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Abstract. To each automorphism of a spherical building there is naturally associated
an opposition diagram, which encodes the types of the simplices of the building that
are mapped onto opposite simplices. If no chamber (that is, no maximal simplex) of the
building is mapped onto an opposite chamber then the automorphism is called domestic.
In this paper we give the complete classification of domestic automorphisms of split
spherical buildings of types E6, F4, and G2. Moreover, for all split spherical buildings
of exceptional type we classify (i) the domestic homologies, (ii) the opposition diagrams
arising from elements of the standard unipotent subgroup of the Chevalley group, and
(iii) the automorphisms with opposition diagrams with at most 2 distinguished orbits
encircled. Our results provide unexpected characterisations of long root elations and
products of perpendicular long root elations in long root geometries, and analogues of
the density theorem for connected linear algebraic groups in the setting of Chevalley
groups over arbitrary fields.

Introduction

The study of the geometry of fixed elements of automorphisms of spherical
buildings is a well-established and beautiful topic (see [19]). Over the past
decade a complementary theory concerning the “opposite geometry”, consist-
ing of those elements mapped to opposite elements by an automorphism of a
spherical building, has been developed. A starting point for this theory is the
fundamental result of Abramenko and Brown [2, Proposition 4.2], stating that
if θ is a nontrivial automorphism of a thick spherical building then the oppo-
site geometry Opp(θ) is necessarily nonempty. Indeed the generic situation
is that Opp(θ) is rather large, and typically contains many chambers of the
building (chambers are the simplices of maximal dimension). The more spe-
cial situation is when Opp(θ) contains no chamber, in which case θ is called
domestic.

Domestic automorphisms have recently enjoyed extensive investigation, see
[14, 15, 16, 24, 25, 26, 31, 32]. Cumulatively these papers begin to illuminate
an as yet not fully understood connection between domesticity of an auto-
morphism, and a large rich fixed element structure of the automorphism. For
example, by [31] the domestic dualities of large E6 buildings are precisely the
polarities that fix a split building of type F4, and by [32] the domestic trial-
ities of D4 buildings are precisely the automorphisms fixing a split building

AMS subject classification: 20E42, 51E24, 51B25, 20E45.
Keywords: exceptional spherical buildings, opposition diagram, domestic automorphism.

2021/06/15 06:39



2 J. Parkinson and H. Van Maldeghem

of type G2. These remarkable connections underscore the importance of both
the opposite geometry and the notion of domesticity in the theory of spherical
buildings.

A systematic study of the opposite geometry was initiated in [15, 16], where
we developed the notion of an opposition diagram of an automorphism, encod-
ing the types of the simplices of the building that are mapped onto opposite
simplices by the automorphism. This concept gives a useful framework for
the study of the opposite geometry and domesticity. Indeed, a striking con-
sequence of the theory is that there are surprisingly few opposition diagrams
possible. The purpose of this paper (along with [17, 18]) is to classify, as much
as possible, the class of automorphisms having each opposition diagram, with
the focus of this paper being on split spherical buildings of exceptional type.

Let us briefly expand on the above concepts, before summarising our main
results. Suppose that ∆ is an irreducible split spherical building with Dynkin
diagram Γ. The opposition diagram Diag(θ) of an automorphism θ of ∆ is
drawn by encircling the nodes of Γ corresponding to the types of the minimal
simplices of ∆ that are mapped onto opposite simplices by θ.

For example, the diagram

• • • • • • •

•

represents an automorphism of an E8 building mapping vertices of types
1, 6, 7, 8, and no vertices of other types, to opposite vertices (we adopt Bour-
baki labelling [4]). A priori, there could be 28 possible opposition diagrams
for automorphisms of E8 buildings, however it is a remarkable fact that there
are only 5 diagrams possible. The idea behind the proof of this fact, from
[15, 16], is as follows. Suppose first that ∆ is a large spherical building of rank
at least 3 (meaning that ∆ has no Fano plane residues). In [15, Theorem 1] we
showed that every automorphism θ of ∆ satisfies the following closure prop-
erty: If there exist type J1 and J2 simplices in Opp(θ), then there exists a
type J1 ∪ J2 simplex in Opp(θ). Such automorphisms are called capped, and
this highly nontrivial property imposes severe constraints on the structure
of opposition diagrams. For small spherical buildings it turns out that auto-
morphisms are not necessarily capped, however the same constraints on the
opposition diagrams exist for other reasons (see [16]).

We call a diagram satisfying the constraints imposed by cappedness an
admissible diagram. The precise constraints are not required here (see [15,
§2.1] for details), as it is sufficient for our purpose to simply give the complete
list of admissible Dynkin diagrams of exceptional type:
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2E6;0 = • •
•

•

•

• 2E6;1 = • •
•

•

•

• 2E6;2 = • •
•

•

•

•

2E6;4 = • •
•

•

•

•

E6;2 = • • • • •

•

E6;6 = • • • • •

•

E7;0 = • • • • • •

•

E7;1 = • • • • • •

•

E7;2 = • • • • • •

•

E7;3 = • • • • • •

•

E7;4 = • • • • • •

•

E7;7 = • • • • • •

•

E8;0 = • • • • • • •

•

E8;1 = • • • • • • •

•

E8;2 = • • • • • • •

•

E8;4 = • • • • • • •

•

E8;8 = • • • • • • •

•

F4;0 = • • • • F1
4;1 = • • • • F4

4;1 = • • • •

F4;2 = • • • • F4;4 = • • • •

G2;0 = • • G1
2;1 = • • G2

2;1 = • • G2;2 = • •

Figure 1: The admissible Dynkin diagrams of exceptional type.

To summarise, if θ is an automorphism of a split spherical building of excep-
tional type, then the opposition diagram of θ is one of the diagrams listed in
Figure 1. Uncapped automorphisms are studied in [16], and so for the remain-
der of this introduction we consider capped automorphisms (for example, if
∆ is large then all automorphisms are capped). In this case, automorphisms
with “full” opposition diagrams (in which all nodes are encircled) are neces-
sarily not domestic, and hence are not discussed further here. Moreover, the
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“empty” diagrams with no nodes encircled correspond precisely to the triv-
ial automorphisms (because as mentioned above, Opp(θ) is nonempty for a
nontrivial automorphism), and hence are also of little interest here. Further-
more, automorphisms with diagram E6;2 have been completely classified in
[32] (for large buildings) and [16] (for small buildings). This leaves us with 14
remaining diagrams.

The following terms will be defined more systematically in later sections,
however for the purpose of this introduction, and in order to state our main
results, we define:
(1) The polar diagrams to be the diagrams 2E6;1,E7;1,E8;1, F1

4;1,G
2
2;1;

(2) The polar-copolar diagrams to be the diagrams 2E6;2, E7;2, E8;2, F4;2;
(3) The polar closed diagrams to be all diagrams except E6;2,E6;6, F4

4;1,G
1
2;1.

We consider split spherical buildings arising from a Chevalley group G =
GΦ(F) associated to a crystallographic root system Φ, with F a field. For the
purpose of this introduction, unless stated explicitly otherwise we will assume
that the characteristic of F is not “special” (meaning char(F) , 2 for F4, and
char(F) , 3 for G2). By a root elation we mean an element, in Chevalley
generators, conjugate to xα (a) for some root α ∈ Φ and some a , 0. In the
non-simply laced case we talk of long and short root elations, and in the simply
laced case all roots are considered long. Root elations xα (a) and xβ (b) are
perpendicular if α and β are perpendicular roots. A positive root elation is an
element xα (a) with α ∈ Φ+, where Φ+ is a fixed choice of positive roots of Φ.
By a homology we mean an element conjugate to an element of the torus H.

With these definitions and conventions, a summary of the main results of
this paper is as follows. We first give a complete classification of automor-
phisms with polar opposition diagram.

Theorem 1 An automorphism of a split spherical building of exceptional type
has polar opposition diagram if and only if it is a long root elation.

In fact, some aspects of our analysis of long root elations applies to all
Moufang spherical buildings, and leads to various corollaries, including the
following.

Corollary 2 Every irreducible Moufang spherical building, other than a
projective plane, admits a nontrivial domestic collineation.

Corollary 3 Let G be the collineation group of a Moufang spherical building
∆ of type other than An. There exists a nontrivial conjugacy class C in G
which is not transitive on the set of vertices of ∆ of type s, for any s ∈ S.

In the case of Ree-Tits octagons, Corollary 2 corrects a misunderstanding
from [11] (see Remark 2.3), and Corollary 3 answers a question asked to us
by Barbara Baumeister.
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The classification of automorphisms with polar opposition diagram can be
extended to the polar-copolar diagrams in certain cases. We prove:

Theorem 4 A collineation of a large split spherical building of type E7, E8,
or F4 has polar-copolar opposition diagram if and only if it is a product of
two perpendicular long root elations. Moreover, for the E7 and E8 cases the
collineations with polar-copolar diagram form a single conjugacy class.

See Theorem 7 below for more details on the conjugacy classes in type
F4. Also we note that the “if” part of Theorem 4 holds for the E6 case too,
however the “only if” part fails, as there exist homologies with diagram 2E6;2
(see Theorems 6 and 8 below).

Our next main theorem classifies the opposition diagrams of elements of
the unipotent subgroup U+ generated by the positive root elations.

Theorem 5 Let ∆ be a split spherical building with root system Φ of excep-
tional type. An admissible Dynkin diagram X of type Φ can be obtained as the
opposition diagram of a product of positive root elations of ∆ if and only if X
is polar closed.

Moreover we provide an algorithm to write down, for each polar closed
diagram X, an element θ ∈ U+ with opposition diagram X. In fact it turns out
that every polar closed diagram can be obtained as the opposition diagram of
a product of mutually perpendicular positive root elations.

Next we give a complete classification of domestic homologies for split
exceptional buildings. This classification is in terms of the type of the thick
frame of the fixed subbuilding of the automorphism (c.f. [20]). We summarise
the statement below (see Section 4 for explicit conjugacy class representatives
for each case).

Theorem 6 Let θ be a nontrivial homology of a split spherical building of
exceptional type Φ, and let Φ′ be the type of the thick frame of the subbuilding
fixed by θ. Then θ is domestic if and only if
(1) Φ = E6 and Φ′ = D5, in which case Diag(θ) = 2E6;2;
(2) Φ = E7 and Φ′ = E6,D6,D6 ×A1, in which case Diag(θ) = E7;3,E7;4,E7;4

(respectively);
(3) Φ = E8 and Φ′ = E7,E7 ×A1, in which case Diag(θ) = E8;4;
(4) Φ = F4 and Φ′ = B4, in which case Diag(θ) = F4

4;1;
(5) Φ = G2 and Φ′ = A2, in which case Diag(θ) = G1

2;1.

We also completely classify domestic automorphisms of split buildings of
types E6, F4, and G2. For this introduction, let us state the result for F4 over
quadratically closed fields and finite fields, both of characteristic not 2 (see
Subsection 6.1 for statements applying to all fields).
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6 J. Parkinson and H. Van Maldeghem

Theorem 7 Let ∆ be the split spherical building of G = F4(F) with char(F) ,
2. If F is quadratically closed (respectively finite) then there are precisely 3
(respectively 4) conjugacy classes of domestic collineations, consisting of
(1) the class of long root elations, with opposition diagram F1

4;1;
(2) the class of homologies fixing a subbuilding with thick frame of type B4,

with opposition diagram F4
4;1;

(3) one (respectively two) class(es) of products of two perpendicular long root
elations, with opposition diagram F4;2.

For the E6 case, domestic automorphisms of small buildings are already
classified in [16, Theorems 4.5 and 4.6], and domestic dualities of large
buildings are classified in [32]. Thus by Theorem 1 and the classification of
admissible diagrams the remaining task is to classify the collineations of large
E6 buildings with diagram 2E6;2. It turns out that the only examples are those
described by Theorems 5 and 6, and thus we have:

Theorem 8 Let ∆ be a large building of type E6.
(1) A duality of ∆ is domestic if and only if it is a symplectic polarity (that is,

a duality fixing a split building of type F4), in which case it has opposition
diagram E6;2.

(2) A collineation of ∆ is domestic if and only if it is either
(a) a root elation, with opposition diagram 2E6;1,
(b) a product of two perpendicular root elations, with opposition diagram

2E6;2, or
(c) a homology fixing a subbuilding with thick frame of type D5, with

opposition diagram 2E6;2.

We complete the analysis by classifying domestic automorphisms of split G2
buildings. Since no duality of a G2 building is domestic [14, Theorem 2.7] it
suffices to consider collineations.

Theorem 9 Let ∆ be the building of G2(F). There exists a unique conjugacy
class C1 of collineations with opposition diagram G2

2;1, and a unique conjugacy
class C2 of collineations with opposition diagram G1

2;1. The elements of C1 are
long root elations, and the elements of C2
(1) are short root elations if char(F) = 3;
(2) are homologies fixing a large full subhexagon if char(F) , 3 and z2 + z + 1

splits over F;
(3) fix a distance 3-ovoid if z2 + z + 1 is irreducible over F.

Consequently, the results of this paper (along with [32] for the E6;2 diagram)
culminate in the classification of automorphisms of split spherical buildings
of exceptional type having each non-full opposition diagram, with the excep-
tion of the 3 diagrams E7;3, E7;4, and E8;4. In these remaining cases we have
provided examples of both unipotent elements and homologies with the given
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Automorphisms and opposition in exceptional spherical buildings, I 7

diagram (in Theorems 5 and 6). It turns out that for certain fields there also
exist automorphisms with these opposition diagrams fixing no chamber of
the building (hence these automorphisms are neither unipotent elements nor
homologies). The description and classification of these automorphisms will
be continued in future work [18].

We note that the results of this paper, combined with those of [17] for the
classical cases, show that every admissible Dynkin diagram can be obtained as
the opposition diagram of an automorphism of a split spherical building. As
discussed in [17], this statement is false for certain non-split buildings. More
precisely, we have the following corollary.

Corollary 10 Let ∆ be a split spherical building of type Φ. Every admissible
Dynkin diagram of type Φ is the opposition diagram of some automorphism of
∆. Moreover, with only one exception, such an automorphism can be chosen
such that it fixes a chamber of the building. This exception is the diagram G1

2;1
in the case that the polynomial z2 + z + 1 is irreducible over the underlying
field F.

Finally, our results translate into group theoretic statements concerning
conjugacy classes in Chevalley groups of exceptional type. To put these results
into context, recall that by the Density Theorem (see [10, Section 22.2]), if
G is a connected linear algebraic group over an algebraically closed field then
the union of all conjugates of a Borel subgroup B is equal to G. Equivalently,
if C is a conjugacy class in G then C ∩ B , ∅. This theorem is a cornerstone
in the theory of algebraic groups, for example simple corollaries include the
important facts that the centres of G and B coincide, and that the Cartan
subgroups of G are precisely the centralisers of maximal tori.

The statement of the Density Theorem is clearly false in the general setting
of a Chevalley group G over an arbitrary field, as there typically exist elements
θ ∈ G fixing no chamber of the building ∆ = G/B. However our classification
theorems allow us to provide analogues in this setting, showing that every
conjugacy class in G intersects a union of a very small number of B-double
cosets. For the purpose of this introduction we provide two examples; see
Subsection 6.4 for further related statements.

Corollary 11 Let G be the Chevalley group of type E6 or F4 over a field F,
and let C be a conjugacy class in G. Then C ∩ (B ∪ Bw0B) , ∅.

The statement of Corollary 11 fails for buildings of types E7 and E8 (see
Remark 6.16). Moreover, it is not true that C ∩ Bw0B , ∅ for all nontrivial
conjugacy classes. In fact, we have the following very general corollary of our
results.
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8 J. Parkinson and H. Van Maldeghem

Corollary 12 Let G be the group of type preserving automorphisms of a
Moufang spherical building not of type A2. There exists a nontrivial conjugacy
class C with C ∩ Bw0B = ∅.

Let us conclude this introduction with an outline of the structure of the
paper. In Section 1 we provide background on buildings, Chevalley groups,
admissible diagrams, and prove some basic lemmas for later use. In Section 2
we give the classification of automorphisms of split buildings with polar oppo-
sition diagram, proving Theorem 1 and Corollaries 2 and 3. Most of the
arguments of this section are built around commutator relations in the Cheval-
ley group, and we also discuss geometric characterisations of the polar diagram
in the E6,1 and E7,7 Lie incidence geometries, and analyse short root elations
in the non-simply laced case.

In Section 3 we define polar closed diagrams, and present an algorithm
for constructing unipotent elements with each polar closed diagram (proving
Theorem 5). Most of the arguments here are algebraic, however to complete
the proof it is necessary to show that automorphisms with diagram F4

4,1 are
necessarily homologies (for char(F) , 2), and we achieve this by arguing
geometrically in the Lie incidence geometry F4,4(F).

Section 4 gives the complete classification of domestic homologies for split
exceptional buildings (proving Theorem 6), making use of Scharlau’s classifi-
cation [20] of non-thick spherical buildings. In Section 5 we prove Theorem 4
using geometric arguments involving various Lie incidence geometries.

Finally, in Section 6 we provide the complete classification of domestic
collineations for split buildings of types E6, F4, and G2, proving Theorems 7,
8, and 9, and Corollaries 10, 11, and 12. We conclude with an appendix listing
some relevant root system data for exceptional types. This data is useful
at various stages of this paper, for example when performing commutator
relations, or in Section 4 when classifying domestic homologies.

1 Background and definitions

In this section we give a brief account of root systems, Chevalley groups and
split spherical buildings, with our main references being [4, 5, 23] (for root
systems and Chevalley groups), and [1, 28] (for buildings). We also recall the
notions of admissible diagrams and opposition diagrams from [15, 16], and
record some basic lemmas for later use.

1.1 Root systems and Chevalley groups

Let Φ be a reduced irreducible crystallographic root system in an n-
dimensional real vector space V with inner product 〈·, ·〉, with α1, . . . , αn a
choice of simple roots and Φ+ the associated positive roots. We will adopt the
standard Bourbaki labelling [4] of the simple roots. Let α∨ = 2α/〈α, α〉. Let
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Automorphisms and opposition in exceptional spherical buildings, I 9

ω1, . . . , ωn be the fundamental coweights, defined by 〈ωi, α j 〉 = δi, j . Let

Q = Zα∨1 + · · · + Zα
∨
n and P = Zω1 + · · · + Zωn

be the coroot lattice and coweight lattice, respectively, and note that Q ⊆ P.
Let Γ = Γ(Φ) denote the Dynkin diagram of Φ (with the arrow pointing

towards the short root in the case of double and triple bonds). The Coxeter
diagram of Φ is obtained by removing all arrows from Γ. The height of a root
α = k1α1 + · · · + knαn is ht(α) = k1 + · · · + kn . There is a unique root ϕ ∈ Φ
of maximal height (the highest root of Φ). The polar type of Φ is the subset
℘ ⊆ {1, 2, . . . , n} given by

℘ = {1 ≤ i ≤ n | 〈αi, ϕ〉 , 0}.

See Appendix A for the list of polar types. In particular, note that if Φ , An

then ℘ = {p} is a singleton set, and in this case we often refer to the element
p as the polar node.

Let W = 〈sα | α ∈ Φ〉 be the subgroup of GL(V ) generated by the reflections
sα , where

sα (λ) = λ − 〈λ, α〉α∨ for λ ∈ V .

Let S = {s1, . . . , sn }, where si = sαi . Then (W, S) is a spherical Coxeter system.
Writing ` : W → Z≥0 for the usual length function on W , it is a well known
fact that in the simply laced case, `(sα ) = 2ht(α) − 1.

Let w0 denote the longest element of (W, S), and let π0 : {1, . . . , n} →
{1, . . . , n} be the opposition relation given by w0αi = −απ0 (i) for 1 ≤ i ≤ n. We
typically regard π0 as an automorphism of the Dynkin diagram Γ, and we say
that “opposition is type preserving” if π0 is the identity. If J ⊆ S let wJ be the
longest element of the parabolic subgroup WJ generated by J.

The inversion set of w ∈ W is Φ(w) = {α ∈ Φ+ | w−1α ∈ −Φ+}. We note that
the inversion set of the highest root ϕ is

Φ(sϕ ) = {α ∈ Φ+ | 〈α,ωi〉 > 0 for some i ∈ ℘}, (1.1)

which follows directly from the equation sϕ (α) = α − 〈α, ϕ∨〉ϕ.
Let F be a field, and let G0 = G0(Φ, F) be the associated adjoint Chevalley

group. Thus G0 is generated by elements xα (a) with α ∈ Φ and a ∈ F, and
writing (for α ∈ Φ and c ∈ F×)

sα (c) = xα (c)x−α (−c−1)xα (c) and hα∨ (c) = sα (c)sα (1)−1

the following relations hold (for a, b ∈ F, α, β ∈ Φ with β , ±α, and c, d ∈ F×)

xα (a)xα (b) = xα (a + b)
hα∨ (c)hα∨ (d) = hα∨ (cd)

xα (a)xβ (b) = xβ (b)xα (a)
∏

xiα+ jβ (Ci, j
α,βaibj ),

where the product is taken over i, j ≥ 1 with iα + j β ∈ Φ in any fixed
order, and the elements Ci, j

α,β are integers (depending on the order chosen
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10 J. Parkinson and H. Van Maldeghem

in the product). For example, in the simply laced case these commuta-
tor relations take the form xα (a)xβ (b) = xβ (b)xα (a) (if α + β < Φ) or
xα (a)xβ (b) = xβ (b)xα (a)xα+β (Cα,βab) for some integer Cα,β (if α + β ∈ Φ),
and it turns out that in this case Cα,β = ±1.

The above relations imply the following useful formula (for α, β ∈ Φ and
a ∈ F)

sα (1)xβ (a)sα (1)−1 = xsαβ (εαβa)

where εαβ = ±1 depend on some initial choices made in the Lie algebra (see [5,
Proposition 4.2.2]). For many calculations it is sufficient to simply know that
εαβ ∈ {−1, 1}, however when more precise knowledge is required we will adopt
the sign conventions from the Groups of Lie Type package in Magma [3, 6].

Let G = G(Φ, F) be the subgroup of Aut(G0) generated by the inner auto-
morphisms G0 and the diagonal automorphisms, as in [22, 8]. Thus G is
generated by G0 and elements hλ (c) with λ ∈ P and c ∈ F×, and the following
relations hold (for a ∈ F, c, d ∈ F×, α, β ∈ Φ, and λ, µ ∈ P)

hλ (c)hµ (d) = hµ (c)hλ (d) hλ (c)hλ (d) = hλ (cd)

hλ (c)xα (a)hλ (c)−1 = xα (ac〈λ,α〉) sα (1)hλ (d)sα (1)−1 = hsαλ (d).

For each α ∈ Φ we write Uα = 〈xα (a) | a ∈ F〉 and U+ = 〈Uα | α ∈ Φ
+〉. Let

N = 〈sα (c) | α ∈ Φ, c ∈ F×〉
H = 〈hλ (c) | λ ∈ P, c ∈ F×〉

B = 〈U+, H〉 = HU+.

The subgroup B is often called the (standard) Borel subgroup. We have H =
B ∩ N , and (B, N ) is a BN-pair in G with Weyl group N/H � W , where

sα (c)H 7→ sα for all c ∈ F×.

We often write wH (or wB) in place of nH (or nB) whenever n ∈ N with
nH 7→ w. In fact we will frequently write sα in place of sα (1) when there is
no risk of confusion, however note that sα ∈ G is typically not an involution.

The Bruhat decomposition gives

G =
⊔
w∈W

BwB.

For subsets A ⊆ Φ+ we write U+A = 〈xα (a) | α ∈ A, a ∈ F〉. A subset A ⊆
Φ+ is closed if α, β ∈ A and α + β ∈ Φ implies that α + β ∈ A. It is a
fundamental fact that if A ⊆ Φ+ is closed, and if (β1, . . . , βk ) is a fixed choice
of ordering of the elements of A, then each u ∈ U+A has a unique expression
as u = xβ1 (a1) · · · xβk (ak ) for some a1, . . . , ak ∈ F (see [23, Lemma 17]). In
particular, since the set A = Φ(w) is closed the B cosets in BwB are precisely

xβ1 (a1) · · · xβk (ak )wB, ,with a1, . . . , ak ∈ F, (1.2)

where Φ(w) = {β1, . . . , βk }.
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We also note that

BwB · BsB =



BwsB if `(ws) = `(w) + 1
BwB ∪ BwsB if `(ws) = `(w) − 1,

(1.3)

see [5, Proposition 8.1.5].
Let U− = 〈Uα | α ∈ −Φ

+〉. Throughout this paper we often need to convert
an element in U− to an expression in BwB for some w. To do so, we make
frequent use of the relation (for a , 0)

x−α (a) = xα (a−1)sα (−a−1)xα (a−1) = xα (a−1)sα xα (a)hα∨ (−a) (1.4)

(which follows from the definition of sα (a)). We call this the folding relation,
due to connections with path models in algebraic combinatorics (see [13]).

We say that F has “special characteristic” if char(F) = 2 for Φ = Bn,Cn, F4,
or char(F) = 3 for Φ = G2. Often these cases behave differently due to
additional symmetries being present.

We record some basic lemmas for later use.

Lemma 1.1 Let β1, . . . , βN ∈ Φ
+ be mutually perpendicular roots. Then

x−β1 (a1) · · · x−βN (aN ) ∈ Bsβ1 · · · sβN B for all a1, . . . , aN , 0.

Proof Let U+
k
= 〈Uβ1, . . . ,Uβk 〉 for 1 ≤ k ≤ N . We show, by induction, that

x−β1 (a1) · · · x−βN (aN ) ∈ U+N sβ1 · · · sβN U+N H .

The case N = 1 is the folding relation (1.4). By the induction hypothesis, and
the folding relation, for k > 1 we have

xβ1 (a1) · · · xβk (ak ) = usβ1 · · · sβk−1u′h · xβk (a−1k )sβk xβk (ak )hβ∨
k

(−ak )

for some u, u′ ∈ U+
k−1, h ∈ H. Since hxβk (a−1

k
)sβk xβk (ak ) = xβk (a)sβk xβk (b)h

for some a, b ∈ F and sβ1 · · · sβk−1u′xβk (a) = xβk (±a)sβ1 · · · sβk−1u′ (as βk is
orthogonal to β1, . . . , βk−1) we have

xβ1 (a1) · · · xβk (ak ) = uxβk (±a)sβ1 · · · sβk−1u′ · sβk xβk (b)hhβ∨
k

(−ak ).

Similarly, u′sβk = sβk u′, and hence the result. �

Lemma 1.2 Let Φ have rank n, and suppose that the opposition relation
is type preserving. If β1, . . . , βn ∈ Φ

+ are mutually perpendicular roots then
sβ1 · · · sβn = w0.

Proof Since β1, . . . , βn are mutually perpendicular the product sβ1 · · · sβn

acts by −1 on the vector space V . Since opposition is type preserving, the
longest element w0 also acts by −1 (mapping αi to −αi for all simple roots),
hence the result. �
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12 J. Parkinson and H. Van Maldeghem

Lemma 1.3 Let Φ be a root system of type E6 in a vector space V , and let
σ : V → V be the involution with σ(αi ) = απ0 (i) for 1 ≤ i ≤ 6. Suppose
that β1, β2, β3, β4 ∈ Φ

+ are mutually perpendicular roots with σ(βi ) = βi for
i = 1, 2, 3, 4. Then sβ1 sβ2 sβ3 sβ4 = w0.

Proof Let w = sβ1 sβ2 sβ3 sβ4 . Let V ′ = {v ∈ V | σ(v) = v}. Then V ′ is 4-
dimensional, and since β1, β2, β3, β4 ∈ V ′ are mutually perpendicular we have
sβ1 · · · sβ4 |V ′ = −1. In particular, α2, α4 ∈ Φ(w−1). Moreover, since wα6 =

wσ(α1) = σ(wα1) (because σ commutes with each reflection sβ with β ∈ V ′)
we have wα1 ∈ Φ

+ if and only if wα6 ∈ Φ
+. But α1 + α6 ∈ V ′, and so

w(α1 + α6) = −α1 − α6. It follows that α1, α6 ∈ Φ(w−1), and similarly α3, α5 ∈

Φ(w−1). Thus α1, . . . , α6 ∈ Φ(w−1), and so w = w0. �

1.2 Split spherical buildings

We assume that the reader is already familiar with the basic theory of build-
ings, and our main reference for the general theory is [1]. By a split spherical
building we shall mean a building associated to a Chevalley group via the stan-
dard BN-pair construction. It is easiest to define this building as a W -metric
space (c.f. [1, Chapter 5]), as follows.

Definition 1.4 The split spherical building ∆ = ∆Φ(F) associated to G =
GΦ(F) has chamber set ∆ = G/B and Weyl distance function given by

δ(gB, hB) = w if and only if g−1h ∈ BwB.

Chambers c, d ∈ ∆ are s-adjacent (with s ∈ S) if δ(c, d) = s, and are adjacent
if they are s-adjacent for some s ∈ S.

In particular, if c = gB is a chamber of ∆, then by (1.2) the set of chambers
d ∈ ∆ with δ(c, d) = w is precisely

g · {xβ1 (a1) · · · xβk (ak )wB | a1, . . . , ak ∈ F} where Φ(w) = {β1, . . . , βk }.

An automorphism of ∆ is an adjacency preserving bijection θ : ∆→ ∆. Each
automorphism θ of ∆ induces an automorphism πθ of the Coxeter diagram by
δ(c, d) = s if and only if δ(θ(c), θ(d)) = πθ (s). We say that θ is a collineation
(or type preserving) if πθ = id, and a duality if πθ has order 2.

By [28, Corollaries 5.9 and 5.10] (and using [8, 22]), every automorphism
θ of ∆ is of the form θ = g ◦ π ◦ σ, where g ∈ G, π = πθ is a Dynkin diagram
automorphism, and σ is a field automorphism (in the special characteristic
case π is a Coxeter diagram automorphism). Note that the “diagonal automor-
phisms” are already built into G. By the Bruhat decomposition, each element
g ∈ G can be written as g = uwb with u ∈ U+, w ∈ W , and b ∈ B, and so each
automorphism of ∆ can be written as θ = uwb ◦ π ◦ σ. If σ is trivial, we say
that θ is linear.

By a root elation we shall mean an automorphism θ conjugate to xα (a)
for some α ∈ Φ and a ∈ F×, and we call θ a long (respectively short) root
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Automorphisms and opposition in exceptional spherical buildings, I 13

elation if α is a long (respectively short) root. By a homology we shall mean
an automorphism θ conjugate to a nontrivial element hλ (c) with λ ∈ P and
c ∈ F×.

We often regard ∆ as a simplicial complex in the standard way (c.f. [1,
Chapter 4]). Let us briefly describe this conversion in a group theoretic way
in the split context. For subsets J ⊆ S let

PJ =
⋃

w∈WJ

BwB

be the standard parabolic subgroup of G of type J. For each nonempty J ⊆ S
the set of “type J-simplices” of the building is the set of cosets G/PS\J , and
the simplicial complex structure is given by reverse containment of cosets.
For example, in the simplicial complex language the chamber B “contains”
the simplices PS\J for all nonempty J ⊆ S, whereas on the level of cosets it is
in fact the parabolic subgroups PS\J that contain the Borel subgroup B.

If J = {s} is a singleton we often write

Ws = WS\J and Ps = WS\J (1.5)

for the standard parabolic subgroups of W and G of type S\J. Moreover, if
s = si we will often write Wsi = Wi and Psi = Pi .

Let τ(x) ⊆ S denote the type of the simplex x of ∆. Thus vertices are
simplices x with τ(x) = {s} for some s ∈ S, and chambers are the simplices x
with τ(x) = S. A panel is a codimension 1 simplex; that is, τ(x) = S\{s} for
some s ∈ S.

Note that we use the same symbol ∆ for the building regarded as either
a set of chambers with a Weyl distance function (as in Definition 1.4) or as
a simplicial complex (as outlined above). No confusion will arise from this
convention.

1.3 Opposition diagrams and admissible diagrams

Chambers c, d ∈ ∆ are opposite one another if and only if δ(c, d) = w0. If
x, y are simplices, with types J, K respectively, then x and y are opposite one
another if and only if K = π0(J) and there exist opposite chambers c, d with
x ⊆ c and y ⊆ d. That is, simplices are opposite one another if they have
opposite types, and are contained in opposite chambers. In terms of double
cosets, chambers c = gB and d = hB are opposite if and only if g−1h ∈ Bw0B,
and simplices x = gPS\J and y = hPS\K are opposite if and only if K = π0(J)
and g−1h ∈ PS\Jw0PS\K .

Let θ be an automorphism of ∆. Recall, from the introduction, that Opp(θ)
denotes the set of all simplices x such that xθ is opposite x. The type Typ(θ)
of θ is the union of all subsets J ⊆ S such that there exists a type J simplex
mapped to an opposite simplex by θ. The opposition diagram of θ is the triple
(Γ,Typ(θ), πθ ).

Less formally, the opposition diagram of θ is depicted by drawing Γ and
encircling the nodes of Typ(θ), where we encircle nodes in minimal subsets
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14 J. Parkinson and H. Van Maldeghem

invariant under π0 ◦ πθ . We draw the diagram “bent” (in the standard way) if
π0 ◦ πθ , id. For example, consider the diagrams

X = • •
•

•

•

•
and Y = • • • • •

•

Diagram X represents a collineation θ of an E6 building with Typ(θ) = {1, 2, 6},
and diagram Y represents a duality of an E6 building with Typ(θ) = {1, 6}.

An automorphism θ is domestic if Opp(θ) contains no chamber (that is, θ
maps no chamber to an opposite chamber). More generally, if J ⊆ S then θ is
J-domestic if no type J simplex is mapped onto an opposite simplex by θ. To
avoid trivialities, the definition of J-domesticity is restricted to subsets J with
π0(J) = πθ (J) (for if J does not satisfy this, then θ is J-domestic for trivial
reasons).

An automorphism θ is called capped if the following closure property holds:
If there exist type J1 and J2 simplices in Opp(θ), then there exists a type
J1 ∪ J2 simplex in Opp(θ). Equivalently, θ is capped if and only if there exists
a type Typ(θ) simplex in Opp(θ). By [15, Theorem 1] every automorphism
of a “large” spherical building of rank at least 3 is capped, where a building
is called large if it contains no Fano plane residues (for split buildings this
simply means |F| > 2).

In [15, 16] we showed that the opposition diagrams of automorphisms of
spherical buildings satisfy various restrictive properties, and we used these
properties to determine a list of all possible opposition diagrams. We call
the diagrams (Γ, J, π) in this list admissible Dynkin diagrams (more precisely,
in [15, 16] we considered Coxeter diagrams rather than Dynkin diagrams,
however the arguments are nearly identical).

The complete list of admissible Dynkin diagrams of exceptional type is
given in Figure 1 (taken from [15]). Each admissible diagram (Γ, J, π) of
exceptional type is denoted by a symbol

tXn;i or tXk
n;i

where
(1) X ∈ {E, F,G} is the type of Γ, and n is the rank;
(2) t ∈ {1, 2} is the order of the graph automorphism π0 ◦ π (the “twisting”);
(3) i is the number of distinguished orbits contained in J; and
(4) k is an additional index occurring only for F4 and G2 in the case that a

single node is encircled, in which case k is the type of this node.
In the case t = 1 (that is, when π0 ◦ π = id) we usually omit the t from the
notation, writing simply 1Xn;i = Xn;i . For example, the diagrams X and Y
given above are X = 2E6;2 and Y = E6;2. Similar notation is introduced in [17]
for the classical types (except with a different meaning for the index k).

2021/06/15 06:39



Automorphisms and opposition in exceptional spherical buildings, I 15

In special characteristic one often ignores the arrows on Dynkin diagrams,
thus giving the additional admissible (Coxeter) diagrams in Figure 2.

2G2;1 =
•

•
and 2F4;2 =

•

•

•

•

Figure 2: Additional admissible diagrams for special characteristic.

Summarising the above discussion, we have the following from [15, 16].

Theorem 1.5 If θ is an automorphism of a spherical building of exceptional
type, then the opposition diagram of θ is listed in Figures 1 or 2.

A striking feature of Theorem 1.5 is that there are very few possible oppo-
sition diagrams. We note that the analysis in [15, 16] does not prove the
converse to Theorem 1.5. That is, a priori there may be redundancies in the
list of admissible diagrams, in the sense that some admissible diagrams may
not actually be the opposition diagram of any automorphism of any spherical
building. It is a consequence of the work of this paper, combined with [17],
that no such redundancies exist – more precisely, Corollary 10 holds.

We call an admissible diagram empty if no nodes are encircled, and full if
all nodes are encircled. We call an admissible diagram (Γ, J, π) type preserving
if π = id. By inspection of the list in Figure 1 we note that for each Dynkin
diagram Γ the type preserving diagram (Γ, ℘, id) (with ℘ the polar type) is
admissible. This diagram is called the polar diagram.

The polar-copolar diagram is the type preserving admissible diagram with
J = ℘ ∪ ℘∗, where ℘∗ is the polar type of the type S\℘ residue (we call ℘∗
the copolar type; again, by inspection of Figure 1 the triple (Γ, ℘ ∪ ℘∗, id)
is always an admissible diagram). See Appendix A for the list of polar and
copolar types. Alternatively, the polar-copolar diagrams of exceptional type
are characterised as the type preserving diagrams in which exactly two orbits
of nodes are encircled. Specifically, the polar diagrams of exceptional type are
2E6;1, E7;1, E8;1, F1

4;1, and G2
2;1, and the polar-copolar diagrams are 2E6;2, E7;2,

E8;2, F4;2, and G2;2.
Every duality of a thick G2 (respectively F4) building has opposition dia-

gram 2G2;1 (respectively 2F4;2), and no such dualities are domestic (see [14,
Theorem 2.7] and [15, Lemma 4.1]). We note that dualities of split F4 and G2
buildings only exist for perfect fields of special characteristic.

1.4 Basic techniques

It is generally rather difficult to prove that a given automorphism is domestic,
and more challenging to compute its opposition diagram. In this section we
describe some of the techniques that we will use in this paper.
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16 J. Parkinson and H. Van Maldeghem

The displacement of an automorphism θ is

disp(θ) = max{`(δ(c, cθ )) | c ∈ ∆}.

Thus θ is domestic if and only if disp(θ) < `(w0). Moreover, by [16,
Corollary 2.29] we have, with J = Typ(θ),

disp(θ) =



`(wS\Jw0) if θ is capped
`(wS\Jw0) − 1 if θ is uncapped.

Uncapped automorphisms will not play a significant role here, so assume that
θ is capped. By the above comments, and the classification of admissible
diagrams, the list of possible displacements of θ is very restricted. For example,
for a capped automorphism of an E7 building, the displacements for the non-
full non-empty opposition diagrams are:

33 for E7;1, 50 for E7;2, 51 for E7;3, 60 for E7;4.

Thus, for example, to show that a capped automorphism θ of an E7 building:
(1) is not domestic, it is sufficient to show that disp(θ) > 60;
(2) has opposition diagram E7;3 it is sufficient to show that disp(θ) < 60 and

that there is a type {1, 6, 7} simplex mapped to an opposite (in fact, from
the classification of diagrams, it would be sufficient to show that there is
a type 7 vertex mapped to an opposite).

Such arguments will be used on multiple occasions throughout the paper.
The following lemma is useful to compute displacement, and Corollary 1.7

is useful to prove J-domesticity.

Lemma 1.6 Let θ be an automorphism of a thick spherical building ∆, and
let N = disp(θ). Let c be any chamber. Suppose that either
(1) each panel of ∆ has at least 4 chambers, or
(2) θ is an involution, or
(3) θ induces opposition and N = `(w0).
Then θ is necessarily capped, and there exists a chamber d with δ(c, d) = w0
and `(δ(d, dθ )) = N. In particular,

disp(θ) = max{`(δ(d, dθ )) | d ∈ ∆ with δ(c, d) = w0}.

Proof To see that θ is capped: If each panel has at least 4 chambers then θ
is capped by [15, Theorem 1], if θ is an involution then θ is capped by [16,
Corollary 2.22], and if disp(θ) = `(w0) then θ maps a chamber to an opposite,
and hence is capped. The rest of the lemma is contained in [16, Lemma 4.1]. �

Corollary 1.7 Let θ be an automorphism of a thick spherical building ∆, and
suppose that the hypothesis of Lemma 1.6 is satisfied. Let c be any chamber.
For each subset J ⊆ S, the automorphism θ is J-domestic if and only if it is
J-domestic when restricted to the sphere of chambers opposite c. That is, for
every chamber d with δ(c, d) = w0, the type J-simplex of d is not mapped onto
an opposite simplex.
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Proof Clearly if θ is J-domestic then it is also J-domestic when restricted to
the set of chambers opposite c. Conversely, suppose that θ is not J-domestic.
Let J ′ = Typ(θ), and so J ⊆ J ′. By Lemma 1.6 θ is capped and there is
a chamber d with δ(c, d) = w0 such that `(δ(d, dθ )) = disp(θ). Since θ is
capped, by [15, Theorem 2.6] we have δ(d, dθ ) = wS\J ′w0. In particular, the
type J ′-simplex of d is mapped to an opposite simplex, and hence the type
J ⊆ J ′ simplex of d is mapped to an opposite simplex (note that necessarily
π0(J) = πθ (J) because there exists a type J-simplex mapped to an opposite
simplex by hypothesis). Hence θ is not J-domestic when restricted to the set
of chambers opposite c. �

The following proposition gives a useful technique for proving domesticity.
We refer to this technique as the “standard technique”.

Proposition 1.8 Let ∆ = ∆Φ(F) be split, and let θ ∈ G = GΦ(F). Suppose that
the hypothesis of Lemma 1.6 is satisfied for the automorphism θ. If there is
w1 ∈ W with

w−11 w−10 u−1θuw0w1 ∈ B for all u ∈ U+

then disp(θ) ≤ 2`(w1) − 1. Thus, in particular, if `(w1) ≤ `(w0)/2 then θ is
domestic.

Proof Each chamber gB of the building G/B can be written uniquely as uwB
for some w ∈ W and some u ∈ 〈Uα | α ∈ Φ(w)〉. Then δ(gB, θgB) is the unique
element v ∈ W such that w−1u−1θuw ∈ BvB. If the hypothesis of Lemma 1.6 is
satisfied, then the displacement of θ is achieved for some chamber gB opposite
the base chamber B. These chambers are of the form uw0B with u ∈ U+. By
the hypothesis we have

w−10 u−1θuw0 ∈ w1Bw−11 ⊆ Bw1B · Bw−11 B.

In particular, if w = δ(uw0B, θuw0B) then BwB ⊆ Bw1B · Bw−11 B. Thus

disp(θ) ≤ max{`(w) | BwB ⊆ Bw1B · Bw−11 B}. (1.6)

Writing w1 = w2s with `(w2s) = `(w2) + 1, by (1.3) we have

Bw1B · Bw−11 B = (Bw2sB · Bw−12 B) ∪ (Bw2B · Bw−12 B),

and it follows from (1.3) that disp(θ) ≤ 2`(w1) − 1. �

In the case that θ ∈ U+ the following lemma is helpful in finding an ele-
ment w1 ∈ W as in Proposition 1.8. If A ⊆ Φ let A≥ = {β ∈ Φ | β ≥
α for some α ∈ A}, where α ≤ β if and only if β − α is a nonnegative lin-
ear combination of positive roots. Let π0 be the automorphism of Φ given
by π0(α) = −w0α (thus π0 is the automorphism induced by the opposition
diagram automorphism).
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Lemma 1.9 If θ ∈ 〈Uα | α ∈ A〉 for some A ⊆ Φ+ then u−1θu ∈ 〈Uα | α ∈ A≥〉
for all u ∈ U+. Moreover, if w1 ∈ W is such that π0(A≥) ⊆ Φ(w1) then
w−11 w−10 u−1θuw0w1 ∈ B for all u ∈ U+.

Proof Let F = 〈Uα | α ∈ A≥〉. If β ∈ Φ+ and α ∈ A≥ then by commutator
relations we have, for all a ∈ F, xβ (a)−1Uα xβ (a) ⊆ UαUα+βU2α+β · · · ⊆ F (with
the convention that Uγ = {1} if γ < Φ). It follows that xβ (a)−1Fxβ (a) ⊆ F.
Thus, by induction, u−1Fu ⊆ F for all u ∈ U, and since θ ∈ F we have u−1θu ∈ F
as required. Thus if w1 ∈ W is such that π0(A≥) ⊆ Φ(w1) then

w−10 u−1θuw0 ∈ 〈U−α | α ∈ π0(A≥)〉 = w1〈U−w−11 α | α ∈ π0(A≥)〉w−11

which is contained in w1Bw−11 , hence the result. �

1.5 Parapolar spaces and Lie incidence geometries

At certain points of this paper (in particular in Section 5) we will work with Lie
incidence geometries Xn,J (F). For example, the long root geometries E6,2(F),
E7,1(F), E8,8(F), F4,1(F), and the geometries E6,1(F), E7,7(F) and F4,4(F). We
note the similarity of notation with that used for opposition diagrams, however
no confusion should arise.

In general, the Lie incidence geometry Xn,J (F), with J ⊆ S, is defined from
the building ∆ = ∆Φ(F), with Φ the root system of type Xn , as the point-line
geometry with point set the set of simplices (or flags) of type J of ∆, and a
typical line is the set of flags of type J incident with a flag of type S\{ j} for
some j ∈ J. If J = ℘, then we call the geometry Xn,J (F) a long root geometry.

The geometries listed in the first paragraph of this subsection are all exam-
ples of parapolar spaces (see [21, Chapter 13] for the basic terminology and
definition). In particular, these point-line geometries G = (P,L) contain sym-
plecta (or symps for short), being convex subsets that are non-degenerate
polar spaces of rank at least 2. If all symplecta have the same rank r ≥ 2
then G is said to have symplectic rank r. Recall that in any incidence geome-
try, x⊥ denotes the set of all points collinear to the point x. Also, each symp
ξ is, by convexity, determined by any pair {x, y} of non-collinear points and
we denote ξ = ξ (x, y). If Xn = E6,E7,E8, F4, then Xn,℘(F) has symplectic rank
4, 5, 7, 3, respectively. Moreover, the symps precisely correspond to the residues
of vertices of type ℘∗.

In the parapolar spaces E6,2(F), E7,1(F), E8,8(F), F4,1(F) and F4,4(F) there
are precisely 5 possible “distances” between two points x, y. Either (1) x = y,
(2) x and y are collinear, (3) {x, y} lies in a symplecton, (4) |x⊥ ∩ y⊥ | = 1, or
(5) |x⊥ ∩ y⊥ | = 0. In case (3) we say that x, y are symplectic (or at symplectic
distance) and we denote by x⊥⊥ the set of points at symplectic distance from x.
In case (4) we say that x, y are special (or a special pair, or at special distance),
and we denote by xZ the set of points at special distance from x. Finally, in
case (5) the points x, y are opposite each other (in the building theoretic sense).

The parapolar spaces F4,1(F) and F4,4(F) are also called metasymplectic
spaces. In the parapolar spaces E6,1(F) and E7,7(F) there are no special pairs,
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and so in these spaces there are only 4 possible distances between two points
(these spaces are called strong parapolar spaces).

An imaginary line of a long root geometry G is a set of the form xT ∪ {y},
where x, y are opposite points, and T is the full collineation group of central
elations with centre y. Note that if G is a polar space of rank at least 3, or if
G is a Moufang quadrangle, then xT ∪ {y} = ({x, y}⊥)⊥ for opposite points x, y.

Let us briefly describe the long root geometry parapolar spaces in more
algebraic terms. Let Xn = En (n = 6, 7, 8) or F4, and let p ∈ S be the polar
node. Recall the notation (1.5). Let Mp denote the set of minimal length coset
representatives of cosets in W/Wp , and let Rp denote the set of minimal length
representatives for the double cosets in Wp\W/Wp . The points of the long root
geometry Xn,p (F) are the cosets in G/Pp . We have G =

⊔
w∈Rp

PpwPp, and
the Weyl-distance δ(g1Pp, g2Pp ) between points g1Pp and g2Pp is defined to
be the unique element δ(g1Pp, g2Pp ) = w ∈ Rp with g−11 g2 ∈ PpwPp .

In each case Rp contains precisely 5 elements e, sp,w1,w2, sϕ , arranged in
increasing length, corresponding to the 5 possible distances between points.
Explicitly, the points x = g1Pp and y = g2Pp are collinear (respectively sym-
plectic, at special distance, opposite) if δ(x, y) = sp (respectively w1, w2, sϕ).
Similar remarks hold for the metasymplectic space F4,4(F), and also the strong
parapolar spaces E6,1(F) and E7,7(F) (where only 4 distances are possible, and
hence w2 is omitted).

2 Root elations and the polar type

In this section we prove Theorem 1 for exceptional types (see Theorems 2.1
and 2.4). In fact we focus on types E6,E7,E8 and F4, with the case of G2
following from the classification in Theorem 9 (see Subsection 6.3). We also
provide a geometric characterisation of root elations for buildings of type E6
and E7 in Theorem 2.6, and we discuss short root elations in the non-simply
laced case in Theorem 2.10. The proofs of Corollaries 2 and 3 are given in
Subsections 2.1 and 2.3, respectively (see also Corollary 2.11).

2.1 Long root elations

To prove Theorem 1 we must first show that long root elations have polar
opposition diagram, and conversely that every automorphism with polar oppo-
sition diagram is necessarily a long root elation. We prove the first statement
in Theorem 2.1 in a more general context of Moufang spherical buildings, and
the second statement is proved in Theorem 2.4.

Let ∆ be an irreducible Moufang spherical building. Recall (for example,
from [27]) that if ∆ is not a generalised octagon, then one can associate a
crystallographic (not necessarily reduced) root system Φ to ∆ in such a way
that the root subgroup Uϕ , with ϕ the highest root of Φ, is contained in the
centre of the positive root subgroup U+ = 〈Uα | α ∈ Φ

+〉. In the case that Φ
has only one root length we call all roots long. Let ℘ ⊆ S denote the polar
type of the Dynkin diagram of Φ. If ∆ is a generalised octagon then by [29]
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one may associate a non-crystallographic (and non-reduced) root system Φ,
and again there is a “highest root” ϕ such that Uϕ is contained in the centre
of U+ (the root ϕ is α′4 in [29], and the polar type corresponds to “points” of
the octagon). In all cases, let W be the Weyl group of Φ (so W is a dihedral
group of order 16 in the octagon case).

Theorem 2.1 Let ∆ be an irreducible Moufang spherical building with asso-
ciated root system Φ and Weyl group W as above. Let α ∈ Φ be a long root,
and let θ ∈ Uα\{1}. Then the collineation θ of ∆ = G/B has polar opposition
diagram. Moreover,

{δ(c, cθ ) | c ∈ ∆} = {1} ∪ {sα | α ∈ Wϕ}. (2.1)

Proof Since α is a long root it is in the W -orbit of the highest root, and it fol-
lows from standard RGD properties (see [1, Section 7.8]) that θ is conjugate to
an element of Uϕ\{1}. Thus, after conjugation, we may assume that θ is central
in U+. A chamber gB is opposite its image θgB if and only if δ(gB, θgB) = w0,
if and only if g−1θg ∈ Bw0B. By the Bruhat decomposition each chamber gB
can be written as gB = uwB for some u ∈ U+ and w ∈ W . Since θ is cen-
tral in U+ we have w−1u−1θuw = w−1θw ∈ Uw−1ϕ . Thus if w−1ϕ ∈ Φ+ we have
δ(gB, θgB) = 1, and if w−1ϕ ∈ −Φ+ then w−1θw ∈ Uw−1ϕ ⊆ Bsw−1ϕB, and so
δ(gB, θgB) = sw−1ϕ . Equation (2.1) follows.

Since θ is a nontrivial collineation there is some simplex mapped onto an
opposite simplex. Let J ⊆ S be the type of such a simplex x, and write
J ′ = S\J. Thus for each chamber c ∈ ∆ containing x we have δ(c, cθ ) ∈
WJ ′w0WJ ′ . Since J, and hence also J ′, are stable under opposition we have
WJ ′w0WJ ′ = w0WJ ′ . It follows from (2.1) that there is a root α ∈ Wϕ with
sα = w0w for some w ∈ WJ ′ . Since WJ ′ is a proper parabolic subgroup of W ,
each w ∈ WJ ′ maps the highest root ϕ to a positive root, and since w0 maps
all positive roots to negative roots we have sαϕ ∈ −Φ+. Since ϕ is the highest
root of Φ this forces α = ±ϕ, and so w−10 sϕ ∈ WJ ′ . For all t ∈ S we have

w−10 sϕ (αt ) = −απ0 (t ) + 〈αt, ϕ
∨〉ϕ

(where π0(t) = w0tw−10 ), and since w(ΦJ ′ ) ⊆ ΦJ ′ for all w ∈ WJ ′ we deduce
that 〈αt, ϕ

∨〉 = 0 for all t ∈ J ′ = S\J. It follows that J = ℘. �

We now prove Corollary 2, which is restated below for convenience.

Corollary 2.2 Every irreducible Moufang spherical building distinct from a
projective plane admits a nontrivial domestic collineation.

Proof This follows immediately from Theorem 2.1 and that fact that ℘ is a
strict subset of S in all cases except for Φ = A2 (which is the case of projective
planes). �
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Remark 2.3 Theorem 2.1 implies that every Ree-Tits octagon admits non-
trivial line-domestic collineations. We note that it is erroneously stated in
[11] that these octagons do not admit line-domestic collineations. The error
appears to be as follows. If a thick generalised octagon admits a line-domestic
colllineation θ then by [14, Theorem 2.8 and Proposition 4.1] the fixed ele-
ment structure of θ is either a large full suboctagon, a distance 4-ovoid, or
a ball of radius 4 in the incidence graph centred at a point. For finite Ree-
Tits octagons we proved in [14, Proposition 4.4] that large full suboctagons
do not exist, and in [11] it is shown that distance 4-ovoids do not exist. Thus
any line-domestic collineation of a finite Ree-Tits octagon necessarily fixes
a ball of radius 4 centred at a point (and is thus a central collineation, the
example given by Theorem 2.1). It follows from [14, Proposition 4.5] that no
collineation of a finite Ree-Tits octagon fixes a ball of radius 4 centred at
a line, and we believe that this may be the source of the misunderstanding
in [11] (with s = t2 misread as s2 = t in [14, Proposition 4.5]).

We now prove the converse to Theorem 2.1 for split buildings of types En

and F4. Let Φ be a root system of type En for n = 6, 7, 8, or of type F4. Let ϕ
be the highest root. Let i0 be the polar node. Let Φ1 be the polar subsystem,
generated by the simple roots {αi | i , i0}, and let W1 be the parabolic
subgroup generated by {si | i , i0}. Let w0 be the longest element, and let
w1 be the longest element of W1. Let j0 be the unique node joined to the
polar node in the Dynkin diagram. Write π = αi0 and π′ = α j0 . Explicitly,
(π, π′) = (α2, α4), (α1, α3), (α8, α7), and (α1, α2) for types E6, E7, E8, and F4,
respectively. Let ω = ωi0 be the fundamental coweight corresponding to the
polar node (thus 〈ω, αi〉 = δi, i0). We note the following facts:
(1) ω = ϕ∨ (because 〈ϕ∨, αi〉 = δi, i0).
(2) ϕ is the unique root whose coefficient of π is 2 (since 2 = 〈ϕ, ϕ∨〉 = 〈ϕ, ω〉).
(3) ϕ − αi ∈ Φ if and only if i = i0 (by (2)).
(4) The elements ϕ−π and ϕ−π−π′ are roots, but ϕ−π′ is not a root (by (2)).
(5) sϕ = w1w0 (as both have inversion set Φ+\Φ1 = {α ∈ Φ

+ | 〈α,ω〉 ∈ {1, 2}}).

Theorem 2.4 Let ∆ be a split building of type En or F4, and let θ be an
automorphism of ∆. If Typ(θ) = ℘ then θ is a long root elation.

Proof By the classification of admissible diagrams, if Typ(θ) = ℘ then θ is
necessarily type preserving, and capped. Thus disp(θ) = `(sϕ ), and since θ
is capped `(δ(gB, θgB)) = `(sϕ ) if and only if δ(gB, θgB) = sϕ . Moreover,
after replacing θ by a conjugate, we may assume that the base chamber B is
mapped to Weyl distance sϕ = w1w0. Since the stabiliser of B is transitive on
each w-sphere centred at B we may assume that B is mapped to the chamber
xϕ (1)sϕB. By the folding relation we have xϕ (1)sϕB = x−ϕ (1)B. The condition
θ(B) = x−ϕ (1)B gives

θ = x−ϕ (1)uhσ for some u ∈ U+, h ∈ H, and σ ∈ Aut(F).
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We will now determine u, h and σ. The primary strategy is to show that if
these elements do not take certain particular forms, then one can find elements
g ∈ G such that g−1θg ∈ BwBσ with `(w) > `(w1w0), which contradicts the
fact that Typ(θ) = ℘. A useful observation is that if w = sϕv with v ∈ W1 then
`(w) = `(sϕ ) + `(v) (because sϕ = w1w0 = w0w1). We now proceed with the
analysis.

Claim 1: We have u ∈ U+
Φ\Φ1

. Write u = u1u2 with u1 ∈ U+
Φ1

and u2 ∈ U+
Φ\Φ1

.
Then

w−11 θw1 = x−ϕ (±1)u−1u′2h′σ with u−1 = w−11 u1w1 ∈ U−Φ1
, u′2 ∈ U+

Φ\Φ1
, h′ ∈ H .

Since u−1 ∈ BW1B we have u−1 ∈ BvB for some v ∈ W1. But since `(sϕv) =
`(sϕ ) + `(v) we have

w−11 θw1 ∈ BsϕB · BvBσ = BsϕvBσ,

and so v = 1 (as disp(θ) = `(sϕ )). So u−1 ∈ B∩U−
Φ1
, and so u−1 = 1, hence u1 = 1.

Claim 2: We have h = hω (c) for some c ∈ F×. Write h = hω1 (c1) · · · hωn (cn ).
Let i , i0. Then

x−αi (−1)θx−αi (1) = x−ϕ (1)x−αi (−1)ux−αi (c−1i )hσ = x−ϕ (1)x−αi (c−1i − 1)u′hσ,

with u′ ∈ U+ (here we have used the fact, from Claim 1, that xαi (a) does not
appear as a factor in u). Thus, if ci , 1 the folding relation gives

x−αi (−1)θx−αi (1) ∈ BsϕB · BsiBσ = Bsϕ siBσ,

a contradiction as before. Hence ci = 1 for all i , i0, hence the claim.

Claim 3: We have σ = id. Suppose not. Let i , i0 and let a ∈ F with aσ , a.
Then

hα∨i (a)−1θhα∨i (a) = x−ϕ (1)uhωi (c)hα∨i (aσa−1)σ.

Claim 2 now gives a contradiction.

Claim 4: We have u ∈ Uϕ . Suppose not, and write θ = x−ϕ (1)uhω (c) with
u = xβk (ak ) · · · xβ1 (a1) in decreasing root height. By assumption, β1 , ϕ. If
β1 , π (the polar simple root) then there exists α ∈ Φ+1 with β1−α ∈ Φ

+. Then

x−α (−b)ux−α (b) = u′xβ1−α (±a1b),

with u′ a product of roots in Φ+\Φ1 of height at least ht(β1 − α). Continuing
in this way, there exists an element g ∈ U−

Φ1
with

g−1ug = u′xπ+π′ (b)xπ (a) with a , 0 and b ∈ F,

where u′ is a product of elements xβ (·) with β ∈ Φ+\(Φ1∪{π, π+π
′}). We have

g−1x−ϕ (1)g = x−ϕ (1) (as −ϕ + α < Φ for all α ∈ Φ1), and hω (c)ghω (c)−1 = g

(as 〈ω, α〉 = 0 for all α ∈ Φ1), and hence

g−1θg = g−1x−ϕ (1)uhω (c)g = x−ϕ (1)g−1ughω (c) = x−ϕ (1)u′xπ+π′ (b)xπ (a)hω (c).
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Let d ∈ F with d , 0, and write g1 = x−π−π′ (d). Then

Bg−11 g−1θgg1B = Bx−π−π′ (−d)x−ϕ (1)u′xπ+π′ (b)xπ (a)hω (c)x−π−π′ (d)B

= Bx−ϕ (1)x−π−π′ (−d)u′xπ+π′ (b)xπ (a)x−π−π′ (dc−1)B

= Bx−ϕ (1)x−π−π′ (−d)u′xπ+π′ (b)x−π−π′ (dc−1)x−π′ (±adc−1)B,

where we have used the commutator relation

xπ (a)x−π−π′ (dc−1) = x−π−π′ (dc−1)x−π′ (±adc−1)xπ (a).

Note that

u′xπ+π′ (b)x−π−π′ (dc−1) = xπ+π′ (b)x−π−π′ (dc−1)u′′ where u′′ ∈ U+

(this follows from the fact that u′ is a product of elements xβ (·) with β ∈
Φ+\(Φ1 ∪ {π, π + π

′}), and for such β, if β − π − π′ ∈ Φ then β − π − π′ ∈ Φ+).
Therefore

Bg−11 g−1θgg1B = Bx−ϕ (1)x−π−π′ (−d)xπ+π′ (b)x−π−π′ (dc−1)u′′x−π′ (±adc−1)B

= Bsϕ xϕ (1)x−π−π′ (−d)xπ+π′ (b)x−π−π′ (dc−1)u′′x−π′ (±adc−1)B.

From the commutator relations we have

xϕ (1)x−π−π′ (−d)xπ+π′ (b)x−π−π′ (dc−1)

x−π−π′ (−d)xπ+π′ (b)x−π−π′ (dc−1)xϕ−π−π′ (a′)xϕ (b′)

for some a′, b′ ∈ F, and hence

Bg−11 g−1θgg1B = Bsϕ x−π−π′ (−d)xπ+π′ (b)x−π−π′ (dc−1)u′′′x−π′ (±adc−1)B

for some u′′′ ∈ U+.
There are now two cases to consider. If b = 0 then, since sϕ (−π − π′) ∈ Φ+,

we have

Bg−11 g−1θgg1B = Bsϕ x−π−π′ (−d + dc−1)u′′′x−π′ (±adc−1)B

= Bsϕu′′′x−π′ (±adc−1)B

⊆ BsϕB · Bsπ′B

= Bsϕ sπ′B,

a contradiction. If b , 0 then, again using sϕ (−π − π′) ∈ Φ+, we have
Bsϕ x−π−π′ (−d) = Bsϕ x−π−π′ (dc−1), and so

Bg−11 g−1θgg1B = Bsϕ x−π−π′ (dc−1)xπ+π′ (b)x−π−π′ (dc−1)u′′′x−π′ (±adc−1)B.

Choosing d = −b−1c gives Bsϕ x−π−π′ (dc−1)xπ+π′ (b)x−π−π′ (dc−1) = Bsϕ sπ+π′ ,
and hence

Bg−11 g−1θgg1B = Bsϕ sπ+π′u′′′x−π′ (±adc−1)B ⊆ Bsϕ sπ+π′B · Bsπ′B.

We have Φ(sϕ sπ+π′ ) = (Φ(sϕ )\{ϕ, ϕ−π})∪{π′}, and it follows that `(sϕ sπ+π′ ) =
`(sϕ ) − 1 and `(sϕ sπ+π′ sπ′ ) = `(sϕ ). Thus

Bg−11 g−1θgg1B = Bsϕ sπ+π′ sπ′B.
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Thus the chamber gg1B is mapped to distance `(sϕ ) by θ, contradicting the
second sentence of the proof (as sϕ sπ+π′ sπ′ , sϕ). This completes the proof of
the claim.

Claim 5: We have θ = x−ϕ (1)xϕ (−(c−1)2)hω (c) for some c ∈ F×. From Claims
1–4 we have

θ = x−ϕ (1)xϕ (a)hω (c) for some a ∈ F and c ∈ F×.

We will now make a careful commutator relation calculation, using the
consistent sign conventions:

xϕ (a)x−ϕ+π (b) = x−ϕ+π (b)xϕ (a)xπ (ab)
xπ (a)x−π−π′ (b) = x−π−π′ (b)xπ (a)x−π′ (−ab)
xϕ (a)x−π−π′ (b) = x−π−π′ (b)xϕ (a)xϕ−π−π′ (−ab)

xϕ−π−π′ (a)x−ϕ+π (b) = x−ϕ+π (b)xϕ−π−π′ (a)x−π′ (ab).

Let g = x−ϕ+π (1)x−π−π′ (1). Then

Bg−1θgB = Bx−π−π′ (−1)x−ϕ+π (−1)x−ϕ (1)xϕ (a)hω (c)x−ϕ+π (1)x−π−π′ (1)B

= Bx−ϕ (1)x−π−π′ (−1)x−ϕ+π (−1)xϕ (a)x−ϕ+π (c−1)x−π−π′ (c−1)B

= Bsϕ xϕ (1)x−π−π′ (−1)x−ϕ+π (c−1 − 1)xϕ (a)xπ (ac−1)x−π−π′ (c−1)B.

We have

xϕ (a)xπ (ac−1)x−π−π′ (c−1)B = xϕ (a)x−π−π′ (c−1)x−π′ (−ac−2)B

= x−π−π′ (c−1)xϕ (a)xϕ−π−π′ (−ac−1)x−π′ (−ac−2)B

= x−π−π′ (c−1)xϕ (a)x−π′ (−ac−2)B

= x−π−π′ (c−1)x−π′ (−ac−2)B,

aan hence

Bg−1θgB

= Bsϕ xϕ (1)x−π−π′ (−1)x−ϕ+π (c−1 − 1)x−π−π′ (c−1)x−π′ (−ac−2)B

= Bsϕ xϕ (1)x−π−π′ (c−1 − 1)x−ϕ+π (c−1 − 1)x−π′ (−ac−2)B

= Bsϕ x−π−π′ (c−1 − 1)xϕ (1)xϕ−π−π′ (1 − c−1)x−ϕ+π (c−1 − 1)x−π′ (−ac−2)B

= Bsϕ xϕ (1)x−ϕ+π (c−1 − 1)xϕ−π−π′ (1 − c−1)x−π′ (−(c−1 − 1)2)x−π′ (−ac−2)B

= Bsϕ xϕ (1)x−ϕ+π (c−1 − 1)x−π′ (−ac−2 − (c−1 − 1)2)B

= Bsϕ x−ϕ+π (c−1 − 1)xϕ (1)xπ (c−1 − 1)x−π′ (−ac−2 − (c−1 − 1)2)B

= Bsϕ xϕ (1)xπ (c−1 − 1)x−π′ (−ac−2 − (c−1 − 1)2)B.

Thus, if ac−2 + (c−1 − 1)2 , 0 we have

Bg−1θgB = BsϕB · Bsπ′B = Bsϕ sπ′B,

a contradiction. Thus a = −(c − 1)2, completing the proof of the claim.
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Claim 6: θ is a long root elation. Let g = xϕ (−c)x−ϕ (1)sϕ . Then, from Claim
5, we have

gθg−1 = xϕ (−c)x−ϕ (1)sϕ x−ϕ (1)xϕ (−(c − 1)2)hω (c)s−1ϕ x−ϕ (−1)xϕ (c).

Using the relations sϕ x±ϕ (a)s−1ϕ = x∓ϕ (−a) and sϕhω (c)s−1ϕ = hω (c−1) we have

gθg−1 = xϕ (−c)x−ϕ (1)xϕ (−1)x−ϕ ((c − 1)2)hω (c−1)x−ϕ (−1)xϕ (c)

= xϕ (−c)x−ϕ (1)xϕ (−1)x−ϕ ((c − 1)2)x−ϕ (−c2)xϕ (c−1)hω (c−1)

= xϕ (−c)[x−ϕ (1)xϕ (−1)x−ϕ (1)]x−ϕ (−2c)xϕ (c−1)hω (c−1).

Now, x−ϕ (1)xϕ (−1)x−ϕ (1) = sϕ (−1) = hω (−1)sϕ , and so

gθg−1 = xϕ (−c)hω (−1)sϕ x−ϕ (−2c)xϕ (c−1)hω (c−1)

= xϕ (−c)hω (−1)xϕ (2c)x−ϕ (−c−1)sϕhω (c−1)

= xϕ (c)x−ϕ (−c−1)sϕhω (−c−1)

We have xϕ (c)x−ϕ (−c−1) = sϕ (c)xϕ (−c) = hω (c)sϕ xϕ (−c) = x−ϕ (c−1)hω (c)sϕ ,
and since s2

ϕ = hω (−1) we have

gθg−1 = x−ϕ (c−1)hω (c)hω (−1)hω (−c−1) = x−ϕ (c−1).

Thus θ is conjugate to the long root elation x−ϕ (c−1), completing the proof. �

2.2 A geometric characterisation of root elations for E6 and E7 buildings

Theorems 2.1 and 2.4 imply an interesting geometric characterisation of root
elations for types E6 and E7 (see Theorem 2.6 below). In the following lemma,
and again in the following subsection, we make use of [9, §10.3 Lemma B],
which says that if λ ∈ P is dominant (that is, λ ∈ Z≥0ω1 + · · · + Z≥0ωn), and
if w ∈ W with wλ = λ, then w ∈ WJ where J = {s ∈ S | sλ = λ}.

Lemma 2.5 Let i = 1 if Φ = E6 and i = 7 if Φ = E7. Then sα ∈ Wi ∪Wi siWi

for all α ∈ Φ, where Wi denotes the parabolic subgroup of the Weyl group
generated by S\{si }.

Proof Consider the Φ = E7 case. Since s−α = sα we may assume that α ∈
Φ+. Let Φ7 = {α ∈ Φ | 〈α,ω7〉 = 0} be the E6 subsystem. If α ∈ Φ+7 then,
since W7 is transitive on Φ7, we have α = wα1 for some w ∈ W7, and hence
sα = ws1w

−1 ∈ W7. If α ∈ Φ+\Φ7 then we claim that α ∈ W7 · α7, from which
it follows that sα ∈ W7s7W7. To see this, note that α7 = −ω6 + 2ω7, and hence
for w ∈ W7 we have wα7 = α7 if and only if wω6 = ω6 (as wω7 = ω7). Since ω6
is dominant (in the space of E6 coweights) it follows from [9, §10.3 Lemma B]
that w ∈ WD5 (the subgroup of W7 generated by s1, . . . , s5). Thus the stabiliser
of α7 in W7 is WD5 , and so by counting |W7 · α7 | = |W7 |/|WD5 | = 27. Clearly
each root wα7 with w ∈ W7 is in Φ+\Φ7 (as the coefficient of α7 is 1), and
since |Φ+\Φ7 | = 63− 36 = 27 we conclude that W7 is transitive on Φ+\Φ7, and
hence the result. The argument for the E6 case is similar. �
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Theorem 2.6 Let θ be a type preserving automorphism of a thick building ∆.
If ∆ has type E6 (respectively E7) then θ is a root elation if and only if each
point of the Lie incidence geometry E6,1(F) (respectively E7,7(F)) is either fixed
or mapped to a collinear point by θ.

Proof If θ is a root elation, then by Theorem 2.1 we have that δ(c, cθ ) is a
reflection (or the identity) for all chambers c ∈ ∆. It follows from Lemma 2.5
that δ(c, cθ ) ∈ Wi ∪ Wi siWi (with i = 1 in the E6 case and i = 7 in the E7
case). In geometric terms, this says that points of the geometries E6,1(F) and
E7,7(F) are either fixed, or are mapped to collinear points (see Lemma 5.2 for
another proof, applying to geometries including the E7,7(F) case).

To prove the converse for E7, note that if each point of E7,7(F) is either
fixed or mapped to a collinear point, then no line of the E7,7(F) geometry is
mapped to an opposite line. Thus θ is {6}-domestic, and from the classification
of admissible diagrams this forces θ to have the polar diagram. Thus θ is a
root elation by Theorem 2.4.

We now prove the converse for E6. If nontrivial θ is not a root elation, then θ
does not have polar diagram (by Theorem 2.4), and hence by the classification
of admissible diagrams θ maps a (point,symp)-pair (p, ξ) of E6,1(F) to an
opposite (here points are type 1 vertices, and symps are type 6 vertices).
Then, since no point of ξθ is collinear to p, the point pθ is at distance 2
from p, completing the proof. �

2.3 Distances attained by long root elations

Here we prove Corollary 3. Let ∆ be an irreducible Moufang spherical build-
ing other than a generalised octagon, and recall (as in Subsection 2.1) that
one may associate a crystallographic root system Φ to ∆. Let Φr denote the
associated reduced root system (thus Φr = Φ if Φ is reduced, and Φr is the Cn

subsystem consisting of the middle and long length roots in the non-reduced
BCn case). Consider the long root geometry G . Let P = PS\℘ be the stan-
dard parabolic subgroup of G of type S\℘, and let W ′ = WS\℘. The points of
G are the cosets in G/P, and we have G =

⊔
w∈R(℘) PwP, where R(℘) is the

set of minimal length double coset representatives for W ′\W/W ′. The Weyl-
distance δ(g1P, g2P) between points g1P and g2P is defined to be the unique
element δ(g1P, g2P) = w ∈ R(℘) with g−11 g2 ∈ PwP. Points g1P and g2P are
(i) collinear if δ(g1P, g2P) = s for some s ∈ ℘ (thus in type A there are two
“flavours” of collinearity), and (ii) opposite if δ(g1P, g2P) = wS\℘w0. Note that
wS\℘w0 is the minimal length representative of W ′w0W ′, and that wS\℘w0 = sϕ
(by comparing inversion sets).

2021/06/15 06:39



Automorphisms and opposition in exceptional spherical buildings, I 27

Theorem 2.7 Let θ be a long root elation of a Moufang spherical building ∆.
(1) Suppose that θ is not a generalised octagon. Let Φr be the reduced root

system of ∆, and let G be the long root geometry.
(a) If Φr = Cn with n ≥ 2, or if Φr = B2, then every point of G is either

fixed, or is mapped onto an opposite point by θ.
(b) In all other cases, every point of G is either fixed, mapped onto a

collinear point, or mapped onto an opposite point by θ.
(2) Suppose that ∆ is a Ree-Tits octagon. Then every point of ∆ is mapped

by θ onto a point at distance 0, 4, or 8 in the incidence graph.
In particular, for each type there exists at least one element w ∈ R(℘) such
that no point is mapped onto a point at distance w by θ.

Proof Let W ′ = WS\℘, and let D(θ) = {δ(gP, θgP) | gP ∈ G/P} ⊆ R(℘) be
the set of distances realised by θ. From Theorem 2.1 we see that D(θ) consists
precisely of the identity, along with the minimal length representatives of the
double cosets W ′sαW ′ with α a long root.

Consider the An case. We claim that

Φ
+ = Φ+S\℘ t (W ′ · α1) t (W ′ · αn ) t {ϕ}. (2.2)

The result follows from this claim, because if α ∈ Φ+
S\℘

then sα ∈ W ′, if
α ∈ W ′·α1 then sα = ws1w

−1 for some w ∈ W ′ and so W ′sαW ′ = W ′s1W ′, if α ∈
W ′ · αn then W ′sαW ′ = W ′snW ′, and if α = ϕ then W ′sαW ′ = W ′wS\℘w0W ′.

To prove (2.2), we first claim that

W ′ · α1 = {α ∈ Φ
+ | 〈α,ω1〉 = 1 and 〈α,ωn〉 = 0}.

Denote the right hand side by X . If α = wα1 with w ∈ W ′ then 〈α,ω1〉 =

〈α1,w
−1ω1〉 = 〈α1, ω1〉 = 1, because w−1ω1 = ω1 for all w ∈ W ′. It follows

that α ∈ Φ+, and similarly we have 〈α,ωn〉 = 0, and so W ′ · α1 ⊆ X . By the
orbit-stabiliser theorem we have

|W ′ · α1 | = |W ′ |/|stabW ′ (α1) | = |WAn−2 |/|WAn−3 | = n − 1

where the stabiliser computation follows from the fact that if w ∈ W ′ then
wα1 = α1 if and only if wω2 = ω2 (as α1 = 2ω1 − ω2 and wω1 = ω1), if and
only if w ∈ WS\{1,2,n } (by [9, §10.3 Lemma B]). Since |X | = n − 1 we have
W ′ · α1 = X , and hence the claim.

Dually we have W ′ ·αn = {α ∈ Φ
+ | 〈α,ω1〉 = 0 and 〈α,ωn〉 = 1}. Since every

positive root α either has 〈α,ω1〉 = 〈α,ωn〉 = 0 (in which case α ∈ Φ+
S\℘

), or
〈α,ω1〉 = 1 and 〈α,ωn〉 = 0 (in which case α ∈ W ′ · α1), or the dual situation
(with α ∈ W ′·αn), or 〈α,ω1〉 = 〈α,ωn〉 = 1 (in which case α = ϕ) the claim (2.2)
follows.

Consider the Bn case with n ≥ 3, and let ΦL be the set of long roots. Let
Y = {α ∈ Φ+L | 〈α,ω2〉 = 0} and X = Φ+L\(Y ∪ {ϕ}). Thus Φ

+
L = X t Y t {ϕ}. If

α ∈ Y then W ′sαW ′ = W ′. By inspection of the root system we have

X = {α ∈ Φ+L | 〈α,ω2〉 = 1 and 〈α,ωn〉 ∈ {0, 2}}.
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From this description it is clear that W ′ ·α2 ⊆ X , and a similar orbit-stabiliser
calculation as in the An case gives X = W ′ · α2. Hence the result in this case.

The B2 and Cn cases are immediate, as the polar node corresponds to a
short root in these cases, and the Dn case is very similar to the Bn case.

Consider the cases En (n = 6, 7, 8) and F4. Let ℘ = {p}, Y = {α ∈ Φ+L |
〈α,ωp〉 = 0}, and X = Φ+L\(Y ∪ {ϕ}). Then sα ∈ W ′ for all α ∈ Y , and by
inspection of the root systems we have X = {α ∈ Φ+L | 〈α,ωp〉 = 1}, from
which it follows that W ′ · αp ⊆ X . Then |W ′ · αp | = |W ′ |/|stabW ′ (αp ) |, and we
compute |stabW ′ (αp ) | = |WA2×A2 |, |WA5 |, |WE6 |, |WA2 | in the cases E6, E7, E8,
F4 (respectively). For example, in the E6 case if w ∈ W ′ then one has wα2 = α2
if and only if wω4 = ω4 (as α2 = 2ω2 − ω4 and wω2 = ω2 for all w ∈ W ′), if
and only if w ∈ WS\{2,4}. Thus |W ′ · αp | = 20, 32, 56, 8 in the cases E6, E7, E8,
F4, and thus W ′ · αp = X in all cases.

The cases G2 and Ree-Tits octagons are elementary from the geometry of
these generalised polygons, because the fixed elements of θ form a ball centred
at a point with radius 3 (for G2) or 4 (for octagons) in the incidence graph.

Finally, we note that in all cases |D(θ) | < |R(℘) |, and so there exists at
least one w ∈ R(℘) such that no point is mapped onto distance w by θ. For
example, in type An we have |R(℘) | = 7 and |D(θ) | = 4, and in the cases En

and F4 we have |R(℘) | = 5 and |D(θ) | = 3. �

The following corollary stems from a question asked to us by Barbara
Baumeister.

Corollary 2.8 Let G be the group of type preserving automorphisms of a
Moufang spherical building ∆ of type other than An. There exists a nontrivial
conjugacy class C in G which is not transitive on any vertex type.

Proof Let C be the conjugacy class of long root elations. Consider first the
case that opposition is type preserving, and let i be a vertex type. Let x be
a type i vertex. If i is not the polar node then from Theorem 2.1 no element
of C maps x to an opposite vertex, and hence C is not transitive on type i
vertices. If i is the polar node then by Theorem 2.7 there is a distance in the
long root geometry such that no element of C maps a point of the long root
geometry to this distance, and hence the result in this case.

Now suppose that opposition is not type preserving. Thus ∆ is of type
D2n+1 or E6. Consider the D2n+1 case. By Theorem 2.1 no vertex of type
1, 3, 4, . . . , 2n − 1 is mapped to an opposite vertex, and so C is not transitive
on these vertex types, and by Theorem 2.7 C is not transitive on the vertices
of polar type 2. It is easy to see, as in Theorem 2.7, that in the D2n+1,2n+1(F)
geometry points are either fixed or mapped to collinear points by long root
elations, and similarly in the D2n+1,2n (F) geometry. Thus C is not transitive
on the vertices of types 2n or 2n + 1 either.

Consider the E6 case. As above, C is not transitive on the vertices of types 2
or 4. Moreover, since points of the E6,1(F) geometry are either fixed or mapped
to collinear points by long root elations (see Theorem 2.6) we see that C is not
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transitive on vertices of type 1, or dually type 6. Similar calculations show
that in the E6,3(F) geometry, a long root elation either fixes points, maps
them to collinear points, or maps them to distance sϕD5

(with the D5 system
generated by α1, . . . , α5). Thus C is not transitive on any vertex type. �

Remark 2.9 In the An case the class C of long root elations is transitive on
vertices of types 1 and n, and is not transitive on any other vertex types.

2.4 Short root elations

We now record the situation for short root elations of split buildings. In this
case there is some dependence on the characteristic of the underlying field. The
proof for the F4 case is postponed to Section 6. For i ≤ n let B1

n;i (respectively
C1

n;i) denote the admissible Bn (respectively Cn) diagram (Γ, {1, . . . , i}, id).

Theorem 2.10 Let θ ∈ Uα\{1} for some short root α.
(1) If Φ = Bn then θ has opposition diagram B1

n;2 if char(F) , 2, and B1
n;1 if

char(F) = 2.
(2) If Φ = Cn then θ has opposition diagram C1

n;2 if char(F) , 2, and C2
n;1 if

char(F) = 2.
(3) If Φ = F4 then θ has opposition diagram F4;2 if char(F) , 2, and F4

4;1 if
char(F) = 2.

(4) If Φ = G2 then θ has opposition diagram G2;2 if char(F) , 3, and G1
2;1 if

char(F) = 3.
In particular, with the exception of the cases Φ = B2 and Φ = C2 with char(F) ,
2, and Φ = G2 with char(F) , 3, the collineation θ is domestic.

Proof The statements for the polar spaces Bn and Cn are easily proved using
the matrix descriptions of these groups, and we omit the details.

Consider the case Φ = F4. If char(F) = 2 then the F4,4(F) geometry iso-
metrically embeds into the F4,1(F) geometry (surjectively if F is perfect), with
short root elations becoming long root elations, and so Theorem 2.1 implies
that the opposition diagram of θ is F4

4;1. The proof for the case char(F) , 2 is
postponed until Corollary 6.7.

Consider the case Φ = G2. If char(F) = 3 then, as in the F4 case, we have
opposition diagram G1

2,1. Thus suppose that char(F) , 3. A direct calculation
shows that

Bw−10 xα1+α2 (1)−1xϕ′ (a)xα1+α2 (1)w0B = Bw0B,

and so θ is not domestic, completing the proof. �

One can also show that the class C of short root elations in split type F4
gives another class not transitive on any vertex type (cf. Corollary 2.8).

Corollary 2.11 The class C of short root elations of F4(F) does not act
transitively on the set of type i vertices, for each i = 1, 2, 3, 4.
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Proof If char(F) = 2 then the F4,4(F) geometry isometrically embeds into the
F4,1(F) geometry, with short root elations becoming long root elations, and
hence the result. Suppose that char(F) , 2. As in the proof of Corollary 2.8, it
is sufficient to show that for each i = 1, 2, 3, 4 there exists at least one distance
such that no point of the geometry F4, i (F) is mapped to this distance by a
short root elation θ. By Theorem 2.10 no vertices of types 2 or 3 are mapped
onto opposite vertices, and so it remains to consider vertices of types 1 and 4.

After conjugating, we may assume that θ = xϕ′ (1), where ϕ′ is the highest
short root. As in Subsection 1.5, let M1 denote the set of minimal length coset
representatives of cosets in W/W1 (recall the notation (1.5)), and let R1 denote
the set of minimal length representatives for the double cosets in W1\W/W1.
Each vertex of type 1 is of the form x = uvP1, v ∈ M1, and u ∈ U+

Φ(v),
and the distance between x and xθ is the unique element w ∈ R1 such that
v−1u−1θuv ∈ P1wP1.

For any u ∈ U+ we have, by commutator relations,

u−1θu = u−1xϕ′ (1)u = xα (a)xβ (b)xγ (c)xδ (d)

for some a, b, c, d ∈ F, where α, β, γ, δ are the unique roots of heights 8, 9, 10, 11.
Explicitly these roots are ϕ′, ϕ′ + α3, ϕ′ + α2 + α3, and ϕ, and since the
corresponding root subgroups commute with each other the order in the above
product is irrelevant.

It follows that

v−1u−1θuv = xv−1α (a)xv−1β (b)xv−1γ (c)xv−1δ (d)

for some a, b, c, d ∈ F. If either v−1α ∈ Φ+ or v−1α ∈ Φ1 (where Φ1 is generated
by α2, α3, α4) then xv−1α (a) ∈ P1, and hence can be ignored as we are interested
in P1-double cosets. Similarly for the other terms (as they pairwise commute).
By a direct calculation (using MAGMA), for all v ∈ M1 it turns out that

{v−1α, v−1 β, v−1γ, v−1δ} ∩ (Φ−\Φ1) ⊆ {−(1000),−(1100),−(1110),−(2342)}.

It therefore suffices to consider P1gP1, where

g = x−(2342) (a)x−(1110) (b)x−(1100) (c)x−(1000) (d) with a, b, c, d ∈ F.

A straightforward calculation, using the folding relation, gives

BgB =




Bs(2342) B if a , 0
Bs(1110) B if a = 0 and b , 0
Bs(1100) B if a = b = 0 and c , 0
Bs(1000) B if a = b = c = 0 and d , 0
B if a = b = c = d = 0.

Since P1s(1100) P1 = P1s(1000) P1 = P1s1P1, and s(1110) = s1s2s3s2s1, it follows
that

P1gP1 ∈ {P1, P1s1P1, P1s1s2s3s2s1P1, P1sϕP1}
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In the language of parapolar spaces, this means that every point of F4,1(F)
is either fixed, mapped to a collinear point, mapped to a symplectic point,
or mapped to an opposite point by θ. In particular, no point is mapped to
a point at special distance s1s2s3s2s4s3s2s1 (see Subsection 1.5), and hence
C is not transitive on type 1 vertices. The arguments for type 4 vertices are
entirely analogous. �

3 Unipotent elements

Let ∆ be a split irreducible spherical building of exceptional type with root
system Φ. In this section we give an extension of Theorem 2.1, showing that
every “polar closed” (see below) type preserving admissible Dynkin diagram
of type Φ can be realised as the opposition diagram of a unipotent element
u ∈ U+. In fact, we show that these are precisely the diagrams that arise as
opposition diagrams of elements in U+ (for non-special characteristic).

Let X be a type preserving admissible Dynkin diagram, and let X =

X0,X1, . . . be sub-diagrams such that, for j ≥ 1, the diagram X j is obtained
from X j−1 by removing an encircled polar type from one of the connected
components of X j−1. Suppose that this process terminates at step j = k (that
is, Xk has no polar nodes encircled). We say that a type preserving diagram
X is polar closed if Xk is an empty diagram (that is, has no nodes encircled).

For example, the following diagrams are polar closed

2E6;4 = • •
•

•

•

•
7→ •

•

•

•

•
7→ •

•

•
7→ • 7→ ∅

E7;4 = • • • • • •

•

7→ • • • • •

•

7→ • • • × •

•

7→ • × • × • × • 7→ • × • × •

E8;4 = • • • • • • •

•

7→ • • • • • •

•

7→ • • • • •

•

7→ • • • × •

•

7→ • • •

•

whereas the diagrams F4
4;1 and G1

2;1 are not polar closed (as the polar node is
not encircled). Indeed, by direct inspection of the list of admissible diagrams
these two diagrams are the only non-polar closed diagrams of exceptional type.

Suppose that X is polar closed. Thus one may define diagrams X0, . . . ,Xk by
successively removing encircled polar types, until no polar nodes are encircled,
and Xk is an empty diagram. Let ϕ1, . . . , ϕk ∈ Φ

+ be the highest roots removed
at each stage. For example, the highest roots corresponding to the three polar
closed diagrams above are:
ϕE6 = (122321) 7→ ϕA5 = (101111) 7→ ϕA3 = (001110) 7→ ϕA1 = (000100)

ϕE7 = (2234321) 7→ ϕD6 = (0112221) 7→ ϕD4 = (0112100) 7→ ϕA1 = (0010000)

ϕE8 = (23465432) 7→ ϕE7 = (22343210) 7→ ϕD6 = (01122210) 7→ ϕA1 = (00000010).
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In general the sequence of diagrams X0, . . . ,Xk is not unique (for example,
starting with the diagram E7;7 we have E7;7 7→ D6;6 7→ D5;5×A1;1, from which
point one may choose to either remove the polar node of the D5 component,
or the A1 component). However it is clear that the set {ϕ1, . . . , ϕk } of high-
est roots obtained is independent of the choices made. Moreover, note that
these roots are mutually perpendicular (by definition of the polar type), and
hence the subgroup U (X) of G generated by the root subgroups U+ϕ1

, . . . ,U+ϕk

is abelian. We call an element g ∈ U (X) generic if

g = xϕ1 (a1) · · · xϕk
(ak ) with a1, . . . , ak , 0.

Let the dual polar node of a Dynkin diagram be the subset ℘′ ⊆ S corre-
sponding to the polar node of the dual diagram. Thus ℘′ = ℘ in the simply
laced case, and ℘′ = {1}, {2}, {4}, {1} in the cases Φ = Bn,Cn, F4,G2, respec-
tively. We call a type preserving admissible diagram X dual polar closed if
the above algorithm, with each occurrence of “polar node” replaced by “dual
polar node” terminates in an empty diagram. Let ϕ′1, . . . , ϕ

′
` ∈ Φ

+ denote the
sequence of highest short roots obtained in an analogous way. In the case of
special characteristic the subgroup U (X)′ of GΦ(F) generated by U+

ϕ′1
, . . . ,U+

ϕ′
`

is commutative. We define a generic element of U (X)′ in an analogous way.
By inspection, note that if X is type preserving and is not polar closed, then
X is necessarily dual polar closed.

In this section we prove the following theorem.

Theorem 3.1 Let X = (Γ, J, π) be a type preserving admissible Dynkin
diagram of exceptional type Φ, and let G = GΦ(F).
(1) Suppose that char(F) is not special. Then X is the opposition diagram of

an element of U+ if and only if X is polar closed. Moreover, if X is polar
closed then each generic element θ ∈ U (X) has opposition diagram X.

(2) Suppose that char(F) is special. Then X is the opposition diagram of an
element of U+. Moreover, if X is polar closed then each generic element
θ ∈ U (X) has opposition diagram X, and if X is dual polar closed, then
each generic element θ ∈ U (X)′ has opposition diagram X.

The proof of Theorem 3.1 is given in this section, however one ingredient –
showing that in non-special characteristic the diagrams F4

4;1 and G1
2,1 are not

the opposition diagrams of any element θ ∈ U+ – will be postponed until later
in the paper (see Theorems 6.1 and 6.10).

Lemma 3.2 Let Φ be of type E7 with highest root ϕ. Then (BsϕB · BsϕB) ∩
Bw0wE6 B = ∅.

Proof Write v = wD5wE6 (where D5 is generated by {s2, s3, s4, s5, s6}). Since
v−1ϕ = α7 we have v−1sϕv = sv−1ϕ = s7, and thus sϕ = vs7v

−1. Note that
v ∈ W7 (the parabolic subgroup generated by S\{s7}). Thus if w ∈ W is such
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that
BwB ⊆ BsϕB · BsϕB = Bvs7v

−1B · Bvs7v
−1B

then by (1.3) and the deletion condition there exists a reduced expression for
w containing at most 2 occurrences of the generator s7. However every reduced
expression for y = w0wE6 contains at least 3 occurrences of the generator s7.
To see this, note that every reduced expression for y must start and end with
s7 (as it is minimal length in its W7-double coset). It is thus sufficient to show
that s7ys7 is not in W7. But we have

(s7ys7)−1(ϕD6 ) = s7wE6wE7ϕD6 = −s7wE6ϕD6 = −s7ϕD6 = −ϕD6,

and so ϕD6 ∈ Φ(s7ys7), and so indeed s7ys7 < W7. �

Remark 3.3 Geometrically Lemma 3.2 boils down to the following statement
in the E7,7(F) geometry (with point set G/P7; recall the notation introduced in
Subsection 1.5): If x, y, z are points of E7,7(F) with x and y collinear, and y and
z collinear, then x and z are not opposite in E7,7(F). To make this translation,
note that if (BsϕB · BsϕB) ∩ Bw0wE6 B = ∅ then, following the above proof, we
have (P7s7P7 · P7s7P7)∩P7w0P7 = ∅. Then note that (P7s7P7 · P7s7P7)/P7 can
be interpreted as the set of points collinear to some point collinear to the base
point P7, and (P7w0P7)/P7 is the set of points opposite the base point P7.

Recall that for roots α, β ∈ Φ we write α ≤ β if and only if β − α is a
nonnegative linear combination of simple roots.

Lemma 3.4 Let ∆ be an irreducible split spherical building with root system Φ,
and suppose that either |F| > 2, or that θ is an involution.
(1) Suppose that Φ = E6. If θ ∈ 〈Uα | α ≥ α1〉 then disp(θ) ≤ 30.
(2) Suppose that Φ = E7, and let ϕ2 = ϕD6 = (0112221).

(a) If θ ∈ 〈Uα | α ≥ ϕ2〉 then disp(θ) ≤ 50.
(b) If θ ∈ 〈Uα | α ≥ α7〉 then disp(θ) ≤ 51.
(c) If θ ∈ 〈Uα | α ≥ α1〉 then disp(θ) ≤ 60.

(3) Suppose that Φ = E8.
(a) If θ ∈ 〈Uα | ht(α) ≥ 23〉 then disp(θ) ≤ 90.
(b) If θ ∈ 〈Uα | α ≥ α8〉 then disp(θ) ≤ 108.

Proof (1) Consider the D5 subsystem generated by {α j | j , 1}. If α ≥ α1
then 〈α,ω1〉 > 0 and so α ∈ Φ+\D5 = Φ(w0wD5 ). Thus, with w1 = w0wD5 ,
Proposition 1.8 gives disp(θ) ≤ 2`(w1) − 1 = 31. By the classification of
admissible diagrams this implies that disp(θ) ≤ 30.

(2)(a) We claim that {α | α ≥ ϕ2} ⊆ Φ(s7w0wE6 ). Let α ≥ ϕ2. Then
〈α,ω6〉 = 2 and 〈α,ω7〉 = 1 (by inspecting ϕ and ϕ2), and since 〈αi, α7〉 = 0
for i , 6, 7 and 〈α6, α7〉 = −1 and 〈α7, α7〉 = 2 it follows that 〈α, α7〉 = 0. Thus
s7α = α. Writing α = ϕ2 + β we have β ∈ E6 (because 〈ϕ2, ω7〉 = 1 = 〈ϕ, ω7〉),
and thus, since wE6ϕ2 = ϕ2, we have

(s7w0wE6 )−1α = wE6w0α = −wE6α = −wE6ϕ2 − wE6 β = −ϕ2 − wE6 β.
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Since −wE6 β ∈ E6 we have 〈−ϕ2 − wE6 β, ω7〉 = −〈ϕ2, ω7〉 = −1, and thus
(s7w0wE6 )−1α ∈ −Φ+.

Thus, by (1.6) we have disp(θ) ≤ max{`(w) | BwB ⊆ Bw1B · Bw−11 B}, where
w1 = s7w0wE6 . Note that `(w1) = 63 − 37 = 26, and so Proposition 1.8 gives
disp(θ) ≤ 51. It remains to eliminate the possibility of disp(θ) = 51. By the last
sentence in the proof of Proposition 1.8, if disp(θ) = 51 then `(w2sw−12 ) = 51,
where w1 = w2s with `(w2s) = `(w2) + 1. Since `(w1s7) = `(w1) − 1, (as
w1α7 ∈ −Φ

+) we can take w2 = w1s7 and s = s7. But then

w2s7w
−1
2 = w1s7w

−1
1 = s7w0wE6 s7wE6w0s7 = sϕ,

which only has length 2ht(ϕ) − 1 = 33, a contradiction.
(2)(b) If α ≥ α7 then α ∈ Φ+\E6 = Φ(w0wE6 ). Thus by Proposition 1.8 we

have disp(θ) ≤ 2`(w0wE6 ) − 1 = 2(63− 36) − 1 = 53. This in turn implies, from
the classification of admissible diagrams, that disp(θ) ≤ 51.

(2)(c) If α ≥ α1 then α ∈ Φ+\D6 = Φ(w0wD6 ). Now note that w0wD6 = sϕ .
By Lemma 3.2 BsϕB · BsϕB does not intersect Bw0B, and so from the proof
of Proposition 1.8 we see that θ is domestic. Thus disp(θ) ≤ 60.

(3)(a) We claim that {α | ht(α) ≥ 23} ⊆ Φ(w1), where w1 = s4s5s6s7s8sϕ
(this element has length `(sϕ ) − 5 = 52). Direct calculation shows that each of
the elements s4, s5, s6, s7, s8 preserve the set of 6 roots {α ∈ Φ+ | ht(α) ≥ 23}.
Thus if ht(α) ≥ 23 then w−11 α = sϕ s8s7s6s5s4α = sϕ β for some β with ht(β) ≥
23, and thus 〈w−11 α,ω8〉 = 〈β, ω8〉 − 2〈β, ϕ〉 = −〈β, ω8〉 < 0 (using 〈αi, ϕ〉 =
δi,8) and so w−11 α ∈ −Φ+, hence the claim. It follows from Proposition 1.8
that disp(θ) ≤ 103, and hence by the classification of admissible diagrams
disp(θ) ≤ 90.

(3)(b) Note that if α ≥ α8 then 〈sϕα,ω8〉 = −〈α,ω8〉 and thus α ∈ Φ(sϕ ).
Since `(sϕ ) = 2 ht(ϕ) − 1 = 57 it follows from Proposition 1.8 that disp(θ) ≤
113, and thus by the classification of admissible diagrams disp(θ) ≤ 108. �

Lemma 3.5 Let X = (Γ, J, π) be polar closed, and let ϕ1, . . . , ϕk be the highest
roots obtained by the above algorithm. Then `(sϕ1 · · · sϕk

) =
∑k

j=1 `(sϕ j ) and
sϕ1 · · · sϕk

= wS\Jw0.

Proof Let ℘1, . . . , ℘k be the polar types. Let S0 = S, and define Sj = Sj−1\℘ j

and Φ j = ΦS j for j = 1, . . . , k. By (1.1) we have Φ(sϕ1 ) = Φ+0\Φ1, and it follows
by induction that Φ(sϕ j ) = Φ

+
j−1\Φ j for 1 ≤ j ≤ k. In particular, the inversion

sets Φ(sϕ1 ), . . . ,Φ(sϕk
) are disjoint, and thus

Φ(sϕ1 · · · sϕk
) =

k⋃
j=1

Φ(sϕ j ) = Φ
+\Φk = Φ

+\Φ(wS\J ).

But also clearly Φ(wS\Jw0) = Φ+\Φ(wS\J ), and hence the result. �

We are now ready to prove Theorem 3.1.
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Proof As noted above, we postpone the proof of the fact that for F4(F)
and G2(F), if characteristic is not special, and X is not polar closed, then X
is not the opposition diagram of any element of U+ until Theorem 6.1 and
Theorem 6.10.

Thus suppose that X is polar closed, and let ϕ1, . . . , ϕk be the highest
roots obtained from the above algorithm. If k = 1 then the result follows
from Theorem 2.1 (as ϕ1 is a long root). So suppose that k > 1. Write θ =
xϕ1 (a1) · · · xϕk

(ak ) with a1, . . . , ak , 0. By Lemma 3.5 and Lemma 1.1 we have

w−10 θw0 = x−ϕ1 (±a1) · · · x−ϕk
(±ak ) ∈ Bsϕ1 · · · sϕk

B = BwS\Jw0B

(we have used the fact that w0ϕ j = −ϕ j for all j, which follows from the
defining property of the highest root). Thus the chamber w0B is mapped to
Weyl distance wS\Jw0. Thus the type J-simplex of the chamber w0B is mapped
onto an opposite simplex, and so J ⊆ Typ(θ). Hence it remains to show that
Typ(θ) ⊆ J. We achieve this by bounding the displacement by an appropriate
bound, and appealing to the classification of admissible diagrams. Note that
if F = F2 then θ is an involution, and so Lemma 3.4 holds in all cases. Also, if
J = S (the full opposition diagram) then there is nothing remaining to prove
(as the above shows that θ is not domestic in this case).

We consider each diagram.
The case Φ = E6: Consider the diagram 2E6;2. Then ϕ = ϕ1 = ϕE6 and
ϕ2 = ϕA5 . Since θ ∈ 〈Uα | α ≥ ϕ2〉 and since ϕ2 ≥ α1, we have disp(θ) ≤ 30
by Lemma 3.4. By the classification of admissible diagrams this implies that
Typ(θ) ⊆ {1, 2, 6} = J, hence the result.
The case Φ = E7: Consider the diagram E7;2. Then ϕ1 = ϕE7 and ϕ2 = ϕD6 .
By Lemma 3.4 we have disp(θ) ≤ 50, hence the result (again using the classi-
fication of admissible diagrams). Consider the diagram E7;3. Then ϕ1 = ϕE7 ,
ϕ2 = ϕD6 , and ϕ3 = α7. Lemma 3.4 gives disp(θ) ≤ 51, and hence the result.
Consider the diagram E7;4. Then ϕ1 = ϕE7 , ϕ2 = ϕD6 , ϕ3 = ϕD4 , and ϕ4 = α3.
Replace θ by the conjugate θ ′ = s−11 θs1. Since s1ϕ1, s1ϕ2, s1ϕ3, s1ϕ4 ≥ α1
Lemma 3.4 gives disp(θ) = disp(θ ′) ≤ 60, and again the result follows.
The case Φ = E8: Consider the diagram E8;2. Then ϕ1 = ϕE8 and ϕ2 = ϕD6 .
We claim that disp(θ) ≤ 90. To see this, let β = (00111111) be the highest
root of an A6 subsystem. Then sβϕ1 = (23354321) and sβϕ2 = (22454321) are
the two roots of E8 with height 23. Thus the conjugate θ ′ = s−1β θsβ satisfies
θ ′ ∈ 〈Uα | ht(α) ≥ 23〉, and so by Lemma 3.4 we have disp(θ) = disp(θ ′) ≤ 90.

Consider the diagram E8;4. Then ϕ1 = ϕE8 , ϕ2 = ϕE7 , ϕ3 = ϕD6 , and ϕ4 =

α7. By direct calculation the roots s8ϕ1, s8ϕ2, s8ϕ3, and s8α7 are all elements
of Φ+\ΦE7 . Therefore the conjugate θ ′ = s−18 θs8 satisfies θ ′ ∈ 〈Uα | α ≥ α8〉,
and so by Lemma 3.4 we have disp(θ) = disp(θ ′) ≤ 108, completing the proof
for E8.
The case Φ = F4: Consider the diagram F4;2. Then ϕ1 = ϕF4 and ϕ2 = ϕC3 . Let
v = s1s2s1. Then vϕ1 = ϕ

′−α3 and vϕ2 = ϕ
′+α3, where ϕ′ = (1232) is the high-

est short root. Replace θ by the conjugate θ ′ = vθv−1 = xϕ′−α3 (a)xϕ′+α3 (b).
Let X = {(0100), (0010), (1100), (0120), (1120)}. Then xγ (c)θ ′ = θ ′xγ (c) for all
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γ ∈ Φ+\X . Each u ∈ U+ can be written as u = u1u2 with u1 ∈ U+
Φ+\X

and
u2 ∈ U+X . Write

u2 = x (0010) (z1)x (0120) (z2)x (1120) (z3)x (0100) (z4)x (1100) (z5).

Since u−11 θ ′u1 = θ
′, a calculation using commutator relations gives

u−1θ ′u = x (1222) (a)x (1232) (−z1a)x (1242) (c)x (1342) (−z4c + z2a)x (2342) (−z5c + z3a),

where c = z2
1a + b, and hence

w−10 u−1θ ′uw0

= x−(1222) (−a)x−(1232) (z1a)x−(1242) (−c)x−(1342) (z4c − z2a)x−(2342) (z5c − z3a).

Using the folding and commutator relations we obtain that Bw−10 u−1θuw0B
equals




BsϕC3
sϕB = BwB2w0B if z5c − z3a , 0

Bs(0110) sϕ′B if z5c − z3a = 0 and z4c − z2a , 0
Bs(0010) sϕ′B if z5c − z3a = 0 and z4c − z2a = 0 and c , 0
Bsϕ′B if z5c − z3a = 0 and z4c − z2a = 0 and c = 0,

and so by the standard technique θ is domestic with opposition diagram F4;2.
Finally, in special characteristic, in type F4 the element xϕ′ (a) (a , 0) has

opposition diagram F1
4;4 and in type G2 the element xϕ′ (a) (a , 0) has oppo-

sition diagram G1
2;1 (by Theorem 2.10). Moreover, very similar calculations to

those above shows that in type F4, for all fields, xϕ′ (a)xϕ′B3
(b) with a, b , 0

has opposition diagram F4;2, completing the proof. �

4 Classification of domestic homologies

In this section we classify the domestic homologies of split buildings of excep-
tional types. Throughout this section we may assume that ∆ is a large building,
for over the field F2 there are no nontrivial homologies. In Lemma 4.1 we recall
the basic fact that the fixed element structure of a homology θ is a (typi-
cally non-thick) building ∆θ of the same type as ∆. Following Scharlau [20],
the thick frame ∆′θ of ∆θ is a thick building naturally associated to ∆θ , and
the type Wθ of this building is a reflection subgroup of W (see below for
some further details). Our classification of domestic homologies is in terms of
these reflection subgroups. The data provided in Appendix A is useful for this
section.

If P is a panel of ∆, we write C(P) for the set of chambers containing P.
The proof of the following lemma is straightforward.

Lemma 4.1 Let ∆ be a split spherical building of type (W, S) and let θ be
a homology of ∆. Let ∆θ be the set of fixed chambers of θ. Then ∆θ is a
(typically non-thick) building of type (W, S). Moreover, if P is an s-panel of ∆
with C(P) ∩ ∆θ , ∅ then either C(P) ⊆ ∆θ or |C(P) ∩ ∆θ | = 2.
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If ∆θ is the fixed subbuilding of a homology θ, we refer to the thick (if
C(P) ⊆ ∆θ) and thin (if |C(P) ∩ ∆θ | = 2) panels of ∆θ . If A is an apartment
of ∆θ , then we refer to the thin and thick walls of A.

The thick frame ∆′θ of ∆θ is a building whose chambers are the thin-classes
of chambers of ∆θ , with adjacency given by adjacency of representatives of
these classes in ∆θ (see [20]; here thin-classes are the classes of the finest
equivalence relation containing the thin panels). The building ∆′θ has type Wθ ,
where Wθ is the reflection subgroup of W generated by the reflections about
the thick walls of any apartment of ∆θ .

The embedding Wθ ↪→ W is only defined up to conjugacy, however in prac-
tice if θ ∈ H we fix this embedding by taking reflections in the base apartment.
If θ ∈ H then the thick walls of the base apartment A0 are easily computed
as follows. Writing θ = hω1 (c1) · · · hωN (cN ) we have

θxα (a)θ−1 = xα (ac〈α,ω1〉
1 · · · c〈α,ωN 〉

N ),

and so the α-wall of the base apartment is thick if and only if

c〈α,ω1〉
1 · · · c〈α,ωN 〉

N = 1.

For homologies θ ∈ H, we define the root system of θ by

Φθ = {α ∈ Φ | θxα (1)θ−1 = xα (1)} = {α ∈ Φ | the α-wall of A0 is thick}.

It is easy to check that Φθ is indeed a crystallographic root system, and note
that Wθ is generated by the reflections in the hyperplanes perpendicular to
the roots in Φθ .

Example 4.2 Consider the homology θ = hω5 (c)hω6 (c−2) with c2 , 1 of
an E6 building. Then α ∈ Φθ if and only if c〈α,ω5〉−2〈α,ω6〉 = 1, and since
c2 , 1, inspection of the root system shows that Φ+θ consists precisely the
roots of the form (∗ ∗ ∗ ∗ 00) (there are 10 such roots) or (∗ ∗ ∗ ∗ 21) (there are
5 such roots). Hence |Φ+θ | = 15. Scharlau’s classification [20, Proposition 2]
(see below) forces ∆′θ to have type A5, lying inside of a maximal reflection
subgroup of type A5 × A1. To see this, note that A2 × A2 × A2 has only
9 reflections, eliminating this case. Then D5 has 20 reflections, however the
maximal reflection subgroups of D5 have types D3 ×D2 (6+ 2 = 8 reflections),
D4 (12 reflections), or A4 (10 reflections), eliminating these possibilities.

Let us now outline our strategy for classifying domestic homologies. Let
θ be a homology, and after conjugating we assume that θ ∈ H, and so the
base apartment A0 of ∆ is fixed by θ. Let Wθ be the reflection subgroup of W
generated by the thick walls of A0. This subgroup in turn lies in a maximal
reflection subgroup W ′

θ of W . By [20, Proposition 2] each maximal reflection
subgroup is determined up to conjugation by its type, and hence we may
assume the root system of W ′

θ has simple roots as listed below for the cases
that we will require (where D2 = A1 ×A1, and D3 = A3 in the natural way):
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(1) The maximal reflection subgroups of B4 are
(a) B3 ×A1, with simple roots (α2, α3, α4) × (α1 + α2 + α3 + α4).
(b) B2 × B2, with simple roots (α3, α4) × (α1, α2 + α3 + α4).
(c) D4, with simple roots (α1, α2, α3, α3 + 2α4).

(2) The maximal reflection subgroups of F4 are
(a) B4, with simple roots (ϕC3, α1, α2, α3) where ϕC3 = α2 + 2α3 + 2α4.
(b) C3 ×A1, with simple roots (α4, α3, α2) × (ϕ).
(c) A2 ×A2, with simple roots (α3, α4) × (α1, ϕ − α1).

(3) The maximal reflection subgroups of D5 are
(a) D3 ×D2, with simple roots (α3, α4, α5) × (α1, ϕ).
(b) D4, with simple roots (α2, α3, α4, α5).
(c) A4, with simple roots (α1, α2, α3, α4).

(4) The maximal reflection subgroups of D6 are
(a) D4 ×D2, with simple roots (α3, α4, α5, α6) × (α1, ϕ).
(b) D3 ×D3, with simple roots (α4, α5, α6) × (α1, α2, ϕ − α1 − α2).
(c) D5, with simple roots (α2, α3, α4, α5, α6).
(d) A5, with simple roots (α1, α2, α3, α4, α5).

(5) The maximal reflection subgroups of E6 are
(a) A5 ×A1, with simple roots (α1, α3, α4, α5, α6) × (ϕ).
(b) A2 ×A2 ×A2, with simple roots (α1, α3) × (α5, α6) × (α2, ϕ − α2).
(c) D5, with simple roots (α1, α3, α4, α2, α5).

(6) The maximal reflection subgroups of E7 are
(a) A7, with simple roots (α1, α3, α4, α5, α6, α7, ϕE6 ).
(b) D6 ×A1, with simple roots (α7, α6, α5, α4, α2, α3) × (ϕ).
(c) A5 ×A2, with simple roots (α2, α4, α5, α6, α7) × (α1, ϕ − α1).
(d) E6, with simple roots (α1, α2, α3, α4, α5, α6).

(7) The maximal reflection subgroups of E8 are
(a) D8, with simple roots (ϕE7, α8, α7, α6, α5, α4, α2, α3).
(b) A8, with simple roots (ϕ − ϕA7, α1, α3, α4, α5, α6, α7, α8).
(c) A4×A4, with simple roots (α1, α3, α4, α2)×(ϕ−α6−α7−α8, α6, α7, α8).
(d) E6 ×A2, with simple roots (α1, α2, α3, α4, α5, α6) × (α8, ϕ − α8).
(e) E7 ×A1, with simple roots (α1, α2, α3, α4, α5, α6, α7) × (ϕ).

In cases (2)–(7) the root system of the reflection subgroup is simply the inter-
section of the Z-span of the simple roots with the ambient root system. In case
(1) the intersection of the Z-span of the simple roots with the ambient root
system is larger than the stated type, and thus one must restrict coefficients
in the linear combinations appropriately to obtain the correct type.

Our strategy is as follows.
(A) We first identify a list of reflection subgroups W ′ of W such that every

homology with Wθ = W ′ is domestic (we will then call W ′ domestic).
(B) We then show that if W ′ is a reflection subgroup of W not in our list

from (A), then every homology with Wθ = W ′ is not domestic (we will
then call W ′ non-domestic).

We prove (A) using the standard technique (Proposition 1.8), with some more
refined arguments required in the E7 and F4 cases. Our strategy for proving
(B) is via the following lemma.
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Lemma 4.3 Let θ ∈ H be a homology with root system Φθ . Suppose there
exist mutually perpendicular roots β1, . . . , βk ∈ Φ

+\Φθ . Then

disp(θ) ≥ M, where M = `(sβ1 · · · sβk ).

Moreover if θ ′ ∈ H is a homology with root system Φθ′ ⊆ Φθ then disp(θ ′) ≥ M.

Proof Consider the chamber gB = uw0B with u = xβ1 (1) · · · xβk (1). Since
β1, . . . , βk < Φθ we have θuθ−1 = xβ1 (c1) · · · xβk (ck ) with c1, . . . , ck , 1. More-
over, the elements xβ1 (a1), . . . , xβk (ak ), with a1, . . . , ak ∈ F, commute with
each other (as the roots are mutually perpendicular), and hence

Bg−1θgB = Bw−10 u−1θuw0B = Bx−β1 (c1 − 1) · · · x−βk (ck − 1)B.

Thus by Lemma 1.1 we have Bg−1θgB = Bsβ1 · · · sβk B, and hence disp(θ) ≥
`(sβ1 · · · sβk ). The final statement follows as β1, . . . , βk ∈ Φ

+\Φ′θ . �

Note that if Lemma 4.3 is used to prove non-domesticity for a homol-
ogy θ (by finding mutually perpendicular roots β1, . . . , βk ∈ Φ

+\Φθ with
`(sβ1 · · · sβk ) sufficiently large), then every homology θ ′ with Wθ′ a reflection
subgroup of Wθ is also non-domestic, as Φθ′ ⊆ Φθ . Thus to prove (B) it suffices
to prove non-domesticity for the maximal reflection subgroups in the poset of
reflection subgroups of W excluding those in the list from (A).

We now proceed with our classification of domestic homologies of split
exceptional buildings.

Theorem 4.4 A nontrivial homology θ of E6(F) is domestic if and only if ∆′θ
is of type D5. Moreover, all such homologies have opposition diagram 2E6;2,
and are conjugate to an element of the form hω6 (c) with c ∈ F\{0, 1}.

Proof Let θ ∈ H. Suppose that ∆′θ is of type D5. After conjugation,
we may assume that Φθ has simple roots (α1, α3, α4, α2, α5). The condition
θxα (a)θ−1 = xα (a) for these simple roots forces θ = hω6 (c) for some c , 1. We
show that θ is domestic, with diagram 2E6;2. Let Φ+6 = {α ∈ Φ

+ | 〈α,ω6〉 = 1},
and let w1 = w0wD5 . Let u ∈ U+, and write u = u1u2 with u1 ∈ U+D5

and
u2 ∈ U+

Φ6
. Since u−11 θu1 = θ and u−12 θu2 ∈ U+

Φ6
θ, we have

w−11 w−10 u−1θuw0w1 = w−1D5
u−12 θu2wD5 ∈ w

−1
D5

U+Φ6
wD5θ ⊆ B,

where we have used the fact that Φ(wD5 ) = Φ+\Φ6. Since `(w1) = 36−20 = 16
the standard technique (Proposition 1.8) gives disp(θ) ≤ 31. Moreover, since
θ = hω6 (c) is not conjugate to a root elation, it must have opposition diagram
2E6;2 (by Theorem 2.4 and the classification of admissible diagrams).

We now use Lemma 4.3 to show that if θ ∈ H is a nontrivial homology
with ∆′θ not of type D5 then θ is not domestic. As noted above, it is sufficient
to consider the maximal elements in the poset of reflection subgroups of W
excluding those of type D5. Thus we may assume that Wθ is either a maximal
reflection subgroup of W of type A5 × A1 or A2 × A2 × A2, or a maximal

2021/06/15 06:39



40 J. Parkinson and H. Van Maldeghem

reflection subgroup of the standard D5 subgroup of W . Up to conjugation we
may suppose that either:
(1) Φθ = A5 ×A1 with simple roots (α1, α3, α4, α5, α6) × (ϕ). The 16 positive

roots of Φ are precisely the roots α ∈ Φ+ with 〈α,ω2〉 ∈ 2Z.
(2) Φθ = A2 × A2 × A2 with simple roots (α1, α3) × (α5, α6) × (α2, ϕ − α2).

The 9 positive roots are precisely the roots α ∈ Φ+ with 〈α,ω4〉 ∈ 3Z.
(3) Φθ = D3×D2 with simple roots (α4, α2, α5)× (α1, α1+α2+2α3+2α4+α5).

The 8 positive roots are precisely the roots α ∈ Φ+ with both 〈α,ω3〉 ∈ 2Z
and 〈α,ω6〉 = 0.

(4) Φθ = D4 with simple roots are (α3, α4, α2, α5). The 12 positive roots are
precisely the roots α ∈ Φ+ with both 〈α,ω1〉 = 0 and 〈α,ω6〉 = 0.

(5) Φθ = A4 with simple roots are (α1, α3, α4, α2). The 10 positive roots are
precisely the roots α ∈ Φ+ with both 〈α,ω5〉 = 0 and 〈α,ω6〉 = 0.

In cases (1), (2), (3), and (5) we have α, β, γ ∈ Φ+\Φθ , where α, β, γ are the
mutually perpendicular roots α = (112221), β = (111211) and γ = (011210).
Thus by Lemma 4.3 we have disp(θ) ≥ `(sα sβ sγ ). Moreover, note that the
roots α, β, γ, α2 are mutually perpendicular and invariant under the diagram
automorphism of E6, and so by Lemma 1.3 we have sα sβ sγ s2 = w0. Thus
disp(θ) ≥ 35, and so θ is not domestic.

In case (4) we have α′, β′, γ′ ∈ Φ+\Φθ , where α′, β′, γ′ are the mutually
perpendicular roots α′ = ϕ, β′ = (001111), and γ′ = (101110). Thus disp(θ) ≥
`(w), where w = sα′ sβ′ sγ′ . It is easy to see that Φ(w) = Φ+\{α1, α4, α6}, and
hence `(w) = 33. It follows that θ is not domestic. �

Lemma 4.5 Let c ∈ F\{0, 1}. The homology θ = hω1 (c) of E7(F) is domestic,
with opposition diagram E7;4.

Proof We first prove directly that θ is {7}-domestic. Consider the E7,7(F)
geometry, with point set G/P7. By Corollary 1.7 it is sufficient to show that no
point opposite the base point P7 in this geometry is mapped onto an opposite
point by θ. The points opposite P7 are of the form uyP7, where y = wE7wE6 ,
and u ∈ U+

Φ(y). We are required to show that

P7y
−1u−1θuyP7 , P7yP7 for all u ∈ U+

Φ(y) .

Let Φ1 be the subsystem with simple roots (α7, α6, α5, α4, α2, α3). Then
Φ1 ⊆ Φθ (equality occurs if c , −1, while if c = −1 then Φθ = Φ1 ∪ {±ϕ}). In
particular, θxα (a)θ−1 = xα (a) for all α ∈ Φ1. Write u = u1u2 with u1 ∈ U+

Φ1
and u2 ∈ U+

Φ\Φ1
. Then

P7y
−1u−1θuyP7 = P7y

−1u−12 θu2yP7.

By the commutator relations we have u3 = u−12 θu2θ
−1 ∈ U+

Φ\Φ1
, and since

yP7 = w0P7 we have

P7y
−1u−1θuyP7 = P7w

−1
0 u3w0P7 = P7ũP7,
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where ũ ∈ U−
Φ\Φ1

. Since Φ(sϕ ) = Φ+\Φ+1 we have

P7y
−1u−1θuyP7 = P7sϕ (s−1ϕ ũsϕ )s−1ϕ P7 ⊆ P7sϕP7 · P7sϕP7. (4.1)

It follows from Lemma 3.2 that P7sϕP7 · P7sϕP7 ∩ P7yP7 = ∅. Thus we have
shown that θ is {7}-domestic, and hence domestic. Since θ is neither a root
elation nor a product of perpendicular root elations it does not have opposition
diagram E7;1 or E7;2, and since θ is {7}-domestic it does not have opposition
diagram E7;3. Thus θ has opposition diagram E7;4. �

Theorem 4.6 A nontrivial homology θ of E7(F) is domestic if and only if ∆′θ
is of type:
(1) E6, in which case θ has opposition diagram E7;3 and is conjugate to an

element of the form hω7 (c) with c ∈ F\{0, 1};
(2) D6, in which case θ has opposition diagram E7;4 and is conjugate to an

element of the form hω1 (c) with c ∈ F\{0, 1,−1};
(3) D6 × A1, in which case char(F) , 2 and θ has opposition diagram E7;4

and is conjugate to hω1 (−1).

Proof We begin by showing that if ∆′θ has type E6, D6, or D6 ×A1 then θ is
domestic, with the stated diagram and conjugacy class.

Suppose that Φθ is of type E6. The 36 positive roots of this system are
precisely those α ∈ Φ+ with 〈α,ω7〉 = 0, and thus θ = hω7 (c) for some c , 1.
Let Φ+7 = {α ∈ Φ

+ | 〈α,ω7〉 = 1}, and note that Φ+ = Φθ t Φ+7 . Arguing as in
the E6 case (Theorem 4.4), and using the standard technique with w1 = w0wE6

we see that disp(θ) ≤ 53 (as `(w1) = 27). Since θ is neither conjugate to a
root elation nor to a product of two perpendicular root elations it does not
have opposition diagram E7;1 or E7;2, and since disp(θ) < 60 it does not have
opposition diagram E7;4. Thus it follows from the classification of opposition
diagrams that θ has diagram E7;3.

Now suppose that Φθ is of type D6 or D6×A1. The positive roots of Φθ are

Φ
+
D6
= {α ∈ Φ+ | 〈α,ω1〉 = 0}, Φ

+
D6×A1

= {α ∈ Φ+ | 〈α,ω1〉 ∈ 2Z} = Φ+D6
∪ {ϕ}.

In particular, θ = hω1 (c) where c ∈ F\{0, 1,−1} in the D6 case, and c =
−1 in the D6 × A1 case. Thus by Lemma 4.5 θ is domestic with opposition
diagram E7;4 (note that the standard technique does not apply in this case,
as `(w0wD6 ) = 33 > `(w0)/2).

We now use Lemma 4.3 to show that if θ ∈ H is a nontrivial homology
with ∆′θ not of type E6, D6, or D6 ×A1 then θ is not domestic. It is sufficient
to consider the maximal elements in the poset of reflection subgroups of W
excluding those of types E6, D6, and D6×A1. Thus we may assume that Wθ is
either a maximal reflection subgroup of W of type A7 or A5×A2, or a maximal
reflection subgroup of the standard D6 ×A1 of E6 subgroups of W (excluding
the domestic D6 subgroup). Thus, using the explicit choices of simple roots
listed earlier, we may suppose that either:
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(1) Φθ = A7, with Φ+θ = {α ∈ Φ
+ | 〈α,ω2〉 ∈ 2Z}.

(2) Φθ = A5 ×A2, with Φ+θ = {α ∈ Φ
+ | 〈α,ω3〉 ∈ 3Z}.

(3) Φθ = (D4 ×D2) ×A1,
with Φ+θ = {α ∈ Φ

+ | 〈α,ω1〉 = 0 and 〈α,ω6〉 ∈ 2Z} ∪ {ϕ}.
(4) Φθ = (D3 ×D3) ×A1,

with Φ+θ = {α ∈ Φ
+ | 〈α,ω1〉 = 0 and 〈α,ω5〉 ∈ 2Z} ∪ {ϕ}.

(5) Φθ = D5 ×A1, with Φ+θ = {α ∈ Φ
+ | 〈α,ω1 − 2ω7〉 = 0}.

(6) Φθ = A5 ×A1 (contained in D6 ×A1),
with Φ+θ = {α ∈ Φ

+ | 3〈α,ω1〉 = 2〈α,ω3〉}.
(7) Φθ = A5 ×A1 (contained in E6),

with Φ+θ = {α ∈ Φ
+ | 〈α,ω2〉 ∈ 2Z and 〈α,ω7〉 = 0}.

(8) Φθ = A2 ×A2 ×A2, with Φ+θ = {α ∈ Φ
+ | 〈α,ω4〉 ∈ 3Z and 〈α,ω7〉 = 0}.

(9) Φθ = D5, with Φ+θ = {α ∈ Φ
+ | 〈α,ω6〉 = 0 and 〈α,ω7〉 = 0}.

In case (1) note that β1, . . . , β7 < Φθ , where β1 = (1111100), β2 = (0112100),
β3 = (0111110), β4 = (0101111), β5 = (1112110), β6 = (1122111), β7 =

(1123321). These roots are mutually perpendicular, and so by Lemma 1.2 we
have sβ1 · · · sβ7 = w0. Thus by Lemma 4.3 the homology θ is not domestic.

In cases (2)–(6) note that γ1, . . . , γ5 < Φθ , where γ1 = (1111000), γ2 =

(1011111), γ3 = (0112111), γ4 = (1123210), γ5 = (1223321). The roots
γ1, . . . , γ5, α3, α6 are mutually perpendicular, and so sγ1 · · · sγ5 = w0s3s6. Thus
disp(θ) ≥ 61, and so θ is not domestic.

In cases (7)–(9) note that δ1, . . . , δ5 < Φθ , where δ1 = (0000011), δ2 =
(0101110), δ3 = (1122110), δ4 = (1223211), δ5 = (1123321). The roots
δ1, . . . , δ5, α1, α4 are mutually perpendicular, and so as above disp(θ) ≥ 61
and so θ is not domestic. �

Theorem 4.7 A nontrivial homology θ of E8(F) is domestic if and only if ∆′θ
is of type:
(1) E7, in which case θ is conjugate to an element hω8 (c) with c ∈ F\{0, 1,−1};
(2) E7 ×A1, in which case char(F) , 2 and θ is conjugate to hω8 (−1).
In both cases θ has opposition diagram E8;4.

Proof Let θ ∈ H. Suppose that ∆′θ has type E7 or E7 ×A1. After conjugating
we may suppose that ΦE7 ⊆ Φθ , where ΦE7 is the standard E7 subsystem of
Φ. Thus θ = hω8 (c) for some c ∈ F\{0, 1}. As in the E6 case (Theorem 4.4),
using the standard technique with w1 = w0wE7 we see that disp(θ) ≤ 113 (as
`(w1) = 57). Since θ is neither conjugate to a root elation nor to a product of
two perpendicular root elations it does not have opposition diagram E8;1 or
E8;2, and hence θ has opposition diagram E8;4.

We now use Lemma 4.3 to show that if θ ∈ H is a nontrivial homology with
∆′θ not of type E7 or E7 ×A1 then θ is not domestic. It is sufficient to consider
the maximal elements in the poset of reflection subgroups of W excluding those
of types E7 and E7 × A1. Thus we may assume that Wθ is either a maximal
reflection subgroup of W of type D8, A8, A4 × A4, or E6 × A2, or a maximal
reflection subgroup of the E7 ×A1 subgroup of W (excluding the domestic E7
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subgroup). Thus, using the explicit choices of simple roots listed earlier, we
may suppose that either:
(1) Φθ = D8, with Φ+θ = {α ∈ Φ

+ | 〈α,ω1〉 ∈ 2Z}.
(2) Φθ = A8, with Φ+θ = {α ∈ Φ

+ | 〈α,ω2〉 ∈ 3Z}.
(3) Φθ = A4 ×A4, with Φ+θ = {α ∈ Φ

+ | 〈α,ω5〉 ∈ 5Z}.
(4) Φθ = E6 ×A2, with Φ+θ = {α ∈ Φ

+ | 〈α,ω7〉 ∈ 3Z}.
(5) Φθ = A7 ×A1,

with Φ+θ = {α ∈ Φ
+ | 〈α,ω2〉 = 2〈α,ω7〉 and 〈α,ω8〉 = 0} ∪ {ϕ}.

(6) Φθ = (D6 ×A1) ×A1,
with Φ+θ = {α ∈ Φ

+ | 〈α,ω1〉 ∈ 2Z and 〈α,ω8〉 = 0} ∪ {ϕ}.
(7) Φθ = (A5 ×A2) ×A1,

with Φ+θ = {α ∈ Φ
+ | 〈α,ω3〉 ∈ 3Z and 〈α,ω8〉 = 0} ∪ {ϕ}.

(8) Φθ = E6 ×A1, with Φ+θ = {α ∈ Φ
+ | 〈α,ω7〉 = 〈α,ω8〉 = 0} ∪ {ϕ}.

In case (1) we have β1, . . . , β8 < Φθ , where β1 = (10110000), β2 = (11122100),
β3 = (11222210), β4 = (11222111), β5 = (12232110), β6 = (11122221), β7 =

(12232211), β8 = (12354321). These roots are mutually perpendicular, and so
by Lemmas 1.2 and 4.3 we see that θ is not domestic.

In cases (2)–(4) we have γ1, . . . , γ6 < Φθ , where γ1 = (11121110), γ2 =

(11221111), γ3 = (01122221), γ4 = (12343210), γ5 = (12243211), γ6 =

(22344321). The roots γ1, . . . , γ6, α2, α6 are mutually perpendicular, and so
disp(θ) ≥ `(w0) − 2 = 118. Hence θ is not domestic.

Similarly, in cases (5)–(8) we have δ1, . . . , δ6 < Φθ , where δ1 = (00000011),
δ2 = (11111110), δ3 = (11232110), δ4 = (11233321), δ5 = (22343211), δ6 =
(13354321). The roots δ1, . . . , δ6, α3, α5 are mutually perpendicular, and so
again θ is not domestic. �

Lemma 4.8 Let char(F) , 2. The homology θ = hω4 (−1) of F4(F) is domestic,
with opposition diagram F4

4;1.

Proof It is sufficient to prove that θ is 1-domestic. Recall that G/P1 is the set
of points of the Lie incidence geometry F4,1(F). By Corollary 1.7 it is sufficient
to show that no point opposite P1 is mapped to an opposite point by θ. Since
w0wC3 = sϕ (by comparing inversion sets) we have P1w0P1 = P1sϕP1, and
hence the points opposite P1 are of the form usϕP1 with u ∈ U+

Φ(sϕ ). Thus we
are required to prove that

P1s−1ϕ u−1θusϕP1 , P1sϕP1 for all u ∈ U+
Φ(sϕ ) .

We have Φθ = {α ∈ Φ | 〈α,ω4〉 ∈ 2Z}. Write u = u1u2 with u1 ∈ U+
Φθ∩Φ(sϕ )

and u2 ∈ U+
Φ(sϕ )\Φθ

, and so P1s−1ϕ u−1θusϕP1 = P1s−1ϕ u−12 θu2sϕP1. Now, Φ(sϕ ) =
{α ∈ Φ+ | 〈α,ω1〉 ≥ 1}, and hence by inspection of the root system we have
Φ(sϕ )\Φθ = {α, β, γ, δ} where α = (1111), β = (1121), γ = (1221), δ = (1231).
Writing u2 = xα (a)xβ (b)xγ (c)xδ (d), a commutator relation calculation gives

u−12 θu2 = xδ (−d)xγ (−c)xβ (−b)xα (−a)xα (−a)xβ (−b)xγ (−c)xδ (−d)θ
= xα (−2a)xβ (−2b)xγ (−2c)xδ (−2d)xϕ (−4ad + 4bc)θ.
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Thus P1s−1ϕ u−1θusϕP1 = P1x−δ (−2a)x−γ (2b)x−β (−2c)x−α (2d)x−ϕ (4ad −
4bc)P1. Easy calculations, using the folding relation and commutator rela-
tions, show that x−δ (−2a)x−γ (2b)x−β (−2c)x−α (2d)x−ϕ (4ad−4bc) is an element
of




BsδB if a , 0
BsγB if a = 0 and b , 0
BsβB if a = b = 0 and c , 0
BsαB if a = b = c = 0 and d , 0
B if a = b = c = d = 0.

Since β = s3α, γ = s2s3α, and δ = s3s2s3α, we have sβ = s3sα s3, sγ =
s2s3sα s3s2 and sδ = s3s2s3sα s3s2s3, and hence P1sαP1 = P1sβP1 = P1sγP1 =

P1sδP1. Thus

P1s−1ϕ u−1θusϕP1 =



P1sαP1 if (a, b, d, c) , (0, 0, 0, 0)
P1 if (a, b, c, d) = (0, 0, 0, 0).

We have P1sαP1 , P1sϕP1. To see this, note that sα = s1s2s3s4s3s2s1 (as
α = s1s2s3α4), and so both sα and sϕ are minimal length in their respective
W1-double cosets (we noted above that sϕ = w0wC3). But of course sα , sϕ .
Hence θ is {1}-domestic. �

Theorem 4.9 Let θ be a nontrivial homology of F4(F). If char(F) = 2 then
θ is not domestic. If char(F) , 2 then θ is domestic if and only if ∆′θ has
type B4. Moreover, all such homologies have opposition diagram F4

4;1 and are
conjugate to hω4 (−1).

Proof Let θ ∈ H, and suppose that ∆′θ has type B4. The simple roots of Φθ
are (β, α1, α2, α3) where β = α2 + 2α3 + 2α4. Thus θ = hω4 (−1) (in particular
char(F) , 2). By Lemma 4.8 θ is domestic with diagram F4

4;1.
We now use Lemma 4.3 to show that if θ ∈ H is a nontrivial homology with

∆′θ not of type B4 then θ is not domestic. It is sufficient to consider the cases:
(1) Φθ = C3 ×A1, with simple roots (α4, α3, α2) × (ϕ),

and Φ+θ = {α ∈ Φ
+ | 〈α,ω1〉 ∈ 2Z}.

(2) Φθ = A2 ×A2, with simple roots (α3, α4) × (α1, ϕ − α1),
and Φ+θ = {α ∈ Φ

+ | 〈α,ω2〉 ∈ 3Z}.
(3) Φθ = B3 ×A1, with simple roots (α1, α2, α3) × (ϕ′),

and Φ+θ = {α ∈ Φ
+ | 〈α,ω4〉 = 0} ∪ {ϕ′}.

(4) Φθ = B2×B2, with simple roots (α2, α3)× (β, γ), where β = α2+2α3+2α4
and γ = α1 + α2 + α3, and Φ+θ = {α2, α3, α2 + α3, α2 + 2α3, β, γ, ϕ

′, ϕ}.
(5) Φθ = D4, with simple roots (α2 + 2α3 + 2α4, α1, α2, α2 + 2α3),

and Φ+θ = {α ∈ Φ
+ | 〈α,ω4〉 ∈ 2Z and 〈α,ω3〉 ∈ 2Z}.

In cases (1) and (2) we have β1, β2, β3 < Φθ , where β1 = (1220), β2 = (1222),
and β3 = (1242). The roots β1, β2, β3, α1 are mutually perpendicular, and
hence sβ1 sβ2 sβ3 = w0s1 by Lemma 1.2, and so by Lemma 4.3 θ is not domestic.
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In cases (3), (4) and (5) we have γ1, γ2, γ3, γ4 < Φθ , where γ1 = (0011),
γ2 = (0111), γ3 = (1111), and γ4 = (1231). Thus again θ is not domestic. �

For the G2 results see Theorem 6.10.

5 The polar-copolar type for E7, E8, and F4

In this section we prove Theorem 4, classifying the automorphisms with polar-
copolar diagram in types E7, E8, and F4. The arguments here are of a more
geometric flavour, working in long root geometries and the metasymplectic
space F4,4(F). See Subsection 1.5 for some relevant terminology, and see [21,
Chapter 13] for further details.

Recall, from [15], that if x is a simplex of a spherical building mapped
onto an opposite simplex by an automorphism θ, then we write θx for the
automorphism of the residue Res(x) given by θx = projx ◦ θ, where projx is
the projection from Res(xθ ) onto Res(x). If ξ is a simplex of Res(x), then ξ
and ξθ are opposite in ∆ if and only if ξ and ξθx are opposite in the building
Res(x) (see [28, Proposition 3.29]).

Note also that a long root elation fixes all points collinear and symplectic
to a certain (unique) point c of the long root geometry, and c is called the
centre of the elation.

Our first task is to prove the following theorem (giving the ‘only if’ direction
of Theorem 4).

Theorem 5.1 A collineation belonging to a polar-copolar opposition diagram
of a split exceptional building ∆ not of type E6 if ∆ is large, and not of type E7
or E8 if ∆ is small, is the product of two orthogonal root elations. That is, the
centres of the elations form a symplectic pair of points in the corresponding
long root geometry.

Large buildings of type E6 are true exceptions to the theorem, for there
exist homologies with the diagram 2E6;2 (see Theorem 4.4). For the small
buildings of type Ei , i = 7, 8, we believe that the theorem still holds, however
the geometric arguments break down.

The theorem follows from a series of lemmas. First we need some properties
of long root elations in the long root geometries E7,1(F), D6,2(F), A5, {1,5} (F)
and C3,1(F). In these Lie incidence geometries, a vertex of the correspond-
ing building of type 7, 6, 3 and 3, respectively, defines a (residual) sub-Lie
incidence geometry, which we shall call a para, of type E6,1(F), A5,2(F),
A2,1 × A2,1(F), A2,1(F), respectively. The paras are also the points of the
Lie incidence geometry E7,7(F), D6,6(F), A5,3(F) and C3,3(F), respectively.
We call two paras adjacent if the corresponding points in the latter Lie inci-
dence geometries are collinear. A pencil of paras corresponds to a line of that
geometry.
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Lemma 5.2 A long root elation θ of E7,1(F), D6,2(F), A5, {1,5} (F) and C3,1(F)
maps each non-fixed para P to an adjacent one, preserving the pencil defined
by P and Pθ and fixing exactly one para of that pencil.

Proof A central elation in one of the Lie incidence geometries E7,7(F),
D6,6(F), A5,3(F) or C3,3(F) fixes all points of a “central” symp (which corre-
sponds to the centre of the elation), all points collinear to a maximal singular
subspace of that symp, and all lines intersecting that symp in a point. Since
every point that is not fixed is on exactly one such line, the lemma follows. �

Let θ be a collineation with an exceptional polar-copolar opposition dia-
gram of a large building. Let G be the corresponding long root geometry and
let (p, ω) be an incident point-symp pair which is mapped onto an opposite
by θ.

Let E(p, pθ ) be the equator geometry of the pair (p, pθ ), that is, the geom-
etry induced by the points which are symplectic to both p and pθ . For G
of type E8,8, E7,1, E6,2 and F4,1, note that E(p, pθ ) is isomorphic to the long
root geometry G ′ of type E7,1, D6,2, A5, {1,5} and C3,1, respectively. Moreover,
symps, planes and lines of G through p correspond to points, symps and paras,
respectively, of G ′. The case (F4,1,C3,1) is special in that the lines of C3,1(F)
correspond to points of a symp in E(p, pθ ) (in this case, E(p, pθ ) does not
contain lines; only symplectic and opposite pairs of points).

Lemma 5.3 Let θ and p be as above. Then θ preserves E(p, pθ ) and induces
a long root elation in it, say with centre the point c.

Proof Recall that the symbol ⊥⊥ means “symplectic to”, and Z “special to”.
Let π be a plane through p fixed by θp . We claim that the line π ∩ (pθ )Z is

mapped onto the line πθ ∩ pZ. Indeed, first assume that every line L through
p in π is fixed under θp , the alternative being that exactly one such line is
fixed (by Lemma 5.2). Let M be the line in π such that Mθ = πθ ∩ pZ. If
M = π ∩ (pθ )Z, then there is nothing to prove, so suppose M and π ∩ (pθ )Z

intersect in a unique point z. Then, since (pz)θp = pz, we see that zθ ⊥ z.
Now let L be a line in π through p, but not through z. Since |F| > 2, we can
select a point q ∈ L \ ({p} ∪ M ∪ pθZ). Let K be a line in π through q, and
set K ∩ M = {u}, pu ∩ (pθ )Z = {v} and K ∩ (pθ )Z = {w}. Since (pv)θp = pv, we
have v ⊥ uθ . Hence (qu)θq = (qw)θq = qv. This now yields the equivalence

(qw)θq = qw ⇔ v = w ⇔ u = z or u ∈ pq.

Consequently the central elation θq fixes π and exactly two lines through q in
π, which contradicts Lemma 5.2, recalling that the lines through q correspond
to the paras in that lemma.

Next assume that exactly one line L through p in π is fixed under θp . Since
every such fixed line is contained in a fixed plane all of whose lines through p
are fixed, we know by the previous paragraph that z := L ∩ (pθ )Z is mapped
onto zθ = Lθ ∩ pZ, and these two points are collinear. Let M again be the line
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of π defined by Mθ = πθ ∩ pZ. Let, for each x ∈ M, x ′ be the unique point of
π collinear to xθ , then, as a product of a linear collineation and a projection,
the correspondence x 7→ x ′ is a projectivity from M to M ′ := π ∩ (pθ )Z. Since
z = M ∩ M ′ is fixed under this correspondence, it is a perspectivity. Let c be
the centre of this perspectivity, then c < M ∪M ′ is opposite cθ , and clearly θc
is the identity restricted to π. By the first case, this implies that M ′ = M.

Now let ξ be an arbitrary symp through p. Every point of ξ at distance 2
from pθ is collinear to the unique point eξ of ξ symplectic to pθ , which is also
the unique point of ξ belonging to E(p, pθ ). Hence the previous claim can be
formulated as: θ maps p⊥∩ e⊥ξ to (pθ )⊥∩ e⊥

ξθ
. If ξ is hyperbolic, or parabolic in

uneven characteristic, then pθ and eξθ are the only two points of ξθ collinear
to all points of (pθ )⊥ ∩ e⊥

ξθ
; it follows that eθξ = eξθ .

Now suppose that ξ is parabolic in characteristic 2. The foregoing implies
that θ stabilises the extended equator geometry E := Ê(p, pθ ) (by definition,
this is the union of all equator geometries E(x, y) for x, y opposite points in
E(p, pθ )). Our assumption on p readily implies that θ acts plane-domestically
but not line-domestically on E. Since E is a symplectic polar space of rank 4,
the fixed point set of θ in E is of the form u⊥⊥ ∩ v⊥⊥ for two points u, v of E. If
u ⊥⊥ v (in ∆), then θ is involutive on E and so preserves E(p, pθ ). Otherwise
θ pointwise fixes E(u, v) ⊆ Ê(p, pθ ). It follows that the fixed point set of the
symp ζ determined by two symplectic points x, y of E(u, v) is exactly the
imaginary line E(u, v) ∩ ζ . This yields a plane π of ζ disjoint from πθ . But
then every plane disjoint from π and contained in a common symp with π is
mapped onto an opposite plane, a contradiction.

Hence we have shown that E(p, pθ ) is preserved under the action of θ and
the lemma now follows from Theorem 1 for E7(K), D6(K) and C3(K). �

Let θ, p and ω be as above, and let p′ ∈ E(p, pθ ) correspond to ω. Then p′ is
opposite p′θ and hence E(p′, p′θ ) is preserved by θ. Since p′ ∈ ω, we can apply
Lemma 5.3 and obtain that θ induces a long root elation in E(p′, p′θ ), say with
centre c′. Now set θ∗ = θ[c]θ[c′], with θ[c] the central elation with centre c (and
similar for θ[c′]). Then θ∗θ−1 fixes every point of E(p, pθ ) ∪ E(p′, p′θ ) (use the
fact that, in E(p, pθ ), (θ[c])p′ fixes p′⊥⊥∩ (p′θ )⊥⊥, which precisely coincides with
E(p, pθ ) ∩ E(p′, p′θ )).

Now Theorem 5.1 follows from the following general proposition.

Proposition 5.4 No nontrivial collineation of the long root geometry of (split)
type Bn (n ≥ 4), Cn (n ≥ 3), Dn (n ≥ 5), En (8 ≥ n ≥ 6) or F4 fixes two
perpendicular equator geometries pointwise.

Proof For the classical types B/C/D this follows from the easy fact that an
equator geometry spans a subspace of dimension n−4/n−2/n−4 of the ambient
projective space PG(n, F), n ≥ 8/5/9, respectively; hence if a collineation θ
pointwise fixes two perpendicular equator geometries, then it fixes all points
of two subspaces of dimension n−4/n−2/n−4 of PG(n, F), spanning PG(n, F),
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n ≥ 8/5/9, and hence intersecting in at least one point, and so forcing θ to be
the identity.

Now consider the long root geometries of type E. Let E1, E2 be two per-
pendicular equator geometries, that is, E1 is the equator geometry E(p2, q2)
for p2, q2 ∈ E2 and E2 = E(p1, q1) with p1, q1 ∈ E1. Since E2 is fixed pointwise,
Res(p1) is fixed pointwise. Hence every symp ξ through p1 is fixed, and every
line in ξ through p1 is fixed. Moreover, the point ξ ∩ E2, which is opposite p2
in ξ, is fixed. Since ξ is hyperbolic, ξ is fixed pointwise as soon as some line
in ξ through p1 is fixed pointwise. By connectivity and the arbitrariness of ξ,
it suffices that some line through p1 is fixed pointwise, which is the case as E1
contains a line through p1 and is fixed pointwise. Hence all points collinear
or symplectic to p1 are fixed and so we have a central elation with centre p1.
But the same thing holds for q1 and hence we have the identity.

At last assume we have the long root geometry of type F4. The same argu-
ment as in the previous paragraph shows that it suffices to find one line
through p1 that is pointwise fixed. To that aim, let p′1 ∈ E1 be such that
p1 ⊥⊥ p′1. Then the symp ξ := ξ (p1, p′1) corresponds to planes πp and πq
through the points p2 and q2, respectively. Then the lines L := πp ∩ qZ2 and
M := πq ∩ pZ2 are fixed and the points of L⊥ ∩ M⊥ belong to E1. Hence
(p⊥1 ∩p′1

⊥)∪(L⊥∩M⊥) is fixed pointwise, which implies that ξ is fixed pointwise
(note that p1, p′1 ∈ L⊥ ∩ M⊥).

The proposition is proved. �

The proof of Theorem 5.1 is complete, and the following theorem proves
the ‘if’ direction of Theorem 4.

Theorem 5.5 Every product of two perpendicular long root elations in
F4(F) (respectively E7(F), E8(F)) is domestic with opposition diagram F4;2
(respectively E7;2, E8;2).

Proof Consider the F4 case. We claim that all pairs (α, β) of perpendicular
long roots are conjugate under W . Since W is transitive on long roots it suffices
to show that the stabiliser Wϕ of ϕ in W is transitive on the set of long
roots perpendicular to ϕ. These roots are precisely the long roots of the C3
subsystem, and since Wϕ = 〈s2, s3, s4〉 = WC3 the result follows. Hence we may
assume that θ = xϕ (a)xϕC3

(b), and then the result follows from Theorem 3.1.
The arguments for E7 and E8 are similar. �

6 Domestic automorphisms in split types E6, F4, and G2

In this section we give the complete classification of domestic automorphisms
of split buildings of types E6, F4, and G2.
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6.1 Classification of domestic automorphisms of split F4

In this section we classify domestic automorphisms of split F4 buildings. By
[15, Lemma 4.1] no duality of a thick F4 building is domestic, and so we may
restrict to collineations. The complete list of domestic collineations of the
small building F4(F2) is given in [16, Theorem 4.3], and so we may assume that
|F| > 2, and so all automorphisms are capped. Thus the possible opposition
diagrams of nontrivial domestic collineations are F1

4;1, F4
4;1, and F4;2. The

automorphisms with diagram F1
4;1 are the long root elations (see Theorem 1),

and the collineations with diagram F4;2 are products of perpendicular root
elations (see Theorem 4). Thus our main task is to consider the diagram F4

4;1.
We will prove the following theorem:

Theorem 6.1 Let θ be an automorphism of ∆F4 (F) with opposition diagram
F4

4,1. If char(F) = 2 then θ is a short root elation, and if char(F) , 2 then θ is
a homology.

Let G = F4,4(F) be the short root geometry of the building ∆ of F4(F).
Then G is a metasymplectic space with symps isomorphic to a symplectic
polar space of rank 3 (see [21, Chapter 18] for details). If θ is a domestic
collineation with opposition diagram F4

4;1 then the only objects mapped to
opposite objects are points.

Recall from [7, §5.2] that two opposite points p, q in G define a geometry
Ê(p, q) of type B4 as follows: Let E(p, q) denote the equator geometry of p, q (as
in Section 5), and take Ê(p, q) to be the union of all equator geometries E(x, y)
for x, y opposite points in E(p, q). The lines of Ê(p, q) are the intersections of
Ê(p, q) with the symps ξ (u, v), with {u, v} symplectic pairs in Ê(p, q). These
intersections are imaginary lines of symplectic polar spaces. Note that two lines
of Ê(p, q) are opposite (as polar space lines) if and only if the corresponding
symps are opposite in G .

Lemma 6.2 Let p be a point of G mapped onto an opposite point. Then θ
pointwise fixes a geometric hyperplane of Ê(p, pθ ).

Proof Let p be a point of G mapped onto an opposite. Then θp is the identity.
Since the identity automatically and trivially satisfies the properties of central
elations mentioned in Lemma 5.2, it follows from the proof of Lemma 5.3 that
θ pointwise fixes E(p, pθ ). Hence θ stabilises Ê(p, pθ ). Since (opposite) lines
of Ê(p, pθ ) correspond to (opposite) symps in G , θ induces a line-domestic
collineation in Ê(p, pθ ). The assertion now follows from [25, Theorem 5.1]. �

In the case that char(F) = 2 we need a more precise version of the above
lemma.
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Lemma 6.3 Let p be a point mapped onto an opposite. If char(F) = 2 then θ
pointwise fixes either the perp of a point in Ê(p, pθ ), or a subspace of Ê(p, pθ )
inducing a non-degenerate polar space of Witt index 3 in Ê(p, pθ ). In both
cases, pθ

2
= p.

Proof In this case, Ê(p, pθ ) may be identified with the polar space (of type
B4) obtained from the standard symplectic polar space in PG(7, F) with alter-
nating form x0y1 + x1y0 + · · · x6y7 + x7y6 by only considering the points whose
coordinates (x0, . . . , x7) satisfy x0x1+x2x3+x4x5+x6x7 ∈ F

2, where the latter is
the subfield of squares of F. Without loss we may assume that p = (0, 0, . . . , 1, 0)
is mapped onto (0, . . . , 0, 1). By Lemma 6.2 and its proof, θ fixes pointwise a
hyperplane of PG(7, F) containing the subspace with equations X6 = X7 = 0.
Hence some point t = (0, . . . , 0, k, 1) is fixed, with k ∈ F, along with all points
having coordinates (x0, x1, . . . , x5, k, 1). If k ∈ F2, then t ∈ Ê(p, pθ ) and θ fixes
the perp of t. Then θ is an elation in PG(7, F) and hence an involution on
Ê(p, pθ ).

Now assume k < F2. Let a, b, c ∈ F be defined by

θ : (x0, . . . , x5, x6, x7) 7→ (x0, . . . , x5, ax7, bx6 + cx7).

Expressing that (0, . . . , 0, 1, k, k, 1) is fixed, we obtain a = k and c = kb + 1.
Expressing that the image of an arbitrary point of Ê(p, pθ ) stays inside of
Ê(p, pθ ), we get bk = 1 and so θ is involutive on Ê(p, pθ ). Moreover, we can now
project the fixed point set from (0, . . . , 0, k, 1) onto the subspace X6 = X7 = 0
and obtain the polar space whose points have coordinates (x0, x1, . . . , x5) with
x0x1 + x2x3 + x4x5 ∈ F

2 + kF2. That is a polar space of Witt index 3. �

Lemma 6.4 Assume that char(F) = 2, and suppose that whenever a point
p is mapped onto an opposite point, θ pointwise fixes the perp of a point in
Ê(p, pθ ). Then θ is a central elation.

Proof Let p be a point mapped onto an opposite, and suppose θ fixes all
points of Ê(p, pθ ) symplectic to x ∈ Ê(p, pθ ). Arguments similar to the ones
in the proof of Proposition 5.4 show that all vertices of ∆ incident with x are
fixed by θ. Let y be opposite x in Ê(p, pθ ). Then E(x, y) is fixed pointwise.
Let y′ ⊥ y be also opposite x. Then we have a unique path y, yy′, b, ab, a, ax, x
of consecutively incident points and lines connecting y with x using the line
yy′. Since x, y, yθ are on the same imaginary line, and since ax is fixed, we
see that (ab)θ = ab (this also follows from the fact that the line ab defines a
unique plane of E(p, pθ ),which is fixed; see [7, Proposition 5.3.9]). Hence the
unique point x ′ on ax and on the imaginary line determined by y′ and y′θ is
fixed. If x , x ′, then, since θ acts linearly (as it poinwise fixes E(p, pθ )), it
fixes all points of ax and the arguments in the proof of Lemma 5.4 then imply
that all points collinear to x are fixed. Otherwise, x = x ′ and E(x, y′) is fixed
pointwise, again implying that at least one line through x is fixed pointwise,
and hence, as before, all of them are. Also as before in the proof of Lemma 5.4,
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it follows now that all points collinear or symplectic to x are fixed and so θ is
a central elation with centre x. �

Lemma 6.5 If a point p is mapped onto a collinear point pθ , p, then the
line ppθ is fixed under θ.

Proof In Res∆(pθ ) we find a line L opposite both ppθ and (ppθ )θ . Then any
point x on Lθ

−1 distinct from p is mapped onto an opposite. Then E(x, xθ )
is fixed pointwise. If char(F) , 2, the points x and xθ are the only points
of Ê(x, xθ ) symplectic to all points of E(x, xθ ). It follows that (xθ )θ = x.
If char(F) = 2, the latter follows directly from Lemma 6.3. Also, each line
through x is mapped onto its projection on xθ , so xp is mapped onto xθpθ

and vice versa, and so (pθ )θ = p and the line ppθ is fixed. �

Lemma 6.6 Suppose char(F) , 2, or that char(F) = 2 and that for at least
one point x mapped onto an opposite the fixed point structure induced by θ
in Ê(x, xθ ) is a non-degenerate polar space. Then necessarily char(F) , 2 and
there exists an apartment Σ of ∆ fixed pointwise by θ. Also, θ fixes some panel
pointwise and hence is a homology.

Proof Let p, q be two fixed (by θ) opposite points such that θ fixes pointwise
a geometric hyperplane H of Ê(p, q), see Lemma 6.2. If char(F) = 2, we may
assume that H is a nondegenerate polar space of Witt index 3. If char(F) , 2,
the hyperplane is not singular (if a collineation fixes all points collinear to a
given point of a parabolic polar space, then it is the identity). Hence H is
a subquadric either of Witt index 4 (of type D4), or of Witt index 3. Now
assume for a contradiction that H has Witt index 3 (in either characteristic).

Let π be a plane of Ê(p, q). Then by [7, Corollary 5.3.7] there is a unique
point pU collinear to each 3-space U of Ê(p, q) containing π. Moreover, Propo-
sition 5.3.9 of [7] implies that the set of all such points pU , for U running
through all 3-spaces of Ê(p, q) containing π, forms a line Lπ of ∆. Since π is
fixed, the line Lπ is also fixed by θ. Note that, since no 3-space of Ê(p, q) is
fixed, no point on Lπ is fixed. Select any point x ∈ π. Then also the plane
spanned by Lπ and x is fixed by θ. Hence an arbitrary point z ∈ π \ ({x} ∪ Lπ )
is either fixed or mapped to a collinear point. In the former case the point
Lπ ∩ xz is fixed, in the latter case the point Lπ ∩ zzθ is fixed (use Lemma 6.5),
twice the same contradiction.

Hence H has Witt index 4 (and char(F) , 2). Select two opposite points
x0, x1 in Ê(p, q), fixed by θ. Select two opposite points y0, y1 ∈ {x0, x1}

⊥⊥, again
fixed by θ. Set ξi := ξ (xi, yi ), i = 1, 2. Then ξ0 is opposite x1. Select lines L0, L1
and planes π0, π1 in E(x0, x1) such that yi ∈ Li ⊆ πi , i = 0, 1, L0 is opposite
L1, whereas π0 is opposite π1 in the polar space Ê(p, q), and L0, L1, π0, π1 are
fixed by θ. To Li and πi correspond a plane αi and a line Ki through xi , with
Ki ⊆ αi ⊆ ξi , i = 0, 1, and K0 is opposite K1, whereas α0 is opposite α1. Hence
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the chambers {x0, K0, α0, ξ0} and {x1, K1, α1, ξ1} are fixed and opposite and so
they uniquely determine a pointwise fixed apartment Σ.

With the notation of the previous paragraph, it is clear that θ fixes all lines
in π0 through y0. Hence the panel determined by {x0, K0, ξ0} is fixed pointwise
by θ. �

The proof of Theorem 6.1 is now complete. We note the following corollary
(completing a postponed part of the proof of Theorem 2.10). Let ϕ′ be the
highest short root of the F4 root system.

Corollary 6.7 In F4(F), the element xϕ′ (a)xϕ (b) with a, b , 0 has opposition
diagram F4;2. If char(F) , 2 then xϕ′ (a) has this diagram too, and if char(F) =
2 then it has diagram F4

4;1.

Proof By the angle between root elations xα (a) and xβ (b) we shall mean
the angle between the roots α and β. We claim that:
(1) Every product of a short root elation and a long root elation at angle

π/4 is conjugate to a product of two perpendicular long root elations.
(2) If char(F) , 2 then every short root elation is conjugate to a product of

two perpendicular long root elations.
To begin with, note that the Weyl group is transitive on pairs (α, β) with
α short, β long, and angle(α, β) = π/4. An example of such a pair is
(ϕ′, ϕ), and it is sufficient to show that the stabiliser WC3 of ϕ is transi-
tive on the set of short roots with angle π/4 with ϕ. These 6 roots are
(1110), (1111), (1121), (1221), (1231), (1232), and an easy check shows that WC3

is indeed transitive on these roots.
Thus to prove (1) we may assume that θ = xα (a)xβ (b) with α = (1110),

β = (1000), and a, b , 0. By commutator relations

xα (a)xβ (b) = xγ (ab−1)−1xδ (a2b−1)xβ (b)xγ (ab−1),

where γ = (0110) and δ = (1220). This proves (1), as (δ, β) is a pair of
perpendicular long roots.

Now suppose that θ is a short root elation. After conjugating we may
assume that θ = xϕ′ (a) for some a , 0. Let ε = (1110). By commutator
relations we have

xε (a−1/2)θxε (a−1/2)−1 = xϕ′ (a)xϕ (1).

Note that ϕ′ is short, ϕ is long, and angle(ϕ′, ϕ) = π/4, and so applying the
first statement completes the proof of the claims.

The statement of the Corollary now follows from Theorem 4, and the fact
that if char(F) = 2 then the F4,4(F) geometry isometrically embeds into the
F4,1(F) geometry, with short root elations becoming long root elations. �

We now collect the results to prove Theorem 7.
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Proof All that remains is to prove the statements concerning the number of
conjugacy classes. If θ has diagram F1

4;1 then θ is conjugate to xϕ (a) for some
a ∈ F (by Theorem 1). Then hω1−ω2 (a)xϕ (a)hω1−ω2 (a)−1 = xϕ (1), and so all
long root elations are conjugate.

If θ has diagram F4
4;1, and char(F) , 2, then θ is conjugate to hω4 (−1) (by

Theorem 6.1 and Theorem 4.9). If char(F) = 2 then θ is conjugate to xϕ′ (1)
(by Lemmas 6.4 and 6.6).

Thus suppose that θ has diagram F4;2. By the proof of Corollary 6.7 we
may assume that θ = xϕ (a)xϕC3

(b), and conjugating by a diagonal element
we may take a = 1. If b = c2 is a square then

h3ω1−2ω2 (c)xϕ (1)xϕC3
(c2)h3ω1−2ω2 (c)−1 = xϕ (1)xϕC3

(1).

This shows that there is at most one conjugacy class for each element of the
quotient F×/(F×)2 (where (F×)2 = {x2 | x ∈ F×}). Thus if F is quadratically
closed then we conclude that there is a unique conjugacy class of automor-
phisms with diagram F4;2. Similarly if F is finite and char(F) = 2 then there is
a unique conjugacy class (as every element is a square). Finally, if F is finite
with char(F) , 2 we conclude that there are at most 2 conjugacy classes,
and by the tables in [12] the elements xϕ (1)xϕC3

(1) and xϕ (1)xϕC3
(b) with

b < (F×)2 are not conjugate, and so there are precisely 2 classes. �

6.2 Classification of domestic automorphisms of thick E6 buildings

The classification of domestic automorphisms of the small E6 building (with
F = F2) is given in [16, Theorems 4.6 and 4.6], and the classification of domestic
dualities of large E6 buildings is given in [32]. By Theorem 1 the collineations
with diagram 2E6;1 are root elations, and so all that remains to complete the
classification of domestic automorphisms of thick E6 buildings is to classify
the collineations of large E6 buildings with diagram 2E6;2.

We begin with some setup. Let ϕ be the highest root of E6, and let ϕ′ =
(101111) be the highest root of the A5 subsystem. Let Φ1 be the A3 subsystem
generated by the simple roots α3, α4, α5, and let ϕ′′ = (001110) be the highest
root of Φ1.

Let β1 = (100000), β2 = (010000), β3 = (000001), β4 = (111100), β5 =

(010111), and β6 = (111111), and for 1 ≤ i ≤ 6 let Ci = {α ∈ Φ
+ | α − βi ∈

Z≥0α3 + Z≥0α4 + Z≥0α5}. Explicitly we have

C1 = {(100000), (101000), (101100), (101110)}
C2 = {(010000), (010100), (011100), (010110), (011110), (011210)}
C3 = {(000001), (000011), (000111), (001111)}
C4 = {(111100), (111110), (111210), (112210)}
C5 = {(010111), (011111), (011211), (011221)}
C6 = {(111111), (111211), (112211), (111221), (112221), (112321)}.
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Note that {Ci | 1 ≤ i ≤ 6} is a partition of Φ+\(Φ1∪{ϕ, ϕ
′}). For each i = 1, . . . , 6

let
C ′i = (Ci ∪ Ci+1 ∪ · · · ∪ C6)\{βi, βi + ϕ′′}.

The following technical lemma is required.

Lemma 6.8 Let 1 ≤ i ≤ 6, and suppose that u = u′xβi+ϕ′′ (b)xβi (a) with a , 0,
b ∈ F, and u′ a product of root elations with roots in C ′i . Let z1, z2, c, d ∈ F. If
z2 , 0 and bz2 , −1, then

x−βi−ϕ′′ (z1)x−ϕ (1)x−ϕ′ (1)xϕ (c)xϕ′ (d)ux−βi−ϕ′′ (z2) ∈ Bw0s4B.

Proof We make the following two claims:
(1) If z1, z′1 ∈ F then Bx−βi−ϕ′′ (z1)x−ϕ (1)x−ϕ′ (1)xϕ (c)xϕ′ (d)x−βi−ϕ′′ (z′1)B =

Bsϕ sϕ′B;
(2) With z3 = (b + z−12 )−1, we have ux−βi−ϕ′′ (z2)B ∈ x−βi−ϕ′′ (z3)Bsϕ′′B.
The result follows from these claims, because writing

g = x−βi−ϕ′′ (z1)x−ϕ (1)x−ϕ′ (1)xϕ (c)xϕ′ (d)ux−βi−ϕ′′ (z2),

and using (2) followed by (1) gives

g ∈ x−βi−ϕ′′ (z1)x−ϕ (1)x−ϕ′ (1)xϕ (c)xϕ′ (d)x−βi−ϕ′′ (z3)Bsϕ′′B

⊆ Bsϕ sϕ′B · Bsϕ′′B

= Bsϕ sϕ′ sϕ′′B = Bw0s4B,

where for the final two equalities we have used Lemma 3.5.
We prove (1). Let X = Bx−βi−ϕ′′ (z1)x−ϕ (1)x−ϕ′ (1)xϕ (c)xϕ′ (d)x−βi−ϕ′′ (z′1)B.

We will write xα (·) as shorthand for an element of Uα with the convention
that xα (·) = 1 if α < Φ. By commutator relations, and replacing x−ϕ (1) =
xϕ (1)s−1ϕ xϕ (1) and similarly for x−ϕ′ (1), and noting that the roots ϕ and ϕ′

are perpendicular, we compute

X = Bx−ϕ (1)x−ϕ′ (1)x−ϕ′−βi−ϕ′′ (·)x−βi−ϕ′′ (·)xϕ (c)xϕ′ (d)x−βi−ϕ′′ (z′1)B

= Bsϕ sϕ′ xϕ (1)xϕ′ (1)x−ϕ′−βi−ϕ′′ (·)x−βi−ϕ′′ (·)xϕ′−βi−ϕ′′ (·)xϕ−βi−ϕ′′ (·)
× xϕ+ϕ′−βi−ϕ′′ (·)B.

Now, by inspection both ϕ− βi − ϕ′′ and ϕ+ ϕ′ − βi − ϕ′′ are either not roots,
or are positive roots, and hence these terms can be absorbed into B. Thus

X = Bsϕ sϕ′ xϕ (1)xϕ′ (1)x−ϕ′−βi−ϕ′′ (·)x−βi−ϕ′′ (·)xϕ′−βi−ϕ′′ (·)B.

Moreover, note that ϕ′ − βi − ϕ
′′ is a negative root if and only if i = 6 (in

all other cases it is either not a root, or is a positive root, and hence can be
absorbed into B). Also note that −ϕ′ − βi − ϕ′′ is only a root for i = 2.

We now push the xϕ (1)xϕ′ (1) term to the right, to be absorbed into
the B. In the case i , 2, 6 this gives X = Bsϕ sϕ′ x−βi−ϕ′′ (·)B, and then
since βi + ϕ

′′ ∈ Φ(sϕ sϕ′ ) = Φ+\Φ1 the term x−βi−ϕ′′ (·) is absorbed into
the B on the left hand side after moving past sϕ sϕ′ . For i = 2 we com-
pute X = Bsϕ sϕ′ x−ϕ′−βi−ϕ′′ (·)x−βi−ϕ′′ (·)B, and since ϕ′ + βi + ϕ

′′, βi + ϕ
′′ ∈
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Φ(sϕ sϕ′ ) the result again follows. Similarly, for i = 6 we compute X =

Bsϕ sϕ′ x−βi−ϕ′′ (·)xϕ′−βi−ϕ′′ (·)B. In this case ϕ′ − βi − ϕ′′ = −(011110), and so
both roots βi + ϕ′′ and −ϕ′ + βi + ϕ′′ are in Φ(sϕ sϕ′ ), and the result follows
as before. Hence the claim.

We now prove (2). With u′ as in the statement of the theorem, we have

ux−βi−ϕ′′ (z2)B = u′xβi+ϕ′′ (b)xβi (a)x−βi−ϕ′′ (z2)B

= u′xβi+ϕ′′ (b)xβi (a)xβi+ϕ′′ (z−12 )sβi+ϕ′′B

= u′xβi+ϕ′′ (b + z−12 )xβi (a)sβi+ϕ′′B

= u′xβi+ϕ′′ (b + z−12 )sβi+ϕ′′ x−ϕ′′ (±a)B,

where we have used the facts that 2βi + ϕ′′ < Φ and sβi+ϕ′′ (βi ) = −ϕ
′′ for all

1 ≤ i ≤ 6. Recalling that z−13 = b + z−12 , using the folding relation we have

ux−βi−ϕ′′ (z2)B = u′x−βi−ϕ′′ (z3)sβi+ϕ′′ (z−13 )x−βi−ϕ′′ (z3)sβi+ϕ′′ x−ϕ′′ (±a)B

= u′x−βi−ϕ′′ (z3)sβi+ϕ′′ (z−13 )sβi+ϕ′′ xβi+ϕ′′ (±z3)x−ϕ′′ (±a)B

= u′x−βi−ϕ′′ (z3)sβi+ϕ′′ (z−13 )sβi+ϕ′′ x−ϕ′′ (±a)B

= u′x−βi−ϕ′′ (z3)x−ϕ′′ (z4)B

= u′x−βi−ϕ′′ (z3)xϕ′′ (z−14 )sϕ′′B

for some z4 , 0.
By commutator relations, one may write

u′x−βi−ϕ′′ (z3) = x−βi−ϕ′′ (z3)u′′

where u′′ is a product of elements from root subgroups Uγ with γ ∈ Yi , where
Yi = {α, α − βi − ϕ′′ | α ∈ C ′i } ∩Φ. By inspection of the elements of C ′i , if γ ∈ Yi
is a negative root then necessarily γ ∈ Φ1. Moreover one sees that

Yi ∩ Φ1 =




{−α5,−α4 − α5} if i = 1, 5
{−α3,−α3 − α4} if i = 3, 4
{−α5,−α3, α4} if i = 2, 6.

It follows that u′′ can be written in the form u′′ = u′′′yi, where u′′′ ∈ U+

and yi ∈
∏
α∈Yi∩Φ1 Uα . Simple calculations in A3, using the fact that Φ(sϕ′′ ) =

Φ+1\{α4}, show that yi xϕ′′ (z−14 )sϕ′′B ∈ Bsϕ′′B for each i = 1, . . . , 6. For example,
if i = 1, 5 we have (for some a1, a2 ∈ F)

yi xϕ′′ (z−14 )sϕ′′B = x−000010(a1)x−000110(a2)x001110(z−14 )sϕ′′B

= x−000010(a1)x001110(z−14 )x001000(±a2z−14 )x−000110(a2)sϕ′′B

= x001110(z−14 )x001100(±a1z−14 )x−000010(a1)x001000(±a2z−14 )sϕ′′B

= x001110(z−14 )x001100(±a1z−14 )x001000(±a2z−14 )sϕ′′B ⊆ Bsϕ′′B.

Hence (2) is proved. �

We can now complete the classification of domestic automorphisms of thick
E6 buildings.
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Theorem 6.9 Let θ be a collineation of a thick E6 building ∆. Then θ has
opposition diagram 2E6;2 if and only if θ is either a product of perpendicular
root elations, or a nontrivial homology fixing a subbuilding with thick frame
of type D5.

Proof It is easy to see that if θ is a product of perpendicular root elations
then θ is conjugate to an element xϕ (a)xϕ′ (b) with a, b , 0, and hence the “if”
direction of the theorem follows from Theorem 3.1 and Theorem 4.4. Thus it
remains to prove the “only if” direction.

The result for the small building E6(2) follows from [16, Theorem 4.6].
Thus suppose that ∆ is large, and so the underlying field F has at least
3 elements. Note that wA3wE6 = sϕ sϕ′ (by comparing inversion sets). Thus
disp(θ) = `(sϕ sϕ′ ), and since θ is capped `(δ(gB, θgB)) = `(sϕ sϕ′ ) if and only
if δ(gB, θgB) = sϕ sϕ′ . Moreover, after replacing θ by a conjugate, we may
assume that the base chamber B is mapped to Weyl distance sϕ sϕ′ (see [15,
Theorem 2.6]). Since the stabiliser of B is transitive on each w-sphere centred
at B we may assume that B is mapped to the chamber xϕ (1)xϕ′ (1)sϕ sϕ′B. By
the folding relation, and the fact that ϕ and ϕ′ are perpendicular, we have
xϕ (1)xϕ′ (1)sϕ sϕ′B = x−ϕ (1)x−ϕ′ (1)B. The condition θ(B) = x−ϕ (1)x−ϕ′ (1)B
gives

θ = x−ϕ (1)x−ϕ′ (1)uhσ for some u ∈ U+, h ∈ H, and σ ∈ Aut(F).

We will now determine u, h and σ. The primary strategy (as in Theorem 2.4)
is to show that if these elements do not take certain particular forms, then one
can find an element g ∈ G such that g−1θg ∈ BwBσ with `(w) > `(sϕ sϕ′ ). Thus
the chamber gB is mapped to distance `(w) > `(sϕ sϕ′ ), contradicting the fact
that θ has polar-copolar diagram. A useful observation is that if w = sϕ sϕ′v
with v ∈ WA3 then `(w) = `(sϕ sϕ′ ) + `(v). We now proceed with the analysis.
The first three steps are completely analogous to the proof of Theorem 2.4,
and we omit the easy details.

Claim 1: We have u ∈ U+
Φ\Φ1

.

Claim 2: We have h = hω1 (c1)hω2 (c2)hω6 (c3) for some c1, c2, c3 ∈ F
×.

Claim 3: We have σ = id.

Claim 4: We have u ∈ UϕUϕ′ . Write u = xϕ (c)xϕ′ (d)u1 with c, d ∈ F and u1 ∈

U+
Φ\(Φ1∪{ϕ,ϕ′ })

. We must show that u1 = 1. Suppose not. Let i ∈ {1, 2, 3, 4, 5, 6}
be minimal such that a root in Ci appears in u1. Using the same idea as in the
proof of Claim 4 in Theorem 2.4, one may then conjugate u1 by an element
g ∈ U−

Φ1
to obtain

g−1u1g = u′1xβi+ϕ′′ (b)xβi (a)
with a , 0, b ∈ F, and u′1 a product of root elations with roots in C ′i .
Moreover, since g−1hg = h (by Claim 2) and g−1x−ϕ (1)x−ϕ′ (1)xϕ (c)xϕ′ (d)g =
x−ϕ (1)x−ϕ′ (1)xϕ (c)xϕ′ (d) (because ±ϕ−α,±ϕ′−α < Φ for all α ∈ Φ+1) we have

g−1θg = x−ϕ (1)x−ϕ′ (1)xϕ (c)xϕ′ (d)u′1xβi+ϕ′′ (b)xβi (a)h.
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Let g1 = x−βi−ϕ′′ (z) with z ∈ F. Then

g−11 g−1θgg1 = x−βi−ϕ′′ (−z)x−ϕ (1)x−ϕ′ (1)xϕ (c)xϕ′ (d)u′1xβi+ϕ′′ (b)
× xβi (a)x−βi−ϕ′′ (λz)h

for some λ , 0. Since ∆ is large we have |F| ≥ 3, and so we may choose z ∈ F
with z , 0 and bλz , −1. Applying Lemma 6.8 then gives

g−11 g−1θgg1 ∈ Bw0s4B,

and hence the chamber g1gB is mapped to Weyl distance w0s4, a contradic-
tion. Thus u1 = 1.

Claim 5: We have θ = x−ϕ (1)x−ϕ′ (1)xϕ (a)xϕ′ (b)hω1 (c1)hω2 (c2)hω6 (c3), where

a = −(c1c2 − 1)(c2c3 − 1) and b = −(c1 − 1)(c3 − 1).

From Claims 1–4 we have θ = x−ϕ (1)x−ϕ′ (1)xϕ (a)xϕ′ (b)hω1 (c1)hω2 (c2)hω6 (c3)
for some a, b ∈ F. Let α = (101000) and β = (001111), and let g =

x−α (1)x−β (1). A direct calculation shows that if b , −(c1 − 1)(c3 − 1) then

g−1θg ∈ Bsϕ sϕ′B · Bs3B = Bsϕ sϕ′ s3B,

a contradiction.
A similar calculation, with g = x−γ (1)x−δ (1) where γ = (010100) and δ =

(112321) shows that if a , −(c1c2−1)(c2c3−1) then g−1θg ∈ Bsϕ sϕ′ s4B, again
a contradiction.

Claim 6: θ fixes a chamber. Let gB = xϕ (y1)xϕ′ (y2)sϕ sϕ′B with y1, y2 ∈ F.
With θ as in Claim 5 we have

θgB = x−ϕ (1)x−ϕ′ (1)xϕ (a)xϕ′ (b)xϕ (c1c2
2c3y1)xϕ′ (c1c3y2)sϕ sϕ′B

= x−ϕ (1)xϕ (a + c1c2
2c3y1)x−ϕ′ (1)xϕ′ (b + c1c3y2)sϕ sϕ′B.

We now use the SL2 relation x−α (z)xα (z′) = xα (z′(1 + zz′)−1)x−α (−z(1 +
zz′))hα∨ (1 + zz′)−1, valid whenever zz′ , −1, to obtain

θgB = xϕ ((a + c1c2
2c3y1)(1 + a + c1c2

2c3y1)−1)

× xϕ′ ((b + c1c3y2)(1 + b + c1c3y2)−1)sϕ sϕ′B,

where we have chosen y1, y2 so that 1+ a+ c1c2
2c3y1 , 0 and 1+ b+ c1c3y2 , 0.

We have θgB = gB if and only if (a + c1c2
2c3y1) = y1(1 + a + c1c2

2c3y1) and
(b + c1c3y2) = y2(1 + b + c1c3y2). Recalling that a = −(c1c2 − 1)(c2c3 − 1) and
b = −(c1 − 1)(c3 − 1), the discriminants in the quadratics (in y1 and y2) are
perfect squares, and we find that gB is fixed if and only if

y1 ∈ {1 − c−11 c−12 , 1 − c−12 c−13 } y2 ∈ {1 − c−11 , 1 − c−13 }

(note that these values avoid the excluded values y1 = 1− c−11 c−12 − c−12 c−13 and
y2 = 1 − c−11 − c−13 required for the SL2 relation to hold).

Claim 7: θ is conjugate to xϕ (−c1c2)xϕ′ (−c1)hω1 (c1c−13 ). Let g = xϕ (1 −
c−11 c−12 )xϕ′ (1− c−11 )sϕ sϕ′ . It follows from Claim 5 that g−1θg ∈ B, and a direct
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calculation yields

g−1θg = xϕ (−c1c2)xϕ′ (−c1)hω1 (c1c−13 )

as required.

Claim 8: θ is either a product of perpendicular root elations, or is a homology
fixing a subbuilding with thick frame of type D5. After conjugating, as in Claim
6, we may replace θ by the conjugate θ = xϕ (−c1c2)xϕ′ (−c1)hω1 (c1c−13 ). If
c1 = c3 then θ is a product of perpendicular root elations. If c1 , c3 then we
note that the chamber gB, with g = xϕ (c1c2c3/(c1−c3))xϕ′ (c1c3/(c1−c3))sϕ sϕ′ ,
is fixed by θ. Thus g−1θg ∈ B, and a direct calculation shows that

g−1θg = hω6 (c−11 c3),

which is a homology fixing a subbuilding with thick frame of type D5 (by
Theorem 4.4). �

6.3 Classification of domestic automorphisms of split G2 buildings

Let Φ be a root system of type G2, with the convention that α1 is a short
root. Note that α2 is the polar node. Let ϕ = (32) be the highest root of Φ.
The highest short root is ϕ′ = (21). Let G be the Chevalley group G2(F).
The building ∆ = G/B may be regarded as a generalised hexagon (the dual
split Cayley hexagon), where the point set is G/P1 and the line set is G/P2,
where Pi = B ∪ BsiB (in particular, note that “points” are type {2} = S\{1}
vertices, and “lines” are type {1} = S\{2} vertices). Then G oAut(F) is the full
collineation group of ∆.

Recall the following definitions. A distance 3-ovoid in a generalised hexagon
G is a set S of mutually opposite points such that every element of the gener-
alised hexagon is at distance at most 3 (in the incidence graph) from a point
of S. A subhexagon G ′ of G is full if every point of G incident with a line
of G ′ belongs to G ′, and is large if every element of G is at distance at most
3 from some element of G ′. Recall from [14, Theorem 2.7] that a nontrivial
automorphism θ of a generalised hexagon is point-domestic if and only if its
fixed element structure is either a ball of radius 3 in the incidence graph cen-
tred at a line, a large full subhexagon, or a distance 3-ovoid. Dual statements
hold for line-domestic automorphisms. (Note that the “if” direction was omit-
ted in the statement of [14, Theorem 2.7], however it is obvious from fixed
element structure in each case).

In this section we prove the following theorem, which along with [14,
Theorem 2.7, 2.9, and 2.14] completely classifies the domestic automorphisms
of ∆.
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Theorem 6.10 Let ∆ be the building of G2(F). There exists a unique conju-
gacy class C1 of automorphisms with opposition diagram G2

2;1, and a unique
conjugacy class C2 of automorphisms with opposition diagram G1

2;1. The class
C1 consists precisely of the long root elations. The class C2 has representative
θ2, where:
(1) if char(F) = 3 then θ2 = xϕ′ (1) is a short root elation fixing precisely a

ball of radius 3 in the incidence graph centred at a line,
(2) if there is z ∈ F\{1} with z3 = 1 then θ2 = hω1 (z) is a homology fixing a

large full subhexagon, and
(3) if char(F) , 3 and there is no z ∈ F\{1} with z3 = 1 then θ2 = xα1 (1)s1

fixes precisely a distance 3-ovoid.

In particular, note that in the case (3) there is no automorphism fixing a
chamber with opposition diagram G1

2;1. This is the only case of a split building
with this property. The proof of Theorem 6.10 will follow from a series of
lemmas.

Lemma 6.11 Let ∆ = G2(F). A collineation θ fixes precisely a ball of radius 3
in the incidence graph centred at a point (respectively a line) if and only if θ
is conjugate to xϕ (1) (respectively, char(F) = 3 and θ is conjugate to xϕ′ (1)).
Moreover, the automorphism xϕ (1) is domestic with opposition diagram G2

2;1,
and the automorphism xϕ′ (1) is domestic if and only if char(F) = 3, in which
case it has opposition diagram G1

2;1.

Proof Consider the case where the centre is a line L, and let p be a point
on L. Then {p, L} is a chamber fixed by θ, and after conjugation we may
suppose that {p, L} is the base chamber B. Since θ fixes all points on the line
L it follows that θ is linear, and hence θ ∈ G2(F). In the BN-pair language,
the hypothesis of the lemma gives that θ fixes each chamber gB with g ∈

B ∪ Bs1B ∪ Bs2B ∪ Bs1s2B ∪ Bs2s1B ∪ Bs2s1s2B. In particular, θ(B) = B, and
so θ ∈ B. Thus θ = hu with h = hω1 (c1)hω2 (c2) ∈ H and u ∈ U+. Write

u = x10(a1)x01(a2)x11(a3)x21(a4)x31(a5)x32(a6).

By commutator relations and the fact that s1(α) ∈ Φ+ for all α ∈ Φ+\{α1} we
have

θxα1 (a)s1B = xα1 ((a + a1)c1)s1B,

and since θ fixes each chamber xα1 (a)s1B with a ∈ F we have a1 = 0 and
c1 = 1. Similarly, since θxα2 (a)s2B = xα2 ((a + a2)c2)s2B we have a2 = 0 and
c2 = 1. Thus h = 1. Next, since θ fixes each chamber x10(a)s1s2B with a ∈ F
we have

x31(a)s1s2B = θx31(a)s1s2B = x31(a + a5)s1s2B,

and so a5 = 0. Similarly, since the chamber x11(a)s2s1B is fixed for all a ∈ F
we have a3 = 0. Next, the condition that x32(a)s2s1s2B is fixed for all a ∈ F
yields a6 = 0, and so θ = xϕ′ (a4). However also the chamber x11(a)s2s1s2B
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must be fixed, and a calculation gives

θx11(a)s2s1s2B = x11(a)x32(3a4a)s2s1s2B.

Thus char(F) = 3. We may then conjugate hω2 (a−14 )θhω2 (a4) = xϕ′ (1), and
the result now follows in this case by Theorem 2.10.

In the case that the centre is a point, a very similar analysis to the above
gives θ = xϕ (a) for some a , 0, and this element is conjugate to xϕ (1). Since
this element is central in U+ it is clear that θ does indeed fix a ball of radius 3,
and moreover by Theorem 2.1 it has opposition diagram G2

2,1. �

Lemma 6.12 There exists a collineation of ∆ fixing precisely a distance 3-
ovoid if and only if the polynomial z2 + z + 1 is irreducible over F. Moreover,
if z2 + z + 1 is irreducible over F then there is a unique conjugacy class of
collineations fixing an ovoid, with representative θ = xα1 (1)s1.

Proof Suppose that θ fixes a distance 3-ovoid (and hence is point-domestic).
Since the automorphism group of ∆ is transitive on pairs of opposite vertices
we may assume that the points P1 and w0P1 are both fixed. Write θ = θ0 · σ,
with θ ∈ G and σ ∈ Aut(F). We have θP1 = θ0P1, and so θ0 ∈ P1 = B ∪ Bs1B.
If θ0 ∈ B then θ fixes the chamber B, a contradiction. Thus θ0 ∈ Bs1B. Each
element of Bs1B can be written as xα1 (a)s1b with b ∈ B. Replacing θ by the
conjugate bσθb−σ we may write

θ = hu1xα1 (a)s1 · σ,

where h = hω1 (c1)hω2 (c2) with c1, c2 ∈ F
×, u1 ∈

∏
α∈Φ+\{α1 }Uα , and a ∈ F.

Claim 1: u1 = 1. Since θ fixes w0P1, and since σ fixes w0, we have w−10 θ0w0 ∈

P1. However

w−10 θ0w0 = (w−10 hw0)(w−10 u1w0)(w−10 xα1 (a)s1w0),

and since the first and third grouped terms are in P1 we have w−10 u1w0 ∈ P1 =

B ∪ Bs1B. If w−10 u1w0 ∈ B then since w−10 u1w0 is also in the opposite Borel
we have u1 ∈ H, and so u1 = 1. If w−10 u1w0 ∈ Bs1B then u1w0 ∈ w0Bs1B =
U−w0s1B = U−s2s1s2s1s2B. However, writing

u1w0B = x10(0)x31(d1)x21(d2)x32(d3)x11(d4)x01(d5)s1s2s1s2s1s2B,

the folding algorithm described in [13, §7] implies that
– if d1 , 0 then u1w0B ⊆ U−vB for some v ∈ {1, s1, s2, s1s2, s2s1, s2s1s2};
– if d1 = 0 and d2 , 0 then u1w0B ⊆ U−s2B;
– if d1 = d2 = 0 and d3 , 0 then u1w0B ⊆ U−s1B;
– if d1 = d2 = d3 = 0 and d4 , 0 then u1w0B ⊆ U−s1s2s1B;
– if d1 = d2 = d3 = d4 = 0 and d5 , 0 then u1w0B ⊆ U−s1s2s1s2s1B.

This contradiction shows that indeed w−10 u1w0 ∈ B, and hence u1 = 1.
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Claim 2: c3
1c2

2 = 1 and σ = 1. We have θ = hxα1 (a)s1 · σ, where h =
hω1 (c1)hω2 (c2). Consider the chamber xϕ (z)w0B, where z ∈ F. We have

w−10 xϕ (−z)θxϕ (z)w0 = w−10 xϕ (−z)hxα1 (a)s1xϕ (zσ )w0

= w−10 hxϕ (−zc−31 c−22 )xα1 (a)xϕ (zσ )s1w0

∈ Bw−10 xϕ (−zc−31 c−22 + zσ )w0P1

= Bx−ϕ (zc−31 c−22 − zσ )P1.

If zc−31 c−22 − zσ , 0 then w−10 xϕ (−z)θxϕ (z)w0 ∈ BsϕP1, and since sϕ =
s2s1s2s1s2 it follows that the point of the chamber xϕ (z)w0B is mapped to
an opposite point, a contradiction. Thus zc−31 c−22 − zσ = 0 for all z ∈ F. The
case z = 1 gives c3

1c2
2 = 1, and then the equation reads z − zσ = 0, and so σ is

trivial.
Claim 3: We may assume that either a = 0 or a = 1. Suppose that a , 0.
Then, since s1(ω1) = −ω1 + 3ω2 we have

hω1 (a)−1θhω1 (a) = hω1 (a−1c1)hω2 (c2)xα1 (a)h−ω1+3ω2 (a)s1

= hω1 (a−1c1)hω2 (c2)h−ω1+3ω2 (a)xα1 (1)s1

= hω1 (a−2c1)hω2 (a3c2)xα1 (1)s1.

Renaming a−2c1 and a3c2 by c1 and c2 gives the result.
Claim 4: We have char(F) , 3. Suppose that char(F) = 3. Suppose first that
a = 0. Then a calculation shows that the point x01(1)x31(1)s2s1s2s1s2P1
is mapped to the point x01(−c2)x32(1)x31(c−12 )s2s1s2s1s2P1, and that these
points are opposite, a contradiction.

Now suppose that a = 1. Since c3
1c2

2 = 1 we have hω1 (c1)hω2 (c2) =
hα∨1 (c) where c = c−11 c−12 . Thus θ = hα∨1 (c)x10(1)s1. Now, writing u =
x01(c−3)x11(−c−1)x21(1)x31(−1), if c , 1 we calculate

P1w
−1
0 u−1θuw0P1 = P1s2s1s2s1s2P1,

showing that the point uw0P1 is mapped to an opposite point, a contradiction.
Thus c = 1, and hence c1 = c2 = 1. But then

θ = x10(1)s1 = x10(2)x−10(−1)x10(1) = x10(−1)x−10(−1)x10(1),

and hence θ is conjugate to a root elation, a contradiction.
Claim 5: We have a , 0 and c1 = c2 = 1. Recall that θ = hxα1 (a)s1, with
hω1 (c1)hω2 (c2) where c3

1c2
2 = 1, and a ∈ {0, 1}. Consider the chamber gB where

g = x11(1)w0. Then

g−1θg = w−10 x11(−1)hx10(a)s1x11(1)w0

∈ Bw−10 x11(−c−11 c−12 )x10(a)x21(−1)s1w0B

= Bw−10 x11(−c−11 c−12 )x21(−1)x31(−3a)s2s1s2s1s2B.

Write u = x11(−c−11 c−12 )x21(−1)x31(−3a). We will show below that if either
a = 0 or c1c2 , 1 then us2s1s2s1s2B ⊆ U−B = w0Bw0B, which in turn gives
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g−1θg ∈ Bw0B, a contradiction with point-domesticity. To prove the above
statement, we compute

us2s1s2s1s2B = x−11(−c1c2)x11(c−11 c−12 )n11(−c−11 c−12 )x21(−1)x31(−3a)s2s1s2s1s2B

⊆ U−x11(c−11 c−12 )x10(−c1c2)x31(−3a)s1s2B.

Commutator relations give

x11(c−11 c−12 )x10(−c1c2)x31(−3a)

= x10(−c1c2)x31(3(c1c2 − a))x11(c−11 c−12 )x32(3c−11 c−12 )x21(2).

Using this in the above equation, and noting that the final three terms can
pass past the s1s2 and remain in B, we have

us2s1s2s1s2B ⊆ U−x10(−c1c2)x31(3(c1c2 − a))s1s2B

= U−x−10(−c−11 c−12 )x10(c1c2)n10(−c1c2)x31(3(c1c2 − a))s1s2B

= U−x10(c1c2)x01(3c−31 c−32 (c1c2 − a))s2B

= U−x01(3c−12 (c1c2 − a))s2B.

Recall that char(F) , 3. Thus if either a = 0 , or if a = 1 and c1c2 , 1, we
have us2s1s2s1s2B ⊆ U−B as required.
Claim 6: The polynomial z2 + z + 1 is irreducible over F. Since θ fixes no lines,
in particular no line through P1 is fixed. Equivalently, none of the chambers
B and xα1 (−z)s1B with z ∈ F are fixed by θ. Clearly B is not fixed, and for
z , 0 we have

θxα1 (−z)s1B = xα1 (1)s1xα1 (−z)s1B

= xα1 (1)x−α1 (z)B

= xα1 (1)xα1 (z−1)s1B

= xα1 (1 + z−1)s1B,

and so 1 + z−1 , −z for all z ∈ F×. Hence the claim.
So far we have proved that if θ fixes a distance 3-ovoid, then θ is conjugate

to xα1 (1)s1 and the polynomial z2+z+1 = 0 is irreducible over F. It remains to
show that if this polynomial is irreducible then the element θ = xα1 (1)s1 does
indeed fix a distance 3-ovoid. We have shown that no line through the fixed
point P1 is fixed. This implies that the fixed element structure of θ consists of
a set of mutually opposite points (for otherwise by projecting onto P1 gives
a fixed line through P1). Thus it is sufficient to prove point-domesticity to
deduce that the fixed structure is a distance 3-ovoid.

By Lemma 1.6 it is sufficient to show that no point opposite the base point
is mapped onto an opposite point. These points are of the form

gs2s1s2s1s2P1 = x01(a1)x11(a2)x32(a3)x21(a4)x31(a5)s2s1s2s1s2P1.

We compute

g−1θg = x01(a′)x11(b′)x21(b′)x31(3b′ − a′)x10(1)s1
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where a′ = −a1 − a5 and b′ = −a2 + a4 − a5, and hence

P1s−1ϕ g−1θgsϕP1 = P1x−31(−a′)x−21(b′)x−11(−b′)x−01(3b′ − a′)P1.

The folding algorithm then easily gives

P1s−1ϕ g−1θgsϕP1 ∈



P1 if a′ = b′ = 0
P1s2s1s2P1 otherwise,

completing the proof. �

Lemma 6.13 There exists a collineation of ∆ fixing precisely a large full sub-
hexagon if and only if the equation z2 + z + 1 has a solution z , 1 in F.
Moreover, if z2 + z + 1 = 0 with z , 1 then there is a unique conjugacy class
of collineations fixing a large full subhexagon, with representative θ = hω1 (z).

Proof We may, after conjugating, suppose that the base apartment is fixed.
Moreover, as the fixed subhexagon is full, all points on a line are fixed, and so
θ is linear. Thus θ = hω1 (c1)hω2 (c2) ∈ H. But fullness means that all points on
the line L = P2 are fixed. These points are P1 and xα2 (a)s2P1 for a ∈ F. Since

θxα2 (a)s2P1 = xα1 (ac2)s2P1

we have c2 = 1. Thus θ = hω1 (c) for some c ∈ F×. Consider the chamber
gB = xϕ (1)w0B. Then

Bg−1θgB = Bw−10 xϕ (c3 − 1)w−10 B.

If c3−1 , 0 then this double coset is BsϕB = Bs2s1s2s1s2B, which means that
the point of this chamber is mapped to an opposite point, a contradiction.
So c3 − 1 = 0. If c = 1 then θ is the identity, a contradiction (as θ maps a
line to an opposite line). So c2 + c + 1 = 0 has a solution c , 1 (in particular,
char(F) , 3). Finally, we show that in this case the automorphism θ = hω1 (c)
does indeed have opposition diagram G1

2;1. It suffices to show that no point
opposite the base point P1 is mapped to an opposite point. Each such point
is of the form usϕP1, where

u = x01(a1)x11(a2)x32(a3)x21(a4)x31(a5).

Commutator relations, and the fact that c3 = 1, imply that

u−1θu = x11(a2(c − 1))x32(3a2a4(1 − c))x21(a4(c2 − 1))hω1 (c).

Thus

P1s−1ϕ u−1θusϕP1 = P1x−21(a2(c − 1))x−32(3a2a4(c − 1))x−11(a4(1 − c2))P1.

Explicit computation then shows that P1s−1ϕ u−1θusϕP1 ∈ P1 ∪ P1s2s1s2P1,
completing the proof. �

We now give the proof of Theorem 6.10.
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Proof An automorphism with opposition diagram G1
2,1 must fix either a ball

of radius 3 centred at a line, a large full subhexagon, or a distance 3-ovoid,
and the result follows from Lemmas 6.11, 6.12 and 6.13.

Consider the opposition diagram G2
2,1. The fixed element structure of an

automorphism with this diagram is necessarily either a ball of radius 3 centred
at a point, a large ideal subhexagon (where ideal is the dual notion to full),
or a distance 3-spread (the dual notion to a distance 3-ovoid).

Large ideal subhexagons do not exist in the dual split Cayley hexagon, by
[30, Remark 5.9.14]. Suppose that θ fixes a distance 3-spread. We argue as in
the proof of Lemma 6.12. As in that proof, we have θ = hu1xα2 (a)s2 ·σ, where
h = hω1 (c1)hω2 (c2) with c1, c2 ∈ F

×, u1 ∈
∏
α∈Φ+\{α2 }Uα , and a ∈ F. The proof

of Claim 1 of Lemma 6.12 holds in an analogous fashion, yielding u1 = 1.
Following the argument of Claim 2, considering the chamber gB = xϕ′ (z)w0B,
we have

w−10 xϕ′ (−z)θxϕ′ (z)w0 ∈ Bx−ϕ′ (zc−21 c−11 − zσ )P2,

from which it follows that zc−21 c−11 − zσ = 0 for all z ∈ F. Setting z = 1 gives
c2
1c2 = 1, and then the equation reads z − zσ = 0, and so σ is trivial. Thus
θ = hω1 (c)hω2 (c−2)xα2 (a)s2 for some c ∈ F× and a ∈ F. We may assume
that either a = 0, or that a = 1 (by conjugating by hω2 (c2a−1)). If a = 0,
with char(F) , 2, we see that the chamber x10(1)s1s2s1B is mapped to an
opposite. If a = 1 with char(F) , 2, we see that if c , −1/2 then x10(1)s1s2s1B
is mapped to an opposite, and if c = −1/2 then x10(1)x11(1)s1s2s1B is mapped
to an opposite. If char(F) = 2 and a = 1 then the chamber x10(1)s1s2s1B is
mapped onto an opposite chamber.

Suppose char(F) = 2 and that a = 0. Since no chamber is fixed, we compute
(for z , 0)

θx01(−z)s2B = hω1 (c)hω2 (c−2)s2x01(−z)s2B

= hω1 (c)hω2 (c−2)x−01(z)B

= x01(z−1c−2)s2B.

Thus z−1c−2 , −z, and so z2 , −c−2 for all z , 0. This is a contradiction
(taking z = c−1 and recalling that char(F) = 2). �

We note that Corollary 10 follows from the above results:

Proof The polar closed admissible diagrams are realised as the opposition
diagrams of unipotent elements, by Theorem 5. The admissible diagram F4

4;1
is achieved as the opposition diagram of either the homology hω4 (−1) (if
char(F) , 2) or the short root elation xϕ′ (1) (in the case char(F) = 2) by
Lemma 4.8 and Corollary 6.7. All of these automorphisms lie in B, and hence
fix the base chamber of ∆ = G/B. The remaining diagram is G1

2;1, and the
result follows from Theorem 6.10. �
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6.4 Group theoretic consequences

We conclude with group theoretic applications of our results, proving Corol-
laries 11 and 12 from the introduction, and providing some further similar
applications.

The proof of Corollary 11 is as follows.

Proof Let C be a conjugacy class in G. Suppose that C ∩Bw0B = ∅. Then no
chamber is mapped onto an opposite chamber by any element of C (for if θ ·gB
is opposite gB then g−1θg ∈ Bw0B). Thus every element of C is domestic. By
Theorems 2.4, 5.1, and 6.1 every domestic automorphism of a large building
of type E6 or F4 necessarily fixes a chamber, and hence C ∩ B , ∅. Similarly,
for the small buildings of type E6 or F4 every domestic automorphism fixes a
chamber by [16, Theorems 4.4 and 4.6], hence the result. �

The proof of Corollary 12 is as follows.

Proof By Corollary 2 every Moufang spherical building, with the exception
of a projective plane, admits a type preserving domestic automorphism (a long
root elation). The conjugacy class of such an automorphism thus intersects
trivially with Bw0B. �

It follows, from Remark 6.16 below, that the statement of Corollary 11
fails in general for buildings of types E7 and E8 (as there exist domestic
automorphisms fixing no chamber). In these cases we have the following
results.

Corollary 6.14 Let G = GΦ(F) be a Chevalley group of type E7 with |F| > 2.
Let ϕ1 (respectively ϕ2, ϕ3) be the highest root of the E7 (respectively D6, D4)
subsystem. For each nontrivial conjugacy class C in G we have both

C ∩ (Bsϕ1 B ∪ Bsϕ1 sϕ2 B ∪ Bsϕ1 sϕ2 s7B ∪ Bsϕ1 sϕ2 sϕ3 s3B ∪ Bw0B) , ∅, and
C ∩ (B ∪ Bsϕ1 sϕ2 s7B ∪ Bsϕ1 sϕ2 sϕ3 s3B ∪ Bw0B) , ∅.

Proof If C is a nontrivial conjugacy class, then every element of C has non-
empty opposition diagram. Let θ ∈ C . If J = Typ(θ) then by [15, Theorem 2.6]
there is a chamber gB with δ(gB, θ ·gB) = wS\Jw0, and so g−1θg ∈ BwS\Jw0B.
Hence C ∩BwS\Jw0B , ∅. The first statement then follows from the classifica-
tion of admissible diagrams. The second statement follows from the fact that,
by Theorem 5.1, every automorphism with opposition diagram either E7;2 or
E8;2 necessarily fixes a chamber, and hence is conjugate to an element of B. �

In the case F = F2, there exist uncapped automorphisms, and some
additional double cosets need to be included in the statement of Corollary 6.14.
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Corollary 6.15 Let G = GΦ(F) be a Chevalley group of type E8 with |F| > 2.
Let ϕ1 (respectively ϕ2, ϕ3) be the highest root of the E8 (respectively E7, D6)
subsystem. For each nontrivial conjugacy class C in G we have both

C ∩ (Bsϕ1 B ∪ Bsϕ1 sϕ2 B ∪ Bsϕ1 sϕ2 sϕ3 s7B ∪ Bw0B) , ∅, and
C ∩ (B ∪ Bsϕ1 sϕ2 sϕ3 s7B ∪ Bw0B) , ∅.

Proof The proof is similar to Corollary 6.14. �

We conclude with the following remark.

Remark 6.16 The results of this paper (along with [32]) completely clas-
sify the automorphisms of split spherical buildings of exceptional type with
opposition diagrams other than E7;3, E7;4, and E8;4 (with the possible excep-
tion of polar-copolar diagrams for small E7 and E8 buildings). For these three
excluded diagrams we have provided examples (both unipotent elements and
homologies) with the respective opposition diagram, and the general classifi-
cation for these diagrams will be continued in [18]. For now we simply state,
without proof, that in both E7 and E8 the element θ = xα1 (1)s1 has order 3
and opposition diagram E7;4 or E8;4 (for all fields). Thus, for example, if F = F2
then θ necessarily does not fix a chamber (as the Borel is a Sylow 2-group in
this case), and hence is neither in U+ nor in H. Furthermore, for type E7 the
element θ = xα2 (1)s2xα5 (1)s5xα7 (1)s7 has has order 3 and opposition diagram
E7;3, and similar statements apply.

A Root system data

The following table lists the number of positive roots (equivalently, the length
of the longest element), the highest root ϕ, the highest short root ϕ′, the polar
type ℘, the dual polar type ℘′, and the copolar type ℘∗ for each irreducible
crystallographic root system. Note that the copolar type is not well defined
in the Bn and Dn cases as S\℘ is not irreducible.

|Φ+ | ϕ ϕ′ ℘ ℘′ ℘∗

An n(n + 1)/2 (111 · · · 111) − {1, n } {1, n } {2, n − 1} (n ≥ 3)
Bn n2 (122 · · · 222) (111 · · · 111) {2} {1} −

Cn n2 (222 · · · 221) (122 · · · 221) {1} {2} {2}
Dn n(n − 1) (122 · · · 211) − {2} {2} −

E6 36 (122321) − {2} {2} {1, 6}
E7 63 (2234321) − {1} {1} {6}
E8 120 (23465432) − {8} {8} {1}
F4 24 (2342) (1232) {1} {4} {4}
G2 6 (32) (21) {2} {1} {1}
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The positive roots of the E6 root system are as follows.
100000 010000 001000 000100 000010 000001 101000 010100 001100 000110

000011 101100 011100 010110 001110 000111 111100 101110 011110 010111

001111 111110 101111 011210 011111 111210 111111 011211 112210 111211

011221 112211 111221 112221 112321 122321

The positive roots of the E7 root system are as follows.
1000000 0100000 0010000 0001000 0000100 0000010 0000001 1010000 0101000

0011000 0001100 0000110 0000011 1011000 0111000 0101100 0011100 0001110

0000111 1111000 1011100 0111100 0101110 0011110 0001111 1111100 1011110

0112100 0111110 0101111 0011111 1112100 1111110 1011111 0112110 0111111

1122100 1112110 1111111 0112210 0112111 1122110 1112210 1112111 0112211

1122210 1122111 1112211 0112221 1123210 1122211 1112221 1223210 1123211

1122221 1223211 1123221 1223221 1123321 1223321 1224321 1234321 2234321

The positive roots of the E8 root system are as follows.
10000000 01000000 00100000 00010000 00001000 00000100 00000010 00000001

10100000 01010000 00110000 00011000 00001100 00000110 00000011 10110000

01110000 01011000 00111000 00011100 00001110 00000111 11110000 10111000

01111000 01011100 00111100 00011110 00001111 11111000 10111100 01121000

01111100 01011110 00111110 00011111 11121000 11111100 10111110 01121100

01111110 01011111 00111111 11221000 11121100 11111110 10111111 01122100

01121110 01111111 11221100 11122100 11121110 11111111 01122110 01121111

11222100 11221110 11122110 11121111 01122210 01122111 11232100 11222110

11221111 11122210 11122111 01122211 12232100 11232110 11222210 11222111

11122211 01122221 12232110 11232210 11232111 11222211 11122221 12232210

12232111 11233210 11232211 11222221 12233210 12232211 11233211 11232221

12243210 12233211 12232221 11233221 12343210 12243211 12233221 11233321

22343210 12343211 12243221 12233321 22343211 12343221 12243321 22343221

12343321 12244321 22343321 12344321 22344321 12354321 22354321 13354321

23354321 22454321 23454321 23464321 23465321 23465421 23465431 23465432

The positive roots of the F4 root system are as follows.
1000 0100 0010 0001 1100 0110 0011 1110 0120 0111 1120 1111

0121 1220 1121 0122 1221 1122 1231 1222 1232 1242 1342 2342

The positive roots of the G2 root system are as follows.
10 01 11 21 31 32
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