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The author is to be commended on the development of this new piece of methodology, which
they name DoIt. We believe that the method, or later versions of the method, has the potential to
be an important element in the kit-bag of non-MCMC based methods for approximate Bayesian
inference. Throughout the article a number of criticisms have been leveled toward variational
approximations (of which variational Bayes (VB) is a special case). As much of our recent research
has been in this area we will focus our comments in defense of this methodology.

As a basis for comparison between methods we adapt the criteria listed in Ruppert, Wand
& Carroll (2003, Section 3.16), upon which scatterplot smoothers may be judged, to criteria for
general methodology.

1. Convenience. Is it available on the analyst’s favorite computer package?

2. Implementability. If not immediately available, how easy is it to implement in the analyst’s
favorite programming language?

3. Flexibility. Is the method able to handle a wide range of models?

4. Simplicity and Tractability. Is it easy to understand how the technique processes the data to
obtain answers? Is it easy to analyze the mathematical properties of the technique?

5. Accuracy vs Efficiency Does the method solve the problem to sufficient accuracy? How fast is
the method?

We will argue that while DoIt performs well under several of these criteria VB compares favorably
under others.

Under the criteria of convenience VB is most prominently implemented in the Infer.NET
computing framework (Minka et al. 2010). The Infer.NET framework can be used in any of
Microsoft’s .NET languages which includes C#, C++, Visual Basic, and Iron Python and imple-
ments the Expectation Propagation and Gibb’s sampling algorithms in addition to VB. The use of
Infer.NET for some simple statistical models is illustrated in Wang & Wand (2011). While we
freely admit that it is early days in this regard we look forward to an implementation of DoIt in a
commonly used statistical environment such as R.

The Infer.NET framework is still in its infancy and does not implement every type of vari-
ational approximation and so, for a particular model, the analyst may have to implement both

1



methods in their favorite programming language. Under this criteria VB can also have an advan-
tage over DoIt. The paper gives a highly algebraic description of DoIt. Below we have attempted
to summarize the DoIt algorithm to facilitate comparisons. We believe the core of the DoIt algo-
rithm uses the following steps:

1. Choose a design: D = {ν1, . . . ,νm} and calculate h = [h1, . . . , hm]T where hi = p(y,νi).

2. Solve the minimization problem: σ̂2 = argminσ2≥0 (e
Tdiag(G(Σ))e)/mwhere e = (e1, . . . , em),

ei = (G(Σ)−1)ih/(G(Σ)−1)ii, [G(Σ)]ij = φΣ(νi − νj) and Σ = diag(σ2).

3. Set Σ̂ = diag(σ̂2), [G]ij = φΣ(νi − νj), and solve the quadratic program

ĉ = argminc≥0(h−Gc)TG−1(h−Gc).

4. Solve the minimization problem:

λ̂ = argminλ≥0

b̂Tdiag(G(Λ))b̂

m

where G(·) is as is defined in Step 2 above, b̂ = G(Λ)−1(z − a1), Λ = diag(λ)Σ̂diag(λ),
zi = hi/ĉ

Tg(νi; Σ̂), z = [z1, . . . , zm], g(νi; Σ̂) = [φ
Σ̂
(νi − ν1), . . . , φΣ̂

(νi − νm)] and a =

ĉTG(Σ̂ + Λ)G(Λ)−1z/ĉTG(Σ̂ + Λ)G(Λ)−11.

The DoIt algorithm may need to follow Steps 1.–4. many times in order to determine a good
design set D which is chosen differently depending on whether the posterior mode is known.
If the posterior mode is known then D is chosen to follow a Latin hypercube design based on
the Laplace approximation of the posterior density (note the citation title for Morris & Mitchel,
1995 is incorrect). If the posterior mode is unknown, or if the Laplace approximation is judged
to be inaccurate, then D is built sequentially by minimizing νm+1 = argmaxθ (ĉTg(θ; Σ̂))2{1 −
g(θ; Σ̂)TG(Λ̂)g(θ; Σ̂)} where Λ̂ = diag(λ̂)Σ̂diag(λ̂) and starting points for these maximization
problems are obtained by choosing a point in the neighborhood of the νi with the largest ap-
proximate leave-one-out error (specific details for this step are vague). The DoIt algorithm stops
adding points to D when an approximate cross-validation criterion based criterion is judged to
be sufficiently accurate. The minimization problems are solved using the Nelder-Mead algorithm
which does not require derivative information, chosen we assume, to ease implementability.

The algorithm appears to contain many subproblems. Each of these subproblems may require
some tuning for DoIt to obtain reasonable results. Termination criteria may need to be adjusted,
multiple starting points may be required to ensure Steps 2 and 4 do not obtain poor results and
the size of the neighborhood used for sequential updates of the design may need adjusting.

Suppose that we compare this for the longitudinal data analysis example considered in Section
4.1 of the paper. In comparison the VB algorithm, described in Ormerod & Wand (2010), can be
programmed in around 10-15 lines of R code and requires virtually no tuning due to convergence
properties of VB. In comparison the above algorithm, which lacks some detail, requires half a
page or more to describe and may require at least minimal tuning. Clearly VB has an advantage
in this case.

The DoIt algorithm has been custom designed for models involving continuous random vari-
ables with continuous joint distributions (implied by Theorem 1). Provided that the problem falls
into this category DoIt appears quite flexible. In particular results for the nonlinear regression in
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Section 3.1 are quite impressive and we do not know of a variational approximation for obtaining
suitably accurate approximations for problems of this type. Furthermore, the the only other non-
MCMC method, that we are aware of, suitable for this type of problem is the iterLap method of
Bornkamp (2011).

However, VB is applicable in situations for models with both discrete and continuous random
variables and it is not limited to joint distributions which are continuous. For example, the VB
method has been successfully applied to Gaussian mixture models (McGrory & Titterington, 2007)
and hidden Markov models (McGrory & Titterington, 2009) and has an advantage over DoIt in
this setting. Furthermore, when the prior is discontinuous, for example when if the horseshoe
prior of Carvalho, Polson & Scott (2010) is employed, then VB can be applied (Neville, Ormerod
& Wand 2012). In such a setting it is unclear whether DoIt does not need a prohibitively large
number of design points to obtain a sufficiently accurate approximation.

The counter claim against VB is that VB is only applicable to conjugate-family type mod-
els. While we admit that VB cannot be applied to every model much of our recent research has
been to substantially widen recently the applicability of VB to some non-conjugate-family models
(Ormerod & Wand, 2012; Wand et al., 2011). In short, for the criteria of flexibility, VB can handle
some models DoIt cannot and vice-versa.

Both methods are simple and fairly easy to understand how answers are obtained. We ad-
mit that few theoretical development for variational approximations have been made and those
that exist are context specific (Humphreys & Titterington, 2000; Wang & Titterington, 2006; Hall,
Ormerod & Wand, 2011; Hall et al., 2011; Ren et al., 2011; Ormerod & Wand, 2012). In terms
of tractability Gaussian interpolation is a reasonably well understood technique (for example,
Fasshauer, 2007). As noted in the paper most results for bounding such interpolation methods
rely on the fill-distance of the design points. We do not know of results for obtaining good de-
signs in high dimensional spaces. Thus we concur a direct application of DoIt, without using
some type of dimension reduction, would be unsuitable for high dimensional problems. In com-
parison VB has been successfully applied in genetic association studies where the problems can
involve hundreds of thousands, if not millions, of dimensions (Logsdon, Hoffman & Mezey, 2010;
Carbonetto & Stephens, 2011).

We believe that criteria accuracy and efficiency should be considered together as one is often
traded against the other. Furthermore, these should be considered in the context of the problem
the method is trying to solve. Consider again the longitudinal data analysis example considered in
Section 4.1. The paper describes the VB approximation as poor. We would describe the posterior
approximations for the coefficients βi as quite accurate. while for the variance components σ2ε
and σ2u the posterior means are estimated quite well while the posterior variances are slightly
underestimated. Furthermore, these approximations, using a näive implementation in R (which
does not take advantage of the random effects structure), takes around 0.01 seconds to compute.
If, in the context of the analysis, the analyst was only interested in the posterior approximations
of the coefficients, then VB would be the ideal choice for this problem. It is hard to compare DoIt
with this in mind as the paper does not report how long DoIt takes to solve this problem, but we
anticipate that VB would compare favorably.

Our second objection to their comparison of variational approximations with DoIt is that all
variational approximations are lumped together. For example, it Section 2.5 of the paper, DoIt
is compared to the tangent variational approximation (TVA) of Jaakkola & Jordan (2000). We
regard, for this problem, TVA to be inferior to the Gaussian variational approximation (GVA,
Ormerod & Wand, 2012). Consider the example presented in Wand (2009, Section 6) in Figure
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1 where TVA and GVA are applied. Clearly GVA, like DoIt, appears adequately accurate for
this problem whereas TVA does not. Similarly, again considering the longitudinal data analysis
example considered in Section 4.1, the paper compares the VB method described in Ormerod &
Wand (2010) when other variational approximations are superior in terms of accuracy. Consider,
in Figure 2 the grid-based variational approximation of Ormerod (2011). This approximation like
the structured mean field variational approximation described in Wand et al. (2011) offer a general
method for improving variational approximations, albeit at the expense of speed. Using grid-
based variational approximations adequate approximations for the marginal posterior densities
of the variance components can be obtained. In this regard the paper appears to be making a
straw-man argument against variational approximations.

Clearly, we believe that while DoIt is a worthy addition to non-MCMC analysis and that the
results presented in the paper are impressive, that variational approximations still offer a compet-
itive alternative for many problems.
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Figure 1: A comparison of tangent based variationa approximations (TVA), Gaussian variational approxi-
mations (GVA) and MCMC for the bronchopulmonary dysplasia example in Wand (2009).
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Figure 2: Posterior density estimates for the inverse variance components using VB and the grid-based
variational approximation described in Ormerod (2011).
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