar is one of the most fundamental
processes within a fluid flow. It is quantified by the advection
equation

ẋ = v(x, t), (1)

with ∇ · v = 0 for incompressible flow; here v is the fluid ve-
locity field, t is time, and x is physical space. The domain Ω

of x is the state space of the dynamical system. The study of
(1) from a dynamical systems perspective has generated signif-
icant and novel insights into transport and mixing [8]. In terms
of mixing a key consideration is whether a passive scalar visits
every point within the flow domain. Since (1) is a non-linear
dynamical system it can exhibit chaotic dynamics when there
are at least three degrees of freedom. These dynamics are inde-
pendent of the flow dynamics, hence chaos is possible even in
slow, smooth (non-turbulent) flow.

Significant progress has been made in two-dimensional (2D) in-
compressible flows due to the formal analogy with Hamiltonian
systems, for which the theoretical framework, tools and tech-
niques can be directly applied. The tools of Hamiltonian me-
chanics have led to various insights into transport in e.g. geo-
physical flows, microfluidics, and industrial mixing.

Conversely, much less is known about three-dimensional (3D)
flows [10]. A reason for this is that the Hamiltonian analogy
breaks down at stagnation points of 3D systems. These points
play an important role in the generation of chaotic dynamics
in 3D systems [1]. The 3D generalisation of the Kolmogorov–
Arnold–Moser (KAM) Theorem [3] is not as strong as the 2D
version, which plays a key role in analysing the Lagrangian
topology of 2D systems. Furthermore, the 3D state space allows
for richer topological structures and more complex dynamics.
Currently the theory behind 3D systems is less well-developed
[10], highlighting the need for fundamental research into 3D
systems. The gap in understanding is being bridged by recent
works, for e.g. [1, 2, 7, 9], of which a main focus is 3D chaos,
which is a rich field at the forefront of research.

While 3D inviscid flows and Stokes flows have received atten-

tion, few studies have considered potential flows, which have
widespread applications within e.g. porous media, groundwater
and packed column flows. Steady potential flows are irrota-
tional, thus homoclinic/heteroclinic connections between stable
and unstable manifolds which are hallmarks of chaos cannot
form, meaning potential flows can stretch but not fold fluid el-
ements. This is unique to potential and Darcy flows, those in
which the helicity ω · v is identically zero, whilst other steady
3D flows (inviscid, Stokes) can admit chaos. To produce chaotic
particle trajectories it is therefore required to invoke transient
flows, which allow crossing of streamlines.

One of the simplest transient 3D flow protocols involves rota-
tion of a dipole about an equator. The equatorial rotation pro-
tocol is closely related to the corresponding 2D analogue [6],
which found that for certain parameter choices chaotic advec-
tion and global transport are possible. Since the 3D system can
be viewed as an extrusion of the 2D system, one expects that
for certain parameter choices particles will advect chaotically in
two dimensions, however, it isn’t clear what transverse dynam-
ics (perpendicular to the surface) should be expected. There
are three possibilities: the particles could be confined to in-
variant surfaces with no transverse dynamics and hence no 3D
transport; the particles could reside on adiabatic surfaces with
slow transverse dynamics; or transverse dynamics could be fast,
yielding a truly 3D flow.

Steady three-dimensional flow

To construct a time-dependent 3D flow, we consider a steady
base flow generated by a 3D dipole, with source/sink at
(0,0,±1). We introduce time-periodic reorientations of this
flow to create an unsteady flow. This flow is axisymmetric about
the z-axis, therefore cylindrical coordinates (ρ,θ,z) form a nat-
ural system to describe it. The simplest reorientation is a rota-
tion of the dipole about an axis perpendicular to z. Unlike the
2D dipole flow [6], the unbounded 3D flow does not possess a
rotationally symmetric separating stream surface at r = 1. We
therefore confine the dipole flow to reside within the unit sphere
Ω. The flow potential Φ is governed by

∇
2
Φ = 0, and n ·∇Φ

∣∣
∂Ω

= 0, (2)

where n is the outward normal to the boundary ∂Ω. To solve
these equations we use the method of images [4] for the Neu-
mann boundary problem (2), yielding an analytic solution for
Φ, the contours of which are shown in Figure 1a. Due to ax-
isymmetry, v may be described by the Stoke’s stream function
Ψ where v = ∇× (Ψ/ρ)êθ,

Ψ(ρ,z) =
1− z2−ρ2

4π

( 1√
(1− z)2 +ρ2

+
1√

(1+ z)2 +ρ2

)
.

Fluid streamlines reside on stream-surfaces of constant Ψ.
Along with the azimuthal angle θ, this is a pair of invariants of
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Figure 1: (a) Contours of the axisymmetric potential function
Φ. (b) Level surfaces of the axisymmetric stream function Ψ.
(c) Reorientation protocol for Θ= 2π/3. (d) Superposed stream
function contours under rotation Θ = 2π/3.

the steady flow v, i.e. ∇G ·v = 0 for G = Ψ,θ. The streamlines
of v are given by the orthogonal intersections of level surfaces
of Ψ with level surfaces of θ , shown in Figure 1b.

We denote by ϒ̃t the dynamical systems flow of v, satisfying

ϒ̃0(X) = X, and
d
dt

ϒ̃t(X) = v
(
ϒ̃t(X)

)
,

where X denotes Lagrangian coordinates. Symmetries of the
flow ϒ̃t govern the Lagrangian topology of the system and im-
pose constraints upon scalar transport. The base flow possesses
two basic symmetries: axisymmetry about the z-axis and a re-
flection reversal symmetry in the xy-plane. Algebraically these
can be written as

ϒ̃t = Rz
γϒ̃tRz

−γ, (3)

ϒ̃t = Sxyϒ̃
−1
t S−1

xy (4)

respectively, where Rz
γ is rotation by γ about the z-axis and Sxy

is reflection in the xy-plane. We discuss the affect reorientation
has on these symmetries later.

Transient three-dimensional flow

We consider the simplest class of reorientation protocol, con-
sisting of an equatorial rotation. The dipole is rotated by some
fixed angle Θ (Figure 1c), and remains at each position for some
fixed non-dimensional time τ (scaled such that τ = 1 is the emp-
tying time of Ω). This flow is called the 3D RPM flow, the
transient velocity field of which can be approximated as

ṽ(x, t) = v(Ry
b t

τ
cΘx, t) (5)

where Ry
λ

is rotation by λ about the y-axis, and bxc denotes the
integer part of x. If the viscous time scale 1/κ is small, where κ

is the fluid kinematic viscosity, then transient effects associated
with dipole reorientations as quantified by the Strouhal num-
ber St = Re/τ may be ignored. Since we assume the Reynolds
number is negligible, the piecewise steady velocity approxima-
tion (5) is exact (except in the limit τ→ 0).

If Θ is incommensurate with π, then the dipole positions are
dense on the equator, whilst if Θ = (n/m)2π then the dipole
positions are periodic with period m. Without loss of generality
we only consider the case where the equator lies in the xz-plane,
with rotation of the dipole about the y-axis.

While the steady flow has two invariants, θ and Ψ, neither
are preserved under rotation. This breakdown is necessary for
global transport for otherwise particles would remain on invari-
ant surfaces, making 3D transport impossible. This notion is
discussed in more detail later.

Particle tracking

To form a closed flow domain to study transport, we impose
periodic boundary conditions at the dipole, such that a particle
exits the sink and is instantaneously re-injected at the source
with the same values of Ψ and θ.

To visualise long-time dynamics of the 3D RPM flow we use
a Poincaré map which captures the particle position after each
period τ, defined by

ϒ = Ry
Θ

ϒ̃τ.

Note that the map ϒ tracks particles in the Lagrangian dipole
frame, but since the Lagrangian topology is invariant under the
rotation Ry

Θ
the dynamics of the map ϒ are equivalent to the

continuous map in the laboratory frame.

We refer to the Poincaré map of a particle as the set of images of
the particle over a large number of iterations of the map ϒ. Fig-
ure 2 shows a typical Poincaré map, with regular (non-chaotic)
regions topologically distinct to ergodic (chaotic) regions.

It is not possible to find an analytical form for the flow ϒ̃t , nu-
merical particle tracking via direct integration of the advection
equation (1) is required. Since the dynamical system is con-
servative, ∇ · v = 0, it follows that both the flow ϒ̃t and the
map ϒ are volume preserving. Therefore in order to preserve
the topological structure of the conservative dynamical system
it is important to use an explicitly volume preserving numerical
method. For 2D Hamiltonian systems there exist a wide class of
symplectic methods which explicitly conserve the Hamiltonian,
which in the context of chaotic advection corresponds to area
preservation. For 3D systems such techniques do not apply as
Hamiltonian systems are even-dimensional. We therefore adapt
the method in [5] in which the 3D system is broken down via
operator splitting of the advection equation into three 2D sys-
tems on which symplectic integration can be used. This enables
us to produce volume preserving integrators of arbitrary order;
we use a fourth order Gauss–Legendre method.

Symmetries of the map ϒ

Symmetries play an important role in organising fluid transport,
as they can constrain dynamics and Lagrangian topology. The
symmetries (3) and (4) of the base flow ϒ̃t transform to yield
two symmetries of ϒ. First, as a special case of the axisymmetry
property (3), the base flow is symmetric in the xz-plane, i.e.
ϒ̃t = Sxzϒ̃tS−1

xz . As a result ϒ satisfies

ϒ = Ry
Θ

ϒ̃τ = Ry
Θ

Sxzϒ̃τS−1
xz = SxzR

y
Θ

ϒ̃τS−1
xz = SxzϒS−1

xz

and is therefore also symmetric in the xz-plane. As the xz-plane
is an invariant surface of ϒ, the dynamics in the y+ and y− hemi-
spheres mirror each other and so without loss of generality we
only consider transport in the y+ hemisphere. The xz-plane thus
acts as an impenetrable barrier, dividing Ω in two.

The other symmetry of ϒ is obtained via the reflection reversal
symmetry (4) as follows,

ϒ = Ry
Θ

ϒ̃τ = Ry
Θ

Sxyϒ̃τSxy = Ry
Θ

Sxyϒ
−1Ry

Θ
Sxy = S1ϒ

−1S1 (6)



Figure 2: The Poincaré maps of a collection of particles for
(Θ,τ) = (2π/3,0.1). The period one lines are shown in grey.

where S1 = Ry
Θ

Sxy. One can compute that S1 is the map that
reflects a point through the plane z = −sinΘ

cosΘ+1 x. Therefore struc-
tures in the Lagrangian topology must evolve symmetrically
about this plane also, illustrated in Figure 2 and Figure 3b by
the reflectional symmetry of the coherent structures.

Periodic lines

Periodic points and lines form the basis of Lagrangian topology
in that they give explicit conditions for both local chaos and
local non-mixing regions. The stability of the local Lagrangian
dynamics of periodic points forms the global dynamics of the
system, and creates a template upon which transport plays out.

A point X is said to be periodic if ϒn(X) = X for some n. The
minimum such n is called the order of X. In 2D it is only possi-
ble for isolated periodic points to occur, however in 3D it is pos-
sible to have more complex structures, such as periodic lines.
The lower order points play a greater role in affecting the dy-
namics so these are the main focus.

In order to find the period one points of the 3D RPM flow, we
exploit the symmetry (6) which guarantees that all period one
points must lie on the plane of symmetry z = −sinΘ

cosΘ+1 x. One can
then easily find all the period one points on the line intersect-
ing the xz-plane. The local stability of the points can be com-
puted by calculating the eigenvalues λi of the linearised defor-
mation tensor Dϒ(X) = (∂ϒi/∂X j)

∣∣
X which quantifies the rate

of stretching near X over one iteration of ϒ. Since ∇ · v = 0, it
follows that ∏λi = 1. If |λi|= 1 for all eigenvalues, then there
is a local rotation but no stretching, and the point is called el-
liptic. If |λi| > 1 for some eigenvalue, then a fluid particle is
stretched in the direction of the corresponding eigenvector, and
contracted in the direction of the eigenvector(s) corresponding
to |λ j| < 1. Such points are called hyperbolic and are linearly
unstable. In the case that one of the eigenvalues is equal to
one, it is known that the point lies on a period one line, and the
line continues in the direction of the corresponding eigenvector.
This gives us a means to search for all period one lines, and also
determine their stability, illustrated by Figure 2 and Figure 4.

Attached to hyperbolic points are two invariant structures, the
stable and unstable manifolds. The unstable manifold is the
collection of points whose backward trajectories converge to
the given point, and the stable manifold is the set of points
whose forward trajectories converge to the given point [8]. In-
tersections between stable and unstable manifolds form homo-
clinic/heteroclinic connections, and are a hallmark of chaotic
dynamics. Hyperbolic points are thus synonymous with chaos.

Results and Discussion

If the spherical domain Ω were foliated by topologically dis-
tinct invariant surfaces of the map ϒ, then each particle would
be confined to an invariant surface, and 3D transport would not
be possible, even though dynamics within an invariant surface
may be chaotic. Figure 2 and Figure 3b show that the trajecto-
ries of the map ϒ resemble ‘shells’ which could form invariant
surfaces. However, Figure 3c shows that an associated ‘shell
number’ G varies slowly in time, meaning particles belong to
a so-called ‘adiabatic surface’, which is not strictly invariant,
but transverse transport is slow. This is important because it
provides a mechanism for local 3D transport and chaos.

Adiabatic surfaces

A natural way to explain why these adiabatic surfaces occur is to
consider the invariant G of the base flow ϒ̃t defined as follows.
While Ψ, θ are one invariant pair of the flow, there exist an infi-
nite number of pairs, and so we may construct another invariant
from Ψ, θ. First consider the streamline given by Ψ = ψ0 and
θ = π/2, call it T (see Figure 3a). If we rotate this streamline
by π/2 about the y-axis to form T ′, the surface formed by the
union of all streamlines that pass through T ′ is a level surface
Sψ0 of G. The surfaces Sψ0 foliate the entire hemisphere, and
are mutually disjoint. For a general point (x,y,z) in the hemi-
sphere G(x,y,z) is defined to be the unique value ψ0 such that
(x,y,z) lies on the surface Sψ0 . Explicitly

G(ρ,θ,z) = Ψ
(
ρ̃(Ψ(ρ,z))sinθ, ρ̃(Ψ(ρ,z))cosθ

)
,

where ρ̃(ψ) =

√
1+2π2ψ2−2π

√
2ψ2 +π2ψ4 is the unique

value of ρ such that Ψ(ρ,0) = ψ. Thus by construction G is an
invariant of the base flow ϒ̃t . For the transient 3D RPM flow, G
is close to being invariant under rotation about the y-axis, so the
map ϒ produces small perturbations in G, as seen in Figure 3c.

We exploit the disparity in the time-scales of the dynamics—
while intra-surface dynamics can be fast, the advection trans-
verse to G is slow—by introducing canonical action-angle vari-
ables. There exists a theoretical framework for action-angle
variables [7], and they can be used to classify the flow dynam-
ics. Action variables vary slowly with time, whereas angle vari-
ables vary rapidly, so for example an action-action-angle system
can be thought of as one-dimensional. The fact that G experi-
ences minor perturbations from the map ϒ means that we can
use it as an action variable, while two other variables are needed
to describe the intra-surface dynamics.

Within the sphere there exist regular tubular regions which act
as a barrier to particle transport, particles can neither leave nor
enter. The tubes result from elliptic segments of periodic lines,
whereby particles oscillate around the periodic point, and form
either closed paths (the ‘loops’ in Figure 2) or chaotic regions
between loops (similar to KAM-tori). Due to the essentially
1D nature of the closed loops, these tubular regions can be de-
scribed using action-action-angle coordinates.

Conversely, there are regions topologically distinct from the
tubes (the ergodic region in Figure 2 and Figure 3b), within
these regions one still has the action variable G, but particles
travel ergodically around the adiabatic surface. These regions
therefore require action-angle-angle coordinates. Unlike the
tubes, these regions allow fully 3D transport within them, and
thus provide a mechanism for 3D transport.

It should be noted that when particles from the ergodic regions
come into close proximity to the elliptic regions one of the angle
coordinates slows considerably and one could consider these re-
gions to also be called action-action-angle. This can be seen by
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Figure 3: (a) A level surface of G. The thick solid line is T ,
the thick dashed line is T ′, and the dashed lines are streamlines
of ϒ̃t that pass through T ′. (b) Poincaré map of a particle with
(Θ,τ) = (2π/5,0.1). (c) Perturbations of the invariant G as the
particle is advected for 1000 iterations. The scaling is such that
G = 1 and G = 0 correspond to the xz-plane and the spherical
boundary respectively.

the punctuated regions of Figure 3c in which the shell-jumping
becomes small and quasi-periodic. The point oscillates around
the ‘islands’ (seen in Figure 3b) for long periods of time until a
‘crisis’ occurs and the point jumps to a new island.

Confinement due to invariant manifolds

Advection transverse to adiabatic surfaces plays a central role in
governing transport in the 3D RPM flow. Therefore understand-
ing the controlling mechanics of transverse advection is the key
to understanding global transport and the application of trans-
port theories for canonical variables. Figure 4 indicates that the
stable and unstable manifolds of the period-one points play an
important role. These manifolds associated to hyperbolic points
near the parabolic point form a ‘leaky’ barrier, with fast trans-
port inside and slow transport outside. The faster rate of trans-
verse transport within the barrier can be attributed to the hetero-

Figure 4: Cross-section through the symmetry plane z =
−sinΘ

cosΘ+1 x, showing the period one lines (black: hyperbolic, grey:
elliptic); the Poincaré maps of three points that lie in the same
ergodic region (grey points); and the unstable manifold of a hy-
perbolic point near the parabolic point (black points). For the
protocol (Θ,τ) = (2π/3,1.1).

clinic/homoclinic connections that exist within the region, caus-
ing rapid stretching and folding of fluid parcels. Combined with
the impenetrable KAM-tubes, such features build up a complete
picture of global transport in the 3D RPM flow.

The nature of the ‘leaky’ surface provides a focus for future
study, it is still unclear whether particles can leak across the
surface, and if it is a surface of locally minimal flux. Since
global chaos within each hemisphere will only be possible if all
periodic points are hyperbolic, future investigation should also
focus on whether there exist choices of the protocol parameters
Θ,τ which permit only hyperbolic points.

Conclusions

We have studied chaos in a 3D transient potential flow, specifi-
cally the 3D RPM flow. The use of a volume-preserving integra-
tion technique is employed to preserve the conservative nature
of the dynamical system. The flow possesses two symmetries,
one which divides the sphere into two non-mixing hemispheres,
and another which imposes reflectional symmetry in the La-
grangian topology. We see a mixture of dynamics, with the
existence of both chaotic regions and KAM-tubes which pre-
vent mixing. Within the chaotic regions, adiabatic surfaces are
observed, and provide a means for 3D transport, with transverse
motion acting as a slow ‘action’ variable. We provide a geomet-
ric interpretation of these surfaces, and discuss the impact of
the stability of periodic points. In particular, hyperbolic points
allow fast transverse dynamics, yet their stable/unstable mani-
folds also act as a surface of minimal flux. These studies pro-
vide novel insights into chaotic transport in 3D potential flows,
and provide a direction for future work.
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