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Curves, surfaces and their higher-dimensional analogues are the basic settings
for studying problems depending on many variables. This part of the course is an
introduction to how we may think about such objects, without using equations to
describe them. The basic objects of interest are figures in the plane R

2 or 3-space
R

3 which may be assembled from line segments and polygons.
We shall use simple ideas from arithmetic and algebra to help distinguish between

various such objects, and to decide, for instance, when we need 3 dimensions rather
than 2 to carry out our constructions. (We may even consider surfaces in 4-space
R

4 briefly).
In particular, we shall often be counting elements of finite sets, and may use

mathematical induction and some linear algebra.

1. Graphs

A graph G is a finite set of points (vertices) connected by edges, which meet only
at the vertices. If the edge e connects the vertices P and Q, we shall say that P
and Q are adjacent and that they are the endpoints of e.

We shall let V be the set of vertices and E the set of edges. Any graph G̃

obtained by taking some subset Ṽ ⊆ V of the vertices and some subset of the edges

connecting the vertices of Ṽ is called a subgraph of G. (We shall then write G̃ ≤ G.)
The complete graph on n vertices Kn is obtained by taking n points and joining

every distinct pair of points by exactly one edge. Thus there are
(
n
2

)
edges in all.

Clearly Kn ≤ Kn+1 for all n ≥ 1.

•

K1

• •

K2

• •

•

K3

• •

• •

K4

• •

• •

•

•

envelope graph

1. Some planar graphs

A graph is planar if it can be drawn in the plane without edges crossing.
The graphs in Figure 1 are all planar. We shall show later that K5 is not

planar. Since Kn ≤ Kn+1 for all n it shall follow that Kn is planar if and only
if n ≤ 4. Another (possibly familiar?) nonplanar graph underlies the “Three
Utilities” puzzle. Can you connect three houses to electricity, gas and water so
that the supply lines never cross? Here there are six vertices (the houses and the
utilities) and nine edges (the supply lines). (See Figure 2. Note that in the figure
the first house has no water supply!)
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• •

• •

•

K5

2. Two non-planar graphs

One of the purposes of this course is to show how we can use algebraic or numer-
ical tests to decide geometric questions such as whether a given graph is planar.

A graph may have isolated points, and we allow loops and multiple edges con-
necting the same pair of points. However we assume every edge has at least one
endpoint! (In particular, we do not consider a simple closed curve without vertices
to be a graph.) We do not require that the edges be straight line segments.

This definition may be modified in various ways. The most important variants
are

(1) to insist that there be no loops (edges with only one endpoint), and at most
one edge connecting any given pair of vertices;

(2) to assume that each edge is oriented, i.e., we specify a direction along each
edge;

(3) to allow infinite graphs.

We can always arrange that (1) holds, by adding new vertices at the midpoints of
loops and multiple edges. This process is called subdivision. We may reverse this
process to delete a vertex Q which is an endpoint of exactly two edges e, f whose
other vertices P,R are distinct from Q, and replace the pair of edges e, f by a single
edge e′ from P to R. (We allow the possibility P = R.)

•—–• ⇔ •—–•—–•

3. Subdivision of an edge

We shall want to consider graphs obtained from each other by iterated subdivi-
sion (or the reverse operation) as being equivalent. (In the language of topology,
they are homeomorphic, i.e., “look the same”.)

We shall not have time to say much about oriented graphs, and shall not consider
infinite graphs at all.

Although not all graphs are planar, they can all be constructed in 3-space, and
if there are no multiple edges we may then assume that all edges are straight line
segments. It is enough to notice that we can choose points in R

3 representing
the vertices such that no four points lie in a common plane, for then no two edges
connecting four distinct points can meet. This is clear if we have only three vertices,
Given n points P1, . . . , Pn, they determine at most

(
n
3

)
planes, and so we can always

find points of R3 not in any of these planes. If no four of P1, . . . , Pn lie in a common
plane then adjoining a new point Pn+1 which is not on this union of planes will give
a set of n+ 1 points with this property. We take such a “maximally independent”
set of points as our vertices, and join them by straight line segments as required.
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A vertex P has degree deg(P ) = d if there are d edges which have P at one end.
(We count loops e with both ends at P twice, once for each end).

•
Q

•
R

•
S

•
T

•
U

•
V

•W

4. Vertices of degrees 0, 1, 2, 3 and 4

Vertices of degree 0 are isolated points, not connected to any other part of the
graph, and as such are not very interesting. Vertices of degree 1 are extreme points
of the graph. Vertices of degree 2 may be created by subdivision or removed by the
reverse operation. (See Figure 4.)

It is easy to see that ΣP∈V deg(P ) = 2#E, since each edge has two endpoints.

2. Paths, connected, trees

If P and Q are vertices of G a path from P to Q is a set of edges e1, . . . , en such
that P is a vertex of e1, each edge meets the next and Q is a vertex of en. The
graph is connected if any two vertices are the ends of such a path. If G is connected
the distance from P to Q is the number of edges in the shortest path from P to Q.
(It is convenient to allow also paths of length 0, consisting of just a single vertex.)

In figure 4, the distance from R to U is 3. (The distance from Q to R is not
defined.)

In general, the path component of a vertex P is the subgraph consisting of all ver-
tices which can be reached by paths starting at P and all edges with endpoints such
vertices. A subdivision of a connected graph remains connected, and subdivision
does not change the number of components.

A circuit is a path which starts and finishes at the same point. If a circuit
contains two consecutive edges ei, ei+1 which are copies of the same edge then
deleting these edges gives a shorter circuit. The circuit is trivial if repeating this
process eventually gives a circuit of length 0.

A connected graph is a tree if it has no loops and no nontrivial circuits. (See
Figure 5.)

• • • • • • • •

• • • •

• •
•

•

•

• •

• •

5. A tree

In a tree there is an unique shortest path connecting any two given vertices P
and Q.
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Theorem 1. A tree T with more than one vertex has at least two vertices of degree
1.

Proof. We induct on the number of vertices of T . The result is clearly true if T
has two vertices. Suppose that T has at least three vertices, and choose an edge
e of T , with endpoints P , Q, say. If we delete this edge (keeping the vertices) the
resulting graph has two path components, TP and TQ, say. Each of these is a tree,
and has fewer vertices than T . If each has more than one vertex then they each
have at least two vertices of degree 1, by the inductive hypothesis. Replacing the
edge e to recover T uses up at most two of these (four or more) vertices, and so T
has at least two such vertices. If on the other hand one of them, TP say, is reduced
to a single point then P must have been a vertex of degree 1 in T . Since TQ has
more than one vertex, it has at least two vertices of degree 1 and the result again
holds. �

Let G be a connected graph with n vertices, and suppose that Tk is a subgraph
which is a tree with k < n vertices. Since G is connected there is an edge e with one
endpoint P in Tk and the other endpoint Q not in Tk. Let Tk+1 be the subgraph
obtained by adjoining the vertex Q and the edge e to Tk. Then Tk+1 is a tree.
In this way we see that every connected graph contains a tree which has all the
vertices of G as its vertices. (See Figure 6 for an example.) Such maximal trees are
usually not unique; we must choose which edges to include. (This nonuniqueness
is evident already for G = K3.)

• •

• •

• •

•
•

•

•

6. A connected graph with a maximal tree

3. Euler characteristic and Eulerian circuits

Subdivision changes the total numbers of vertices #V and edges #E. However
each time we add a new vertex in this way each of these numbers increases by 1,
and so the difference χ(G) = #V −#E does not change. This difference is called
the Euler characteristic of G, and is historically the first example of a topological
invariant. We shall meet an extension of this idea when we consider surfaces, and
shall then use it to show that certain graphs are not planar.

Let T be a tree. Then χ(T ) = 1, i.e., T has one more vertex than edges. We
again argue by induction on the number of vertices. It is clearly true if T has one
vertex, for a tree with one vertex has no edges. In general, if T is a tree with n
vertices and P is a vertex of degree 1 then deleting P and the unique edge with P
as an endpoint gives a tree T ′ with n− 1 vertices, and clearly χ(T ) = χ(T ′), since
the numbers of vertices and edges have each been reduced by the same amount (1).

If G is connected then 1− χ(G) is the “number of independent circuits” in G.
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An Eulerian circuit is a circuit which contains every edge exactly once. The first
result in Graph Theory (and, more generally, in Combinatorial Topology) was due
to Euler:

Theorem 2. A graph G has an Eulerian circuit if and only if it is connected and
every vertex has even degree.

Proof. If G has a circuit which contains every edge then it must be connected. An
Eulerian circuit may pass through a given vertex P more than once, but each time
it does so it contributes 2 to the degree of P . Thus every vertex has even degree.

For the converse, we use induction on the number of edges. The result is clearly
true if G has 0 edges (in which case G is empty or a single vertex). Choose a vertex
P as a starting point, and move along edges. Eventually we must complete a circuit
C by returning to P . If we delete the edges of this circuit the graph G breaks up
into one or more subgraphs G1, . . . , Gk with fewer edges, and in which each vertex
still has even degree. Each of these has an Eulerian circuit Ei, by the inductive
hypothesis. Suppose our starting point P is in G1. We first go round the Eulerian
circuit E1, coming back to P , and then we continue along C until we meet a vertex
not in G1. We then go round the Eulerian circuit through this point, and so on. In
this way we may combine the circuits Ei with C (as indicated in Figure 7) to get
an Eulerian circuit for G. �

•

• •

• •

E1

P1
P2

P3

E2 E3

7. Improving a circuit C to an Eulerian circuit (schematic)

In this Figure C is the (approximate) circle drawn with heavier lines.

Example:

Can you draw the envelope graph without lifting your pen off the paper and
without retracing any edges?

Euler’s result was reputedly prompted by someone asking whether it was possible
to walk around Koenigsberg, crossing all seven bridges exactly once. This was
perhaps the first mathematical problem with a genuine topological flavour. The
corresponding graph has four vertices, one for each piece of land and seven edges,
one for each bridge. (See Figure 8.)
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A

B

C

D • •

•

•

A D

C

B

8. The bridges of Königsberg – with associated graph

The letters represent land: two rivers flow from right to left on either side of land
D, A is an island in the combined river, while B and C are its left and right banks.
The edges represent the bridges. (Note that the vertices all have odd degree.)

There is a corresponding notion focusing on vertices rather than edges. A Hamil-
tonian circuit is a circuit which passes through each vertex exactly once. It is a
major open problem of practical consequence whether there is an efficient algorithm
for finding Hamiltonian circuits in connected graphs. (This is known as the “Trav-
elling salesman” problem. It arises in scheduling the movement of aircraft, tankers,
data through computers, etc.) We shall say no more about Hamiltonian circuits.

4. Surfaces

A surface in 3-space is a subset that looks locally like the graph of a function of
two variables. Typically, a surface may be described by a single equation f(x, y, z) =
0. For instance, the unit sphere is the set

S2 = {(x, y, z) ∈ R
3 | x2 + y2 + z2 = 1}.

of points (x, y, z) satisfying the equation x2+y2+z2−1 = 0. This is a mathematical
model of the surface of the solid ball of radius 1, in the ordinary sense of the word
“surface”. Similarly, the torus defined later is a model of the surface of a doughnut.
(See Figure 9.)

S2 T

9. The sphere S2 and the torus T

In practice it is often difficult to find simple equations, and in any case the
equations describing a given surface are not very useful, and are far from unique.
Moreover some of the objects which deserve to be considered as surfaces cannot be
constructed in 3-space. We shall approach surfaces in a different way.

Definition. A surface S is a subset of some m-space Rm which may be assembled
by gluing together polygons along their edges, so that at most two polygons meet
along any given edge.
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We shall usually assume that m = 3 or 4. We could insist that our basic building
blocks be triangles, since any polygon with n sides is the union of n triangles, glued
together two at a time. (See Figure 10.) Allowing general polygons simplifies some
of our constructions. Note also that we shall often match up sides of the same
polygon. On the other hand, we do not assume that all edges are used up in the
matching process. The edges left over form the boundary ∂S of our surface.

→

10. Dividing a polygonal face into triangles

The plane itself is a union of polygons (in many ways). For instance, we may
take all the squares whose vertices have integer coordinates. (See the treatment of
the torus below.) However we shall concentrate on surfaces obtained from finitely
many polygons. In this case the boundary is always a finite collection of circles.
(This includes the possibility that the boundary is empty!)

For ease of drawing, we shall not insist that the sides of our polygons be straight
line segments. (In the language of topology, our basic building blocks shall be
homeomorphic to standard polygons). Note also that we shall often write “polygon”
when we mean the sides of the polygon AND the 2-dimensional region of the plane
that they enclose.

Definition. Two subsets X and Y of Rn are homeomorphic if there is a continuous
function f : X → Y with a continuous inverse g : Y → X .

We shall not elaborate on how we define “continuous” here. (The definitions
you met in earlier years will suffice). It shall usually be clear how this definition
applies.
Examples: The standard unit disc is the set

D2 = {(x, y) ∈ R
2 | x2 + y2 ≤ 1}.

Every convex polygon is homeomorphic to D2. To see this, put a small copy of the
disc at the centre of the polygon and expand radially to fill out the interior. Note
that any such homeomorphism carries the circle

S1 = {(x, y) ∈ R
2 | x2 + y2 = 1}

onto the boundary of the polygon. (Thus ∂D2 = S1.)
In particular, we may define a homeomorphism from the disc to the square � =

{(x, y) ∈ R
2 | |x| ≤ 1, |y| ≤ 1} by using polar coordinates (r, θ) and setting f(r, θ) =

(r| sec θ|, θ) if −π
4
≤ θ ≤ π

4
or if 3π

2
≤ θ ≤ 5π

4
and setting f(r, θ) = (r|cosecθ|, θ)

otherwise. As you can see, actually writing out a formula for a homeomorphism is
tedious and not very enlightening, and we shall usually avoid doing so. (See Figure
11.)
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θ

11. Expanding the unit disc

Similarly, we may show that any convex solid in 3-space is homeomorphic to the
solid 3-ball B3 = {(x, y, z) ∈ R

3 | x2 + y2 + z3 ≤ 1}. In particular, the boundary
of such a solid is homeomorphic to the boundary of the solid ball, which is the
standard unit sphere S2. We shall use this without further comment to see that
S2 is a union of four triangles (boundary of the solid tetrahedron), six squares
(boundary of the cube), etc. (See Figure 12.)

12. Three regular solids: the cube, tetrahedron and octahedron

Examples:

(1) The annulus A = {(x, y) ∈ R
2 | 1

2
≤ x2 + y2 ≤ 1}.

(2) The torus T .
(3) The Möbius band Mb.
(4) The Klein bottle Kb.
(5) The projective plane RP 2.

The standard disc and annulus are defined as subsets of the plane R2. The sphere,
torus and Möbius band can all be constructed in 3-space R3, but the natural home
for the Klein bottle and the projective plane is in 4-space R

4! We shall show later
how these surfaces may be “visualized”, using time (or colour intensity) to indicate
the extra dimension. (See Figure 13 for some of these surfaces.)

D2 A Mb

13. Three surfaces with boundary

Note that A has two boundary circles, whereas Mb and D each have just one.
The other surfaces given so far have no boundary.
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5. Stereographic projection

Let N = (0, 1) be the “north pole” of the unit circle S1 ⊂ R
2. Then we may

define a homeomorphism from the complement S1 − {N} to the real line R by
setting f(P ) to be the point of intersection of the line from N through P with R.
It is easy to see that in fact f(x, y) = x

1−y
. The inverse function sends t ∈ R to

f−1(t) = ( 2t
t2+1

, t2−1
t2+1

). In particular, f−1(0) = (0,−1) is the “south pole” of the

circle. Thus we may view the circle S1 as being obtained from F−1(R) (a copy of
the real line) by adding one more point (N). From the point of view of R, N is
very far from the origin; as t ∈ R moves towards ±∞ the corresponding point f−1

approaches N on S1. We say that S1 may be obtained by “adding a point at ∞”
to R, and write S1 = R ∪ {∞}. (See Figure 14.)

N

P

f(P )

14. Stereographic projection from the circle to the line

A similar idea works in higher dimensions. Let N = (0, 0, 1) be the north pole of
S2. Then stereographic projection from N identifies every point P ∈ S2−{N} with
the point of intersection of the line from N through P with the horizontal plane
with equation z = 0. Once again, we may write down formulae for the stereographic
projection and its inverse, but these are not important for our purposes. We again
say that S2 may be obtained by “adding a point at ∞” to R

2, and write S2 =
R

2 ∪ {∞}. (See Figure 15.)

N

•P

f(P )

15. Stereographic projection from the sphere to the plane

Warning. This construction of S2 is NOT the one used to construct the projec-
tive plane, where we add a line at infinity. We shall say more about the projective
plane later.

6. The other basic surfaces

The annulus A and Möbius band may each be constructed by gluing together one
pair of ends of a rectangle. What we get depends on how we match the two ends.
If you try to make one of these surfaces out of a piece of paper or some ribbon,
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you have to twist the paper/ribbon to get Mb. More precisely, an even number of
half twists gives a copy of A, and an odd number gives a copy of Mb. Although
we only get two types of surface in this way, the twisted versions are sitting in
3-space in distinct ways, and the twists cannot be removed without cutting and
regluing. (See Figure 16.) Note also that A is homeomorphic to the cylinder
{(x, y, z) ∈ R

3 | x2 + y2 = 1, 0 ≤ z ≤ 1}.

Q

P

Q

P

A

△ △ →

P

Q

▽

S

R

R

S

N H N

Mb

→
S

R

16. Constructing the annulus and Möbius band

The torus T and Klein bottle Kb may each be obtained by identifying both pairs
of opposite sides of a rectangle. First we glue together top and bottom, to get a
cylinder with two ends, and then glue the ends together, as indicated in Figure 17.
Once again, what we get depends on how we match the ends.

T

>>>

>>>
>>>

>>>

△ △ △ △→ →

△△

→

△

>>>

Kb

>

>>
>>N H N H→

H

→
N

→

H

17. Constructing the torus and Klein bottle

A slick way of explaining the construction of T is to say that the abelian group
Z
2 of vectors with integer entries acts by translation on R

2, so that (m,n) moves
a point m units to the right and n units up. (Remember that left = −right and
down = −up!). We then identify points which are equivalent under this action, i.e.,
(x, y) ∼ (x′, y′) if x′ − x and y′ − y are integers. It is easy to see that every point
is equivalent to a point (x, y) in the unit square (with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1),
and that opposite sides are matched by horizontal or vertical translation.

If we cut the rectangle horizontally we see that each half of the rectangle closes
up to an annulus (on gluing together the ends) and so the torus is the union of two
annuli.

The Klein bottle Kb may also be constructed by identifying opposite sides of a
rectangle. However this time we invert one of the sides (say, the left vertical side)
before making the identification. In this case the group acting on R

2 is generated
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by an integer translation in the vertical direction and a glide reflection with axis a
unit horizontal vector.

If we cut out a thin strip centered on the horizontal midline of the square we
see that the square falls into three rectangles. The central one closes up to give
a Möbius band, while after gluing the other two along the edges corresponding to
the top and bottom of the original square we get a second Möbius band. Thus the
Klein bottle is the union of two copies of Mb. (See Figure 18.)

>

>

N H

I

II

III

→

>

>

I

II

III

N H →

>
I

II

III

N H

N H

18. The Klein bottle decomposed into Möbius bands

The projective plane is the space of lines through the origin in R
3. Every such

line meets S2 in two antipodal points, P = (x, y, z) and −P = (−x,−y,−z),say.
Thus we may obtain RP 2 from the sphere by identifying antipodal points. (We
again have a natural group action. The group Z/2Z of order 2 acts via P 7→ −P .)

We may decompose S2 into the union of an equatorial zone E, a northern region
DN and a southern region DS, so that the antipodal map maps E to itself and
swaps DN with DS. If moreover we divide the equatorial zone into an ”old world”
half OW , (from the 0 meridian to the international dateline) and a “new world”
half, we see that the antipodal map swaps these two halves, and inverts the edge
running along the 0 meridian. The image of DS in RP 2 is a disc, while the image
of OW there is a copy of Mb. Since every point of RP 2 is represented by some
point from DS ∪ OW we see that RP 2 is the union of Mb and a disc along their
common boundary. (See Figure 19.)

RP 2 =
⋃

DS Mb

OW

OW

NW

DN

DS

E

E =

RP 2 = S2/x ∼ −x

x

−x

19. Constructing the projective plane
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(It is not easy to depict RP 2 convincingly. However I hope to persuade you
that Kb is easy to “see”, even though it cannot be constructred in 3-space. In fact
one can make satisfactory models of Kb from chicken wire or even, with enough
glass-blowing skill, from glass. All such physical models live in 3-space, and so will
have apparent self-intersections.)

All other surfaces may be obtained from the surfaces we have described so far,
by a process of “surface arithmetic”.

7. Boundaries

The boundary of a surface constructed by identifying pairs of edges of polygons is
the union of the unmatched edges. Initially, we have some (possibly large) collection
of polygonal pieces, and before assembly of the pieces all the edges are unmatched.
The edges of each polygon together meet head-to tail to form a circle. Whenever
we identify a pair of edges of two distinct polygons we obtain one larger polygon,
and the remaining edges again form a circle. More generally, if S and S′ are two
surfaces whose boundaries are nonempty families of circles and we glue S and S′

together by identifying an edge in ∂S with an edge in ∂S′ the boundary of the
resulting surface is still a collection of circles.

Note that if we glue together two sides which are part of the same boundary
circle of a given surface (as in the construction of A from a rectangle), we may
increase the number of boundary circles by 1.

8. Subdivision, Euler characteristic (χ), orientability

A decomposition of a surface S into a union of polygon pieces is called a polygonal
decomposition of S and a decomposition into triangular pieces is called a triangu-
lation of S. The vertices and edges of the decomposition are the points on the
surface corresponding to the vertices and edges of the polygons, while the faces are
the regions corresponding to the interiors of the polygons. Let V , E and F be the
sets of vertices, edges and faces of the triangulation.

As in the case of graphs, we may subdivide triangulations, by introducing new
vertices and new edges. There are now three basic types of subdivision:

(1) add a new vertex in the middle of an edge, and new edges connecting this
vertex to the opposite vertices of the (one or two) triangles sharing this
edge;

(2) add a new vertex in the middle of a face, and at least one new edge con-
necting this vertex to some vertex of the face;

(3) add a new edge joining two vertices of the same face.

(If you feel unhappy about creating “reentrant” polygons by the second type of
subdivision, add new edges connecting the new vertex to several of the existing
vertices of the face. See Figure 20.) We may similarly subdivide polygonal decom-
positions. Any two polygonal decompositions have a common subdivision, using all
the vertices and edges of the given decompositions and enough new edges to ensure
that the surface is divided into polygonal faces.

The number of vertices, edges and faces may be increased at will by subdivision.
However the alternating sum χ(S) = #V −#E+#F does not change under either
of the basic subdivisions, and thus is independent of the decomposition. This is the
Euler characteristic for surfaces.
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→ or

20. Internal subdivision of a face

Examples: χ(S2) = 2; χ(D2) = 1; χ(T ) = 0.

If A and B are surfaces which are subsets of a given surface then χ(A ∪ B) =
χ(A) +χ(B)− χ(A∩B), since the vertices, edges and faces in A ∩B are “counted
twice” in the sum χ(A) + χ(B). We may also write this equation in the more
symmetric form

χ(A ∪B) + χ(A ∩B) = χ(A) + χ(B).

Note that the area of a surface satisfies a similar equation. (From the right point
of view χ and area are closely related.)

If ∂S is empty, then 2#F = 3#E, since each face has three sides and each edge
is common to two faces. (This is not correct if there are unmatched edges.)

If we assume that the edges are actually straight-line segments in R
3 then each

edge is determined by its endpoints, and so #E ≤
(
#V

2

)
. However this assumption

usually can only be satisfied if we have a large number of triangles. (We may look
more closely at the case of the torus later).

It is easy to see that subdivision does not change the number of circles forming
the boundary.

The notion of orientability is perhaps the most subtle aspect of the study of
surfaces. We shall given a working definition now, and an extended discussion later.
A surface S is nonorientable if some subcollection of the polgygons in a polygonal
decomposition of S together form a Möbius band. The surface is orientable if it
is not nonorientable. It is again easy to see that orientability (or otherwise) is
preserved under subdivision.

9. Classification of surfaces

Two surfaces are (combinatorially) homeomorphic if they have polygonal decom-
positions with a common subdivision. For example, if we subdivide the base of a
tetrahedron by adding midpoints to the three sides and a midpoint to the face, and
edges connecting the midpoints of the sides to the midpoint of the face we obtain
a (distorted) cube: six quadrilateral faces meeting pairwise just as the six faces of
the cube do.

A surface is connected if any two points on the surface are the endpoints of a
continuous path on the surface. (Since we are considering surfaces with polygonal
decompositions, we may assume any such path is a finite union of line segments in
the faces, matching head-to tail at the edges). As with the case of graphs, subdi-
vision of a polygonal decomposition of a surface does not disconnect a connected
surface. (It is easy to see that a surface is connected if and only if the graph formed
by the vertices and edges of some polygonal decomposition is connected.)
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Every surface S is a finite union S = ∪i∈ISi of pairwise disjoint connected
surfaces, and for most purposes it is sufficient to consider these “connected compo-
nents” separately.

We may now formulate our first version of the classification theorem for surfaces.

Theorem 3. Two connected surfaces S and S ′ are homeomorphic if and only if
χ(S) = χ(S ′), S and S ′ have the same number of boundary circles and both are
orientable or both are nonorientable.

Moreover χ(S) ≤ 2 and is even if S is orientable and ∂S = ∅.

10. Cutting and pasting - reduction to standard form

We have defined a surface as a figure which admits a decomposition into polygons
in a specific way. The decomposition is far from unique, as we are free to subdivide.
We can however always arrange that a connected surface is represented by a single
polygon with identifications of pairs of edges.

To see this, suppose that we have decomposed our surface S into a finite number
of polygonal pieces, and that we have labeled all the edges so that we know which
should be glued together (and how). If there is more than one polygon, there must
be some pair with sides representing the same edge of the decomposition. Glue
these two polygons together along just that pair of edges, to get one new, larger
polygon. If we retain all the labels for the other edges it is clear that we can
reconstruct our surface. This procedure has reduced the number of faces by one.
Clearly we can repeat this process until there is just one face, which may have many
sides.

We shall now be more specific about our labeling. Choose a vertex of the polygon
as a starting point, and go round the polygon labeling the edges alphabetically
a, b, . . . until you reach an edge which is to be glued to one already labeled. (The
mathematical convention is to go counter-clockwise.) Suppose that in fact this first
repeat is to be identified with the edge already labeled e, say. We give the new edge
the label e or ē, depending on whether the edges are matched head-to-head and
tail-to-tail, or head-to-tail. (You may also see e−1 used instead of ē. There is good
reason for this.) Continuing, we label all the edges so that matched pairs have the
same letter (but possibly different exponents). Of course, if there are more than 26
edges on the surface we may have to use other alphabets, but the principle is clear.

The gluing instructions may be written out as a “word”

abc . . . qc±1 . . . .

We shall show that by cutting and rearranging the polygon we can put the word
into a standard form. We shall use capital letters like U, V,W, . . . to represent
segments of our word between letters of interest.

We say that a side of the polygon represents a free edge of the surface if it
is not matched with any other side. The free edges together form the boundary
circles, and the number of free edges gives an upper bound on the number of circles.
(Compare the usual representations of A and Mb by a rectangle.)

We may calculate the Euler characteristic of the surface from the polygon as
follows: there is one face, represented by the polygon itself, one edge for each free
edge and one edge for each pair of matched sides. (Thus there is one edge for
each distinct letter used, so the word abāc representing the annulus gives rise to 3
edges.) We must count the vertices carefully. In general, many of the vertices of the
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polygon will become identified after doing all possible gluings, and we must count
after such identification, not before. This is not difficult, just careful book-keeping.

If a letter is immediately repeated in inverted form . . . aā . . . or . . . āa . . . then
we may delete these two letters to get a shorter word representing the same surface.
Geometrically, this corresponds to pushing the vertex between these sides inwards
and then gluing the sides together. (See Figure 21). This process may lead to
further such deletions: consider ab̄cc̄ba, which collapses in two steps to aa.

b b b

ā
ā

a
a

z z

z
→ →

21. Deleting aā – other sides unchanged

If some label occurs twice with the same exponent, i.e., if the word contains
a subword of the form . . . aXa . . . then S must contain a copy of Mb, and so is
nonorientable. (See Figure 22). We shall show later that if there are no such
repetitions S is orientable.

N H

. . .

. . .

Mba a

22. The rectangular region closes up to a Möbius band on the surface

We shall assume at first that there are no subwords . . . aXa . . . (i.e., the surface
S is orientable), there are no free edges and there are no redundant pairs aā or āa.
Our goal is to show that cutting and pasting gives a word of the “standard’ form
abāb̄cdc̄d̄ . . .mnm̄n̄. (The number of sides is then a multiple of 4, the number of
edges is even, and there is just one vertex.) Pick a side a such that the segment
aZā with ends a and ā has minimal length. Then Z must be nonempty (since there
are no redundant pairs) and the letters appearing in Z must all be distinct (by
minimality of our choice). Pick one such, say b, and write aZā as aV bWā. Then
our word has the form HUaV bWāXb̄Y for some subwords H,U, V,W, Y . (The first
segment H shall represent a portion that we have already “improved” to a standard
form.) We then cut and paste as indicated in Figure 23 to find a new polygon, with
associated word Hded̄ēUXWV Y . Note that the number of sides has not changed,
but we may have created redundant pairs, which we can remove. After repeating
this process atmost n

4
times (where n is the number of sides in the original polygon)

we get a word a1b1ā1b̄1 . . . agbgāg b̄g for some g ≤ n
4
. This is the “standard form”

for orientable surfaces with no boundary.
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H ā

Y X

U W
V

b̄

a b

c

cut along c

glue along a

→

b̄

H

c

Y X

d
. . . . . . .

.
.
.

cut along d

glue along b
↓

d̄

d

c c̄

H

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

e
cut along e

glue along c

←

d̄

ē

e

d
H

23. Improving a word . . . a . . . b . . . ā . . . b̄ to . . . ded̄ē . . .

We next allow repetitions . . . aXa . . . . A shorter and simpler operation shows
that we may replace UaV aW by Uc2WȲ or c2WȲ U . (See Figure 24. Here Ȳ
means that we reverse each side in Y and also reverse their order.) Eventually we
use up all the repetitions, and obtain a word a2b2 . . . k2W , where every repetition
of a letter in W is inverted. We may now use the first argument to replace W by
a sequence of subwords of the form ded̄ē. We have not finished yet!

X Z

a a

Y

b

X

Y

bb

Z̄

c

cut along b

glue along a
→

X̄
Y

Z̄

c c

cut along c

glue along b
→

24. Improving a word XaY aZ to X̄cc . . .

A third cutting and pasting operation shows that any word of the formHa2bcb̄c̄V
may be replaced by one of the form Hd2e2f2V . In the presence of at least one copy
of Mb (or “crosscap”), every “handle” can be replaced by two crosscaps! (See
Figure 25.) There is a nice picture that illustrates this, by “walking” one end of a
handle around a Möbius band. (See Figure 27.)
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c

c
a

. . .

b

ā

b̄X

d →

cut along d,

glue along c

b
d

d

a
b

āX̄

..
.

e

→

cut along e,

glue along b

f

X̄
d
ā

d̄

ā
e

e

.
..

→

cut along f ,

glue along a

e
e

X̄
d

d

f

f

...

25. Handle plus crosscap (Xccabāb̄ . . . ) + three crosscaps (eeffddX̄ . . . )

The ultimate step is to deal with the free edges. This is easy. The free edges
represent the boundary circles of our surface. We attach new polygons, one for each
boundary circle, to use up these free edges. This reduces us to the cases already

considered. Once we have recognised the resulting surface Ŝ we may recover S by
making an appropriate number of punctures.

Here is the second version of our classification theorem:

Theorem 4. Every connected surface without boundary is represented by an es-
sentially unique standard polygon, with corresponding word a1b1ā1b̄1 . . . agbgāg b̄g (if
the surface is orientable) and a1aa . . . acac (if the surface is nonorientable).

The numbers g and c are determined by the Euler characteristic: χ(S) = 2− 2g
if S is orientable and χ(S) = 2− c if S is nonorientable.

11. Surface arithmetic

Let S and S′ be connected surfaces without boundary. We form the connected
sum S#S′ by deleting a disc from each surface, to obtain “once-punctured” surfaces
So = S−D and S′

o = S′−D. These punctured surfaces each have a single boundary
circle. Glueing them together along the boundary circles gives S#S′. (See Figure
26.)

Suppose that that the discs deleted from each surface are faces in some polygon
decomposition. Then all the vertices, all the edges and all the other faces of the
original surfaces are used in the construction of the sum. Hence χ(S#S′) = χ(S)+
χ(S′) − 2. (The vertices and edges on the boundary circles are counted twice on
the right hand side of this equation, once for each surface, but since a polygon
has the same number of corners as sides this does not affect the alternating sum
χ = V − E + F .)
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delete discs

⋃

join along circles

26. Connected sum of torus T and pretzel #2T to get #3T

This construction appears to involve various choices: which discs to remove and
how to glue the resulting boundary circles. It can be shown that the result is
independent of any such choices. We shall write #kS to mean the iterated (k-fold)
connected sum of k copies of the surfaces S. In particular, #2RP 2 = Kb, since
RP 2

o = Mb and the union of two copies of Mb is the Klein bottle.
If S = S2 is the unit sphere then So = S2−D is just a disc, and so S2#S = S for

any surface S, since all we are doing is removing a disc and replacing it with another
disc. It is easy to see that S#S′ = S′#S, and that (S#S′)#S′′ = S#(S′#S′′)
(commutativity and associativity of connected sum). Thus # behaves rather like
ordinary addition of natural numbers, with S2 acting like 0. However we cannot in
general cancel like terms from an equation, since T#RP 2 = Kb#RP 2 = #3RP 2!
(These surfaces are nonorientable and have the same Euler characteristic. See also
Figures 26 and 27.)

We may now give a third version of the classification theorem:

Theorem 5. Every connected orientable surface without boundary is a sum #gT of
copies of the torus T , and every connected nonorientable surface is a sum #cRP 2

of copies of the projective plane RP 2.

We interpret the “empty sum” of 0 copies of T as the 2-sphere: S2 = #0T .
The numbers g, c are uniquely determined by the Euler characteristics. In fact
χ(#gT ) = 2− 2g and χ(#cRP 2) = 2− c. The symbols are traditional: “g” stands
for genus and “c” for crosscap number.

Let S be an orientable surface, possibly with boundary, and let Ŝ be the surface
without boundary obtained from S by attaching discs along the boundary circles,

to fill in the punctures. Then Ŝ = #gT for some g ≥ 0. We shall say that S has

genus g(S) = g. Note that g(S) = g(Ŝ). Clearly g(S) ≥ 0, and g(S) = 0 if and
only if S ⊆ S2.

We may extend the notion of connected sum to surfaces with boundary, provided
we are careful not to use up any of the already existing boundary circles when we
glue the punctured surfaces together. We then find that D#D = A = Do and,
more generally, S#D = So for any surface S. The full classification theorem for
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surface with boundary could be formulated in terms of connected sums of copies of
T , RP 2 and D; we shall leave this as something for you to think about.

↓

←

27. “Walking” one leg of a handle around a Möbius band

12. Orientation

This is potentially the hardest part of our discussion of surfaces. In this section
we shall try to outline how our definition of “orientable” relates to other uses of
the word.

On a 1-dimensional figure such as the real line or a circle there are two possible
ways to move: left or right along the line, and clockwise or counterclockwise on
the unit circle. The standard choice for R is to move from left to right, and for
the circle to move counterclockwise. (Note that stereographic projection translates
counterclockwise movement on S1 into left-to-right movement on R.)

The notion of orientation extends the idea of a “preferred direction” to higher
dimensions. There are several ways to approach this.

12.1. Orientability in terms of polygonal decompositions. An orientation of
a polygon is a choice of one of the two possible orientations of its boundary. These
orientations determine orientations for each side of the the polygon, which we may
indicate by an arrow on each edge. Note that all such arrows meet head-to-tail as
we go round the polygon. Conversely such a compatible choice of orientations for
the sides determines an orientation of the boundary.

Given two polygons ABC . . . and PQR . . . , we may glue them together along
a single edge (e.g., by gluing AB to PQ so that A = P and B = Q) to obtain a
single larger polygon. It is then easy to to see that the orientations of the remaining
edges match head-to-tail (and so correspond to a well defined orientation for the
new polgygon) if and only if the arrows on AB and PQ are opposed.

This leads us to say that a surface S represented by a union of polygons with
gluing instructions is orientable if and only if we can consistently choose orientations
for each polygon so that whenever two edges are matched (as for AB = PQ above)
the arrows on the two edges are opposed. (An orientation for S is such a consistent
set of choices. If S is connected and orientable there are two possible orientations,
since changing the orientation of any one polygon forces all the others to change.)

It is not hard to check that this condition is unchanged under subdivision, and
that it is equivalent to the “no Möbius bands” condition.
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12.2. Orientations in higher dimensions. An orientation for a real vector space
V is determined by an ordered basis, and two ordered bases give the same orienta-
tion if the change of basis matrix has positive determinant.

In R a basis is simply a choice of a nonzero number, and two bases determine
the same orientation if and only if the ratio of these numbers is positive. (In terms
of the informal discussion in the first paragraph, we move from 0 towards the basis,
and thus move from left to right if the number chosen as the basis is positive.)

In general the standard orientation ofRn is the one corresponding to the standard
basis vectors e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1), in that order. (We shall only
need n = 1, 2 or 3.)

In R
2 we need two basis vectors. The standard choice is e1 = (1, 0) and e2 =

(0, 1), in that order. (If we switch the order, say f1 = (0, 1) and f2 = (1, 0), then
the change of basis matrix is ( 0 1

1 0 ), which has determinant −1.) Note that if we
represent e1 and e2 by arrows of unit length at the origin, pointing along the axes,
then their tips are on ∂D2 and we move a quarter-turn counterclockwise from e1
to e2. (See Figure 28.)

R
2

⊲
e1

e2

<
△

R
3

e2

e3

e1

⊲

△

⊳

28. Orientation

We shall use the disc marked in this way as a “test pattern”. If we can move
such a disc around a loop on the surface S in such a way that when we return
to a starting point we have reversed the orientation of the disc we say that S is
nonorientable. Otherwise it is orientable. The key example of a nonorientable
surface is the Möbius band.

T

<

Mb

<

<<

test disc

29. Orientation – test disc

If S ⊂ R
3 is a surface with empty boundary then it must be orientable. The

reason is that, firstly, the surface must divide R3 into two regions; a bounded region
inside the surface and an unbounded region outside. (Think of a beachball or car
tyre). I hope this is plausible; it requires some work to give a satisfactory proof. A
consequence is that at every point on the surface we have a well-defined outward
normal vector. We can combine this with the orientation given by our test disc
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at any point on the surface to get an ordered basis for R
3, (b1,b2,b3), say, with

b3 representing the outward normal vector. (See Figure 29.) The change of basis
matrix from this to the standard basis (e1, e2, e3), is just the matrix whose columns
are (b1,b2,b3). As we move about the surface the basis changes continuously, and
so the determinant of the change-of-basis matrix cannot suddenly change sign. Thus
the test disc on the surface cannot flip over as we go round a loop. Hence such a
surface cannot contain a copy of Mb.

This argument doesn’t apply to the Möbius band as it has a boundary, and
clearly does not enclose any region of 3-space. However it is enough to show that
neither Kb nor RP 2 can be realized as surfaces in R3; we need more room. (In fact
4 dimensions is enough.)

13. Regular Solids

A regular solid is a convex body in 3-space bounded by a finite number of poly-
gons of the same shape, and such that the same number of polygons meet at each
vertex. The classical examples are the tetrahedron, cube, octahedron, dodecahe-
dron and icosahedron. (See Figures 12 and 30.) We shall outline why this is a
complete list.

E′

B C

F ′A′D′

E

B′C′

F

A

D

30. The icosahedron

The vertices A′, B′ and C′ are “behind” the faces ABC, ADE and AEF , re-
spectively, and the edges A′B′, A′C′, A′D′, A′E′, A′F ′, B′C′, B′D, B′E, B′F ′,
C′D′, C′E′, C′F , D′E′ and E′F ′ are not shown.

The icosahedron has 12 pentangular faces. The dodecahedron may be obtained
from the icosahedron by taking the midpoints of all the faces as vertices, and joining
any two such vertices by an edge if the corresponding faces of the icosahedron have
a common edge. It has 20 triangular faces.

Let B be a regular solid with m faces, each face being an n-gon for some n ≥ 3,
and with p ≥ 3 faces meeting at each vertex. The faces determine a polygonal
decomposition of the boundary ∂B = S2. We have 2E = nF (since every face has
n sides and each edge is common to two faces), pV = nF (since each face has n
corners and each vertex is common to p faces) and clearly F = m. Therefore

2 = χ(S2) = V − E + F = m(
n

p
−

n

2
+ 1).

Clearing denominators gives

4p = m(2p− (p− 2)n).

Hence (p− 2)n < 2p. Since n ≥ 3 it quickly follows that p < 6. Hence p = 3, 4 or
5. Examining the possible factors of 4p leads quickly to the possibilities (m,n, p) =
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(4, 3, 3), (6, 4, 3), (8, 3, 4), (12, 5, 3) or (20, 3, 5). It is not hard to see that in each
case the polygons must be assembled as in one of the classical regular solids.

14. Nonplanarity of Kn, n ≥ 5

Recall that a graph G is planar if we can embed it in R
2 (i.e., if we can draw it in

the plane without crossings other than the vertices). It is convenient to modify this
definition slightly. If G is planar then it embeds in S2 = R

2 ∪ {∞}. Conversely, if
G ⊂ S2, we may move it to miss the “north pole” N =∞. Stereographic projection
from N then embeds G in the plane. Thus G is planar if and only if it embeds in
the 2-sphere S2.

Let Kn be the complete graph on n vertices. We saw that Kn is planar if n ≥ 4,
and shall show now no other complete graph is planar. It shall suffice to show that
K5 is not planar, since K5 ⊂ Kn for all n > 5.

Suppose K5 ⊂ S2. Then the complement S2−K5 breaks up into a finite number
of regions, bounded by circuits of K5. Since K5 is connected these regions are all
polygons, with a single boundary. (This would not be true for a disconnected graph,
and is not always true for graphs on other surfaces.) This we have a polygonal
decomposition of S2, with V = 5 vertices, E =

(
5
2

)
= 10 edges and F faces. Since

χ(S2) = 2 = V − E + F we find that F = 7. Now each face must have at least
3 edges, since K5 has no multiple edges, and each edge is common to two faces.
Therefore 2E ≥ 3F , and so 20 > 21. This is clearly wrong, and so K5 cannot be
planar.

A similar argument applies to the “Three Utilities” graph K3,3. (This notation
reflects the fact that it belongs to another standard family, the family of “complete
bipartite graphs”.) One of the basic results of topological graph theory is Kura-
towski’s Planarity Theorem, which asserts that a finite graph G is planar if and
only if it has no subgraph which is homeomorphic to K5 or to K3,3.

15. The 5-Colour Theorem

Map colouring began as recreational mathematics. In 1852 F.Guthrie raised
the question of how many colours were needed to colour a map so that no two
neighbouring countries had the same colour. It is easy to see that in general at least
4 colours are needed. (Consider Botswana, Luxembourg or Paraguay, which each
have three neighbours. See Figure 31.) Experimentation produced no examples
requiring more than 4 colours. This became the “Four-Colour Conjecture”. It was
eventually confirmed in 1976, by a proof using several hundred hours of mainframe
computer time (perhaps one hour on a PC now?), to check a large number of special
cases. The only mathematicians who are happy with this proof are those with a
vested interest in computation, but computation has been since used to decide
other difficult problems, and so such techniques are becoming more acceptable.
Surprisingly, the corresponding question for maps on more general surfaces has
been settled by “pure thought”, and the Five Colour Theorem is quite easy.

We shall show that every map on the 2-sphere can be coloured with at most 5
colours. The basic idea is to induct on the number of regions (i.e., countries or
bodies of water).

A map on a surface S is a graph embedded in S. The map divides S into a finite
number of connected regions. Two regions are neighbours if they share a common
edge. The map is special if all the complementary regions are polygons. It then
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determines a polygonal decomposition of the surface, and we may use the Euler
characteristic to restrict the possibilities.

We shall concentrate on the case S = S2. We first make some simplifying as-
sumptions. (These do not hold for all maps of the Earth!)

(1) No region shares a border with itself. (This is obviously a reasonable as-
sumption.)

(2) We may assume that no region has only two borders. (This condition fails
to hold for Mongolia.) For if region A meets just regions B and C and we can
5-colour the map obtained by absorbing A into B or C then we may give A any
colour different from the ones used for B and C. (This argument applies also if
B = C.)

LuxemburgBelgium

France

Germany

Mongolia

China

Russia

31. Four colours are needed sometimes

(3) We may assume no region entirely surrounds another. (I.e., there are no lakes
or countries completely surrounded by another country, like the ACT or Lesotho!)
For if we can 5-colour the map obtained by deleting the surrounded region we
can then recolour the deleted region differently from its only neighbour. (See also
condition (5) below.)

(4) We may assume that each vertex has degree 3, or, equivalently, at each
vertex exactly 3 regions meet. (This condition fails to hold at one point in the
USA: Colorado, Utah, Arizona and New Mexico meet at one point.) For if 4 or
more regions meet at a vertex P we may expand P to a small disc. If the resulting
map can be 5-coloured so can the original map.

(5) If we can 5-colour all special maps with at most n regions then we can 5-
colour all maps with at most n regions. For if R is a region which is not polygonal
then it must have at least two boundary circles, C and C′, say. Consider two new
maps formed by (i) annexing all regions on the other side of C; and (ii) annexing
all regions on the other side of C′. These maps have fewer regions, and so each can
be 5-coloured. We may assume the colour used for R is the same in both cases.
Together these colourings show that the original map may be 5-coloured.

Clearly any map with at most 5 regions can be 5-coloured. (This is the basis
for our induction.) Suppose that all maps with fewer than n regions and with all
vertices of degree 3 can be 5-coloured, and let M be a special map with n regions
and all vertices of degree 3. Let V and E be the numbers of vertices and edges of
the corresponding polygonal decomposition of S2. Then 2E = 3V , since each edge
has two ends and each vertex has degree 3, and

2 = χ(S2) = V − E + F = n−
1

3
E,
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since there are n faces (regions). Let pk be the number of regions with exactly k
edges. Then pk = 0 if k ≤ 2 and so

n =
∑

k≥3

pk

while

2E =
∑

k≥3

kpk

(since each edge is common to two regions). Hence

2 = n−
1

3
E = n−

1

6
2E =

∑

k≥3

(1−
k

6
)pk =

1

2
p3 +

1

3
p4 +

1

6
p5 +

∑

k≥6

(1−
k

6
)pk.

Since
∑

k≥6(1−
k
6
)pk ≤ 0 at least one of p3, p4 or p5 must be nonzero.

If p3 > 0 there is a triangular region R. The three neighbouring regions must
all meet each other (since the vertices have degree 3), and so are all distinct. If
we allow R to be annexed by one of these regions we get a (special) map with all
vertices of degree 3 and with one less region. It may be 5-coloured, by the inductive
hypothesis. Since only three colours are needed for the neighbours we can use one
of the other two colours to recolour the region R differently.

If p3 = 0 but p4 > 0 there is a quadrilateral region R, with four neighbours.
These neighbours need not be all distinct. Annexing R by one of its neighbours
gives a map with all vertices of degree 3 and one less region (which, however, may
not be special). As before, we can 5-colour this map and then recolour the region
R.

If p3 = p4 = 0 then there must be a pentagonal region. In this case annexing
R by one of its neighbours won’t help. However we note that there must be a pair
of neighbours which have no common edge elswhere. (*WHY?) We combine these
two neighbours and R into one large region, 5-colour the resulting map, and then
recolour the region R. (Thus only 4 colours are needed for the five neighbouring
regions.)

This completes the inductive step. Therefore all maps in which all vertices have
degree 3 can be 5-coloured. Hence all maps can be 5-coloured, by the comments
following condition (4). �

For more general surfaces, we introduce the following notation. The chromatic
number µ(M) of a map M on a surface S is the minimal number of colours need
to colour the map, and the chromatic number µ(S) of the surface is the maximum
number of colours needed for any map on S. (Thus we have seen that µ(S2) ≤ 5.)
Heawood showed that for any surface S other than S2 we have µ(S) = [ 1

2
(7 +√

49− 24χ(S)], where [x] means the greatest integer less than or equal to x. (He
showed this number was an upper bound, but the task of constructing examples
showing this formula to be correct was not completed until 1968. See Map Color
Theorem by G.Ringel.)

In particular, if S = T Heawood’s formula gives µ(T ) = 7. There is a map on
the torus with 7 polygonal regions which all meet each other, and thus which needs
7 colours.
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1
1

1 1

2

2

3

4

5

6

7

32. A 7-colour map on the torus

16. Knots

A knot is a simple closed curve in 3-space. In other words, it is a subset of R3

which is homeomorphic to the circle S1. Two knots are equivalent if one may be
continuously deformed to the other, so that no strands cross through each other at
any intermediate stage.

In this course we do not want to get bogged down in technicalities about contin-
uous functions, so we shall modify our definitions to have a more “combinatorial”
flavour. A polygonal knot is one which is the union of finitely many straight line seg-
ments, meeting only at their endpoints. Two polygonal knots are combinatorially
equivalent if we can get from one to the other by repeatedly

(1) adding a vertex to a line segment;
(2) replacing one line segment PQ by the other two sides of a triangle PQR

which meeets the knot only along PQ; and
(3) the reverse of either of these types of move.

It is however usually easier to draw knots as smooth curves, and the figures look
nicer, so we shall generally do this. We may obtain a model of a knot in the
mathematical sense from one in the usual (sailor’s) sense by splicing together the
ends of a knotted rope.

Examples. The unknot U is the standard unit circle in the XY -plane.
A knot is trivial if it is equivalent to the unknot.
The trefoil knot 31 and its mirror image. (These are not equivalent, although

we shall not attempt to prove this.)
The figure eight knot 41. It is equivalent to its mirror image.
The symbols 31, 41 refer to standard tables of the simpler knots, which are

organized in terms of the number of crossings of the simplest possible diagram of
an equivalent knot. We may assume that the knot K is positioned in R

3 so that
no line segment is vertical, and so that its projection (the shadow in the horizontal
XY -plane) is a closed curve with a finite number of crossings, where two arcs of
the diagram cross. We may assume also that there are no points where 3 or more
arcs cross. We may recover the knot from such a diagram, provided we indicate at
each crossing which arc corresponds to the “higher” line segment. We do this by
making a gap in the arc corresponding to the lower line segment.

The effect of deforming a knot combinatorially (replacing a line segment by the
other sides of a triangle) on the knot diagram may be described in terms of three
basic operations on diagrams, the Reidemeister moves. Two knots are equivalent
if they have diagrams which may be related by a sequence Reidemeister moves.
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Any quantity defined from a knot diagram which is unchanged under each of the
basic Reidemeister moves depends only on the combinatorial equivalence class of
the knot, and so we may call such a quantity an invariant of the knot.

Note that if a knot is different from its mirror image, the standard tables include
only one of each such pair. Thus they include only one 3-crossing knot.

It is often convenient to assume that our knots are oriented. An orientation for
a knot is a choice of one of the two possible directions in which to go round the
knot. For the unknot U in the XY -plane, the possibilities may be described as
clockwise or counterclockwise (seen from above), but for more general knots such
terms are inappropriate.

See The Knot Book, by C.C.Adams.

17. 3-colourable knots

A knot diagram D is 3-colourable if we can colour each of the arcs with one of
three colours (say, Red, Blue or Green) so that

(1) at each crossing either all 3 colours are the same or all 3 are different; and
(2) all 3 possible colours are used.

It is not hard to check that if D′ is obtained from D by a single Reidemeister move
then D is 3-colourable if and only if D′ is 3-colourable. This extends immediately
to show that if two diagrams are related by a sequence of Reidemeister moves and
one is 3-colourable then so is the other. Thus if a knot has one 3-colourable diagram
all the diagrams of this knot are 3-colourable, and so this is a property of the knot.

Examples: the trefoil 31 is 3-colourable, but neither the unknot U nor the figure
eight knot 41 are. Thus the trefoil knot is nontrivial.

We need a new idea to show that the figure eight knot is nontrivial.

18. The knot determinant

Given a diagram D of a knot K, with n crossings say, we shall define an n× n
matrix. This matrix shall have the property that Σcols = 0, and hence in particular
its determinant is 0. In the special case that the diagram is alternating, the sum
of the rows is also 0. In this case we may define the determinant of the knot as
the absolute value of the determinant of any (n− 1)× (n− 1) submatrix (obtained
by deleting a row and a column). It is a straightforward exercise in linear algebra
(using the properties Σcols = 0 and Σ(rows) = 0) to show that this number does
not depend on which row and column are deleted.

For more general diagrams there is an additional complication.

The procedure.

1. Choose a starting point and an orientation for the knot, and label the arcs
successively: x1, x2 . . . , xn. (We count cyclically. Thus we interpret n + 1 as 1,
where necessary.)

2. Write down a n× n matrix M whose entries are 2s, −1s, 0s and possibly 1s
as follows. On the diagonal put Mi,i = −1 for 1 ≤ i ≤ n.

On the “superdiagonal” put Mi,i+1 = −1 for 1 ≤ i < n. Put also Mn,1 = −1.
If the jth arc separates the ith and (i + 1)st arcs put Mi,j = 2.
If more than one of these rules apply to a given entry add each of the contri-

butions. Thus if the ith arc turns back to go underneath itself (so j = i) we put
Mi,i = +1 = −1 + 2. If j = i + 1 we put Mi,i+1 = +1. Likewise in the exceptional
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case of the 1-crossing diagram of the unknot, when all three arcs are the same: we
get the 1× 1 matrix M = [−1− 1 + 2] = [0].

All other entries are 0.
4. Delete any one row and any one column. The highest common factor of the

determinants of the resulting (n − 1) × (n − 1) matrices is the determinant of the
diagram. (Note that we can always delete the last row; we then have n determinants
to evaluate. In the alternating case these agree up to sign.)

FACT. The determinant is unchanged if we modify the diagram by a Reidemeis-
ter move, and so is an invariant of the knot. Therefore we shall write DET (K) for
this invariant.

DET (K) is clearly non-negative. It is always odd; in particular, it is nonzero.
This is easily seen by using modular arithmetic: working mod (2). For −1 ≡ 1 and
2 ≡ 0 mod (2), so if we delete the last row and column we get an upper triangular
matrix with 1s down the diagonal. Hence DET (K) ≡ 1 mod (2). (This argument
works also in the nonalternating case, since it is enough to show that one of the
subdeterminants is odd.)

Examples. DET (U) = 1. This is easily seen if we use the ABC logo, which has
two arcs. (We could use the 1-crossing diagram instead, if we accept the convention
that the determinant of a 0 × 0 matrix is always +1.) The standard diagrams for
the trefoil knot and for the figure eight knot are alternating, so we need compute
only one determinant in each case. We find DET (31) = 3 and DET (41) = 5.

19. Seifert surfaces

The single most useful geometric property of knots is that they can be “spanned”
by orientable surfaces. There is a very nice algorithm for constructing such a
surface, due to H.Seifert.

1. Choose an orientation for the knot, and put arrows in the preferred direction
on each arc segment between consecutive crossings.

2. Starting anywhere on the knot projection, follow the arrows around to a
crossing point (over or under). Then jump onto the other arc at the crossing and
continue in the preferred direction.

3. After finitely many such jumps, the starting point is reached again, and the
route taken is a simple closed curve in the plane.

4. Start again at any point not on an arc segment already used.
5. At the end of this procedure you have a collection of disjoint simple closed

curves in the plane, called Seifert circles. Some of these may be nested, i.e., one
inside another. Each such circle bounds a disc. If one circle is inside another we
stack the discs at different heights, so they are disjoint.

6. Atttach the discs together by half-twisted ribbons at each crossing point.
There are two possible ways of giving a ribbon a half twist; choose the one similar
to the type of crossing.

7. The resulting surface is connected, orientable and has one boundary circle –
the original knot!

What else can we say about the surface? By the classification theorem, all we
need to know is the Euler characteristic. Suppose that the diagram has n crossings,
and there are c Seifert circles. The Seifert surface has a polygonal decomposition
with F = c+ n faces (the c discs and n rectangular ribbons) and V = 4n vertices
(the corners of the rectangles). Finding the number of edges requires a little more
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thought: there are 4n edges coming from the rectangles, and another 2n edges
coming from the arc segments between crossings. Thus χ(S) = 4n− 6n+ c+ n =
c− n.

Note that there is an “obvious” surface with boundary the trefoil knot; give a
rectangular ribbon three half twists before joining the ends. However this surface
is a Möbius band, and so is not orientable.

20. Genus and knot arithmetic

There are many of possible spanning surfaces, for we may always add extra
handles, without changing the boundary knot. Adding handles increases the genus
of the surface. It is natural to ask: given a knot, what is the minimal genus of a
spanning surface. Knot theorists find it convenient to use this number rather than
the Euler characteristic. (See the next section.)

The genus g(K) of a knot K is the minimal genus of any connected spanning
surface for K. (Recall that if S is a connected orientable surface with one boundary
circle then χ(S) = 1− 2g(S) and so g(S) = 1

2
(1− χ(S)).)

Examples. g(U) = 0; g(31) = g(41) = 1.
A knot K is trivial if and only if g(K) = 0. For then K bounds a disc D in

3-space. We may “flatten out” D and so K is equivalent to a circle in the plane,
i.e., to the unknot.

We know the trefoil is nontrivial, and so g(31) > 0. The Seifert surface obtained
from the standard 3-crossing diagram is a punctured torus, so g(31) ≤ 1. Therefore
g(31) = 1. (Similarly for the figure eight knot.)

The genus is particularly useful because it is additive. There is a natural notion
of knot sum; tie two knots in succesion in the same piece of string before splicing
the ends together. This idea can be given a precise mathematical formulation;
we assume K and K ′ are oriented knots, with K ⊂ R

3
+ (upper half 3-space, with

z ≥ 0) and K ′ ⊂ R
3
− (lower half 3-space, with z ≤ 0) and K ∩K ′ an arc α in the

XY -plane (z = 0). We assume also that K and K ′ determine oppsite orientations
of α. Then we obtain the sum by deleting the overlap α (except for its endpoints):
K#K ′ = K ∪K ′ − α. Note that K#K ′ has a natural orientation compatible with
those of K and K ′.

It is is not hard to show that the sum is well-defined, and is quite easy to see
that it has the following nice properties

(1) (identity element) K#U = K = U#K for any knot K;
(2) (commutativity) K#K ′ = K ′#K for any two knots K,K ′;
(3) (associativity) (K#K ′)#K ′′ = K#(K ′#K ′′) for any three knotsK,K ′,K ′′.

These properties are analogous to familar properties of the integers Z with respect
to addition, or better the positive integers Z>0 = {1, 2, . . .} with respect to multi-
plication.

Examples. The reef knot is the sum of the trefoil 31 and its mirror image r(31).
The granny knot is the sum of two copies of the trefoil.

FACT. g(K#K ′) = g(K) + g(K ′). (“Additivity of the genus”.)

It is very easy to show that g(K#K ′) ≤ g(K) + g(K ′). Showing that these
numbers are equal is not hard, but requires some care. The basic idea is to assume
that K ⊂ R

3
+ and K ′ ⊂ R

3
− and that S is a surface with boundary K#K ′. The

intersection of S with the XY -plane is nonempty, since the knot ∂S = K#K ′ meets
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the XY -plane in two points. After juggling S slightly, if necessary, we may assume
that S meets this plane in a finite collection of curves. These curves are either
simple closed curves or arcs with endpoints on ∂S. Since any arc has two endpoints
there is exactly one such arc. We then show that we can modify S to successively
remove the simple closed curves, and that the modification does not increase g(S).

An immediate consequence is that no two knots can ever cancel each other out.
For if g(K) > 0 or g(K ′) > 0 then g(K#K ′) > 0, and so if K or K ′ is nontrivial
then so is K#K ′.

A deeper fact is that prime factorization holds. We say that a knot is indecom-
posable if it is nontrivial but is not the sum of two nontrivial knots. For instance,
it follows from additivity of the genus that if g(K) = 1 then K is indecomposable.
(For if K = K1#K2 and 1 = g(K) = g(K1) + g(K2) then g(K1) or g(K2) must be
0.)

FACT. Every knot is a sum of indecomposable knots in an essentially unique
way. (The factors are unique up to order).

The proof of this fact uses similar ideas to those used in showing that the genus
is additive, but is harder.

This result is analoguous to the unique factorization of positive integers as prod-
ucts of prime numbers. Thus knot sum is better behaved then surface sum.

The standard knot tables give only prime knots, so although the reef knot or the
granny knot have 6-crossing diagrams you will not find them in the standard tables.
(Note also that if a knot is different from its mirror image, the tables include only
one of each such pair.)

21. References

Map Color Theorem, G.Ringel ([517.521/46] in the Maths Library.)
The Knot Book, C.C.Adams
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The following material was not discussed in 2006.

22. Links and linking numbers

Suppose that we have two disjoint knots K1 and K2 in 3-space. The linking
number measures the number of times one knot passes through the other. To
understand what ”passes through” should mean, we consider some examples.

[See Figures]
There is one ingredient missing. We should specify the orientations of the com-

ponent knots.
We may compute the linking number in several ways. One involves spanning

surfaces. Let F2 be an orientable surface in 3-space with boundary K2. Define
TOP and BOTTOM sides of F2 by the following rule: if we stand a figure on the
top side, beside the boundary K2, facing along K2 in the direction given by the
orientation, then the surface is on the left. We may assume that K1 passes through
F2 in finitely many places P . Assign a number εP = ±1 to each such point , using
the rule εP = +1 if K1 passes through from TOP to BOTTOM, and εP = −1
otherwise.

The other method refers directly to the crossings in a diagram. It is a straightfor-
ward algorithm, but it is perhaps less clear that the calculation has any geometric
significance. We assume the knots oriented. At each point P where K1 passes over
K2 we set εP = ±1 according to the rule illustrated in Figure ??

Using either approach, we define the linking number to be the sum of these
terms: ℓ(K1,K2) = ΣεP .

Note in particular that this rule is consistent with our earlier calculation for the
most basic nontrivial link.

Properties: ℓ(K1,K2) = ℓ(K2,K1). If we change the orientation of one of the
knots we change the sign of the linking number. If we reflect the link we change the
sign of the linking number. Thus if the orientations are not specified in advance we
may get a well defined invariant by taking the absolute value of the linking number.

23. Other related topics

Knots and links in complete graphs
Visualizing knotted surfaces in 4-space
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