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INTRODUCTION

Motivation: Nakajima quiver varieties

I’ve been studying a particular crystal called the product monomial crystal,
which arises from a construction in geometric representation theory called a
“Nakajima quiver variety”. I’m just going to briefly sketch the underlying
story here about how this crystal arises. Suppose we start off with a simple
graph, for example the tree shown on the left.
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INTRODUCTION

Motivation: Nakajima quiver varieties

We also need to take some assignment of natural numbers to each node of the
graph, which we call λ.
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INTRODUCTION

Motivation: Nakajima quiver varieties

Nakajima gave a construction to produce from this data an algebraic variety
M(λ), called a “Nakajima quiver variety”. This algebraic variety is smooth,
and made up of many different connected components. The amazing thing
about these varieties is that they naturally produce modules for Lie algebras.
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INTRODUCTION

Motivation: Nakajima quiver varieties

The graph we started with is actually a Dynkin diagram of type D6, and by
Nakajima’s results the top homology of the quiver variety will have a g-action,
where g is a Lie algebra associated to type D6, for example so(12). This top ho-
mology is finite-dimensional, and so we can ask how it decomposes in terms
of irreducible highest-weight g-modules. In fact, it will be the irreducible g-
module with highest-weight λ, where each number on the Dynkin diagram
corresponds to a multiple of a fundamental weight. For example, here we
would have λ = 3$1 + 0$2 +$3 +$4 + 8$5 + 2$6.
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INTRODUCTION

Motivation: Nakajima quiver varieties

The quiver varietyM(λ) has a large family of different C×-actions, which are
parametrised somehow — here I’ve called the parameter R. The top homol-
ogy of the fixed-point subvariety of this action is again a g-module, but the
decomposition of this module is mysterious. On one hand, if the action is
trivial, we again get the irreducible module V(λ). On the other hand, when
the action is fairly generic, Nakajima showed that the module is a tensor prod-
uct of the fundamental weights making up λ. This is also the “largest” that the
module could possibly be.
The product monomial crystal is the crystal associated to this mysterious mod-
ule.
Caution: I omitted many technicalities, so much of what I just said is techni-
cally untrue. But this is the “big picture”.
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sl3 example:
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h
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∗ ∗ ∗∗ ∗
∗


b

⊆
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g=sl3

Then, for free, get

1. A Dynkin diagram I, a simple graph. I =
1 2

2. A weight lattice P, and dominant weights P+.
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WHAT IS A CRYSTAL?

Setup

First I would like to talk a little about what crystals are, as “combinatorial
shadows” of representations. Let us fix a complex semisimple Lie algebra g,
containing a Borel subalgebra b and a Cartan subalgebra h.



3/16

INTRODUCTION WHAT IS A CRYSTAL? PRODUCT MONOMIAL CRYSTAL TYPE A AND SCHUR MODULES

SETUP

Fix some Lie-theoretic data:
1. g a semisimple simply-laced complex Lie algebra g.
2. h ⊆ b ⊆ g a choice of Cartan and Borel.

sl3 example:

∗ ∗
∗


h

⊆

∗ ∗ ∗
∗ ∗
∗


b

⊆

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗


g=sl3

Then, for free, get

1. A Dynkin diagram I, a simple graph. I =
1 2

2. A weight lattice P, and dominant weights P+.



SETUP

Fix some Lie-theoretic data:
1. g a semisimple simply-laced complex Lie algebra g.
2. h ⊆ b ⊆ g a choice of Cartan and Borel.

sl3 example:

∗ ∗
∗


h

⊆

∗ ∗ ∗∗ ∗
∗


b

⊆

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


g=sl3

Then, for free, get

1. A Dynkin diagram I, a simple graph. I =
1 2

2. A weight lattice P, and dominant weights P+.

20
19

-0
1-

17
The Product Monomial Crystal

WHAT IS A CRYSTAL?

Setup

For example, if g = sl3 the 3×3 matrices with zero trace, then a Cartan subalge-
bra is the diagonal matrices, and a compatible Borel subalgebra is the upper-
triangular matrices.



3/16

INTRODUCTION WHAT IS A CRYSTAL? PRODUCT MONOMIAL CRYSTAL TYPE A AND SCHUR MODULES

SETUP

Fix some Lie-theoretic data:
1. g a semisimple simply-laced complex Lie algebra g.
2. h ⊆ b ⊆ g a choice of Cartan and Borel.

sl3 example:

∗ ∗
∗


h

⊆

∗ ∗ ∗
∗ ∗
∗


b

⊆

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗


g=sl3

Then, for free, get

1. A Dynkin diagram I, a simple graph. I =
1 2

2. A weight lattice P, and dominant weights P+.



SETUP

Fix some Lie-theoretic data:
1. g a semisimple simply-laced complex Lie algebra g.
2. h ⊆ b ⊆ g a choice of Cartan and Borel.

sl3 example:

∗ ∗
∗


h

⊆

∗ ∗ ∗∗ ∗
∗


b

⊆

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


g=sl3

Then, for free, get

1. A Dynkin diagram I, a simple graph. I =
1 2

2. A weight lattice P, and dominant weights P+.20
19

-0
1-

17
The Product Monomial Crystal

WHAT IS A CRYSTAL?

Setup

After fixing this data, we get for free a Dynkin diagram I, which will be a sim-
ple graph (as long as our original semisimple Lie algebra was simply-laced),
a weight lattice, simple roots, dominant weights, and so on. The irreducible
finite-dimensional representations of g are in one-to-one correspondence with
the dominant integral weights.
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WHAT IS A CRYSTAL?

Characters of representations

So, how can we motivate the definition of a crystal? On the screen is a picture
of the weight lattice for sl3, with the integral dominant weights being the lat-
tice points in the green shaded area. For any sl3 representation, we can plot
its character on this lattice in the following way: we place a dot at each lattice
point if the representation has a weight space there, with the size of the dot
representing the dimension of the weight space.
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WHAT IS A CRYSTAL?

Characters of representations

For example, when we take the representation V to be the adjoint representa-
tion of sl3, we get the following pattern of dots, where the zero-weight space
is two-dimensional, and all others are one-dimensional.
This data, being which weights appear in the representation with what mul-
tiplicity, is called the character of V, and determines V up to isomorphism.
However, extracting the decomposition of V from its character is more or less
a giant linear algebra exercise, roughly equivalent to decomposing a polyno-
mial in terms of an interesting basis. So now we have two problems: finding
this basis, and decomposing characters into this basis.
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WHAT IS A CRYSTAL?

Characters of representations

A first step towards solving these problems is to find some combinatorial set
which gives the character as a weighted sum. A well-known example is the set
of semistandard Young tableaux on a particular shape. Each of these tableaux
have a certain weight, and together the weights of tableaux of this shape give
the character for the adjoint representation. On the screen, I’ve placed each
tableau over its weight, with the two tableaux in the centre having weight
zero.
So at the moment we have a set, which is equipped with a weight function,
where the character of the set is equal to the character of a g-module. This is
almost a crystal, but we need one last crucial ingredient.
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WHAT IS A CRYSTAL?

Characters of representations

Making this into a crystal means to make it into an edge-labelled graph, where
edge labels correspond to nodes in the Dynkin diagram. Travelling along a 1-
labelled edge will always subtract α1 (the first simple root) from a weight, and
similarly for the other simple roots. On the screen is a crystal for the adjoint
representation of sl3.
This directed graph is connected, which is the crystal analogue of the fact
that the adjoint representation is irreducible. The “highest-weight element”
is the element with no incoming edges, and the “lowest-weight element” is
the element with no outgoing edges, so the crystal goes from high to low.
The isomorphism class of the crystal is just the weight of the highest-weight
element.
Decomposing a crystal means simply finding all of those elements which have
no outgoing edges, and writing down their weights. This can be much easier
than decomposing a polynomial in terms of a certain basis, especially when
the rules for the edges are simple.
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g crystals form a semisimple category, with simples indexed by
dominant weights.

The category of crystals is monoidal: the underlying set of C1 ⊗ C2 is
C1 × C2.

The decomposition numbers match those in g-mod:

[B(ν) : B(λ)⊗ B(µ)] = [V(ν) : V(λ)⊗ V(µ)]

... but there is no functor g-mod→ g-crystals.
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WHAT IS A CRYSTAL?

A g-crystal is...

The abstract notion of a g-crystal is a set, equipped with a weight function
and some arrows, such that a long list of (fairly simple) axioms are satisfied.
I think a good way to think of a g-crystal is as a combinatorial shadow of a
representation. Where before you had a dimension n weight space, now you
have n elements with that weight. The crystal arrows are morally replacing
the fi Chevalley generators. Knowing the decomposition of a crystal is just
finding the highest-weight crystal elements, with no incoming arrows.
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WHAT IS A CRYSTAL?

A g-crystal is...

Defining morphisms as morphisms of labelled graphs, the set of g-crystals
forms a semisimple category, and the simple objects in this category are in-
dexed by the same dominant weights as g-representations.
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WHAT IS A CRYSTAL?

A g-crystal is...

Perhaps the most exciting thing about crystals is the fact that they have a ten-
sor product rule. Given any two g-crystals, their Cartesian product set can
be equipped with an g-crystal structure, and the tensor product rule is asso-
ciative. Amazingly, the decomposition numbers of crystals matches up with
the decomposition numbers of representations! You can get the Littlewood-
Richardson rule in about a page of working by just knowing the crystal struc-
ture on tableaux, and the tensor product rule.
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WHAT IS A CRYSTAL?

A g-crystal is...

The “moral” of crystals is this: they give amazing combinatorial tools for deal-
ing with problems in representation theory. However, it is important to un-
derstand that the correspondence between representations and crystals is not
functorial, and there is no straightforward way to pass from a representation
of g to a g-crystal with the same decomposition.



6/16

INTRODUCTION WHAT IS A CRYSTAL? PRODUCT MONOMIAL CRYSTAL TYPE A AND SCHUR MODULES

REMINDER: NAKAJIMA QUIVER VARIETIES

λ = 3 0 1 2

8

1

D6

M(λ)

g = so(12) g y Htop(M(λ);C)
∼= V (λ)

ρR : C× ! Aut(M(λ)) g y Htop(M(λ)ρR ;C)
∼=???



REMINDER: NAKAJIMA QUIVER VARIETIES

λ = 3 0 1 2

8

1

D6

M(λ)

g = so(12) g y Htop(M(λ);C)
∼= V (λ)

ρR : C× ! Aut(M(λ)) g y Htop(M(λ)ρR ;C)
∼=???20

19
-0

1-
17

The Product Monomial Crystal
PRODUCT MONOMIAL CRYSTAL

Reminder: Nakajima quiver varieties

Before I go any further, let me just relate crystals back to the Nakajima quiver
varieties. Remember this setup we had, where I wanted to investigate that last
representation which came out of the top homology of the fixed-point set un-
der this action. By some miracle of geometric representation theory, the crystal
for this representation is immediately explicit, and can be seen as irreducible
components of the fixed-point set. It also has an explicit combinatorics, and so
by investigating this crystal I can investigate that representation. The crystal
that comes out is called the “product monomial crystal”, and depends on both
g and the parameter R.
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Partition I = I0 t I1 into a bipartite graph.

L := {(i, h) ∈ I × Z | parity(i) = parity(h)}

The monomial crystal is the set ZL.

〈wt(b), α∨i 〉 = sum in column i
wt(b) = −2$1 +$3 + 3$5

Computing arrow i = 3...
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PRODUCT MONOMIAL CRYSTAL

Monomial crystal

The product monomial crystal is defined as a subcrystal of a larger crystal,
called the monomial crystal. I’ll first define this larger crystal, which means I
need to tell you what its elements are, what the weight of each element is, and
how to calculate the fi operator for each element. We need to fix a partition of
the Dynkin diagram so that it becomes a bipartite graph — call the nodes on
one side “odd”, and on the other side “even”. Next, we take Z-many copies
of the Dynkin diagram, and throw away half the points: the ones where the
parities don’t match. Call the set we are left with L.



7/16

INTRODUCTION WHAT IS A CRYSTAL? PRODUCT MONOMIAL CRYSTAL TYPE A AND SCHUR MODULES

MONOMIAL CRYSTAL

3

-2 -4

A5

Z

2

1

0

3

5

Partition I = I0 t I1 into a bipartite graph.

L := {(i, h) ∈ I × Z | parity(i) = parity(h)}

The monomial crystal is the set ZL.

〈wt(b), α∨i 〉 = sum in column i
wt(b) = −2$1 +$3 + 3$5

Computing arrow i = 3...



MONOMIAL CRYSTAL

3

-2 -4

A5

Z

2

1

0

3

5

Partition I = I0 t I1 into a bipartite graph.

L := {(i, h) ∈ I × Z | parity(i) = parity(h)}

The monomial crystal is the set ZL.

〈wt(b), α∨i 〉 = sum in column i
wt(b) = −2$1 +$3 + 3$5

Computing arrow i = 3...

20
19

-0
1-

17
The Product Monomial Crystal

PRODUCT MONOMIAL CRYSTAL

Monomial crystal

The elements of the monomial crystal are the elements of the free Z-module
on L, which we think of as finite assignments of integers to the points of L,
leaving the rest of the points assigned to 0. On the left, I’ve chosen four points
and assigned them some integers, so the picture on the left is some random
element of the monomial crystal.
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PRODUCT MONOMIAL CRYSTAL

Monomial crystal

The weight of an element is given in terms of the fundamental weights, where
the coefficient of the ith fundamental weight is the sum in column i. The fi

operator is more complicated, so I will show an example to compute f3 of the
element on the left.
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PRODUCT MONOMIAL CRYSTAL

Monomial crystal

Firstly, we check if there is any upper half-column with a positive sum. The
half-column on the left sums to 1, and so f3 will act on our monomial.
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PRODUCT MONOMIAL CRYSTAL

Monomial crystal

Next, we find the smallest upper half-column achieving the maximum half-
column sum. (One way to justify this is that the fi operator must be invertible,
so it always needs to act on the “edge” of some piece of data.)
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PRODUCT MONOMIAL CRYSTAL

Monomial crystal

We then add a “gadget” of weight −αi below that half-column, to obtain a
new monomial.
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PRODUCT MONOMIAL CRYSTAL

Monomial crystal

The ei operator has a very similar definition in terms of lower half-columns.
In practice, it is easier to remember which gadgets were added, rather than
remembering the resulting labelling of points.
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FUNDAMENTAL MONOMIAL CRYSTALS
The crystal generated by (i, c) ∈ L is a fundamental crystal, written
B(i, c).
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The basic crystal B(1, c) in type A2.

Theorem (Kashiwara)

The crystal B(i, c) is isomorphic to B($i), the irreducible crystal
of highest weight $i.
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Fundamental monomial crystals

The whole monomial crystal is very large, and we don’t consider it all at once.
If we pick a single point (i, c) and assign it the value 1, then the crystal gen-
erated by this point is called the basic crystal at B(i, c). Here I’ve shown an
sl3 example of a basic crystal, beginning with a point in the first column. It’s
easy to apply the f1 and f2 operators to verify that the crystal generated by this
element has size 3, and is isomorphic to the first fundamental crystal of sl3. A
theorem of Kashiwara states that every subcrystal generated in this way will
be isomorphic to a crystal of fundamental weight.



9/16

INTRODUCTION WHAT IS A CRYSTAL? PRODUCT MONOMIAL CRYSTAL TYPE A AND SCHUR MODULES

THE PRODUCT MONOMIAL CRYSTAL

Let R = {(i1, c1), . . . , (ir, cr)} be a multiset.
I Each B(ik, ck) ⊆ ZL is a finite crystal isomorphic to B($ik).
I Let B(R) ⊆ ZL be their sum:

B(R) = {b1 + · · ·+ br | bk ∈ B(ik, ck)}

I Redundancies may occur: |B(R)| ≤ |B(i1, c1)| · · · |B(ir, cr)|

Theorem (Kamnitzer, Tingley, Webster, Weekes, Yacobi)

B(R) is a subcrystal of ZL.

The crystal B(R) is called the product monomial crystal associated to
the data R.
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The product monomial crystal

Now we know what fundamental subcrystals are, we can define the product
monomial crystal. It is parametrised by some multiset of points belonging to
the lattice L. For each point, we generate the fundamental subcrystal asso-
ciated to that point. We then take their sum, using the fact that they are all
elements belonging to the monomial crystal ZL. This is a strange thing to do,
and is not a meaningful crystal operation. However, it turns out that the re-
sulting set is always a subcrystal of the monomial crystal, finite because each
of the fundamental crystals were.
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PRODUCT MONOMIAL CRYSTAL

Between generic and singular

Depending on the parameter R, the product monomial crystal interpolates be-
tween generic and singular cases, and its behaviour in these extreme cases is
easy to see. A “generic” R-parameter is when the points are far apart verti-
cally.
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Between generic and singular

The subcrystal generated by the top red dot can only have coefficients lying
in some bounded area below the red dot, which I’ve pictured here using the
green blob. You can see that given any labelling of the lattice, it is clear which
red dot each label must belong to, and so there is no redundancy, and we get
the full tensor product.
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PRODUCT MONOMIAL CRYSTAL

Between generic and singular

As we push the red dots closer together, we may get some redundancies where
the fundamental crystals overlap. This is the difficult case.
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PRODUCT MONOMIAL CRYSTAL

Between generic and singular

Finally, when the red dots are pushed even closer together, we get maximum
redundancy. In this case it’s easy to explicitly find the single highest-weight
element of the crystal, and conclude that the crystal must be irreducible, and
isomorphic to the sum of fundamental weights.
There is a natural question: can we describe B(R) for any parameter multiset
R?
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MY CONTRIBUTIONS

Natural question: can we describe B(R) for arbitrary R?

Theorem (G, 2018)

In any simply-laced type, there is a Demazure-type formula giv-
ing the character of B(R). This formula consists of Demazure
operators πi, and multiplications by the fundamental weights$i.

The character formula is proved using a novel method for analysing
B(R) through Demazure truncations.



MY CONTRIBUTIONS

Natural question: can we describe B(R) for arbitrary R?

Theorem (G, 2018)

In any simply-laced type, there is a Demazure-type formula giv-
ing the character of B(R). This formula consists of Demazure
operators πi, and multiplications by the fundamental weights$i.

The character formula is proved using a novel method for analysing
B(R) through Demazure truncations.

20
19

-0
1-

17
The Product Monomial Crystal

PRODUCT MONOMIAL CRYSTAL

My contributions

Given any multiset R, there is a Demazure-type formula for the character of
the crystal B(R). How this formula is proven is by defining a family of smaller
subsets of product monomial crystals, which are closed under the ei operators,
but not necessarily the fi operators. (Following arrows backwards is always
fine, but following them forwards may land you outside the subset).
These smaller subsets are related by either extension-of-i-strings, which acts
as the Demazure operator πi on characters, or by including another element
of the parameter multiset R, which acts as multiplication by e$i on characters.
A path from the trivial crystal {1} to B(R) then gives a character formula.
I don’t have time to go into the proof now, but I will discuss some interest-
ing results in type A. (Everything so far holds in any simply-laced type.) In
type A, I can use this character formula along with known results about gen-
eralised Schur modules to show that the product monomial crystal always de-
composes in the same way as a generalised Schur module, which gives amonst
other things a new combinatorial formula for the characters of these modules.
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SCHUR FUNCTORS

λ a partition, Sλ : VectC → VectC a “Schur functor”.

Sλ(V) is the image of dλ:

dλ : Altcols λ(V)
comult−−−−→ V⊗λ mult−−→ Symrows λ(V)

For λ = (3, 1),

dλ :

2∧
(V)⊗

1∧
(V)⊗

1∧
(V)→ S3(V)⊗ S1(V)

(v1∧v2)⊗v3⊗v4 7→ v1 v3 v4

v2

− v2 v3 v4

v1

7→ v1v3v4⊗v2−v2v3v4⊗v1
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TYPE A AND SCHUR MODULES

Schur functors

Let’s switch gears for a second and talk about some classical constructions
in type A. There are some natural endofunctors of Vect called Schur functors.
They are parametrised by partitions, and are roughly “antisymmetrise along
rows, while symmetrising along columns”. Given a vector space V, for each
column of λ we form an exterior power, and for each row of λ we form a sym-
metric power. Then we make a map dλ from the tensor product of exterior
powers into the tensor product of symmetric powers, by fully comultiplying
on the exterior side, using the shape of λ, then fully multiplying on the sym-
metric side.



12/16

INTRODUCTION WHAT IS A CRYSTAL? PRODUCT MONOMIAL CRYSTAL TYPE A AND SCHUR MODULES

SCHUR FUNCTORS

λ a partition, Sλ : VectC → VectC a “Schur functor”.

Sλ(V) is the image of dλ:

dλ : Altcols λ(V)
comult−−−−→ V⊗λ mult−−→ Symrows λ(V)

For λ = (3, 1),

dλ :

2∧
(V)⊗

1∧
(V)⊗

1∧
(V)→ S3(V)⊗ S1(V)

(v1∧v2)⊗v3⊗v4 7→ v1 v3 v4

v2

− v2 v3 v4

v1

7→ v1v3v4⊗v2−v2v3v4⊗v1



SCHUR FUNCTORS

λ a partition, Sλ : VectC → VectC a “Schur functor”.

Sλ(V) is the image of dλ:

dλ : Altcols λ(V)
comult−−−−→ V⊗λ mult−−→ Symrows λ(V)

For λ = (3, 1),

dλ :

2∧
(V)⊗

1∧
(V)⊗

1∧
(V)→ S3(V)⊗ S1(V)

(v1∧v2)⊗v3⊗v4 7→ v1 v3 v4

v2

− v2 v3 v4

v1

7→ v1v3v4⊗v2−v2v3v4⊗v120
19

-0
1-

17
The Product Monomial Crystal

TYPE A AND SCHUR MODULES

Schur functors

Here is an example of the map dλ for the partition (3, 1). We take a vector in
the tensor product of exterior powers, and fully comultiply — in this case, we
just antisymmetrise the first pair. Then we think of pure tensors in the middle
as tableaux, and multiply along rows into the tensor product of symmetric
powers.
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(GENERALISED) SCHUR MODULES

By functorality, G y V =⇒ G y Sλ(V)

When G = GLn(C), the Sλ(Cn) is called the Schur module for λ.

Let D ⊆ N× N be a subset of cardinality d, for example

0 1 2 3 4
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4

The functor SD still makes sense. SD(Cn) is the generalised Schur
module associated to the diagram D for GLn.
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TYPE A AND SCHUR MODULES

(Generalised) Schur modules

If V was originally a representation for some group G, then Sλ(V) is also a G-
representation, just by sending every automorphism over the functor. So for
the group GLn, we can send the basic representation through the Schur func-
tor, to get what is called a Schur module. It is well-known that as λ varies over
partitions with at most n rows, the Schur modules vary over all irreducible
GLn representations.
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TYPE A AND SCHUR MODULES

(Generalised) Schur modules

What is less well-known is that this whole definition still makes sense when
we replace the partition λ by an arbitrary diagram, meaning a finite subset
of lattice points in the plane. In this case, we call the functor applied to the
vector representation a “generalised Schur module”. It’s quite easy to see that
the generalised Schur module is invariant under column permutations of D,
and its isomorphism class is invariant under row permutations of D. Some
of these might be more familiar, for example when D is a skew shape, then
you get the expected decomposition out the end, corresponding to what you
might expect from skew Schur functions in the symmetric algebra.
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CRYSTAL OF GENERALISED SCHUR MODULES

SD(Cn) is an sln-module: what is its crystal?
I GLn-character of SD(Cn): Magyar, Reiner, Shimozono (1990s).

Theorem (G, 2018)

In type A, the crystal B(R) is the crystal of a generalised Schur
module, for a diagram D depending on R. Conversely, this
gives the crystal of every generalised Schur module for a column-
convex diagram.
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Crystal of generalised Schur modules

As I remarked earlier, finding the crystal of a given representation is usually
a difficult task. In the case of the generalised Schur module, the work of Pe-
ter Magyar, Victor Reiner, and Mark Shimozono around the end of the 1990s
produced a character formula for the generalised Schur module when n is suf-
ficiently large. Using this character formula and my own, I was able to show
that (provided the columns of D have no gaps, i.e. it is column-convex) there is
a way to take the defining diagram D and send it to a multiset R, such that the
product monomial crystal B(R) is the crystal of the generalised Schur module.
This gives, to my best knowledge, the first explicit crystal for these modules,
and therefore the first combinatorial character formula for these modules.
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5. R = {(3, 0), (1, 0), (3, 4), (2, 3), (1, 2)}



CORRESPONDENCE OF DIAGRAMS AND MULTISETS

1. Diagram D

0

1

2

3

4

2. Reorder columns:

0

1

2

3

4

4. Place groups along diagonals:

5. R = {(3, 0), (1, 0), (3, 4), (2, 3), (1, 2)}

20
19

-0
1-

17
The Product Monomial Crystal

TYPE A AND SCHUR MODULES

Correspondence of diagrams and multisets

I’ll finish by showing an example of the correspondence between the R multi-
sets, and generalised column-convex diagrams. We start with a diagram.
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TYPE A AND SCHUR MODULES

Correspondence of diagrams and multisets

We re-order columns so that the columns with higher top boxes come first, for
aesthetic reasons. The Schur functor of the rearranged diagram is equal to the
Schur functor of the original diagram, since we are just precomposing dλ with
an automorphism of the tensor product of exterior powers.
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TYPE A AND SCHUR MODULES

Correspondence of diagrams and multisets

Then for each group of columns at a certain height, we “place them along the
diagonal”. The first group is placed along the lowest diagonal, with the blue
column of height 3 becoming a vertex over the node 3 in the Dynkin diagram.
Similarly for the second group. The third group has three columns, and they
are placed over their respective heights, all along the third diagonal.
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TYPE A AND SCHUR MODULES

Correspondence of diagrams and multisets

This gives us the corresponding R multiset.
We can notice some of the symmetries here: both the diagram and the multiset
are invariant under translation up and down, and so only the relative heights
matter. Interchanging the columns of D does not change the Schur functor,
while the multiset has no order at all.
This whole process could be run backwards, to take a multiset R and pro-
duce a column-convex diagram D, up to column rearrangement, and vertical
translation.
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1. Truncations could apply to other monomial crystals.
2. Similar results should hold for simply-laced bipartite

Kac-Moody types.
3. Do the truncations have a deeper meaning?
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TYPE A AND SCHUR MODULES

Future Directions

There are some ways these results could be expanded on. Firstly, the method
of analysing the crystal is fairly robust, and could possibly be applied to the
“other” type of monomial crystal which appears in Kashiwara’s paper, or
other subcrystals of this monomial crystal. Secondly, a lot of this work should
apply in arbitrary simply-laced Kac-moody type, provided that the Dynkin
diagram is bipartite. Lastly, the truncations I mentioned are all examples of
Demazure crystals, which are quite special. It would be interesting to investi-
gate what these Demazure crystals correspond to on the quiver variety side.
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