QUESTION SHEET: CATEGORY THEORY WEEK 2

1. Exact functors

- (1) Show that if a functor preserves short exact sequences, then it preserves any exact sequence.
- (2) Show that the functor $\operatorname{Hom}_{\mathbb{C}}(-,Y): \mathbb{C}^{op} \to Sets$ is left exact. Find a counterexample to show that it is not in general right exact.
- (3) Show that the functor $X \otimes_R : R \operatorname{\mathsf{Mod}} \to R \operatorname{\mathsf{Mod}}$ is right exact.

2. Hom Functors

(1) Let R be a commutative ring and let M, N be left R-modules. Show that the set $\operatorname{Hom}_R(M, N)$ is made into a left R-module by the following structure:

For an *R*-module homomorphism $f: M \to N, r \in R$, define

 $(r \cdot f)(m) = f(r \cdot m)$

for all $m \in M$. Does this work when R is not commutative? NB. By this excercise we have functors

$$\operatorname{Hom}_{R}(M, -) : R \operatorname{\mathsf{Mod}} \to R \operatorname{\mathsf{Mod}}$$
$$\operatorname{Hom}_{R}(-, N) : R \operatorname{\mathsf{Mod}}^{op} \to R \operatorname{\mathsf{Mod}}$$

whenever R is commutative.

(2) Let $[\mathcal{C}, Sets]$ be the category of functors $\mathcal{C} \to Sets$. In class we showed that there is a fully faithful functor $\mathcal{C} \to [\mathcal{C}^{op}, Sets]$ mapping an object $A \in \mathcal{C}$ to $\operatorname{Hom}_{\mathcal{C}}(-, A) : \mathcal{C}^{op} \to Sets$. Adapt the proof of this to show Yoneda Lemma:

Let $F: \mathbb{C}^{op} \to Sets$ and $X \in \mathbb{C}$. Show that there is a bijection

$$\operatorname{Hom}_{[\mathcal{C}^{op}, Sets]}(\operatorname{Hom}(-, X), FX) \cong FX$$

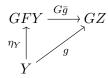
that is functorial in X.

(3) Hard: We say that an object of $[\mathbb{C}^{op}, Sets]$ is representable if it is isomorphic to a functor $\operatorname{Hom}_{\mathbb{C}}(-, X) : \mathbb{C}^{op} \to Sets$. Show that every object in $[\mathbb{C}^{op}, Sets]$ is a colimit of representable functors.

3. Adjoint functors

Given functors $F : \mathcal{C} \to \mathcal{D}$, and $G : \mathcal{D} \to \mathcal{C}$, say that (F, G) are an adjoint pair if the following equivalent conditions hold

• There is a natural transformation of functors $\eta : \mathrm{id}_{\mathfrak{C}} \to GF$ (called a unit) such that for all morphisms $g: Y \to GZ$ in \mathfrak{C} there is a unique morphism $\bar{g}: FY \to Z$ in \mathfrak{D} such that



commutes.

• For any $X \in \mathcal{C}, Y \in \mathcal{D}$ there is an isomorphism $\operatorname{Hom}_{\mathcal{D}}(FX, Y) \cong \operatorname{Hom}_{\mathcal{C}}(X, GY)$ that is natural in both variables i.e. there is a natural isomorphism of bifunctors $\operatorname{Hom}_{\mathcal{D}}(F(-), -) \to \operatorname{Hom}_{\mathcal{C}}(-, G(-))$.

Questions:

- (1) Show carefully that the above two definitions of adjoint functors are equivalent. Can you think of a third equivalent definition of an adjoint pair (F, G) involving a natural transformation $\epsilon : FG \to id_{\mathcal{D}}$?
- (2) Consider the functor: $F : Sets \to Vec_k$ mapping a set to the free vector space formally spanned by that set. Use the first definition of adjoint functors to show that F is left adjoint to the forgetful functor.
- (3) Let R be a commutative ring and M an R-module. Show that $\operatorname{Hom}_R(M, -) : R \operatorname{Mod} \to R \operatorname{Mod}$ is left adjoint to $-\otimes_R M : R \operatorname{Mod} \to R \operatorname{Mod}$.
- (4) Say that an object $P \in \mathcal{C}$ is projective if $\operatorname{Hom}_{\mathcal{C}}(P, -)$ is an exact functor. Use the previous excersise to show that if P, Q are projective R-modules then $P \otimes_R Q$ and $\operatorname{Hom}_R(P, Q)$ are projective R-modules. You may need that $\operatorname{Hom}(V, W) \cong V^* \otimes W$.
- (5) Let $A \to B$ be a morphism of rings. This induces a functor $\operatorname{Res} : B \operatorname{Mod} \to A \operatorname{Mod}$ in the obvious way. Show that Res has left adjoint $\operatorname{Ind} = B \otimes_A : A \operatorname{Mod} \to B \operatorname{Mod}$.
- (6) Show that if $(F : \mathcal{C} \to \mathcal{D}, G : \mathcal{D} \to \mathcal{C})$ and $(H : \mathcal{D} \to \mathcal{E}, I : \mathcal{E} \to \mathcal{D})$ are adjoint pairs then (HF, GI) is an adjoint pair.
- (7) Let A be a ring. In class we defined the functor $\operatorname{Sym}_A : A \operatorname{\mathsf{Mod}} \to A \operatorname{\mathsf{CAlg}}$ and showed that it is left adjoint to the forgetful functor $A \operatorname{\mathsf{CAlg}} \to A \operatorname{\mathsf{Mod}}$. Let $A \to B$ be a morphism of rings and M an A-module. Show that there is an isomorphism of B-algebras

$$\operatorname{Sym}_A(M) \otimes_A B \cong \operatorname{Sym}_B(M \otimes_A B)$$

which is functorial in M and is compatible with the grading. i.e. Sym commutes with extension of scalars.

- (8) Show that if $G : \mathcal{D} \to \mathcal{C}$ has a left adjoint then G preserves products, pullbacks, and kernels. State and prove the dual of this statement. Note the following corollaries of this exercise:
 - Left adjoints are right exact.
 - Right adjoints are left exact.

 $\mathbf{2}$

(9) Use the previous exercise to show that there is an isomorphism of graded A-algebras

 $\operatorname{Sym}_A(M \oplus M') \cong \operatorname{Sym}_A(M) \otimes_A \operatorname{Sym}_A(M')$ that is functorial in both M and M'.