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Abstract Variational Bayes is a fast alternative to Markov chain Monte Carlo
for performing approximate Bayesian inference. It can be an efficient and effec-
tive means of analyzing large datasets. However, variational approximations
are often criticized, typically based on empirical grounds, for being unable to
produce valid statistical inferences in several modeling contexts. In this ar-
ticle, we briefly summarize variational Bayes and describe how the method
can be applied to a Bayesian linear model. We prove that under mild regular-
ity conditions, the estimators based on variational Bayes enjoy some desirable
frequentist properties such as consistency and can be used to obtain asymptot-
ically valid standard errors for Bayesian linear regression models. This result
partially contradicts the criticism that variational Bayes is not useful for infer-
ence. Furthermore, we introduce two variational Bayes information criteria: the
variational Akaike information criterion (VAIC) and the variational Bayesian
information criterion (VBIC). The variational Akaike information criterion is
a variational Bayes approximation to the deviance information criterion, we
show that it shares the first order asymptotic properties of the Akaike in-
formation criterion under mild regularity conditions. We also show that the
proposed variational Bayesian information criterion shares the same first order
asymptotic properties as the Bayesian information criterion. We support our
theoretical results by numerical examples.
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1 Introduction

There has been an ever increasing demand by society on Statistics to develop
efficient and effective means of analyzing large datasets. In contexts where de-
cisions need to be made quickly Markov chain Monte Carlo (MCMC) methods
for the analysis of Bayesian models can be deemed to be too slow in prac-
tice (Volant et al, 2012). Variational approximations are a newly emerging
class alternative to MCMC for fast approximate Bayesian inference for such
contexts.

Variational approximations are often criticized, typically based on empiri-
cal grounds, for being unable to produce valid statistical inferences in several
modeling contexts Rue et al (2009, Section 1.6). Few theoretical developments
for variational approximations have been made to prove or disprove such claims
in general and the theory that does exist is context specific (Humphreys and
Titterington, 2000; Wang and Titterington, 2006; Hall et al, 2011a,b; Ormerod
and Wand, 2012). In this article we focus on a variational Bayes (VB), a spe-
cial type of variational approximation, for a specific Bayesian linear model.
We prove that the VB estimators in this context enjoy desirable frequentist
properties such as consistency and can be used to obtain asymptotically valid
standard errors. Furthermore, we show that a VB approximation of the de-
viance information criterion (DIC) of Spiegelhalter et al (2002), which we call
the variational Akaike information criterion (VAIC), chooses models that share
the same optimality properties as models selected by the Akaike information
criterion (AIC) of Akaike (1973) for this class of models. We also propose a
variational Bayes version of the Bayesian information criterion (BIC) (Schwarz,
1978), which we call the variational Bayesian information criterion (VBIC).
In this article, we do not want to compare the model selection performance
of criteria, but provide variational Bayes based analogs with frequentist AIC
and BIC.

Closely related to our work is that of Ren et al (2011, Section 3). The model
considered here is slightly different from the one considered in (Ren et al, 2011,
Section 3), in that the prior for the coefficients is selected to depend on the
response variance. This assumption facilitates analytic integration so that the
marginal posterior distributions are available for the regression coefficients
and response variance. The VB posterior approximations of these quantities
can then be shown to approach the true posterior distributions. The priors
considered here for the Bayesian linear model are different and so require
different techniques to analyze the model.

In Section 2 we briefly summarize VB and describe how the method can be
applied to a Bayesian linear model. Theory for VB estimators for increasingly
diffuse priors and as the number of samples increases is presented in Section
3. Properties of the variational information criteria are derived in Section 4.
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The numerical examples are shown in Section 5. We conclude in Section 6.
The proof of the propositions are postponed to the Appendix.

2 Variational Bayes for Linear Regression

Let y denote a vector of observed data modeled by p(y|θ) where θ ∈ Θ is a vec-

tor of parameters with prior p(θ). Let q(θ) =
∏K
i=1 qi(θi) where {θ1, . . . ,θK}

is a partition of the parameter vector θ. It can be shown that the qi(θi), also
called q-densities, which minimize the Kullback-Leibler (KL) distance between
p(θ|y) and q(θ) satisfy

qi(θi) ∝ exp
[
E−q(θi) {log p(y,θ)}

]
, 1 ≤ i ≤ K,

where E−q(θi) denotes expectation with respect to
∏
j 6=i qj(θj). Furthermore,

a lower bound for the marginal log-likelihood is given by

log p(y) ≥ Eq
[
log

{
p(y,θ)

q(θ)

}]
≡ log p

q
(y).

Finally, by iteratively calculating qi(θi) for fixed {q(θj)}j 6=i the lower bound
is increased monotonically over each iteration so that convergence to a local
maximizer of log p(y) occurs under mild regularity conditions. For more details
and examples see Bishop (2006) or Ormerod and Wand (2010).

Suppose that we have observed the pairs (yi,xi), 1 ≤ i ≤ n, where xi ∈ Rp

and suspect yi|xi
ind.∼ N(xTi β, σ

2), 1 ≤ i ≤ n, where β is a p × 1 vector of
coefficients and σ2 is the noise variance. Using conjugate priors for β and σ2

a Bayesian version of the linear regression model may be written as

y|β, σ2 ∼ N(Xβ, σ2I), β ∼ N(0, σ2
βI) and σ2 ∼ IG(A,B), (1)

where X is a n × p design matrix whose ith row is xTi . If x ∼ IG(A,B) then
p(x) = BAx−A−1 exp(−B/x)/Γ (A). The parameters σ2

β, A and B are fixed

prior hyperparameters. Let θ = [βT , σ2]T then the optimal VB q-densities
corresponding to the restriction q(θ) = qβ(β)qσ2(σ2) have the form

q∗β(β) ∼ N(µq(β),Σq(β)) and q∗σ2(σ2) ∼ IG(A+ n
2 , Bq(σ2)),

where

Σq(β) =

[(
A+ n/2

Bq(σ2)

)
XTX + σ−2β I

]−1
, (2)

µq(β) =

(
A+ n/2

Bq(σ2)

)
Σq(β)X

Ty, (3)

Bq(σ2) = B +
1

2
||y −Xµq(β)||2 +

1

2
tr
(
XTXΣq(β)

)
. (4)

Note that equation (2)–(4) must hold simultaneously for the q-densities to be
optimal.
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Algorithm 1 Iterative scheme for obtaining q∗β(β) and q∗σ2(σ2) for model (1).

Initialize: Bq(σ2) > 0.
Cycle:

Σq(β) ←
[(

A+n/2
B
q(σ2)

)
XTX+ σ−2

β I

]−1

; µq(β) ←
(
A+n/2
B
q(σ2)

)
Σq(β)X

Ty

Bq(σ2) ← B + 1
2
‖y −Xµq(β)‖2 + 1

2
tr(XTXΣq(β))

until the increase of p
q
(y) is negligible.

Algorithm 1 describes a process for finding these values. At the bottom of
the main loop of Algorithm 1 below the lower bound p

q
(y) simplifies to:

log p
q
(y) = p

2 −
n
2 log(2π)− p

2 log(σ2
β) + 1

2 log |Σq(β)| −
‖µq(β)‖2 + tr

(
Σq(β)

)
2σ2

β

+A log(B)− logΓ (A)−
(
A+ n

2

)
log(Bq(σ2)) + logΓ

(
A+ n

2

)
.

3 Main Results

Henceforth we assume µq(β), Σq(β) and Bq(σ2) are the optimal parameters of
the q-densities. The following result describes the asymptotic behavior of the
quantities defined in equation (2)–(4).

Result 1: As σ2
β →∞ (for fixed n and p), provided 2A+ n > p,

Σq(β) =

(
2B + ‖y −Xβ̂LS‖2

2A+ n− p

)
(XTX)−1 +O(σ−2β ),

µq(β) = β̂LS +O(σ−2β ) and Bq(σ2) =
B + 1

2‖y −Xβ̂LS‖2

1− p/(2A+ n)
+O(σ−2β ).

where β̂LS ≡ (XTX)−1XTy is the least squares estimate of β.

Proof: After a Taylor series expansion around σ−2β in equation (2) we have as

σ2
β →∞ that

Σq(β) =

(
Bq(σ2)

A+ n/2

)
[XTX]−1 +O(σ−2β ). (5)

Substituting (5) into the expression for µq(β) in (3) and simplifying establishes

µq(β) = β̂LS+O(σ−2β ). Similarly, substituting (5) into the expression for Bq(σ2)

in (4) we obtain

Bq(σ2) = B + 1
2‖y −Xβ̂LS‖2 +Bq(σ2)p/(2A+ n) +O(σ−2β ).

Solving for Bq(σ2) we obtain the stated convergence for Bq(σ2) provided 2A+
n > p (to insure positivity of Bq(σ2)). The stated limit for Σq(β) is then
obtained by substituting the limit for Bq(σ2) into (5).

2
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The above result is useful as a caution against using diffuse priors for β in
situations where 2A + n < p. From Result 1, we see that when σ2

β is large it
is essential that we require that 2A + n > p. Otherwise Algorithm 1 will not
converge. This is consistent with our empirical experience.

3.1 Theory

Henceforth we will treat yi and xi as random quantities, where
yi|xi ∼ N(xTi β0, σ

2
0) for some true vector of coefficients β0 and variance σ2

0 .
The commonly used unbiased estimators for β0 and σ2

0 are

βLS = (XTX)−1XTy and σ2
unbiased = ‖y −XβLS‖2/(n− p).

Note, Cov(βLS) = σ2
0(XTX)−1. Result 1 suggests the VB based estimators

βVB = µq(β) and σ2
VB = Eq(σ2) = Bq(σ2)/(A + n/2 − 1) may have reasonable

properties. Note, using Result 1, as σ2
β →∞ we have βVB = βLS +O(σ−2β ) and

σ2
VB =

2B + (n− p)σ2
unbiased

2A+ n− p− 2
(

1− p
2A+n

) +O(σ−2β ).

We notice that as σ2
β → ∞ and n → ∞ that σ2

VB approaches σ2
unbiased in

probability. Also, as σ2
β →∞, A→ 0 and B → 0 we have Σq(β) approaching

σ2
unbiased(XTX)−1, which can be used for estimating standard errors for β.

Thus, Result 1 suggests that the estimators βVB and σ2
VB may have good

frequentist properties. In order to establish such properties we use the following
assumptions:

(A1) For 1 ≤ i ≤ n the yi = xTi β0 + εi where εi are independent N(0, σ2
0) where

β0 and 0 < σ2
0 < ∞ are the true values of β and σ2 respectively with β0

being element-wise finite;
(A2) For 1 ≤ i ≤ n the random vectors xi ∈ Rp are independent and identically

distributed with p fixed;
(A3) The p × p matrix E(xix

T
i ) is element-wise finite and positive definite and

XTX is positive definite for all finite n; and
(A4) For 1 ≤ i ≤ n the random vectors xi and random variables εi are indepen-

dent.

Let Udiag(λ)UT be the eigenvalue decomposition of XTX where U is an
orthonormal matrix and λ = [λ1, . . . , λp]

T is the vector of eigenvalues with
λi > 0 for i = 1, . . . , p. Also, let

An = n−1XTX, bn = n−1XTy,
cn = tr(An(An + σ−2β n−1dnI)

−1) and dn = Bq(σ2)/(A+ n/2).

Properties of An, bn, cn and dn are described in Proposition 1.

Proposition 1: Assuming (A1)–(A4) we have
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(a) An
a.s.−−→ E(xix

T
i ) and bn

a.s.−−→ E(xix
T
i )β0,

(b) the estimator βLS

a.s.−−→ β0,
(c) the sequence of random variables cn satisfies cn ≤ p for all n, and
(d) dn = Op(1) and d−1n = Op(1).

The proof of Proposition 1 is postponed to the Appendix. The next result
establishes the consistency of the VB estimator.

Result 2: Assuming (A1)–(A4) the estimator βVB is a consistent estimator
of β and σ2

VB is a consistent estimator of σ2
0.

Proof: Firstly, βVB may be rewritten as βVB = (An+σ−2β n−1dnI)
−1bn. Using

Proposition 1(d) the term dn is Op(n
−1) and so the term σ−2β n−1dn is Op(n

−1)
and hence negligible. Since almost sure convergence implies convergence in

probability we have, βVB

P−→ [E(xix
T
i )]−1E(xix

T
i )β0 = β0. Consequently, βVB

is a consistent estimator of β. Secondly, we may rewrite σ2
VB as

σ2
VB =

2B

2A+ n− 2
+

(
n− p

2A+ n− 2

) ‖y −Xµq(β)‖2

n− p
+

cndn
2A+ n− 2

. (6)

Using Proposition 1(c–d) the first and last terms on the right hand side of (6)

are O(n−1) and Op(n
−1) respectively. Finally, ‖y −Xµq(β)‖2/(n − p)

P−→ σ2
0

since µq(β) is a consistent estimator for β0. Hence, the second term on the

right hand side of (6) approaches σ2
0 in probability and the result follows.

2

4 Variational Information Criteria

In this section, we introduce two variational Bayes information criteria: VAIC
and VBIC, and establish the first order asymptotic properties of these two
information criteria. The VAIC is a variational Bayes approximation to the
DIC, we show that it shares the asymptotic properties of the AIC under mild
regularity conditions. We also show that the proposed VBIC is a variational
Bayes based analogue of Bayesian information criterion. As a consequence
the model selection criterion VAIC selects, as the AIC does a model which is
minimax rate optimal for selecting the regression function and VBIC tends to
select the same linear regression model as the BIC (Yang, 2005).

4.1 Variational Akaike Information Criterion

A popular criterion for scoring individual models within a Bayesian context
is the DIC introduced by Spiegelhalter et al (2002) and can be viewed as a
hierarchical modeling generalization of AIC. It is defined as

DIC ≡ −2 log p(y|θ̃) + 2PD,
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where θ is a vector of parameters, θ̃ is a Bayesian estimator for θ, e.g., θ̃ =
E(θ|y) and PD = 2 log p(y|θ̃)− 2Eθ|y[log p(y|θ)].

Smaller values of DIC are preferable. The first term in DIC represents a
measure of goodness of fit for the model, whereas the second term is a penalty
for model complexity whose purpose is to prevent overfitting. The DIC can
be useful for comparing models when improper priors are employed. Explicit
calculation of the DIC requires the knowledge of the posterior distribution,
which is often difficult to obtain exactly.

Instead, following McGrory and Titterington (2007), we approximate the
DIC by replacing p(θ|y) with q(θ) and call the result the variational Akaike
information criterion (VAIC), i.e.,

VAIC ≡ −2 log p(y|θ∗) + 2P ∗D, (7)

where θ∗ = Eq(θ) and P ∗D = 2 log p(y|θ∗)− 2Eq[log p(y|θ)].
As VAIC is an approximation to DIC, smaller values of VAIC are prefer-

able. Note, for comparative purposes, that for the classical linear model the
AIC is given by

AIC ≡ −2 log p(y|θ̂ML) + 2P,

where P = p + 1 and the maximum likelihood estimates are β̂ML ≡ β̂LS and

σ̂2
ML ≡ n−1‖y −Xβ̂LS‖2.

Proposition 2: Assuming (A1)–(A4) and n→∞ we have

(a) ‖y −XβLS‖2/Bq(σ2)
P−→ 2 and

(b) n log
(
‖y −XβLS‖2/2Bq(σ2)

) P−→ 0.

The proof of Proposition 2 is postponed to the Appendix. The theorem below
establishes the asymptotic behavior of the VAIC.

Theorem 1: Let AIC and VAIC be defined as above. Then assuming (A1)–

(A4) and as B approaches 0 we have P ∗D
P−→ P and VAIC

P−→ AIC.

Proof: Note that VAIC−AIC simplifies to

VAIC−AIC = −n log

(
‖y −XβLS‖2

2Bq(σ2)

)
+ (n+ 2A− 2)

(
‖y −Xµq(β)‖2

2Bq(σ2)

)
−n− n log

(
1 + 2A−2

n

)
+ 2(P ∗D − P ),

(8)
where P ∗D simplifies to,

P ∗D = cn + n
[
log
(
A+ n

2 − 1
)
− ψ

(
A+ n

2

)]
+
‖y −Xµq(β)‖2

Bq(σ2)

and ψ(x) = d logΓ (x)/dx is the digamma function. From Proposition 1(a)
and Proposition 1(c), the first term

cn = tr

(
XTX

n

(
XTX

n
+ (σ−2β dn/n)I

)−1)
P−→ tr(E(xix

T
i )(E(xix

T
i ))−1) = p,
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while the second term in P ∗D approaches −1 since ψ(x) = log(x) − 1/(2x) +
O(x−2) (see Abramowitz and Stegun, 1964, Formula 6.3.18). From proposition
2(a), the third term in P ∗D approaches 2 in probability. Hence, P ∗D approaches
P = p+ 1 in probability.

Next, using L’Hopital’s rule, we have limn→∞[n log(1+(2A−2)/n)]→ 2A−
2. Together with Proposition 2(a), we are able to show that (n+ 2A− 2)‖y−
Xµq(β)‖2/

(
2Bq(σ2)

)
− n− n log(1 + (2A− 2)/n)

P−→ 0. Proposition 2(b) shows

the first term in (8) approaching 0 in probability. Hence, VAIC−AIC
P−→ 0.

2

Note that the VAIC is not uniquely defined as in equation (7), it depends
on the type of variation approximation used and also depends on the way of
marginalization, i.e., we can marginalize out part of θ analytically and use
variational approximation to approximate the remaining elements of θ.

4.2 Variational Bayesian Information Criterion

A Bayesian model selection procedure chooses the model which is posteriorly
most likely, hence the marginal likelihood p(y) can be used to construct a
selection criterion. As it is computational intractable most of the time, the
Bayesian information criterion (BIC) is derived to approximate −2 log p(y).
BIC is one of the most popular choices for the consistent selection of an optimal
model among a set of potential models. It is defined as

BIC ≡ −2 log p(y|θ̂ML) + P log(n),

where P, β̂ML and σ̂2
ML are defined as in Section 4. By using the Laplace ap-

proximation method, we can obtain

−2 log p(y) + 2 log p(θ̂) = BIC− p log(2π) + log ‖ − n−1I(θ̂)‖+O(n−1), (9)

where I(θ) = ∂2 log p(y|θ)/∂θ∂θT . Note that under mild condition, the second
and third terms on the right-hand-side of equation (9) are Op(1) while the first
terms on both sides of equation (9) are Op(n). See Claeskens and Hjort (2008)
and Pauler (1998) for more details of the derivation of BIC.

Motivated from equation (9), we define the variational Bayesian informa-
tion criterion (VBIC) as

VBIC ≡ −2Eq log p
q
(y) + 2Eq log p(θ).

The advantage of having this definition instead of −2Eq log p(y,θ) + P log(n)
is even when P and n are not clearly defined, for example when missing data is
present, the VBIC can still be used. Next, we establish the first order asymp-
totic behavior of VBIC.

Theorem 2: Let BIC and VBIC be defined as above, assuming (A1)–(A4) we
have VBIC = BIC +Op(1).
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Proof: First note that logΓ (x) = x log(x)−x− (1/2) log(x) + (1/2) log(2π) +
O(x−1) (Erdélyi et al, 1981). Also note that log(A+ n/2) = log(n)− log(2) +
O(n−1). Therefore, we can obtain

VBIC = −p+ n log(2π)− log |Σq(β)|+ (n− 2) log(Bq)− 2 logΓ
(
A+ n

2

)
−p log(2π) + (2A+ 2)ψ(A+ n

2 )− 2BA+n/2
Bq

= −p+ n log(2π) + p log(n) + log |dn(An + σ−2β n−1dnI)|
+(n− 2) log(Bq)− 2

(
(A+ n

2 ) log(A+ n
2 )− (A+ n

2 )− 1
2 log(A+ n

2 )

+ 1
2 log(2π) +O(n−1)

)
− p log(2π) + (2A+ 2)

(
log(A+ n

2 )

+O(n−1)
)
− 2B d−1n .

Note that Σq(β) = n−1dn
(
An + σ2

βn
−1dnI

)−1
= Op(n

−1) as dn = Op(1)
from Proposition 1(d). Hence log |Σq(β)| = −p log(n)+Op(1) and tr(Σq(β)) =
Op(n

−1). Next, we eliminate Op(n
−1) terms to obtain

VBIC = n log(2π) + p log(n) + log(A+ n
2 ) + n+ (n− 2) log(Bq)

−(n− 2) log(A+ n
2 ) +Op(1)

= n log(2π) + P log(n) + n+ (n− 2) log(Bq)− (n− 2) log(A+ n
2 )

+Op(1).

Comparing the difference

BIC−VBIC = n log(2π) + n log(‖y −XβLS‖2)− n log(n) + n+ P log(n)

−n log(2π)− P log(n)− n− (n− 1) log(Bq)

+(n− 1) log(A+ n
2 ) +Op(1)

= n log
(
‖y−XβLS‖

2

2Bq

)
− n log

(
n

2A+n

)
+ log(dn) +Op(1). (10)

From Proposition 2(b) we see that the first term in equation (10) approaches
to 0. The second term converges to 2A. Using Proposition 1(d), the third term
is Op(1) and the result follows.

2

5 Numerical Example

We illustrate our theoretical findings through simple numerical examples. Con-
sider a linear model

y = Xβ + ε,

where β ∈ R5. Each column of X is a standardized pseudo random vector
from the standard normal distribution. We consider 6 simulation settings: the
sample size n varies over 10, 100 and 1000 and the hyperparameter B varies
over 0.1 and 1× 10−8. We keep the hyperparameters A = 0.01, σ2

β = 108 and

the coefficient vector β = [1, 1, 1, 1, 1]T constant. Each scenario is repeated 100
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times. The absolute difference is used to measure the difference between VAIC
and AIC. The quantities ‖µq(β) − β̂LS‖2 and ‖Σq(β) − σ̂2

unbiased(XTX)−1‖∞
are used to show empirically that the VB estimators are consistent and able
to obtain valid standard errors. The term |VBIC − BIC| is used to measure
the difference between VBIC and BIC. The means and standard errors of the
above 4 measures are shown in Table 1–4. In Table 1, the values are getting
closer to 0 from top to bottom and when changing from B = 0.1 to 1× 10−8,
which is consistent with Theorem 1. The values in Table 2 (a) and (b) both
decrease with increasing sample size n. This supports Result 2 in Section 3.
The values in Table 3 also decrease as n increases which is evidence that the
VB estimates have valid standard errors. The average differences are almost
constant but smaller standard error with increasing n in Table 4. This means
the difference does not vary with n which is consistent with Theorem 2. Note
in Table 2, 3 and 4 the hyperparameter B does not change the results.

(a) B = 0.1

n Mean Standard Error
10 9.76× 10−1 1.83× 10−2

100 2.17× 10−2 1.46× 10−4

1000 1.73× 10−3 4.81× 10−6

(b) B = 10−8

n Mean Standard Error
10 7.51× 10−1 1.17× 10−3

100 1.48× 10−2 3.91× 10−5

1000 1.11× 10−3 2.69× 10−6

Table 1 |VAIC−AIC|

(a) B = 0.1

n Mean Standard Error
10 2.38× 10−22 8.01× 10−23

100 6.41× 10−26 2.34× 10−27

1000 5.54× 10−28 6.59× 10−30

(b) B = 10−8

n Mean Standard Error
10 2.27× 10−22 7.78× 10−23

100 6.38× 10−26 2.33× 10−27

1000 5.54× 10−28 6.75× 10−30

Table 2 ||µq(β) − β̂LS||2

(a) B = 0.1

n Mean Standard Error
10 5.38× 10−2 6.90× 10−4

100 3.23× 10−5 1.13× 10−7

1000 1.96× 10−7 3.48× 10−10

(b) B = 10−8

n Mean Standard Error
10 7.41× 10−3 6.82× 10−4

100 3.50× 10−6 1.08× 10−7

1000 2.19× 10−8 3.47× 10−10

Table 3 ‖Σq(β) − σ2
unbiased(X

TX)−1‖∞

(a) B = 0.1

n Mean Standard Error
10 8.883 4.218× 10−1

100 8.833 1.110× 10−1

1000 8.890 3.222× 10−2

(b) B = 10−8

n Mean Standard Error
10 8.819 4.213× 10−1

100 8.828 1.111× 10−1

1000 8.890 3.222× 10−2

Table 4 |VBIC− BIC|
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6 Conclusion

This article shows that for the Bayesian linear model presented here the cor-
responding variational Bayes based estimators βVB and σ2

VB are consistent
estimators of β0 and σ2

0 under mild regularity conditions. This finding par-
tially contradicts the criticism that variational Bayes is not used for statistical
inferences. Furthermore, it is proved that the variational Akaike information
criterion shares the same the first order asymptotic properties as the Akaike
information criterion and variational Bayesian information criterion shares the
same the first order asymptotic properties as the Bayesian information crite-
rion. While the results concern the well understood linear regression model
they do represent an advancement in the emerging area of variational Bayes.
Our results also give some motivation for the justification of variational Bayes
based information criteria for more complex models.
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Appendix

Proof of Proposition 1(a): The stated convergence of An follows from (A2)
and (A3) and the strong law of large numbers. Similarly, assuming also (A1)
and (A4), bn

a.s.−−→ E(xiyi) = EX [xi(x
T
i β0 + εi)] = E(xix

T
i )β0.

2

Proof of Proposition 1(b): Note βLS = A−1n bn. Using Proposition 1(a)
obtains the stated result.

2

Proof of Proposition 1(c): Let α = σ−2β dn. Note that cn = tr(XTX(XTX+

αI)−1) =
∑p
i=1 λi/(λi + α) =

∑p
i=1(1 − α/(λi + α)) ≤ p since λi > 0 for

i = 1, . . . , p and α > 0.

2

Proof of Proposition 1(d): Firstly, note that Bq(σ2) satisfies Bq(σ2) = B +
‖y −Xµq(β)‖2/2 +Bq(σ2)cn/(2A+ n), hence

Bq(σ2) =
B + 1

2‖y −Xµq(β)‖2

1− cn/(2A+ n)
. (11)

Using Proposition 1(c) and the triangle inequality,

dn =
2B + ‖y −Xµq(β)‖2

2A+ n− cn
≤

2B + ‖y‖2 + ‖Xµq(β)‖2

2A+ n− p
.
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Next consider,

‖Xµq(β)‖2 = yTX(XTX + αI)−1XTX(XTX + αI)−1XTy =

p∑
i=1

v2i λi
(λi + α)2

where [v1, . . . , vp]
T = UTXTy. However, ‖Xµq(β)‖2 is clearly maximized with

respect to α when α = 0. Hence,

dn ≤
2B

2A+ n− p
+

n

2A+ n− p

(
‖y‖2
n + βTLSAnβLS

)
=

2B

2A+ n− p
+

n

2A+ n− p

(
‖ε‖2+2εTXβ0+β

T
0 XTXβ0

n + βTLSAnβLS

)
,

where ε = [ε1, . . . , εn]T . Now, using assumptions (A1)–(A4) and the strong law
of large numbers we have ‖ε‖2/n a.s.−−→ σ2

0 , εTXβ0/n
a.s.−−→ 0 (due to the indepen-

dence of εi and xi), β
T
0 X

TXβ0/n
a.s.−−→ βT0 E(xix

T
i )β0, and using Proposition

1(a) and Proposition 1(b) we have βTLSAnβLS

a.s.−−→ βT0 E(xix
T
i )β0 + pσ2

0 . The
result follows from almost sure convergence implying convergence in probabil-
ity.
It is known that ||y −Xβ̂||2 ≤ ||y −Xβ̂LS ||2 for any choice of β̂,

d−1n =
2A+ n− cn

2B + ‖y −Xµq(β)‖2
≤ 2A+ n

2B + ‖y −XβLS‖2
=

2A+ n

2B + ||ε||2
a.s.−−→ σ−20 .

So d−1n = Op(1).

2

Proof of Proposition 2(a): Note ‖y−Xµq(β)‖2/n
P−→ σ2

0 since µq(β)
P−→ β0

and Bq = (A + n/2 − 1)σ2
VB. Combining this with Result 2 we have (n/(A +

n/2− 1))(‖y −Xµq(β)‖2/nσ2
VB)

P−→ 2.

2

Proof of Proposition 2(b): First note that log(t) = (t − 1) − (t − 1)2/2 +
O((t− 1)3). Then consider

n log

(
‖y −XβLS‖2

2Bq(σ2)

)
= n

(
‖y −XβLS‖2

2Bq(σ2)
− 1

)
+ nO

(
‖y −XβLS‖2

2Bq(σ2)
− 1

)2

.

Note that if the first term in the expansion converges to zero as n diverges
then so will higher order terms which we may rewrite as

n
‖y −XβLS‖2 − 2Bq(σ2)

2Bq(σ2)
=

n

A+ n/2

‖y −XβLS‖2 −
2B+‖y−Xµq(β)‖

2

1−cn/(2A+n)

2dn

 ,

(12)
by using equation (11) on the numerator and Bq = (A + n/2)dn on the de-
nominator. Applying Proposition 1(c) we have cn/(2A + n) ≤ p/(2A + n)
approaching 0 as n → ∞. Then using Proposition 1(b) and Result 2 and as
B → 0 we have (12) approaching 0.

2
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