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a b s t r a c t

Extreme value theories indicate that the range is an efficient estimator of local volatility in
financial time series. A geometric process (GP) framework that incorporates the conditional
autoregressive range (CARR)-typemean function is presented for range data. The proposed
model, called the conditional autoregressive geometric process range (CARGPR) model,
allows for flexible trend patterns, threshold effects, leverage effects, and long-memory
dynamics in financial time series. For robustness considerations, a log-t distribution
is adopted. Model implementation can be easily done using the WinBUGS package. A
simulation study shows that model parameters are estimated with high accuracy. In the
empirical study on the range data of an Australian stock market index, the CARGPR model
outperforms the CARR model in both in-sample estimation and out-of-sample forecast.

Crown Copyright© 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

Volatility has become a standard risk measure in financial markets. Accurate forecasting of volatility is important
but difficult because financial time series often exhibit time-varying volatility and volatility clustering. They are periods
of elevated volatility interspersed among more tranquil periods. Two main classes of models are derived to capture the
dynamics of the volatility precisely: they are the generalized autoregressive conditional heteroskedasticity (GARCH)models
(Bollerslev, 1986) and the stochastic volatility (SV) models (Hull and White, 1987). Essentially, the GARCH and SV models
are return-based models as they are constructed using the data of closing prices, neglecting all intra-day price movement.
Recent research has proposed using daily ranges to construct estimates of daily return volatility since daily ranges are known
to bemore efficientmeasures of return volatility (see Parkinson, 1980; Andersen and Bollerslev, 1998; Alizadeh et al., 2002),
than daily returns. Chou (2005) proposed a range-based model called the conditional autoregressive range (CARR) model
that described the dynamics of the conditional mean of the range. Later, Chen et al. (2008) allowed for exogenous threshold
variables to fully examine asymmetric range effects in a threshold CARR model.

Most financial time seriesmodels do not account for trendmovement explicitly. This paper proposes using the geometric
process (GP) model of Lam (1988) to capture the trend movement in financial time series. The model contains a ratio
parameter a which discounts a monotone process to a renewal process (RP) (Feller, 1949) with a constant mean µ. The
two components, the mean µ and ratio a, allow separately the effects on the underlying RP and the effects on the strength
and direction of trend movement. Moreover, as the ratio a affects both the mean and the variance of a GP, the model can
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capture heteroskedasticity. Lastly, with the inherent geometric structure, forecasting using the GP model is simple and
straightforward.

Following the idea of Chou (2005), this paper extends the modelling strategy of the GP model to the dynamic CARR
model for range data to obtain a simple yet highly efficient model for capturing the dynamics of the volatility. In particular,
the mean of the RP is assigned a CARR-type mean function, and the extended model is called the CARGPR model. By
incorporating lagged returns in the mean function, the model can capture leverage effects or volatility asymmetry, which
refers to the negative return sequences associated with an increase in volatility of the stock returns. The strength of the
CARGPR model lies in its flexibility to adapt the dynamics of volatility using the CARR-type mean function and the trend
movement specified by the ratio parameter in the GP model. The proposed model is further extended to accommodate a
model shift after some time points called thresholds, and is distinguished from the regime switching model, where the
changes occur when the outcomes exceed certain threshold levels. Parameter estimation in threshold autoregressive (TAR)
models is usually performed in two approaches: the classical likelihood approach (Tong and Lim, 1980; Tong, 1990) and
Bayesian approach (Geweke and Terui, 1993; Chen and Lee, 1995). In this paper, we adopt the Bayesian approach using
Markov chain Monte Carlo (MCMC) algorithms, and we apply the Metropolis–Hastings algorithm to estimate the threshold
time jointly with othermodel parameters. A variety ofmodel structures and error distributions can be considered to provide
a tailor-made analysis (Chiu and Wang, 2006). For robustness considerations, a heavy-tailed distribution such as Student’s
t-distribution is considered, and it is expressed in the scale mixture representation to allow a simpler Gibbs sampler for
model implementation and to enable outlier diagnosis (Choy and Chan, 2008).

This paper is structured as follows. Section 2 introduces the CARGPR model with various extensions. Section 3 describes
the Bayesian computational methods for statistical inference. Section 4 presents a simulation result to illustrate the
performance of the CARGPR model. In Section 5, CARGPR models are fitted to the intra-day range data of the All Ordinaries
(AORD) index for the Australian stock market. Finally, the paper is concluded in Section 6. The full conditional distributions
for the Gibbs sampling algorithm are given in the Appendix.

2. Model development

2.1. The GP model

Lam (1988) first proposed modelling a monotone trend directly by a monotone process called a geometric process (GP).
Let X1, X2, . . . be a set of positive random variables. If there exists a positive real number a, called the ratio, such that
{Yt = at−1Xt , t = 1, 2, . . .} after discounting by a forms a renewal process (RP) (Feller, 1949), then {Xt , t = 1, 2, . . .}
is called a GP. The stationary RP {Yt} with a constant mean E(Yt) = µ constitutes a special case of the linear model when
a = 1. Hence the GP model is in fact a generalized model that allows trends when a is non-unit. Let the mean and variance
of {Yt} be

E(Yt) = µ and Var(Yt) = σ 2,

respectively. Then the mean and variance of {Xt} are given by

E(Xt) = µ/at−1 and Var(Xt) = σ 2/a2(t−1), (1)

respectively. This original GP model with a constant mean µ and a constant ratio a is very restrictive in applications, and
these variables are replaced by a time-dependent mean µt and a time-dependent ratio at , respectively, in this paper.

By adopting some lifetime distributions to {Yt}, the models can be implemented using a parametric approach. Chan et al.
(2004) investigated statistical inference for a GP model with a gamma distribution and Lam and Chan (1998) considered a
lognormal distribution. In our preliminary study,we found that the lognormal distribution consistently gives a better fit than
the gamma distribution (see Section 5.4 for details). As many financial data are heavy tailed, the lognormal distribution is
further replaced by the log-t distribution to achieve a robust analysis. To facilitate efficient BayesianMCMC computation and
outlier diagnostics, the t-distribution is expressed as a scale mixture of normal (SMN) distributions. Andrews and Mallows
(1974) studied the class of SMN distributions and Choy and Chan (2008) investigated different scale mixture distributions.
Such scale mixture formulation for t-distribution has been successfully employed for volatility model description in Chen
et al. (2010). Student’s t-distribution with location µ, scale σ , and number of degrees of freedom ν has the following SMN
representation:

tν(y|µ, σ) =


∞

0
N

y
µ, σ 2

λ


G

λ

ν
2
,
ν

2


dλ,

which can be expressed hierarchically as

Y |µ, σ , λ ∼ N

µ,
σ 2

λ


and λ ∼ G

ν
2
,
ν

2


,

where G(α, γ ) denotes the gamma distribution with mean α/γ .
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In the GP model, we assume that ln Yt ∼ tν(υt , τ 2) or ln Yt |λt ∼ N

υt ,

τ2

λt


by conditioning on λt . Hence, Xt =

Yt/at−1
|λt ∼ LN


υt − ln(at−1

t ), τ
2

λt


, with the mean and variance given by

E(Xt) =
µt

at−1
t

= exp

υt − ln(at−1

t )+
τ 2

2λt


(2)

and

Var(Xt) =
σ 2
t

a2(t−1)
t

= exp

2[υt − ln(at−1

t )] +
τ 2

λt


exp


τ 2

λt


− 1


, (3)

respectively. A lognormal distribution can be obtained as a special case when λt = 1.

2.2. The CARGPR model

Let Pt be the price of an asset measured at discrete time intervals (e.g., daily or weekly). The observed range is defined as

Xt = [ln(max Pt)− ln(min Pt)] × 100, (4)

where max (min) is the highest (lowest) price over the time interval. Parkinson (1980) showed that the range of any
distribution is proportional to its standard deviation. Hence Xt is an estimator of σt for an asset price observed at finer
intervals, for example, every 5 min during the trading hours of a day. To specify a dynamic structure in the mean function
that describes the persistence ofmarket shocks to the range of prices, Chou (2005) proposed the following CARR(p, q)model
for Xt :

Xt = µtϵt ,

µt = β0 +

p
j=1

β1jµt−j +

q
j=1

β2jXt−j, (5)

ϵt |ℑt−1 ∼ f (.|ℑt−1),

where ℑt−1 is the set of information up to time t − 1 and f (.|ℑt−1) is the conditional distribution for the errors ϵt with unit
mean. The stationary condition for the process is

C =

p
j=1

β1j +

q
j=1

β2j < 1, (6)

where C determines the persistence of range shocks and the unconditional (long-term) mean of Xt is β0/(1 − C). Chou
(2005) assumed that Xt ∼ W (ψt , α), whereψt and α are the scale and shape parameters, respectively,ψt = µt/0


1 +

1
α


,

and 0(·) is a gamma function. The mean and variance are given by µt and

σ 2
t = µ2

t


0

1 +

2
α


02

1 +

1
α

 − 1


, (7)

respectively.
However, this CARR model does not allow for trend movement explicitly. To remedy this, we introduce the GP model

and equate the mean function (5) to υt in (2) as

υt = βµ0 +

p
j=1

βµ1jυt−j +

q
j=1

βµ2j ln(Yt−j). (8)

The extended model combining the modelling approaches of the GP and CARR techniques is called the conditional
autoregressive geometric process range (CARGPR(p, q)) model.

2.3. The CARGPR model with covariate effects

As the daily rangemay evolve over time subject to certain external effects, exogenous variables Ztj should be incorporated
into the conditional mean function µt of the CARGPR model via υt as

υt = βµ0 +

p
j=1

βµ1jυt−j +

q
j=1

βµ2j ln(Yt−j)+

r
j=1

βµ3jZtj. (9)
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Chou (2005) suggested the use of lagged return, trading volume, and seasonal factors because a negative relationship is
often found between the range and the lagged return, suggesting a leverage effect that a decrease in return leads to higher
volatility and, as expected, a positive relationship is often present between the range and the trading volume.

If we set p = q = r = 1 and drop the redundant subscript j in β , (9) becomes

υt = βµ0 + βµ1υt−1 + βµ2 ln(yt−1)+ βµ3zt , (10)

for t = 2, . . . , n, and υ1 = βµ0 + βµ3zt for t = 1. This function can be rewritten as

υt = βµ0

t
i=1

β i−1
µ1 + βµ2

t
i=2

β i−2
µ1 ln(yt−i+1)+ βµ3

t
i=1

β i−1
µ1 zt−i+1, (11)

showing the complexity of parameter βµ1 in υt . Note that the stationary constraint C < 1 in (6) does not apply to (10) with
a log link function, as shown in (2). However, we find that the sum of parameters in υt is less than 1 for most of the models
reported in Table 3 in the empirical study. When a = 1, Xt , which is just Yt , is neither increasing nor decreasing, and the
stationary constraint in (6) does not apply too.

On the other hand, the CARGPR model can be extended to allow for multiple trends to describe different stages of
development, the growing stage (a < 1), stabilizing stage (a = 1), and declining stage (a > 1), for a certain event. In this
case, the constant ratio a in (2) and (3) is replaced by a time-dependent ratio function log linked to a function of covariates.
For example, the ratio function in the empirical study is

at = exp(βa0 + βa1 ln t). (12)

2.4. The CARGPR model with threshold effects

Particularly when the time series is long, some structural changes may occur so that model shifts should be
accommodated at some time points T called the turning points. Chan et al. (2006) extended the GP model to the threshold
GP (TGP)model by fitting a separate GP to each stage, growing, stabilizing, and declining, of the development of an epidemic.
Suppose that there are M GPs, GPm = {Xt : Tm ≤ t < Tm+1}, m = 1, . . . ,M , with the turning points Tm (T1 = 1) which
mark the times of the model shifts. We assume that Xt |λt ∼ LN


υtm − ln(at−Tm

m ),
τ2m
λt


for Tm ≤ t < Tm+1, where

υtm = βµ0m +

p
j=1

βµ1jmυt−j,m +

q
j=1

βµ2jm ln(Yt−j)+

r
j=1

βµ3jmZtj. (13)

The mean and variance for Xt become

E(Xt) =
µtm

at−Tm
m

= exp

υtm − ln(at−Tm

m )+
τ 2m

2λt


(14)

and

Var(Xt) =
σ 2
m

a2(t−Tm)
m

= exp

2[υtm − ln(at−Tm

m )] +
τ 2m

λt


exp


τ 2m

λt


− 1


, (15)

respectively.
Tiwari et al. (2005) estimated the number of turning points using different model selection criteria. In applications, the

number of turning points M and the range from which each turning point Tm is sampled are determined by examining the
empirical time series. In general, the best model among models with M = 1, 2, 3, . . . thresholds can be selected based
on some model selection criterion such as the Bayesian Information Criterion (BIC) and the Deviance Information Criterion
(DIC) (Section 5.3).

3. Bayesian inference

The log-likelihood function and its derivatives as required in the classical likelihood approach are difficult to evaluate
because υt in (11) is a complicated function of βµ1. On the other hand, the Bayesian approach using MCMC techniques
converts an optimization problem into a sampling problem, by simulation of a single or block of model parameters
iteratively, conditional on other parameters and the data. The Gibbs sampling algorithm (Smith and Roberts, 1993; Gilks
et al., 1996) and Metropolis–Hastings algorithm (Hastings, 1970; Metropolis et al., 1953) are the most popular MCMC
techniques that produce samples from the intractable posterior distributions. For readers who are less familiar with
Bayesian computation techniques, we recommend using the WinBUGS (Bayesian analysis Using Gibbs Sampling) package.
See Spiegelhalter et al. (2004). The WinBUGS codes for the CARGPR model can be obtained from the authors upon request.
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In the simulation and empirical studies, different CARGPR models are compared, and vague and non-informative priors
are assigned to the model parameters. The Bayesian hierarchy for the CARGPR models (Models 1–4) is

Data: Xt ∼ LN

υt − ln(at−1),

τ 2

λt


.

Priors: a ∼ U(0.95, 1.05), βµij ∼ N(0, σ 2
β ), τ 2 ∼ IG(ατ , γτ ),

λt ∼ G
ν
2
,
ν

2


, ν ∼ G(αν, γν)I(1, 30),

where I(a, b) indicates a truncated distribution with support (a, b) and λt = 1 for Model 1. With a ratio function at (Model
4), the priors are βai ∼ N(0, σ 2

β ), i = 0, 1. The Bayesian hierarchy for the threshold CARGPR model (Model 5) is

Data: Xt ∼ LN

υt − ln(at−Tm

m ),
τ 2m

λt


I(Tm ≤ t < Tm+1).

Priors: am ∼ U(0.95, 1.05), βµijm ∼ N(0, σ 2
β ), τ 2m ∼ IG(ατ , γτ ),

λt ∼ G
νm

2
,
νm

2


, νm ∼ G(αν, γν)I(1, 30), Tm ∼ U(cm, dm),

where Tm is assigned a discrete uniform prior on the range [cm, dm]. The full conditional distributions for the parameters
in Model 5 are derived and reported in the Appendix to facilitate the MCMC sampler. Lastly, the Bayesian hierarchy for the
CARR model with covariate using the Weibull distribution (Models 6 (α = 1) and 7) is

Data: Xt ∼ W

µt/0


1 +

1
α


, α


Priors: α ∼ G(c, d), βµ0 ∼ N(0, σ 2

β ), βµ1 ∼ U(0, 1), βµ2 ∼ U(0, 1 − βµ1), βµ3 ∼ N(0, σ 2
β ).

The hyperparameter σ 2
β is set to be very large whereas ατ , γτ , αν, γν, c , and d are set to zero for non-informative priors.

In the Gibbs sampling scheme, a single Markov chain is run for 7000 iterations, discarding the initial 5000 iterations as
the burn-in period to ensure convergence of parameter estimates. Convergence is also carefully checked by the history and
autocorrelation function (ACF) plots. Simulated values from the Gibbs sampler after the burn-in period are taken to mimic
a random sample of size 2000 from the joint posterior distribution for posterior inference. Parameter estimates are given
by the posterior means or medians. To check if the posterior samples of 2000 iterations are sufficient, longer chains of 5000
iterations after burn-in are run for Models 1 and 2, and they give estimates similar to those from 2000 iterations. Moreover,
the ACFs and history plots show that the posterior samples are quite uncorrelated. The computation time depends on the
complexity of the model and the power of computer, and it is around 4 h using a Core 2 Duo 2 GHz PC for fitting the CARGPR
models in the empirical study.

4. Simulation study

In this simulation study,we compare themodel performance formodels fitted to data of different sizes (small ormedium)
and adopted different data distributions (lognormal or log-t) and trend patterns (increasing or decreasing). We simulate
N = 100 data sets; each contains n = 200 or n = 700 observations. Two models using lognormal (LN) and log-t (LT)
distributions are considered, and each model adopts two sets of parameters with decreasing (set 1) and increasing (set 2)
trends. Table 1 reports themean and standard deviation (SD) of the parameter estimates over N = 100 replications as given
by

θ̂ =
1
N

N
j=1

θ̂j and SD =


1

N − 1

N
j=1

(θ̂j − θ̂ )2

1/2

,

respectively, where θ̂j is the posterior mean of θ in the j-th replication. The performance of the proposed models is further
evaluated via three criteria: the absolute percentage bias (APB), rootmean square error (RMS) and coverage percentage (CP),
defined as

APB =

 θ̂ − θ

θ

 ,
RMS =


1
N

N
j=1

(θ̂j − θ)2

1/2

,

CP =
100
N

N
j=1

I[θ ∈ (θ̂j,0.025, θ̂j,0.975)],
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Table 1
Parameter estimates, their standard deviation, absolute percentage bias, root mean square error and coverage percentage in the simulation study.

Dist. Set a βµ0 βµ1 βµ2 ν σ 2 Set a βµ0 βµ1 βµ2 ν σ 2

n = 200

LT θ 1 1.00100 1.000 −0.200 0.030 5.000 0.500 2 0.99800 −0.020 0.700 0.200 5.000 1.000
θ̂ 1.00091 0.995 −0.207 0.021 8.043 0.545 0.99790 −0.063 0.484 0.222 9.036 1.095
SD 0.00116 0.216 0.241 0.065 3.877 0.098 0.00415 0.185 0.214 0.055 3.968 0.168
APB 0.00009 0.005 0.035 0.311 0.609 0.089 0.00010 2.165 0.309 0.109 0.807 0.095
RMS 0.00115 0.215 0.240 0.066 4.91 0.107 0.00413 0.189 0.304 0.059 5.65 0.192
CP 85 98 98 95 92 93 91 89 80 95 91 95

n = 700

LN θ 1 1.00100 1.000 −0.200 0.030 – 0.500 2 0.99800 −0.020 0.700 0.200 – 1.000
θ̂ 1.00100 1.005 −0.212 0.031 – 0.501 0.99802 −0.023 0.659 0.212 – 0.999
SD 0.00000 0.255 0.280 0.038 – 0.028 0.00056 0.032 0.060 0.026 – 0.055
APB 0.00000 0.030 0.138 0.202 – 0.005 0.00002 0.128 0.059 0.062 – 0.001
RMS 0.00000 0.411 0.327 0.034 – 0.031 0.00056 0.031 0.072 0.029 – 0.055
CP 100 89 89 92 – 94 94 92 88 96 – 95

n = 700

LT θ 1 1.00100 1.000 −0.200 0.030 5.000 0.500 2 0.99800 −0.020 0.700 0.200 5.000 1.000
θ̂ 1.00100 1.011 −0.206 0.022 5.769 0.517 0.99800 −0.025 0.669 0.208 5.600 1.034
SD 0.00000 0.269 0.301 0.030 1.359 0.045 0.00065 0.031 0.046 0.027 1.224 0.088
APB 0.00000 0.202 0.729 0.230 0.114 0.011 0.00000 0.271 0.044 0.041 0.120 0.034
RMS 0.00000 0.462 0.351 0.035 1.32 0.043 0.00065 0.031 0.055 0.028 1.358 0.094
CP 100 85 88 95 94 96 94 97 93 93 94 94

Table 2
Summary statistics for the AORD stock market daily range data.

Range Xt Ln range ln(Xt ) Return Zt Absolute return |Zt |

Mean 1.4311 0.0723 −0.0471 1.0509
SD 0.9908 0.2649 1.4823 1.0457
Kurtosis 7.0649 −0.2866 3.8305 8.3178
Skewness 2.1410 0.2131 −0.5032 2.3368
Minimum 0.2568 −0.5904 −8.5536 0.0000
Maximum 8.0839 0.9076 5.3601 8.5536
Box–Ljung, Q12 2416 2838 20.22a 721.7
Cramér–von Mises, W 5.647 0.110a 1.337 6.374
Jarque–Bera, JB 2170 8 499 2894
a p-value > 0.05. All other p-values are less than 0.02.

respectively, where (θ̂j,0.025, θ̂j,0.975) is the 95% credible interval of θ in the j-th replication and I(E) is an indicator function
for the event E. Models with smaller SD, APB and RMS and with CP closer to 95 are preferred.

From Table 1, the parameter estimates are close to their true values except ν̂ (both sets) and β̂µ1 (set 2) when n = 200.
The complex function of βµ1 in the mean function (11) explains the difficulty of estimating βµ1 precisely. As for the number
of degrees of freedom ν, it is well known that the shape of the t-distribution is rather insensitive to moderate to large
numbers of degrees of freedom. However, both estimates improve substantially when the sample size increases to n = 700.
The CP ranges from 80% to 100% for all CARGPR models, showing satisfactory coverage. There is no obvious difference in
model performance between models showing a decreasing (set 1) or increasing (set 2) trend, nor between models adopting
a lognormal or log-t distribution. Generally speaking, the results in the simulation study are satisfactory when n = 200 and
are excellent when n = 700.

5. Empirical study

We analyze the intra-day high–low prices Xt defined in (4) from the All Ordinaries (AORD) index for the Australian stock
market from 1 May 2006 to 30 April 2009 (n = 763) obtained from the website. As suggested in Chou (2005), the lag-one
daily log return Zt−1 = [ln(Pc,t−1)− ln(Pc,t−2)]×100, where Pc,t is the closing price on day t , is taken as a covariate to allow
for the leverage effect. Moreover, |Zt | is chosen to be the proxy of Xt in assessing the forecasting performance of the models.
Summary statistics and three test statistics for Xt , ln Xt , Zt and |Zt | are reported in Table 2. The first statistic, Box–Ljung
Q12, tests the overall randomness of a time series based on 12 lagged autocorrelations. The second and third statistics, the
Cramér–von Mises W and Jarque–Bera JB, test for normality in the data. W compares the empirical distribution with the
hypothesized distribution while JB measures the departure from normality based on the sample kurtosis and skewness.
From Table 2, all tests are significant, showing non-randomness and non-normality, except that Zt is random and ln Xt is
normal, confirming the lognormal assumption for Xt .
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Fig. 1. (a) Observed daily range Xt of the AORD stock market price and (b) histogram of Xt .

Furthermore, time series plots of Xt and Zt−1 and the histogram of Xt are presented in Fig. 1. The summary statistics and
histogram in Fig. 1(b) show substantial kurtosis and skewness effects in Xt . Moreover, the correlation between Xt and Zt
(ρ̂X,Z = −0.241) and their plots in Fig. 1(a) show that the leverage effect is present in the data, because the daily range
is high or the price is volatile when the return is low, particularly during the period of the global financial tsunami which
started in October 2008.

5.1. Model selection

The basic CARGPR(1, 1) model with lognormal (Model 1) and log-t distributions (Model 2) are first utilized, and Model
2 is preferred according to the DIC because the heavier tails of the log-t distribution can accommodate outliers. The BIC is
slightly larger due to the rather heavy penalty for an additional parameter. Hence, the log-t distribution is adopted in all
subsequent CARGPR models. By setting a = 1, the trend movement is not modelled, similar to the CARR model (Model 2.1),
but it adopts a log-t instead of Weibull distribution with a log link function and uses the Bayesian approach in parameter
estimation.

To describe different levels of persistence, the CARGPR(1, 2) and CARGPR(2, 1) models are considered. However, the
CARGPR(2, 1) model has a technical problem in the implementation and β22 in the CARGPR(1, 2) model (Model 3) is
insignificant, showing that the basic CARGPR(1, 1) model describes the market persistence effect well. Moreover both the
BIC and the DIC of Model 3 show no improvement either. Hence the basic CARGPR(1, 1) model is adopted hereafter.

To allow for the leverage effect, Zt is added to υt as an exogenous variable. Moreover, Models 1–3 are restricted to
monotone trend data. Fig. 1(a) shows that the monotone increasing trend applies only till the global financial tsunami in
October 2008, and decreases thereafter. To allow a flexible trend movement, a ratio function at in (12) is adopted in Model
4 and a threshold time effect in Model 5. Moreover, we set M = 2 and the range for sampling T2 to be [610, 630], which
covers the period from 19 September 2008 to 17 October 2008 for Model 5.

Lastly, the CARR models in (5) with the covariate Zt in the mean µt using exponential (Model 6) and Weibull (Model 7)
distributions and the Bayesian approach are also fitted for model comparison. Table 3 reports the posterior mean and the
posterior standard error (in italics) of the model parameters, together with two model assessment criteria for Models 1–7.

5.2. Model assessment

To compare Models 1–7, the Bayes factor, BIC, and DIC (Spiegelhalter et al., 2002) are often used in Bayesian analysis.
However, the former is often commented on as being too difficult to calculate, especially for models that involve many
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Table 3
Parameter estimates, standard errors in italics, BIC and DIC for the AORD daily range data.

Model Dist. Type T βµ0 βµ11 βµ21 βµ22 βµ31 a or βa0 βa1 τ 2 ν or α BIC DIC

CARGPR

M1 LN (1, 1) – −0.0234 0.7644 0.1879 – – 0.9983 – 0.1762 – 1121 1098
– 0.0118 0.0356 0.0253 – – 0.0005 – 0.0090 –

M2 LT (1, 1) – −0.0192 0.7878 0.1735 – – 0.9984 – 0.1568 19.26 1125 1095
– 0.0095 0.0263 0.0202 – – 0.0005 – 0.0103 5.93

M2.1 LT (1, 1) – 0.0027 0.8080 0.1776 – – – – 0.1570 17.96 1128 1102
(a = 1) – 0.0031 0.0199 0.0182 – – – – 0.0104 5.97
M3 LT (1, 2) – −0.0222 0.7806 0.1661 0.0110 – 0.9983 – 0.1566 20.56 1132 1097

– 0.0103 0.0328 0.0415 0.0521 – 0.0006 – 0.0104 5.40
M4 LT (1, 1) – −0.0129 0.8269 0.1124 – −0.0536 0.0038 −0.0008 0.1441 18.63 1074 1047

– 0.0061 0.0259 0.0197 – 0.0067 0.0005 0.0001 0.0094 5.91
M5 LT (1, 1) 1.00 −0.0225 0.8437 0.0972 – −0.0765 0.9988 – 0.1490 21.56 1101 1037

– 0.0084 0.0311 0.0233 – 0.0089 0.0003 – 0.0096 4.86
LT (1, 1) 622 1.0530 0.1960 −0.0734 – −0.0300 1.0070 – 0.1144 18.44

5.27 0.3328 0.2279 0.0875 – 0.0135 0.0007 – 0.0153 6.29

CARR

M6 Exp (1, 1) – 0.1571 0.6075 0.2820 – −0.1261 – – – – 1949 1930
– 0.0410 0.0733 0.0615 – 0.0365 – – – –

M7 Wei (1, 1) – 0.1883 0.5858 0.2766 – −0.1378 – – – 2.1860 1339 1316
– 0.0156 0.0286 0.0262 – 0.0181 – – – 0.0521

random effects, large numbers of unknowns, or improper priors (Ntzoufras, 2009). Alternately, the BIC and DIC defined as

BIC = −2 ln f (y|θ)+ p ln n, (16)

and DIC = D(θ)+ pD,

respectively, are adopted to approximate the Bayes factor. Both criteria contain two components: a measure of model fit
and a penalty for model complexity, where f (y|θ) is the likelihood function, D(θ) = Eθ |y[D(θ)] is the posterior expectation
of deviance, and pD is the effective number of parameters defined as the difference between the posterior mean of deviance
and the deviance evaluated at the posterior mean of parameters; that is,

pD = Eθ |y(D(θ))− D(Eθ |y(θ)) = D(θ)− D(θ̄).

Clearly, the model with the smallest BIC and/or DIC values is preferred. The BIC and DIC values for Models 1–7 are presented
in Table 3.

Moreover, five more measures, namely the root mean squared error (RMS), mean absolute error (MAE), coverage
percentage (CP), width of the 95% confidence interval (CI) for E(Xt) (CI(EX)) and width of the 95% CI for Xt (CI(X)), are
defined as

RMSih =


1
nh

nh
t=1

(MRt+sh,i − X̂t+sh)
2

1/2

,

MAEih =
1
nh

nh
t=1

|MRt+sh,i − X̂t+sh |,

CPh =
1
nh

nh
t=1

I(Xt+sh ∈ (CIXt+sh ,low
, CIXt+sh ,up

)),

CI(EX)h =
1
nh

nh
t=1

(CIE(Xt+sh ),up
− CIE(Xt+sh ),low

),

CI(X)h =
1
nh

nh
t=1

(CIXt+sh ,up
− CIXt+sh ,low

),

where h = 0 indicates the in-sample estimation with start s0 = 0, h = 1 indicates the out-of-sample forecast with start
s1 = n1 = 763, i = 1 indicates the measure of range MRt,1 = Xt , and i = 2 indicates MRt,2 = |Zt | as a proxy of Xt (Chou,
2005). The standardized variables when Xt ∼ LN(ωt , ςt), where ωt = υt − ln at−1

t and ς2
t =

τ2

λt
, and when Xt ∼ W (ψt , α),

where ψt = µt/0

1 +

1
α


, are

SLT,t =
ln(Xt)− ωt

ςt
∼ N(0, 1) and SW ,t = (Xt/ψt)

α
∼ Exp(1), (17)
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Table 4
In-sample and out-of-sample model assessment for Models 4–7.

In-sample model-fit criteria (n = 763) Out-of-sample forecasting criteria (n1 = 50)
RMS1 MAE1 RMS2 MAE2 CP CI(EX) CI(X) Q12 W JB RMS1 MAE1 RMS2 MAE2 CP CI(EX) CI(X)

M4 0.684 0.455 1.001 0.750 0.965 0.189 2.161 12.1 0.32 14.1 0.859 0.712 1.277 1.095 0.820 1.194 2.961
M5 0.649 0.442 0.953 0.736 0.963 0.284 2.069 5.91 0.11 a 6.40 0.521 0.383 0.800 0.659 0.940 0.419 1.764
M6 0.700 0.485 0.994 0.763 0.996 0.362 5.265 21.2 23.7 – 0.577 0.664 0.878 0.851 1.000 2.359 4.618
M7 0.707 0.490 0.988 0.759 0.972 0.165 2.616 19.4 1.73 – 0.604 0.483 0.922 0.770 0.980 1.382 2.472
a p-value > 0.05, while the p-values for other test statistics are all<0.05.

respectively. Hence the corresponding 95% CIs (CIXt ,low, CIXt ,up) for Xt are
exp(ωt + Φ−1(0.025)ςt), exp(ωt + Φ−1(0.975)ςt)


, (18)

and 
[− ln(0.975)]1/αψt , [− ln(0.025)]1/αψt


, (19)

respectively, where Φ(·) is the standard normal distribution function. On the other hand, the CIs for E(Xt) are obtained
from the 2.5 and 97.5 percentiles of the posterior sample for E(Xt), where E(Xt) is given by (2) and (5), respectively, for the
log-t and Weibull distributions. The first three criteria measure the accuracy of the model while the last two measure the
precision of the CIs. Models with smaller values of these criteria except CPh are preferred. For CPh, it should be close to 95%.
Table 4 reports these measures together with the three test statistics Q12,W and JB. The standardized variables SLT,t and SE,t
are used to test the log-t and Weibull data distributions, respectively.

5.3. Numerical results

The results in Table 3 show that the parameter estimates are qualitatively consistent across themodels. In particular, the
ratio a forModels 1–3 is less than 1 and significant, showing a generalmonotone increasing trend. Since both βµ11, βµ21 > 0
and are significant in all models, a persistence effect is present in the data. Moreover, τ 2 decreases across Models 1–5,
showing an increase in model robustness while the number of degrees of freedom is around 20, indicating a moderate tail
effect. Since Model 2 shows a better model fit than Model 2.1 (a = 1) according to both the BIC and DIC (1125 versus 1128
for the BIC and 1095 versus 1102 for the DIC), after allowing for model complexity, the superiority of the CARGPR model in
allowing trend movement is clear.

For Models 4 and 5, as βµ31 is significant and negative, a leverage effect is present in the data. Parameters βa0 and βa1 in
Model 4 show that at changes from greater than 1 to less than 1, indicating amild and short decreasing trend followed by an
increasing trend thereafter. Moreover, the substantially larger DIC for Models 1 and 4 with a gamma distribution (1223 and
1167 for the BIC and 1200 and 1130 for the DIC) supports the assertion in Section 2.1 that lognormal and log-t distributions
give better fits than a gamma distribution. For Model 5, the ratios a1 and a2 show an increasing trend before 7 October 2008
(t = 622) and a decreasing trend thereafter. The market volatility increases sharply from September 2008 to the maximum
on 7 October 2008, during which the market price dropped continuously. The trends of the mean, E(Xt) in (2) and (14),
variance, Var(Xt) in (3) and (15), and the ratio 1/at−1

t for Models 4 and 5, as plotted in Fig. 2(a) and Fig. 3(a), respectively,
show that the mean and variance capture the volatility clustering well. The 95% CIs for Xt in (18) are displayed in Fig. 2(b)
and Fig. 3(b).

The coverage percentages (CPs), 96.5% and 96.3%, are reasonably close to 95%. Because there is no obvious volatility
clustering after 7 October 2008, no outliers are detected, and βµ112 and βµ212 are both insignificant in Model 5, leading to
a rather smooth trend after 7 October 2008. Obviously the significance of βµ11 and βµ21 for other models with a monotone
increasing trend is due to the volatility clustering before 7 October 2008. Moreover, even though there is no stationary
constraint for Yt , the sum of parameters in the mean function υt in (9) is less than 1 for all the models reported in Table 3.
This stationary condition is only violated by the second-stage model in Model 5.

The results for Models 6 and 7 are qualitatively the same as for Models 1–5. The shape parameter α is estimated to be
2.186 for theWeibull distribution. Using both the BIC andDIC, the CARRmodel using an exponential distribution (Model 6) is
far from satisfactory but themodel using theWeibull distribution (Model 7) is still no better than any of the CARGPRmodels
(Models 1–5), because the CARGPRmodels accommodate the trend effect and adopt the more robust log-t distribution. The
trends of the mean and variance for Model 7 are plotted in Fig. 4(a) and the 95% CI for Xt in (19) is plotted in Fig. 4(b). Again,
the mean and variance capture the volatility clustering well, but the lower bound of the CI is very close to zero, revealing
the characteristic of the Weibull distribution with higher density around zero when α is small.

Tests using Q12, W and JB show that all the standardized residuals Sit , i = LT ,W in (17) are non-random and do not
follow the hypothesized distribution except Model 5. Fig. 5 displays the histograms of SLT,t for Models 4 and 5 and SW ,t for
Model 7 superimposed on their hypothesized density functions. Again, the distribution of SLT,t fromModel 5 is closest to the
hypothesized standard normal density. Hence Model 5 is preferable to the other models.
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Fig. 2. (a) Trends of the mean, variance, and ratio. (b) Observed, expected, 95% CI of Xt , and 95% PI of the forecast E(Xt ) using Model 4.

Fig. 3. (a) Trends of the mean, variance, and ratio. (b) Observed, expected, 95% CI of Xt , and 95% PI of the forecast E(Xt ) using Model 5.

Tables 3 and 4 show that Model 5 outperforms Models 4 and 7 across all in-sample model assessment criteria, BIC and
DIC. The only two exceptions are the shorter CI(EX) for Model 7 and the slightly lower BIC for Model 4. The latter is due to
the heavy penalty term in the BIC (−2 ln f (y|θ) in (16) is 1021 and 1001, respectively, for Models 4 and 5). Fig. 6 compares
the mean and 95% CI of Xt between Models 5 and 7. The CI estimate is clearly shorter for Model 5, giving more precise fitted
values.
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Fig. 4. (a) Trends of the mean and variance. (b) Observed, expected, 95% CI of Xt , and 95% PI of the forecast E(Xt ) using Model 7.

Fig. 5. Comparison of observed and hypothesized distributions for standardized Xt between Models 4, 5, and 7.

5.4. Forecasting

Models 4, 5, and 7 are used to forecast n1 = 50 daily ranges from 1 May 2009 to 10 July 2009. These values are labelled
as x764, . . . , x813. The joint predictive distribution is given by

f (x764, . . . , x813|x) =

 813
t=764

fLT

x|υt − ln(at−T2

2 ), τ 2, α

f (θ|x)dθ,

where x denotes the vector of 763 observed daily ranges, θ is the vector of model parameters, and fLT(x|b, c, d) is the density
function of the log-t distribution with location b, scale c , and number of degrees of freedom d. Given a set of parameter
values, θ(k), at the k-th iteration of the Gibbs sampling output, a set of predicted values can be simulated successively from

xt |xt−1, θ
(k)

∼ LT

υ
(k)
t − ln[(a(m)2 )t−T (k)2 ], (τ 2(k))2, α(k)


,

where t = 764, . . . , 813. The random variate generation from the log-t distribution can be done via its scale mixture of
normal representation. The posterior means and the corresponding 95% Bayesian prediction intervals of the predicted daily
ranges are displayed in Fig. 2(b), Fig. 3(b), and Fig. 4(b) for Models 4, 5, and 7, respectively, and are also given in Fig. 7 for
clarity.

In general, the forecasting error increases across the forecast period due to the accumulated uncertainty. However,Model
5 has a substantially lower forecasting error, and hence a much shorter prediction interval, because of the fitted decreasing
trend and the insignificance of βµ112 and βµ212, leading to a relatively constant υt in the expression of E(Xt). Since the
observed Xt shows a gentle decline during the forecast period, the forecast using Model 4 with a fitted increasing trend is
less satisfactory. Model 5 still outperforms Model 7 across all out-of-sample forecasting criteria in Table 4.

5.5. Outlier diagnostic

It is well known that Student’s t-distribution provides a robust inference by downweighting the distorting effects of
outliers. Expressing the t-distribution as an SMN distribution, Choy and Smith (1997) was the first to propose performing
outlier diagnostics using the scale mixture variable λ in the SMN representation. An outlier is associated with a large value
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Fig. 6. Comparison of the expected and 95% CI of X between Models 5 and 7.

Fig. 7. Forecast range and 95% CI of the forecast range using Models 4, 5, and 7 respectively.

Fig. 8. Reciprocal of lambda 1/λt in outlier diagnostic using Model 5.

of 1/λ which inflates the variance of the corresponding normal distribution to accommodate the outlier. Therefore, the
extremeness of observations is closely associated with the magnitude of λ.

Fig. 8 plots the reciprocal 1/λt in Model 5 across time. From the figure, two outliers, on 28 February 2007 and 5 August
2008, are detected, because their variances are inflated nearly twice as much as the variances at other time points. Table 5
reports the reciprocal 1/λt , the observed value Xt , the mean E(Xt), and the 95% CI of Xt for the two outliers. As the CIs do
not contain Xt , the daily ranges on 28 February 2007 and 5 August 2008 are indeed outlying.

6. Conclusions

This paper extends the GP model to the CARGPR model for range data to describe the persistence dynamics in the mean
function µt . The CARR-type range model is simpler than the GARCH and SV models, but yet it was shown to provide a
superior volatility forecast. The performance of the proposed CARGPR model was shown to exceed that of the CARR-type
models in four aspects: the accommodation of trendmovement using an explicit ratio parameter or function, the adoption of
heavy-tailed distributions such as the log-t distribution to describe different tail behavior, the use of the Bayesian approach
via the Bayesian softwareWinBUGS to simplify themodel implementation for non-experts, and, lastly, the representation of
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Table 5
Summary information for the outliers in Model 5.

t Date 1/λt Xt E(Xt ) 95% CI of Xt

214 February 28 2007 1.8021 3.5846 0.7378 (0.2455, 1.8676)
577 August 5 2008 1.7176 8.0839 1.8200 (0.6091, 4.4166)

the t-distribution in an SMN representation to facilitate the MCMC algorithm in the Bayesian simulation and enable outlier
detection. The simulation study shows that the CARGPR model provides highly accurate parameter estimates, particularly
when the sample size is large. In the empirical study using the AORD daily range data, the CARGPR model achieves a better
model fit and provides a sharper volatility forecast, confirming the superiority of the CARGPRmodel. Range data is sensitive
to outliers. For the CARGPR model, the product of the random jump indicator and the random jump size may be added to
υt to capture the spikes in a highly volatile financial times series. We believe that this will be a promising extension for
the CARGPR model. On the other hand, the choice of volatility measure from high-frequency data is of utmost importance
and should not be limited to the range measure. Perhaps the ‘‘realized volatility’’ of Fleming et al. (2003) may capture the
dynamics of intra-day price movement better, provide more precise estimates of volatility, and hence offer a better choice
than the range data for the CARGPR model. This is a worthwhile direction for further research. Moreover, an extension to a
multivariate CARGPR model that simultaneously models the mean and the ratio is also a promising issue for future study.
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Appendix

The full conditional distributions for the parameters in Model 5 are derived to facilitate the Gibbs sampling algorithm.
Define x = (x1, . . . , xn); βm = (βµ0m, βµ1m, βµ2m, βµ3m) (drop the redundant subscript j),m = 1, 2 indicate the GP model
before and after the threshold T2(T1 = 1) respectively; (s1, e1) = (1, T2 − 1) and (s2, e2) = (T2, n) indicate the start and
end times of the two GPs respectively; λ = (λ1, . . . , λn) and λ−t = (λ1, . . . , λt−1, λt+1, . . . , λn). The Gibbs sampler draws
realizations iteratively from the following conditional distributions:

f

ln(am)|βm, τ

2
m,λ, νm, T2, x


= N

−

em
t=sm+1

(t − Tm) [ln(xt)− vt ] τ 2m

em
t=sm+1

λt(t − Tm)2
,

τ 2m
em

t=sm+1
λt(t − Tm)2

 I(ln(0.95), ln(1.05))

f

βm|am, τ 2m,λ, νm, T2, x


∝

em
t=sm

N

ln(xt)

vt − (t − Tm) ln(am),
τ 2m

λt



f

τ 2m|am,βm,λ, νm, T2, x


= IG


n
2
,
1
2

n
t=1

λt [ln(xt)− vt + (t − Tm) ln(am)]2


f

λt |am,βm,λ−t , νm, T2, x


= IG


νm + 1

2
,
νm

2
+

1
2τ 2m

[ln(xt)− vt + (t − Tm) ln(am)]2


(20)

f

νm|am,βm,λ, T2, x


∝

em
t=sm

1
νm

G

λt

νm
2
,
νm

2


f

T2|am,βm,λm, νm, x


∝ Multinomial (π610, . . . , π630),

where πk =

k−1
t=1 fLN


xt |υt−ln(at−1

1 ),
τ21
λt

n
t=k fLN


xt |υt−ln(at−k

2 ),
τ22
λt


630

k′=610

k′−1
t=1 fLN


xt |υt−ln(at−1

1 ),
τ21
λt

n
t=k′ fLN


xt |υt−ln(at−k′

2 ),
τ22
λt

 , k = 610, . . . , 630,m = 1, 2,m = 1 I(t <

T2)+ 2I(t ≥ T2) in (20), and vt is given by (13). The algorithm of Robert (1995) can be used to simulate the random variate
ln(am) from a truncated normal distribution. The conditional distributions of βm and νm are non-standard, and random
variate generations from these full conditional distributions can be performed using Metropolis–Hastings algorithms.



Author's personal copy

J.S.K. Chan et al. / Computational Statistics and Data Analysis 56 (2012) 3006–3019 3019

References

Alizadeh, S., Brandt, M.W., Diebold, F.X., 2002. Range-based estimation of stochastic volatility models or exchange rate dynamics are more interesting than
you think. Journal of Finance 57, 1047–1092.

Andersen, T., Bollerslev, T., 1998. Answering the skeptics: yes, standard volatility models do provide accurate forecasts. International Economic Review 39,
885–905.

Andrews, D.F., Mallows, C.L., 1974. Scale mixtures of normal distributions. Journal of the Royal Statistical Society. Series B 36, 99–102.
Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307–328.
Chan, J.S.K., Lam, Y., Leung, D.Y.P., 2004. Statistical inference for geometric processes with gamma distributions. Computational Statistics & Data Analysis

47, 565–581.
Chan, J.S.K., Yu, P.L.H., Lam, Y., Ho, A.P.K., 2006. Modelling SARS data using threshold geometric process. Statistics in Medicine 25, 1826–1839.
Chen, C.W.S., Gerlach, R., Choy, S.T.B., Lin, C., 2010. Estimation and inference for exponential smooth transition nonlinear volatility models. Journal of

Statistical Planning and Inference 140, 719–733.
Chen, C.W.S., Gerlach, R., Lin, E.M.H., 2008. Volatility forecast using threshold heteroskedastic models of the intra-day range. Computational Statistics &

Data Analysis 52, 2990–3010 On Statistical & Computational Methods in Finance.
Chen, C.W.S., Lee, J.C., 1995. Bayesian inference of threshold autoregressive models. Journal of Time Series Analysis 16, 483–492.
Chiu, H.C., Wang, D., 2006. Using conditional autoregressive range model to forecast volatility of the stock indices. In: Proceedings of Joint Conference on

Information Science 2006. Atlantis Press.
Chou, R., 2005. Forecasting financial volatilities with extreme values: the conditional autoregressive range (CARR) model. Journal of Money, Credit and

Banking 37, 561–582.
Choy, S.T.B., Chan, J.S.K., 2008. Scale mixtures distributions in statistical modelling. Australian and New Zealand Journal of Statistics 50, 135–146.
Choy, S.T.B., Smith, A.F.M., 1997. Hierarchical models with scale mixtures of normal distribution. TEST 6, 205–221.
Feller, W., 1949. Fluctuation theory of recurrent events. Transactions of the American Mathematical Society 67, 98–119.
Fleming, J., Kirby, C., Ostdiek, B., 2003. The economic value of volatility timing using realized volatility. Journal of Financial Economics 67, 473–509.
Geweke, J., Terui, N., 1993. Bayesian threshold autoregressive models for nonlinear time series. Journal of Time Series Analysis 14, 441–454.
Gilks, W.R., Richardson, S., Spiegelhalter, D.J., 1996. Markov Chain Monte Carlo in Practice. Chapman and Hall, UK.
Hastings, W.K., 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109.
Hull, J., White, A., 1987. The pricing of options on assets with stochastic volatility. Journal of Finance 42, 281–300.
Lam, Y., 1988. Geometric process and replacement problem. Acta Mathematicae Applicatae Sinica 4, 366–377.
Lam, Y., Chan, J.S.K., 1998. Statistical inference for geometric processes with lognormal distribution. Computational Statistics & Data Analysis 27, 99–112.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., 1953. Equations of state calculations by fast computing machines. Journal of Chemical

Physics 21, 1087–1091.
Ntzoufras, I., 2009. Bayesian Modeling Using WinBUGS. Wiley, New Jersey, pp. 389–390.
Parkinson, M., 1980. The extreme value method for estimating the variance of the rate of return. Journal of Business 53, 61–65.
Robert, C.P., 1995. Simulation of truncated normal variables. Statistics and Computing 5, 121–125.
Smith, A.F.M., Roberts, G.O., 1993. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. Journal of the Royal

Statistical Society. Series B 55, 3–23.
Spiegelhalter, D., Best, N.G., Carlin, B.P., van der Linde, A., 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society.

Series B 64, 583–639.
Spiegelhalter, D., Thomas, A., Best, N.G., Lunn, D., 2004. Bayesian inference using Gibbs sampling for Window version (WinBUGS) version 1.4.1. The

University of Cambridge. www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml.
Tiwari, R.C., Cronin, K.A., Davis, W., Feuer, E.J., 2005. Bayesian model selection for joint point regression with application to age-adjusted cancer rates.

Applied Statistics 54, 919–939.
Tong, H., 1990. Nonlinear Time Series: A Dynamic System Approach. Oxford University Press, Oxford, UK.
Tong, H., Lim, K.S., 1980. Threshold autoregression, limit cycles and cyclical data (with discussion). Journal of the Royal Statistical Society. Series B 42,

245–292.


