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Abstract. We modify the freezing method introduced by Beyn & Thümmler, 2004, for analyzing
rigidly rotating spiral waves in excitable media. The proposed method is designed to stably determine
the rotation frequency and the core radius of rotating spirals, as well as the approximate shape of
spiral waves in unbounded domains. In particular, we introduce spiral wave boundary conditions
based on geometric approximations of spiral wave solutions by Archimedean spirals and by involutes
of circles. We further propose a simple implementation of boundary conditions for the case when the
inhibitor is non-diffusive, a case which had previously caused spurious oscillations.

We then utilize the method to numerically analyze the large core limit. The proposed method
allows us to investigate the case close to criticality where spiral waves acquire infinite core radius rc

and zero rotation frequency ω, before they begin to develop into retracting fingers. We confirm the
linear scaling regime of a drift bifurcation for the rotation frequency and the core radius of spiral
wave solutions close to criticality. This regime is unattainable with conventional numerical methods.
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1. Introduction. Excitable media are abundant in nature, and appear in phys-
ical, chemical and biological systems. Prominent examples include cAMP waves in
slime mold aggregation [39] and intracellular calcium waves [4], electrical waves in
cardiac and nerve tissue [46, 9], and the auto-catalytic Belousov-Zhabotinsky reac-
tion [45]. Excitable media involve the interwoven dynamics of so called activators and
inhibitors. An important class of excitable media contains non-diffusive inhibitors.
This is the classic situation in cardiac dynamics where the inhibitor consists of (rela-
tively) immobile ion channels. Excitable media support localized pulses and periodic
wave trains. In two dimensions rotating vortices (or spirals) are possible [45], and in
three dimensions scroll waves occur [45, 47, 49, 30, 31].

In this work we focus on rigidly rotating spiral waves of single-diffusive excitable me-
dia. These spiral waves perform a time-periodic motion where the spiral tip moves on
a perfect circle around an unexcited region, the spiral core. Such spirals are character-
ized by their rotation frequency ω and their core radius rc. Varying the excitability of
the medium leads to qualitative changes in the type of motion the spiral is performing.
For certain parameters rigidly rotating spirals bifurcate via a Hopf bifurcation into
meandering spirals [48, 3, 22]. A different type of bifurcation occurs at low excitabil-
ities where rigidly rotating spirals develop into travelling fingers with an overall zero
curvature. Approaching this bifurcation, the rotation frequency of a rigidly rotating
spiral wave ω decreases down to zero and its core radius rc diverges. Past this bifur-
cation rigidly rotating spirals do not exist. Whereas the bifurcation to meandering
spirals is well-understood numerically and theoretically [3, 51, 14, 17, 37, 38], the lat-
ter one is not. Theoretically, several attempts have been made to study this large core
limit, using kinematic theory [53, 43, 12, 32, 22, 23, 52, 13], dynamical systems theory
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[1] and non-perturbative asymptotics [20]. Computational results, on the other hand,
are rare. In [20] the large core limit was investigated in terms of the growing velocity
of the spiral wave tip close to criticality. Using a non-perturbative approach it was
shown that the growing velocity behaves linearly as a function of the excitability close
to criticality. This was verified numerically.

Here we set out to tackle the numerically much more difficult problem of determining
the rotation frequency ω and the radius rc of the core of a spiral wave in this limit.
This presents a huge computational challenge. Given current computer power, de-
termining the rotation frequency and the core radius from direct simulations of the
underlying reaction-diffusion system is restricted to small core spirals. In the large
core limit, where the rotation frequency becomes zero and the core radius becomes
infinite, no reliable results have been obtained so far.

Our aim here is twofold. First we present a numerical method to study rigidly rotating
spirals in excitable media which is able to capture the spiral wave even in the large
core limit without having to solve for computationally expensive large domains. We
then apply this method to obtain the rotation frequency and the core radius of spiral
wave solutions in the large core limit, and establish their scaling behaviour close to
criticality to study the type of bifurcation.

The numerical method we present is based on the freezing method [6] in which the
dynamics of an equivariant partial differential equation is split orthogonally into the
shape dynamics and the dynamics of the associated symmetry group. This method
has been successfully applied to many types of equivariant systems [5, 40, 42]. How-
ever, when applying the freezing method to single-diffusive excitable media several
problems were encountered [6, 41, 8]. Firstly, the inhibitor exhibits spurious oscil-
lations, the amplitude of which increases when approaching the large core limit. It
was suggested that these oscillations are caused by numerical instabilities linked to
the mixed hyperbolic-parabolic nature of the problem. The oscillations could be par-
tially controlled by an upwind-downwind scheme for small core spirals. Secondly, the
application of Neumann boundary conditions causes the shape of the spiral wave to
deviate near the boundary from the form expected in an unbounded domain. How-
ever, it turns out that although the shape is not properly resolved near the boundary,
the group parameters, i.e. rotation frequency and core radius, are accurately repro-
duced for small core spirals. This can be understood on a phenomenological basis by
considering that the spiral wave coils shield the solution near the core, and informa-
tion only flows outwards for rotating spiral wave solutions.

We will present an implementation of the freezing method which will overcome
these difficulties. At first, we will identify two separate types of spatial oscillations,
which are caused by different mechanisms: oscillations in the interior of the compu-
tational domain linked to numerical instabilities of the non-diffusive inhibitor, and
oscillations close to the boundary caused by the application of Neumann boundary
conditions. We eliminate the former by employing a semi-implicit Crank-Nicolson
scheme and the latter by imposing a subtle implementation of a different type of
boundary condition. We implement so-called spiral wave boundary conditions, ap-
proximating the spiral wave by an Archimedean spiral or by an involute of a circle,
which approximately respect the symmetry of the solution, and produce the correct
shape of a spiral wave in an effective unbounded domain at the boundary. We find that
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the spatial oscillations can be controlled if (a) boundary conditions which respect the
symmetry of the solution are employed, and (b) the implementation of these bound-
ary conditions is such that the boundary is coupled to the interior.

The paper is organized as follows. In Section 2 we present the excitable media model
under consideration. In Section 3 we describe the original freezing method. This
method is then modified to suit excitable media with a non-diffusive inhibitor in
Section 4, where we introduce spiral wave boundary conditions and their discrete
implementations. In Section 5 we apply our method to study the large core limit
and determine the scaling behaviour of the rotation frequency and the core radius of
spiral wave solutions close to criticality for varying excitability ǫ. We conclude with
a discussion in Section 6.

2. Model. We consider here the Barkley model [2] for an activator u and an
inhibitor v described by

∂tu = ∆u + F(u, v), F(u, v) =
1

ǫ
u(1 − u)(u −

v + b

a
) ,(2.1)

∂tv = Dv∆v + (u − v) .(2.2)

Although the numerical method we will describe in Sections 3 and 4 is independent
of the particular model used, we illustrate some basic properties of excitable media
with the Barkley model (2.1). Our choice of model is motivated by the fact that
it incorporates the ingredients of an excitable system in a compact and lucid way.
Thus, for us = b/a > 0 the rest state u0 = v0 = 0 is linearly stable with decay rates
σ1 = us/ǫ along the activator direction and σ2 = 1 along the inhibitor direction.
Perturbing u above the threshold us (in 0D) will lead to growth of u. In the absence
of the inhibitor v the activator will saturate at u = 1 leading to a bistable system. The
positive inhibitor growth factor forces the activator to decay back to u = 0. Finally
also the inhibitor with the refractory time constant 1 will decay back to v = 0. For
a > b + 1 with b > 0 the system is in 0D no longer excitable but instead bistable.

We have included a diffusion term for the inhibitor v in (2.1). However, we
will be concentrating on the case of vanishing diffusivity for v with Dv = 0. This
case is more relevant for cardiac dynamics where the inhibitor models the (relatively)
immobile potassium and sodium ion channels. Moreover, we will see in Section 5 that
problems of applying the freezing method as proposed in [6] to excitable media are
caused by the lack of coupling of the boundary and the interior when Dv = 0.

We shall fix in our numerical simulations Dv = 0, a = 0.75 and b = 0.01 and vary
the excitability parameter ǫ if not stated otherwise.

The Barkley model supports, in a well-defined parameter region [2], rigidly rotating
spirals. These spiral wave solutions are characterized by their rotation frequency ω
and their core radius rc. In the large core limit the rotation frequency approaches zero
and the core radius becomes infinite at a critical value ǫc of the excitability parameter
ǫ. At criticality a rigidly rotating spiral wave becomes a finger propagating in the
transverse direction only, with the speed of the corresponding travelling wave. Finger
like initial conditions will curl up and eventually develop into rigidly rotating spirals
below criticality, or into retracting fingers above criticality (see Figure 2.1). Whereas
the rotation frequency is well defined for rigidly rotating spirals, the definition of the
core radius is less clear (see [21] for a recent discussion). We define the core of a
rigidly rotating spiral to be the maximal region which has never been excited during
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(a) Finger developing into a spiral (b) Retracting finger

Fig. 2.1. Temporal evolution of a retracting and spiraling finger solution u of the Barkley model
(2.1) at 3 different time steps. The motion is clockwise for the spiraling finger and from right to
left for the retracting finger. The white curve represents the trace of the tip as defined by (2.3).

the course of one revolution of the spiral. To estimate this region we describe the
boundary of the core as the trace of the tip during one revolution where the tip is
defined as the intersection of the two contour lines

u∗ = 0.5 and v∗ =
a

2
− b ,(2.3)

of the activator and the inhibitor, respectively [2]. The value v⋆ solves F(u∗, v∗) = 0
with u∗ = 0.5. This definition ensures that the distance of the tip to the centre of
the spiral is close to minimal. Note that this definition is arbitrary. In the large core
limit, however, the value of the core radius rc calculated as the radius of the circle
traced by the spiral tip does not vary much proportionally for different choices of the
contour lines used to define the location of the tip.

3. Freezing method. In this Section we briefly outline the so called freezing

method as introduced in [6] before we propose our modifications to this method in
Section 4.

We consider reaction-diffusion systems on the plane,

Ut = D△U + f(U) =: F (U) ,(3.1)

with U(z, t) = (U1, · · · , Ud)
T ∈ R

d, d ≥ 1, z = (x, y)T ∈ R
2, f : R

d 7→ R
d and a

diffusion matrix D ∈ R
d×d with constant coefficients. The system (3.1) is equivariant

under the action of the special Euclidean group SE(2) = S1
⋉ R

2 consisting of ro-
tations and translations. The Barkley model (2.1) described in the previous section
belongs to this class of equations with d = 2.

Equivariant systems of the form (3.1) can be solved by the freezing method in-
troduced in [6] for equivariant systems. This beautiful numerical method utilizes the
fact that the dynamics of equivariant systems can be decomposed into two parts: the
dynamics on the symmetry group and the dynamics orthogonal to it. Equivariant
systems can be cast into a skew product form whereby the dynamics on the symme-
try group is driven by the so called shape dynamics which is orthogonal to the group
dynamics. This idea was developed in the seminal paper [3] and then put on a more
rigorous footing in [28, 14, 15, 17, 37, 36, 38, 18, 35]. The method can be applied for
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any symmetry group. Here we restrict the exposition of the method to equivariance
with respect to the Euclidean group, and follow closely [6, 41]. For a more general
framework of the method we refer to [5, 7, 40, 42].

3.1. General Setup. Let γ = (Θ, β)T ∈ S1 × R
2 be an element of the special

Euclidean group SE(2) consisting of the angle of rotation Θ and translation β =
(β1, β2)

T . Two group elements are linked by the operation γ(1) ◦ γ(2) = (Θ(1) +
Θ(2), β(1) + ̺Θ(1)β(2)) with

̺Θ =

(
cosΘ − sin Θ
sin Θ cosΘ

)
.

The action a of the Euclidean group on functions U ∈ R
d can be defined by

[a(γ)U ](z) = U(̺−Θ(z − β)) , z ∈ R
2 .(3.2)

The group action satisfies the properties

a(e) = I , a(γ(1) ◦ γ(2)) = a(γ(1))a(γ(2)) ,(3.3)

where e is the unit element of SE(2) and I the identity matrix. Note that system
(3.1) is equivariant under the action of SE(2), i.e.

F (a(γ)U) = a(γ)F (U) .(3.4)

The invariance of equation (3.1) with respect to the Euclidean group implies that it
is possible to construct new solutions from a given solution by applying symmetry
operations. In particular, we can rewrite a solution U(t) as

a(γ(t))W (t) = U(t) ,(3.5)

with W (t) ∈ R
d. By formally differentiating (3.5) with respect to t we obtain, upon

using the equivariance condition (3.4),

Ut = [aγ(γ)W ]γt + a(γ)Wt = a(γ)F (W ) ,(3.6)

which can be rearranged to yield

Wt = F (W ) − a(γ−1)[aγ(γ)W ]γt

= F (W ) − S(W, γ)ν ,(3.7)

where we used a(γ)−1 = a(γ−1) and set ν = γt. The derivative [aγ(γ)W ] of the group
action with respect to γ = (Θ, β) ∈ S1 × R

2 can be calculated as

[aγ(γ)W ]ν =
∑

i

∂γi
[W (ρ−Θ(z − β))]νi

= −∇W (̺−Θ(z − β)) ̺−Θ̺π
2
(z − β)ν1 −∇W (̺−Θ(z − β)) ̺−Θ(ν2, ν3)

T ,

where ν1 = Θt = ω and (ν2, ν3)
T = βt. The gradient acts on vector-valued functions

as (∇W )ij = ∂Wi/∂zj. This yields the expression

S(W, γ)ν : = −∇W
[
ν1̺π

2
z + ̺−Θ (ν2, ν3)

T
]

= (yWx − xWy)ν1 − (Wx, Wy) ̺−Θ (ν2, ν3)
T

.(3.8)
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Introducing new group variables (Θ, α) ∈ S1 × R
2 by setting α = ̺−Θβ and defining

parameters µ1 = ν1 and (µ2, µ3)
T = ̺−Θ(ν2, ν3)

T allows for an elimination of the
group variable Θ in (3.8). Using this transformation we write (3.8) as

Ŝ(W )µ := (yWx − xWy)µ1 − Wxµ2 − Wyµ3 .(3.9)

The equations for the group variables (Θ, α) are given by

Θt = µ1 with Θ(0) = 0 ,(3.10)

αt = µ1̺π
2
α + (µ2, µ3)

T
with α(0) = 0 .(3.11)

For constant µi equation (3.11) describes a rotation on a circle with centre at

(xM , yM ) =

(
−

µ3

µ1
,
µ2

µ1

)
,(3.12)

and radius of rotation

rp =
√

(xp − xM )2 + (yp − yM )2(3.13)

for some point (xp, yp) on the circle. The core radius rc can be determined by apply-
ing equation (3.13) to the tip of the spiral (as defined by (2.3)), using the centre of
the core (xM , yM ) given by (3.12). The core radius can thus be calculated from the
group parameters, which are calculated in the freezing procedure.

So far, the path γ(t) on the group in (3.7) is arbitrary. Therefore three additional
degrees of freedom, equaling the dimension of the group SE(2), exist. To close the
system we fix the location on the group orbit, and augment the equations by a phase
condition

Ψ(W, γ) = 0 ,(3.14)

where the functional Ψ maps into R
3. The phase condition Ψ can be chosen in several

ways. For the time–dependent problem (3.7) we will use the condition

Ψmin(W, γ) =

∫

R2

Ŝ(W )T Wt dx dy ,(3.15)

which assigns the location on the group orbit by minimizing the temporal change of
‖Wt‖2 at each time step. Note that this condition is equivalent to requiring that Wt is
orthogonal to the group orbit at W . This condition allows us to determine the freezing
parameters µi, which are implicitly contained in (3.15) through Wt. These values are
then subsequently fed into the shape dynamics to update W (see Section 3.2.1 for
details on the implementation).

When considering the stationary problem of (3.7), we will use the following slightly
simpler phase condition

Ψfix(W ) =

∫

R2

Ŝ(W0)
T (W − W0) dx dy ,(3.16)

which determines the location on the group orbit by minimizing the distance of W
to some template function W0. The phase condition (3.16) is independent of µ, and
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can therefore not be used directly in the time-dependent setting with a semi-implicit
Crank-Nicolson scheme. Note that in order to use Ψfix the template function W0

must be sufficiently close to a solution of (3.1). For further details on phase condi-
tions see [7, 16].

We summarize the closed system of partial differential algebraic equations (3.7), (3.9)
– (3.11) and (3.14). The group dynamics is given by

Θt = µ1 , Θ(0) = 0 ,(3.17)

αt = µ1̺π
2
α + (µ2, µ3)

T
, α(0) = 0 ,(3.18)

which is driven through the parameters µi by the shape dynamics

Wt = D△W + f(W ) − Ŝ(W )µ , W (0) = W0 ,(3.19)

0 = Ψ(W, γ) ,(3.20)

with Ŝ(W )µ given by (3.9). This system is called the frozen system since for rigidly
rotating spirals its solution W evolves into a stationary solution for t → ∞.

Our aim is to numerically determine the shape of rigidly rotating spiral wave solutions
of the Barkley model (2.1) and the corresponding core radius and rotation frequency.
Note that the shape dynamics (3.19) entirely determines the solution W and the
parameters µi which can then be used to determine the rotation frequency ω = µ1

and the centre of the core via (3.12). To this end, it would be sufficient to solve the
stationary problem corresponding to (3.19), using for example a Newton solver (as
done in [42]). However, the high-dimensionality of the stationary problem, needed
for an accurate resolution of the solution, requires a sufficiently good guess for the
initialization of the Newton-Raphson method which otherwise would not converge.
The initial guess for the Newton solver will be generated by the application of the
freezing method for the time-dependent problem (3.19).

3.2. Discretization. We implement the freezing method for the Barkley model
(2.1) with W = (u, v)T for Cartesian coordinates and for polar coordinates. The
choice of the coordinate system depends on the parameter range and the specific sit-
uation. Cartesian coordinates are better suited for the investigation of the large core
limit where a finger-like solution can intersect the boundary almost perpendicularly
and Neumann boundary conditions are a good approximation for the unbounded do-
main. Polar coordinates are better suited for small core radii where several revolutions
of the spiral are usually inside the computational domain.

Simulations in Cartesian coordinates (x, y) are performed on a rectangular domain
[0, Lx] × [0, Ly] with M × N points and gridsizes ∆x = Lx/(M − 1) and ∆y =
Ly/(N − 1). The shape dynamics reads for Cartesian coordinates as

∂tu = ∆u + F(u, v) + ∇u
[
µ1̺π

2
(x, y)

T
+ (µ2, µ3)

T
]

,(3.21)

∂tv = u − v + ∇v
[
µ1̺π

2
(x, y)T + (µ2, µ3)

T
]

,(3.22)

0 = Ψ(u, v, µ) ,(3.23)

with F(u, v) = u(1−u)(u−(v+b)/a)/ǫ. The group variables (Θ, α) can be determined
by equations (3.17).
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Simulations in polar coordinates (r, ϕ) with (x, y) = (r cos(ϕ), r sin(ϕ)) are per-
formed on a rectangular domain [0, R]× [0, 2π−∆ϕ] consisting of M ×N grid points
with gridsizes ∆r = R/(M − 1) and ∆ϕ = 2π/N . The analogue to (3.21) reads as

∂tu = urr +
1

r
ur +

1

r2
uϕϕ + F(u, v) + µ1uϕ + (ur,

1

r
uϕ)̺−ϕ (µ2, µ3)

T ,(3.24)

∂tv = u − v + µ1vϕ + (vr ,
1

r
vϕ)̺−ϕ (µ2, µ3)

T
,(3.25)

0 = Ψ(u, v, µ) ,(3.26)

and the dynamics of the group variables is again given by (3.17).

The temporal integration for both (3.21) and (3.24), is done in discrete time steps
∆t. We denote the values of the fields u and v at the n-th time-step t = n∆t and
spatial location ((i− 1)∆x, (j − 1)∆y) (or ((i− 1)∆r, (j − 1)∆ϕ)) with i = 1, . . . , M ,
j = 1, . . . , N by un

i,j and vn
i,j , respectively. Spatial derivatives are evaluated using

second-order central differences.

3.2.1. Time-dependent freezing. We use a second order semi-implicit Crank-
Nicolson scheme to solve the time-dependent problem (3.21) (or (3.24)) whereby the
linear terms are treated implicitly and the nonlinear term F(u, v) is treated explic-
itly with an Adams-Bashforth scheme [34, 11]. The nonlinear freezing term can be

rendered as an effectively linear term Ŝ(W n+1+W n

2 )µn+1 to be included into the Crank-
Nicolson part of the temporal discretization, by first obtaining µn+1 through the phase
condition

Ψ(Wn, µn+1) = Ψmin(W
n, µn+1) = 0 .(3.27)

The additional computational costs of solving the semi-implicit equations is far out-
weighed by the less restrictive time-step required for the semi-implicit method when
compared to an explicit Euler method.

In [6] an explicit Euler scheme with Neumann boundary conditions was used which
exhibited spurious spatial oscillations in both, the interior and at the boundary of
the domain. An upwind-downwind scheme was introduced to control the oscillations
with partial success for large excitabilities at small values of ǫ only. The semi-implicit
scheme does not exhibit oscillations in the interior of the domain. However, spatial
oscillations at the boundary persist. In Sections 4.2 and 4.3 we will present an expla-
nation for the oscillations at the boundary, and provide a simple method to eliminate
them.

3.2.2. Stationary freezing. Travelling waves and spiral waves are both ex-
amples of relative equilibria [25, 19]. Relative equilibria have the representation

U(t) = a(γ(t))W̃ with a time-independent W̃ . Hence the temporal evolution of a
solution can be described entirely by the dynamics on the group. We may therefore
find the spiral wave solutions of (3.21) by solving its associated stationary problem

0 = F̂(u, v, µ) =




∆u + F(u, v) + ∇u
[
µ1̺π

2
(x, y)T + (µ2, µ3)

T
]

u − v + ∇v
[
µ1̺π

2
(x, y)

T
+ (µ2, µ3)

T
]

Ψfix(u, v)


(3.28)
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or, analogously for polar coordinates and (3.24)

0 = F̂(u, v, µ) =




∆r,ϕu + F(u, v) + µ1uϕ + (ur,
1
r
uϕ)̺−ϕ (µ2, µ3)

T

u − v + µ1vϕ + (vr,
1
r
vϕ)̺−ϕ (µ2, µ3)

T

Ψfix(u, v)


(3.29)

with ∆r,ϕu = urr + 1
r
ur + 1

r2 uϕϕ. We solve the system for the 2MN + 3 unknowns
(u1,1, ..., uM,N , v1,1, ..., vM,N , µ1, µ2, µ3). Typically we use M > 200 and N > 200 for
Cartesian coordinates and M > 150 and N > 500 for polar coordinates. To solve
this high-dimensional nonlinear system we use the Newton-Raphson method with
line searches and backtracking (see for example [34]) with a terminating condition
0.5 F̂T F̂ ≤ 10−10.

4. Boundary Conditions. In the introduction, two issues were described which,
so far, prevented a successful stable application of the freezing method to excitable
media. Firstly, numerical instabilities in the form of spatial oscillations spoiled results
in the case of a non-diffusive inhibitor. In the previous Section we have eliminated spa-
tial oscillations in the interior of the domain by using a semi-implicit Crank-Nicolson
scheme in the time-dependent freezing problem (3.21) (or (3.24)). Spatial oscillations
near the boundaries, however, persist. Similarly, solving the stationary freezing prob-
lem (3.28) (or (3.29)) leads to spatial oscillations near the boundary. Secondly, the
usual Neumann boundary conditions do not reproduce the correct shape of a spiral
in an unbounded domain. These problems are associated with the type of boundary
condition used, and how they are formulated in the discretization.

Naturally, computations are performed on a bounded domain and appropriate bound-
ary conditions have to be chosen. The boundary conditions should preferably reflect
the nature of the investigated system and its solutions. We are interested here in
approximating spiral wave solutions in unbounded domains. By unbounded domains
we mean either the infinite limit, where spiral wave solutions do not decay at infinity,
or finite domains with boundary conditions but where the computational domain is
much smaller than the actual physical domain and the physical boundaries can be
ignored. In these cases the usual Neumann boundary conditions are, in general, not
well suited. We discuss their impact on the freezing method in Section 4.1. In Section
4.2 we present spiral boundary conditions and show how they can be implemented
for freezing methods. The standard implementation of both these boundary condi-
tions leads to oscillations of the inhibitor near the boundary. In Section 4.3 we will
therefore introduce an implementation for both Neumann and spiral wave boundary
conditions, which does not exhibit spurious spatial oscillations.

4.1. Neumann boundary conditions. Most work on spiral waves in excitable
media uses either Dirichlet or Neumann boundary conditions (NBC) (e.g. [2]). These
boundary conditions are physically meaningful for simulations of excitable media on
bounded domains, e.g. in chemical experiments. However, if simulations are per-
formed with the intention to understand the behaviour of spirals in unbounded do-
mains, they have the disadvantage of not respecting the underlying symmetry at the
boundary. Nevertheless, Neumann boundary conditions have been used extensively.
For simplicity we restrict our discussion to polar coordinates, for which Neumann
boundary conditions are formulated as ur = 0 and vr = 0 at r = R. These are
discretized according to

uM+1,j = uM−1,j and vM+1,j = vM−1,j ,(4.1)

9



for j = 1, · · · , N . The values of uM+1,j , vM+1,j can then be used in the evaluation of
the diffusion and advection terms on the boundary.

(a) NBC (b) (c)

(d) SBC (4.7) for u and v (e) (f)

(g) SBC (4.7) for u, and (4.23)
for v

(h) (i)

Fig. 4.1. Inhibitor v of a frozen spiral wave solution calculated via the stationary problem
(3.29). From left to right: representation in the Cartesian plane (x, y) = (r cos(ϕ), r sin(ϕ)), in the
polar (r, ϕ)-plane, and a close-up of the radial boundary. (a)–(c): Neumann boundary condition
(NBC) (4.1), (d)–(f): spiral boundary condition (4.7) for both, activator and inhibitor, (g)–(i):
spiral boundary condition (SBC) (4.7) for activator only and free boundary condition (4.23) for
the inhibitor. We chose ǫ = 0.025 in the Barkley model (2.1), and R = 21.74, ∆r = 0.1257 and
∆ϕ = 0.01 for the spatial discretization.

In the two top left panels of Figure 4.1 we show contour plots of the inhibitor
v calculated by solving the stationary problem (3.29) in polar coordinates. Figure
4.1(a) shows the spiral solution on the circular domain with radius R in the Cartesian
plane (x, y) = (r cos(ϕ), r sin(ϕ)). In Figure 4.1(b) we show the same solution in the
(r, ϕ)-plane. One sees clearly how the contours bend towards the boundary to satisfy
the Neumann boundary condition ur = 0, vr = 0 at r = R. This kink is localized
near the boundary and does not extend far into the domain. However, the bending
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of the spiral wave solution leads to an effective wider transversal cross-section of the
solution near the boundary. A wider activator profile allows the inhibitor to adopt
larger amplitudes (cf. the darker color (online red) of the inhibitor in the close–up in
Figure 4.1(c)). The boundaries, however, do not affect the dynamics near the core –
provided they are located sufficiently far away from the spiral wave tip – and hence
the presence of a kink in the solution near the boundary does not affect the values of
the rotation frequency ω and the core radius rc.

More important, from a numerical stability point of view, is the following issue.
In the close–up of the inhibitor near the boundary in 4.1(c), strong spatial oscillations
are clearly visible. For a more detailed view we show a slice of the inhibitor near the
boundary along the grid line ϕ = 3π/4 in Figure 4.2(a). These oscillations are a well
known problem of the freezing method for excitable media, and are associated with
the non-diffusive nature of the inhibitor [6, 41, 8]. These spatial oscillations occur
only in the non-diffusive inhibitor v, and are absent for the diffusive activator u. We
have checked that there are no oscillations for sufficiently large diffusion coefficient
Dv 6= 0 of the inhibitor.

The amplitude and the extent of the oscillations increase strongly for larger values
of ǫ, which prohibits an accurate numerical analysis of the large core limit.
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Fig. 4.2. Left: Slice of the close–up in Figure 4.1(c) along a radial grid line for the inhibitor
solution v where NBCs are used for activator u and inhibitor v, demonstrating spurious spatial
oscillations near the boundary. Right: The same slice but now with SBC for the activator u and the
one-sided derivative (4.23) as boundary condition for the inhibitor v, corresponding to Figure 4.1(i).

4.2. Spiral wave boundary conditions. In this Section we introduce two
boundary conditions based on simple geometrical approximations of spiral waves in
order to mimic the behaviour of spirals in unbounded domains, or in finite domains
when the size of the computational domain is much smaller than the physical domain.
A natural version of this type of boundary conditions using Archimedean spirals was
introduced in [10]. Therein, spiral wave solutions were “grown” with a predefined
wavelength λ. We will expand and generalize this idea with the aim to apply it to
the freezing method. Here the wavelength is not known a priori and, moreover, the
centre of the spiral wave generally moves during the freezing procedure. In addition
to the approximation by an Archimedean spiral, we will present boundary conditions
where the spiral wave is approximated by an involute of a circle [45]. The two ap-
proximations coincide in the far field but differ near the spiral wave tip. We will
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formulate spiral boundary conditions for polar and Cartesian coordinates. It has to
be noted that both, the Archimedean spiral and the involute of a circle, are just
geometrical approximations of contour lines of the actual spiral wave solution in un-
bounded domains. There exists, to our knowledge, no rigorous theoretical justification
for these approximations. However, we will see that these approximations may serve
as convenient constructs to formulate boundary conditions.

We assume a spiral wave solution U(r̃, ϕ̃) with a constant far field wavelength λ,
centred at the origin (x0, y0) of the polar coordinate system (r̃, ϕ̃). A common choice
to describe such a spiral wave geometrically is by means of an Archimedean spiral. In
this approximation contour lines of the spiral wave are given by

Φ̃s = m̃r̃ + ϕ̃ = const ,(4.2)

allowing us to simplify U(r̃, ϕ̃) = Vs(m̃r̃+ϕ̃). The parameter m̃ is given by m̃ = 2π/λ,
which can easily be seen by noting that a spiral wave profile is 2π-periodic with
Vs(Φ̃s) = Vs(Φ̃s + 2π), and therefore m̃r̃ + ϕ̃ = m̃(r̃ + 2π

em
) + ϕ̃. The approxima-

tion of a spiral wave solution of an excitable medium by an Archimedean spiral is
fairly accurate in the far field, away from the spiral wave core, but fails close to it.
This is illustrated in Figure 4.3, where two examples of rigidly rotating spiral wave
solutions of the Barkley model (2.1) are shown for different excitabilities ǫ. The spi-
ral wave in Figure 4.3(a) rotates around a circular core which is small compared to
the computational domain. The contour lines of this spiral wave coincide well with
a fitted Archimedean spiral (light dashed line; online: green). In comparison, for
higher values of ǫ, when the core of the spiral wave solution is larger, as depicted in
Figure 4.3(b) (smaller dashed circle; online: red), the contour lines of a spiral wave
solution are approximated by an Archimedean spiral (light dashed line; online: green)
only sufficiently far away from the core. This effect worsens for larger core radii. The
inability of Archimedean spirals to approximate spiral wave solutions near the core
can be understood by considering that spiral waves possess locally an approximately
constant velocity which is normal to the wave front. However, for uniformly rotating
Archimedean spirals the radial velocity is constant. This is particularly problematic
close to the origin where the normal direction of the wave is considerably different to
the radial direction. Especially for numerical investigations in the large core limit,
where numerical domains are not able to include several spiral wave coils, Archimedean
spirals will not serve as good approximations within the computational domain.

Note that logarithmic corrections to (4.2) have been considered (see for example
[35]). However, these corrections become negligible in the far field near the boundary,
and more importantly for our purpose here as boundary conditions, their derivatives
with respect to the r̃ will be small at the boundary.

Based on the assumption of a locally normal velocity for spiral waves, it was suggested
in [44, 45, 29] to approximate spiral waves by involutes of a circle. In this case contour
lines of the spiral wave are given by

Φ̃I = ϕ̃ + arccos(rI/r̃) −
√

(r̃/rI)2 − 1 −
π

2
= const ,(4.3)

allowing us to simplify U(r̃, ϕ̃) = VI(ϕ̃ + arccos(rI/r̃) −
√

(r̃/rI)2 − 1 − π/2). The
parameter rI denotes the radius of the circle that is revolved by the involute. The
involute is only defined for r̃ ≥ rI . The radius rI is somewhat arbitrary and we have
to choose a proper definition that suits our application. We will later explain how to
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(a) ǫ = 0.025 (b) ǫ = 0.065

Fig. 4.3. Spiral wave solution u calculated by solving the stationary frozen system (3.29) on
a circular domain of radius R = 21.74. (a) Spiral solution for ǫ = 0.025 with a superimposed
Archimedean spiral (dashed line; online: green) with em = 2π/λ = 0.59. (b) Spiral solution for
ǫ = 0.065 with superimposed Archimedean spiral (light dashed line; online: green) with em = 2π/λ =
0.13 and superimposed involute of a circle (dashed black line) with rI = 7.9 (dashed circle; online:
magenta). The smaller circle (solid line; online: white) with radius rc = 5.3 is the trace of the tip
of the spiral wave u defined in (2.3).

choose an appropriate rI . Note that for r̃ → ∞ we have Φ̃s − Φ̃I → 0, i.e. the two
approximations of Archimedean spiral and involute of a circle coincide in the far field.
In Figure 4.3(b) we show how the approximation of an involute of a circle compares
to the one by an Archimedean spiral. In [33] the two geometric approximations
were compared in their ability to approximate experimental data of the Belousov-
Zhabotinsky reaction. As the experimentally obtained spiral waves were rotating
around small cores, both approximations showed equally good agreement. It is clear
that both approximations fail close to the spiral tip [50], however, for our purpose,
as illustrated in Figure 4.3(b), involutes of circles are better suited, especially for the
large core limit.

We can use the approximations of an Archimedean spiral or of an involute of a
circle, to formulate boundary conditions. Under these approximations we can use
contour lines to express spiral wave solutions as

U(r̃, ϕ̃) = Vs,I(Φ̃s,I(r̃, ϕ̃)) ,(4.4)

where Φ̃s,I(r̃, ϕ̃) is given by equation (4.2) or (4.3), respectively. Differentiating (4.4)
leads to

Ur̃ = α̃(r̃, ϕ̃)Uϕ̃ ,(4.5)

where α̃(r̃, ϕ̃) = ∂Φ̃s,I(r̃, ϕ̃)/∂r̃ is a coefficient depending on which spiral approxima-
tion has been chosen. For the Archimedean spiral we find

α̃(r̃, ϕ̃) = m̃ .(4.6)

Note that α̃ is constant for Archimedean spirals. For the involute of a circle we find

α̃(r̃, ϕ̃) = −
1

rI

√
1 −

(rI

r̃

)2

.(4.7)
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When evaluated at the boundary of the computational domain, we coin this type of
boundary condition spiral boundary condition (SBC). SBCs have the advantage that
derivatives of a spiral wave solution U on the boundary can be expressed entirely by
known values of U from inside the domain and from the boundary. Note that the
geometric approximations can still be used to formulate SBCs, even, if close to the
tip, they are not accurate.

The spiral boundary conditions (4.5) are formulated within the coordinate system
(r̃, ϕ̃) which is the coordinate system with origin at the centre of the spiral wave
(x0, y0). This does, in general, not coincide with the polar grid of the computational
domain. Assume computations are performed on a circular domain of radius r = R
in a coordinate system (r, ϕ) with centre (0, 0).

To complicate things, the centre of the spiral (x0, y0) and the associated coordi-
nate system (r̃, ϕ̃) typically shift during the process of freezing. We therefore need to
perform a coordinate transformation relating the two coordinate systems, (r̃, ϕ̃) and
(r, ϕ), in order to express the spiral boundary conditions (4.5) in terms of the coor-
dinate system of the computational domain (r, ϕ). Using elementary trigonometric
relations (see Figure 4.4) we can write

r̃ =

√
(r cosϕ − x0)

2
+ (r sin ϕ − y0)

2
,(4.8)

ϕ̃ = arctan

(
r sin ϕ − y0

r cosϕ − x0

)
.(4.9)

We can now formulate SBCs on the actual computational domain by inserting the
transformation into (4.5), to obtain

Ur = α(r, ϕ)Uϕ ,(4.10)

with

α(r, ϕ) =

(
1

r

α̃(r̃, ϕ̃) r̃ cos(ϕ − ϕ̃) + sin(ϕ − ϕ̃)

−α̃(r̃, ϕ̃) r̃ sin(ϕ − ϕ̃) + cos(ϕ − ϕ̃)

)
,(4.11)

where α̃(r̃, ϕ̃) is given by (4.6) for Archimedean spirals and by (4.7) for involutes of
circles.

4.2.1. Determination of the parameters of the spiral boundary condi-

tion. The SBC requires knowledge of the location of the centre of the spiral wave
(x0, y0) and its wavelength in the case of the Archimedean spiral (4.6), and knowledge
of the parameter rI for the case of the involute of a circle (4.7). In the following we
will explain how these parameters can be determined.

We start with the Archimedean spiral. The freezing method automatically deter-
mines the instantaneous centre of rotation of the spiral wave solution via (3.12). We
may therefore determine (x0, y0) on the fly during the freezing procedure as

(x0, y0) ≈ (xM , yM ) =

(
−

µ3

µ1
,
µ2

µ1

)
,(4.12)

which becomes exact once the group parameters µi have become constant. Note
that for rigidly rotating spirals µ1 = ω 6= 0 unless we are at the bifurcation from
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Fig. 4.4. Coordinates of a point (xp, yp) in two different polar coordinate systems (r̃, ϕ̃) and
(r, ϕ).

rigidly rotating spirals to retracting fingers. Approaching this limiting case, (xM , yM )
becomes larger, reflecting the increase of the core radius which diverges at criticality.
If the tip were fixed at the origin, the core radius could be determined exactly by
rc = ‖(xM , yM )‖ using only the group parameters. In this case the rotation frequency
and the core radius are exactly inversely proportional to each other. In the large
core limit, an offset of the spiral tip from the origin of the computational domain,
however, becomes negligible as demonstrated later in Figure 5.7(b). See [16] where a
phase condition is used which pins the tip at the centre of the domain.

The parameter m̃ = 2π/λ can be estimated on the fly as well during the freezing
procedure. For small core spirals we can do so by employing the dispersion relation of
travelling wave trains [48]. Before the application of the full 2D-freezing procedure,
the dispersion relation cw(λ) for the velocity of a travelling wave train is determined
for each fixed ǫ. This is done by applying the freezing method to the Barkley model
(2.1) in a 1D periodic domain with length λ. Assuming that the 1D velocity cw(λ)
is a good approximation for the normal velocity of the far field spiral wave coils, this
velocity should equal the asymptotic far field velocity of a spiral wave cs = (ω/2π)λ,
which is consistent with our geometric approximation of Archimedean spirals. The
rotation frequency ω is determined during the freezing procedure and given simply
by ω = µ1. The wavelength λ of the spiral wave is then obtained as the solution
of cs(λ) = cw(λ). For sufficiently large core radii, when the spiral wave coils do not
interact with each other, we may replace cw(λ) by the 1D velocity of an isolated pulse
c∞. The wavelength can then be estimated by λ = 2πc∞/ω. The velocity c∞ can
also be determined using a 1D freezing procedure, or via direct simulations of the 1D
version of the Barkley model (2.1), where the box length is chosen large compared to
the decay length of the inhibitor.

For large core spirals, a simpler method can be used to determine λ. In this limit
we can employ the approximation λ = 2πrc which is independent of c∞ or the dis-
persion relation cw(λ), which we would need to determine in advance. In Section 5.1
we will present numerical results corroborating these approximations.
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The SBC involving the approximation of involutes of a circle requires that we specify
the radius rI of the circle around which the tip revolves. We found that the involute
of a circle with radius rI = c∞/ω is a better approximation of contour lines of the
actual spiral wave solution than the involute of a circle with the somewhat arbitrary
radius rc, in particular in weakly excitable media with large core radii.

4.2.2. Applicability of the spiral boundary conditions. In the following
we investigate the applicability of the spiral boundary conditions (4.10) and (4.11).
There are two possible problems that can occur: Firstly, the case when there are grid
points on the boundary at which Uϕ = 0 but Ur 6= 0, violating (4.10). Secondly, the
expression for α(r, ϕ) in (4.11) can possess singularities. We will derive conditions on
the location of the spiral centre (x0, y0) to ensure that the spiral boundary condition
is applicable and both possible problems are avoided. For simplicity, we will use the
example of the involute of a circle.

At first we investigate, when there are points on the boundary such that Uϕ = 0
but Ur 6= 0. This is equivalent to asking whether there exist points on the boundary at
which the involute is tangent to the circular boundary of the computational domain.
The involute of a circle with radius rI can be described by

I(s) = rI

(
cos s + s sin s
sin s − s cos s

)
+

(
x0

y0

)
, s ∈ [0,∞) .(4.13)

A parametric equation for the circular boundary reads as

C(σ) = R

(
cosσ
sin σ

)
, σ ∈ [0, 2π) .(4.14)

Without loss of generality we may set y0 = 0. A necessary and sufficient condition
for a tangency at the boundary is given by the solution of the two equations CT∨I = 0
and C = I, which is found to be x0 cos s = −rI . Hence, SBCs are violated whenever
|x0| > rI .

In a next step we investigate the conditions for singularities of α(r, ϕ). Zeros of
the denominator can be found for tan(ϕ− ϕ̃) = 1/(r̃ α̃(r̃, ϕ̃)). Using the trigonometric
identity tan(ϕ − ϕ̃) = (tanϕ − tan ϕ̃)/(1 + tanϕ tan ϕ̃) and the coordinate transfor-
mation (4.8), (4.9) we find x0 sin ϕ = rI , implying as before |x0| > rI . We note here
without derivation, that for Archimedean spirals one finds |x0| > rc [24].

In the small core limit, when the core radius is small compared to the computational
domain, the centre of the core can be placed close to the origin of the computational
domain, assuring |x0| < rc. If the core becomes larger upon increasing ǫ, the centre of
the spiral wave core will move outside the computational domain, if the spiral wave
tip remains resolved within the domain. In this case the conditions |x0| < rI can
be satisfied, by placing the tip of the spiral wave solution close to the centre of the
computational domain, which implies |x0| ≈ rc. Recalling our definition rI = c∞/ω,
we have

rI =
c∞
ω

>
cc

ω
= rc ,(4.15)

where we define cc to be the velocity of the spiral tip tangential to the circle with
radius rc. Because of the positive curvature of the wavefront close to the core, this
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velocity is smaller than the velocity c∞ of the spiral coils in the far field with vanishing
curvature. Hence, if the tip is placed close to the centre of the computational domain,
|x0| < rI is satisfied, assuring that the SBC is neither singular nor violated.

In the large core limit, however, several problems arise, which cannot be resolved
by an appropriate positioning of the spiral wave solutions within the computational
domain. For the approximation with involutes of circles different problems may arise
which need to be addressed. First, for large core spirals the involute circle (or the
spiral core) intersects the boundary of the computational domain, and therefore there
are parts of the boundary for which r̃ ≤ rI , and the SBC (4.10) with (4.11) and
(4.7) is not defined anymore. However, in this case we can formulate mixed boundary
conditions. We keep SBCs on the part of the boundary where r̃ ≥ rI , and we impose
the NBC Ur = 0 for the remainder of the boundary where r̃ < rI , i.e.

Ur =





α(r, ϕ)Uϕ for r̃ ≥ rI

0 for r̃ < rI

,(4.16)

where α is given by (4.11) using (4.6) for the Archimedean spiral or (4.7) for the
involute of a circle. This is justified since, per definition, the core region of a rigidly
rotating spiral is the part of the domain which is never excited by the spiral wave,
with U ≈ 0 and Ur ≈ 0. For the part of the domain which does not lie within the
core region, but within the circle of radius rI > rc, we may also set U = Ur = 0 since
in the large core limit, the fields decay fast enough.

Approaching the critical point with rc → ∞, we inevitably reach the point when
rI − rc is larger than the domain size R. At this point none of the geometric approx-
imations we discussed is valid anymore. In this case, NBCs, formulated in Cartesian
coordinates, prove to be a good approximation, as the curvature of the spiral wave
solution becomes negligible and the spiral wave appears to have the shape of a trav-
elling finger.

Analogously to (4.10) we can formulate spiral boundary conditions for Cartesian grids
(x, y). We perform a transformation between (r̃, ϕ̃)-coordinates of the spiral system
and (x, y)-coordinates of the computational grid

r̃ =

√
(x − x0)

2 + (y − y0)
2 ,(4.17)

ϕ̃ = arctan

(
y − y0

x − x0

)
.(4.18)

We find

Ux = α̂(x, y)Uy(4.19)

for boundaries parallel to the y-axis, and

Uy = α̂(x, y)−1Ux(4.20)

for boundaries parallel to the x-axis. Here α̂(x, y) is given by

α̂(x, y) =

(
α̃(r̃, ϕ̃) r̃ cos ϕ̃ − sin ϕ̃

α̃(r̃, ϕ̃) r̃ sin ϕ̃ + cos ϕ̃

)
,(4.21)
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where α̃ is given again by (4.6) for the Archimedean spiral and by (4.7) for the
involute of a circle. The variables r̃ and ϕ̃ are expressed as functions of (x, y) using
the coordinate transformation (4.17).

Spiral boundary conditions in Cartesian coordinates can only be applied for large
core spirals when the core radius is considerably larger than the box length of the
rectangular computational domain. This is due to the fact that on rectangularly
shaped domains covering at least one revolution of the spiral arm, there are always
points on the boundary at which the spiral arm is tangent to the boundary, violating
the SBCs (4.19) or (4.20). Therefore we have to restrict the method to large core
spirals where only a finger-like part of the spiral is resolved within the computational
domain. The orientation of the domain can be chosen such that only one boundary
intersects with the spiral wave arm. In this case we can set-up boundary conditions,
by imposing an SBC on that boundary and Neumann boundary conditions on the
remaining boundaries where activator and inhibitor are assumed to be approximately
zero. Without loss of generality we choose y = 0 to be the boundary which intersects
with the spiral. The mixed SBC-NBC boundaries are then written as

Ux =





0 for x = 0

0 for x = Lx

and Uy =





α̂(x, y)−1Ux for y = 0

0 for y = Ly

.(4.22)

In Figure 4.5(a) a contour plot of the activator u in Cartesian coordinates is shown,
where we used boundary conditions (4.22). Figure 4.5(b) shows an overlay of this
solution with a similar solution where computations were performed with NBCs for
all boundaries. We show the contour lines of u = 0.5 and v = 0.5 a − b respectively,
and an inset zooming into the area close to the boundary. For the solution obtained
by using SBCs, the boundary appears transparent, whereas the solution obtained by
using NBCs for all boundaries exhibits a kink near the boundary. The difference
between the two solutions is confined near the boundary, and is absent in the interior.

4.3. Oscillation-free implementation of boundary conditions. In the mid-
dle row of Figure 4.1 we show results of the stationary problem (3.29) in polar coordi-
nates using the spiral wave boundary condition (4.10) for the involute of a circle with
(4.11) and (4.7). Comparing Figure 4.1(b) and Figure 4.1(e), we see that the spiral
boundary condition respects the shape of the solution at the boundary and does not
include spurious kinks. However, as can be seen in Figure 4.1(f), the spiral boundary
conditions as described in this section, are not able to control the oscillations near
the boundary.

In this section we present an explanation for these oscillations, and suggest a
simple way to eliminate them. To understand what causes spurious oscillations for
NBC and SBC, we investigate their numerical implementation in more detail. Without
loss of generality we restrict the discussion here to polar coordinates.

For both boundary conditions, NBCs and SBCs, the equation for the inhibitor
involves only first derivatives. This implies, that at the radial boundary (R =
(M −1)∆r, (j−1)∆ϕ), the inhibitor v is computed only from values of v and u on the
boundary from the previous time step. Whereas the discrete Laplacian, present in
the equation for the activator u, couples values uM,j at the boundary to those in the
interior, i.e. uM−1,j , the boundary values of the inhibitor vM,j are decoupled from
the interior, and do not receive the outward flowing information from the interior.
It is this decoupling of the boundary from the interior for the non-diffusive inhibitor
which causes the spatial oscillations near the boundary. (We recall that there are
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(a) (b)

Fig. 4.5. Spiral wave solution u in the large core limit obtained by solving the stationary frozen
system (3.28) in Cartesian coordinates. The excitability parameter is ǫ = 0.0799, and the spatial
discretization is ∆x = ∆y = 0.125. (a) Contour plot of activator u. The inset is added to show the
correct aspect ratio. (b) Contour lines u = 0.5 (online: black, green) and v = 0.5 a− b (online: blue,
red) for SBC (involute of a circle) and NBC respectively (inset: zoom into dashed box close to the
boundary at y = 0).

no oscillations for the diffusive activator u, and also no oscillations when diffusion is
added to the equation for the inhibitor.)

For both cases, NBCs and SBCs, we propose a simple method to overcome this de-
coupling. For the activator u we use NBCs or SBCs as discussed. However, instead of
invoking this boundary condition for the inhibitor as well, we evaluate the derivative
of the inhibitor at the boundary by a one-sided second-order discretization according
to

vr|M,j
=

3vM,j − 4vM−1,j + vM−2,j

2∆r
.(4.23)

For Cartesian coordinates we use equivalent expressions.
Considering the original unfrozen Barkley system (2.1), there are two reasons why

this simple trick works. Firstly, the boundary condition is consistent with the fact
that information flows outwards when studying spiral waves, and therefore outer grid
points are influenced by inner grid points only. Secondly, the inhibitor is “slaved” to
the activator in the sense that if the activator is known, the linear equation for the
inhibitor can be integrated explicitly. The boundary conditions of the activator are
therefore (approximately) inherited by the inhibitor.

In Figure 4.1 (bottom row) we show how the implementation of the spiral wave bound-
ary condition for the activator and the one-sided derivative (4.23) for the inhibitor in
the stationary problem (3.29) in polar coordinates suppresses the spatial oscillations
and avoids changes in shape and amplitude (see also Figure 4.2(b)). In Figure 4.6
we show how the implementation of Neumann boundary conditions for the activator
and the one-sided derivative (4.23) for the inhibitor controls the spatial oscillations
and the spiral wave shape in the stationary problem (3.28) in Cartesian coordinates
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in the weakly excitable regime.

During extensive numerical tests [24] we found that in highly excitable media only spi-
ral boundary conditions (4.10) in conjunction with the one-sided boundary condition
(4.23) give accurate results for the stationary and the time-dependent freezing method
without spurious oscillations and without unnatural deformations of the spiral shape.
For the large core limit, in weakly excitable media, Neumann boundary conditions
in Cartesian coordinates are the optimal choice to avoid numerical oscillations and
to properly resolve the shape of the spiral wave solution. Note that in the large core
limit NBCs resemble SBCs. This is due to the fact that the overall curvature of the
spiral wave, captured in the computational domain, is close to zero. In a way NBCs
can be viewed as a simpler and more convenient formulation of SBCs in the large core
limit, which do not involve the core radius and the wavelength of the spiral wave.

In the following we will be using SBCs in polar coordinates for highly excitable
media, and NBCs in Cartesian coordinates in the large core limit. We will also em-
ploy the one-sided boundary condition (4.23) in all numerical simulations to avoid
oscillations.

5. Numerical investigation of the large core limit of spiral waves. In
this Section we provide numerical results on the wavelength λ, the core radius rc and
the rotation frequency ω of spiral waves in the large core limit. The rotation frequency
ω and the core radius rc are computed from the group parameters µi. We recall that
ω = µ1 and rc can be calculated using (3.13) with the centre of the spiral given by
(3.12) and the location of the tip defined as the intersection of the contour lines (2.3).
We approach numerically criticality where the core radius develops a singularity and
the frequency approaches zero. Before we present these results, we collect and discuss
some practical aspects of the different methods we introduced to study spiral waves
in the large core limit.

We solve the stationary freezing problem (3.28), increasing ǫ. As initial guess for
the Newton-Raphson method we use the frozen solutions of the previous value for ǫ.
We use a discretization of ∆x = ∆y = 0.125 for Cartesian simulations, unless stated
otherwise. We have checked the quadratic convergence of the error in the calculation
of the core radius and the rotation frequency with respect to the spatial discretization,
and found that at this resolution the values have sufficiently converged.

For polar coordinates we use a discretization ∆r = 0.125 and ∆ϕ = 2π/640 ≈
0.01. For a computational domain with R = 20 this corresponds roughly to an equiva-
lent discretization of ∆x = 0.125 and ∆y ≈ 0.2 near the boundary. This immediately
alludes to practical limitations of polar coordinates for large computational domains;
wave profiles away from the centre of the computational domain are not properly
resolved, and R has to be sufficiently small, unless one employs a computationally
expensive fine angular discretization. At this point it is important to repeat, that in
highly excitable media with small core radii at sufficiently small values of ǫ, polar co-
ordinates work very well. This is due to two effects: First, transverse wave profiles are
wider for smaller values of ǫ, and second, the smaller wavelength in this case causes
a cross section of the spiral wave at the boundary which is wider than its transverse
profile.

In Figure 5.1 we show results for solving the stationary frozen system (3.29) in polar
coordinates. We used two types of boundary conditions, i.e. NBCs (blue •) and SBCs
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(a) (b)

(c) (d)

Fig. 4.6. Inhibitor v in the weakly excitable case with ǫ = 0.075, calculated from the stationary
frozen system (3.28) in Cartesian coordinates with NBCs for activator and inhibitor (top panels)
and NBCs for activator only and one-sided derivative (4.23) for the inhibitor (bottom panels). (b)
and (d) are close-ups of the respective solutions depicted in (a) and (c), zooming in on the boundary
at y = 0.

based on the approximation by involutes (red ◦). We further included results from
direct simulations of the full Barkley model (2.1) (black ×). For a computational
domain of size R = 21.74 direct simulations are limited to excitabilities of ǫ . 0.065
with corresponding radii rc . 5.3. One can, in principle, determine the core radius for
parameter values larger than ǫ = 0.065, however, only with the additional computa-
tional cost of increasing the computational domain. There will be a value of ǫ where
this is not possible anymore with given computational power. We stress that this
value of ǫ is way below what we call the large core limit. This can be seen in Figure
5.2 (left panel) where we show contour plots of the activator at different values of ǫ
corresponding to data points in Figure 5.1 for SBCs. The white circular lines represent
the trace of the tip as defined in (2.3) and are calculated by solving equations (3.17)
for the group variables. Figure 5.2(c) indicates that it becomes inherently difficult to
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calculate spirals and their characteristic parameters rc and ω for large cores by direct
simulations of the full Barkley system (2.1). It is this observation which makes the
freezing method so attractive for large core spirals.

The insets in Figure 5.1 clearly show that SBCs outperform NBCs in the highly
excitable regime, and allow for the determination of frozen solutions and the values
of the core radius rc and the rotation frequency ω for a greater range of parameter
values. The breakdown of NBCs is linked to the finite size of the computational do-
main as illustrated in Figure 5.3. We can see that the finger is not properly oriented
in the finite domain and that therefore NBCs are not a suitable choice, bending the
solution into an unnatural direction. This does not happen for the shape-preserving
SBCs. The negative effect of the (inaccurate) NBCs to deform contour lines of the
solution is proportionally larger for moderate computational domains than for larger
ones (which makes polar coordinates more sensitive to these effects then Cartesian co-
ordinates). In principle, one may extend the range of validity in ǫ-parameter space for
NBCs by considering larger and larger computational domains; however, this would
quickly become computationally unfeasible.
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Fig. 5.1. Core radius rc and rotation frequency ω of spiral waves as functions of ǫ computed
in polar coordinates. Here ‘×’ denotes values obtained by a direct simulation of the Barkley model
(2.1), and ‘•’ and ‘◦’ represent results from solving the stationary frozen system (3.29) with NBCs
and SBCs respectively. A computational domain with R = 21.74 was used.

To approach the large core limit, we employ a Cartesian coordinate system for values
of ǫ ≥ 0.068. In Figure 5.4 we show the rotation frequency and the core radius
of simulations where we approach the critical point at ǫc ≈ 0.08054091. Here we
use Lx = 50 and Ly = 62.5. In Figure 5.2 (right panel) we show contour plots of
the activator solution of the frozen stationary system (3.28) at different values of ǫ
corresponding to data points in Figure 5.1 for NBCs. The exact value of ǫc depends on
the discretization and also on the size of the computational domain. See Section 5.2
for a discussion on this issue. Compare the range of rc attainable in polar coordinates
and Cartesian coordinates (cf. Figure 5.1 and inset of Figure 5.4). Contrary to the
results with polar coordinates, in Cartesian coordinates NBCs are applicable for a
larger range of parameter values than SBCs. As discussed in Section 4.2.2, SBCs are
not applicable in the large core limit, when the spiral wave appears as a finger in
computational domains of finite size. The part of the spiral wave solution, starting
at the tip, which cannot be approximated by an Archimedean spiral or an involute
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(a) ǫ = 0.025

(b) ǫ = 0.055

(c) ǫ = 0.075

(d) ǫ = 0.068

(e) ǫ = 0.075

(f) ǫ = 0.079

Fig. 5.2. Contour plots of the activator solution of the stationary frozen system in polar
coordinates with SBCs based on approximations by involutes (left) and in Cartesian coordinates
with NBCs (right) for increasing values of excitability ǫ. The white circular lines indicate the trace
of the tip.
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(a) SBC (b) NBC

Fig. 5.3. Contour plot of the activator u found as the solution of the stationary frozen system
(3.29) at ǫ = 0.079 with R = 21.74 with SBCs (left) and NBCs (right), respectively.

of a circle, increases the closer one is to criticality. As a proxy for the extent of this
region we depict in Figure 5.5, how rI − rc grows with ǫ → ǫc. For values ǫ > 0.0797,
corresponding to core radii rc > 2523, we have rI − rc > Ly, and the freezing method
using SBCs is not applicable anymore. NBCs, on the other hand, become a better
approximation the closer we are to the critical point, where the spiral wave solution
approaches zero curvature – provided that the finger is appropriately oriented within
the computational domain to assure a perpendicular intersection with the boundary.

To study the behaviour of the wavelength, the rotation frequency and the core
radius of spiral waves in the large core limit, we therefore use from now on Cartesian
coordinates and Neumann boundary conditions. In Figure 5.6 we show contour plots
of the activator and the inhibitor close to criticality, illustrating the appropriateness
of Neumann boundary conditions in Cartesian coordinates in this limit.
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Fig. 5.4. Core radius rc and rotation frequency ω of spiral waves as functions of ǫ with ǫ < ǫc

computed in Cartesian coordinates. Here ‘×’ denotes values obtained by direct simulation of the
Barkley model (2.1), and ‘•’ and ‘◦’ represent results from solving the stationary frozen system
(3.28) with NBCs and SBCs respectively. A computational domain with Lx = 50 and Ly = 62.5
was used.
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Fig. 5.5. Core radius rc and radius of the circle of the involute rI = c∞/ω as a function of ǫ.
The critical value of the excitability parameter is ǫc = 0.08054091.

(a) Activator u (b) Inhibitor v

Fig. 5.6. Contour plot of a spiral wave solution of system (3.28) at ǫ = 0.08052, close to the
critical excitability ǫc. The (a) activator and (b) inhibitor are shown with the inset depicting them
with the correct aspect ratio. A computational domain with Lx = 50 and Ly = 140 was used.

5.1. Wavelength. The application of the spiral boundary conditions using Archi-
medean spirals requires the knowledge of the wavelength λ. In the small core limit
the wavelength can be determined as the solution of the implicit equation

cw(λ) =
ω

2π
λ ,(5.1)

where cw(λ) is the velocity of a 1D wave train with wavelength λ (see Section 4.2.1).
In the large core limit, where the inhibitor decays sufficiently quickly and spiral wave
coils do not interact, we may further simplify to λ = 2πc∞/ω, where c∞ is the
velocity of an isolated 1D pulse. In Figure 5.7(a) we show a comparison of these
expressions with numerical results from a direct simulation of the full Barkley model
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(2.1). The velocities cw(λ) and c∞ are determined by freezing pulses in the corre-
sponding 1D-model with box length λ using the same discretization ∆x = 0.125 as
in two dimensions. We see that the wavelength determined by (5.1) is a reasonably
good approximation of the true wavelength even for small core radii. For larger radii
the two methods to determine λ converge.

In the large core limit we can deduce a simpler approximation for the wavelength
which does not require the independent determination of the 1D velocities. One
can define two approximate temporal periods for rigidly rotating spiral waves with
wavelength λ and curvature κ. First, the temporal period Tp = λ/c(λ, κ) of a spi-
ral wave with velocity given to first approximation by c(λ, κ), and second, the time
Tr = 2π(rc + δ)/cn(λ, κ) which measures the time of one revolution of a spiral wave
tip around a circle with radius rc + δ chosen such that the normal velocity cn(λ, κ) of
the spiral tip is tangential to that circle. Equating these two temporal periods leads
to the kinematic relation [26]

λ = 2π(rc + δ)
c(λ, κ)

cn(λ, κ)
.(5.2)

In the large core limit, we expect cn(λ, κ) = c(λ, κ) = c∞, and δ ≪ rc (see Figure 5.5).
In this case (5.2) reduces to the simple relationship

λ = 2πrc .(5.3)

In Figure 5.7(b) we show that (5.3) is a good approximation of the wavelength in
the large core limit and matches well with λ = 2πc∞/ω. Figure 5.7(b) shows that
ω ∼ r−1

c as already indicated by (4.12) implying µ2
2 +µ2

3 ≈ c2
∞, resembling the motion

of travelling waves.
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Fig. 5.7. Different estimates of the wavelength λ. Red ‘◦’: λ obtained by using the nonlinear
dispersion relation of 1D wave trains cw(λ) = (ω/2π)λ. Blue ‘•’: λ = 2πc∞/ω. (a) Small core
limit. Black ‘×’: Values obtained from direct simulations of the full Barkley model (2.1). (b) Large
core limit. The dashed reference line corresponds to λ = 2πrc. Here ω and rc are obtained by solving
the stationary frozen system (3.28).

5.2. Scaling behaviour of the large core limit. In Figure 5.8 we show results
on the scaling behaviour of the rotation frequency ω and the core radius rc as a
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function of the distance to criticality (ǫ− ǫc). We can clearly identify a linear scaling
regime

ω ∼ (ǫ − ǫc)
1 and rc ∼ (ǫ − ǫc)

−1(5.4)

at the bifurcation.

This scaling behaviour was predicted in [12] using kinematic theory, and in [1] using
equivariant bifurcation theory. The change from a rigidly rotating spiral to a travelling
wave finger was described as a so called drift bifurcation1 which occurs in the group
dynamics rather than in the shape dynamics. To understand the bifurcation from
rigidly rotating spirals to retracting fingers using the symmetry reduction method,
one needs to look at the assumptions necessary for the orthogonal splitting of the
full dynamics into the shape dynamics and the group dynamics – which underlies
the freezing method as well as the theory in [1]. Symmetry reduction relies on the
existence of a centre manifold. Finite-dimensional centre manifold reductions can be
proven for spiral waves in unbounded domains assuming the existence of a spectral gap
[37]. The spectral gap corresponds to a non-zero distance of the essential spectrum,
which consists of the complement of the spectrum of the set of isolated eigenvalues of
finite multiplicity, and the imaginary axis, thereby assuring normal hyperbolicity of
the solutions.

In [38] it was shown that this gap, in fact, does not exist for rigidly rotating
spirals in unbounded domains. It was shown, however, that small perturbations to
the unboundedness of the domain, i.e. spiral wave solutions in ‘very large’ domains
with imposed boundary conditions, open up a large spectral gap. This is in contrast
to the situation for roll solutions say, where the spectral gap obtained in this way
is negligible. Hence for many purposes it is reasonable to proceed as if a spectral
gap is present so that a symmetry reduction can be performed. Such an approach
has proved useful in understanding the transition to meandering and linearly drifting
spirals [3, 51, 14, 17, 36, 37, 38]. This gap, however, becomes smaller the closer one is
to criticality, at which point the spectral gap becomes zero. Close to criticality, when
the overall curvature of the spiral wave becomes zero, and the solution has morphed
into a semi-infinite travelling finger, finite-dimensional centre manifold theory is not
applicable anymore and ought to be replaced by an infinite-dimensional Ginzburg-
Landau type description. A rigidly rotating spiral wave may become unstable to an
infinite number of modes of the continuous spectrum which cannot be captured by the
freezing method or the bifurcation theory of [1]. However, we argue that the (possibly
unstable) solution obtained by the finite dimensional reduction will, at least, function
as an organizing centre for the full dynamics which takes into account the interactions
with the continuous spectrum.

Close to criticality, the break-down of the finite-dimensional description manifests
itself in the requirement for an ever increasing resolution and accuracy in numerical
simulations. Phenomenologically, one needs to resolve greater and greater parts of
the spiral wave close to criticality, to resolve the behaviour of the far field spiral
wave. A too small segment of the solution appears like a travelling wave without
curvature. The tip region (i.e. the region which is not described by simple geometric
constructs such as Archimedean spirals or involutes of circles) grows when criticality
is approached, as was already encountered for small core spirals (cf. Figure 4.3 and

1Note that the term drift bifurcation is also used in a different context for a pitchfork bifurcation
of stationary patterns with reflection symmetry in an O(2)-system [28, 27].
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Figure 5.5).
We found experimentally, that the actual values of rc and ω at criticality, as

well as the actual critical value of the excitability ǫc depend strongly on the numerical
resolution. For example, the orientation of the finger within the computational domain
has a strong influence, especially for moderate sizes of the computational domain. For
a sufficiently small length of a spiral wave solution – which then appears finger-like,
see Figure 4.5 – the proportion of the region dominated by the inaccurate Neumann
boundary conditions becomes unproportionally large. We therefore rotate the finger
in a pre-processing procedure to maximize the validity of the NBC. Spiral waves
which do not leave the computational domain perpendicularly, are rotated around the
centre of the rectangular computational domain, and then subsequently mapped back
onto the computational grid using bilinear interpolation before the application of the
freezing procedure. This procedure inevitably leaves triangles of the computational
domain which have not been assigned values for the fields u and v after the rotation.
We manually set u and v to zero on grid points falling into those triangles which
is justified in the large core limit for small angels of rotation. Close to criticality
it proved useful to use an iterative procedure, whereby reorienting and the freezing
procedure are alternated at fixed ǫ. However, this method of reorientation of spiral
waves is inaccurate and not methodological, and small changes will have measurable
effects in the values of the group parameters [24].

Similarly, the numerical results become more sensitive to the actual length of
the finger which is resolved within the computational domain. At criticality, infinite
resolution is required. This is illustrated in Figure 5.9 where we show results of the
core radius rc as a function of ǫ for simulations differing only in the length of the
resolved finger within the domain. Whereas the values of rc are independent on the
resolved size away from the bifurcation (but note the already large magnitude of rc

in the log-scale), they differ strongly approaching criticality. The critical value ǫc also
depends on the actual length of the resolved finger. This sensitivity of the results
to the resolution is inherent and cannot be avoided due to the breakdown of the
assumptions underlying the freezing method.

It is pertinent to mention that, despite the sensitivity of the actual numerical val-
ues of the rotation frequency, the core radius and the critical excitability, the linear
scaling regime depicted in Figure 5.8 is robust against changes of size of the compu-
tational domain, the orientation of the spiral and the discretization.

The freezing method finds frozen solutions beyond the critical ǫc. In Figure 5.10 we
show results for the core radius and the rotation frequency when the excitability is
varied to values ǫ > ǫc. We find that the linear scaling regime extends past the critical
value ǫc. Moreover, the rotation frequency becomes negative for ǫ > ǫc. Note that the
theory of [1] does not describe the behaviour of solutions past the bifurcation point.
For ǫ > 0.0835 we were not able to find frozen solutions of the stationary system
(3.28). We have checked that the value of ǫ = 0.0835 corresponds to the saddle node
of travelling waves in 1D, and exhibits the typical square root behaviour close to the
saddle node bifurcation.

At the bifurcation to retracting fingers at ǫc there is no guarantee that the so-
lutions of the freezing method correspond to actual solutions of the original Barkley
model. However, we have verified that the frozen solutions obtained for ǫ > ǫc corre-
spond to the retracting fingers by using them as initial conditions in the full Barkley
model (2.1).
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Fig. 5.8. Scaling behaviour of core radius rc (left) and rotation frequency ω (right). We show
results for frozen solutions of the stationary system (3.28) using Cartesian coordinates and NBCs,
in computational domains with Lx = 50 and Ly = 62.5. The dashed reference lines have slope
−1.004 for rc and 1.0038 for ω, respectively. The critical value of the excitability parameter is
ǫc = 0.08054091.
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Fig. 5.9. Demonstration of sensitivity of the critical excitability on the length of the resolved
finger solution. Results are obtained by freezing the same spiral wave on rectangular domains with
Lx = 50 and Ly = 62.5 (•), Ly = 80 (×), Ly = 120 (⋄) and Ly = 140 (◦). The resolved finger
lengths are approximately L62.5 ≈ 39.5 (•), L80 ≈ 59 (×), L120 ≈ 97 (⋄) and L140 ≈ 115 (◦).

6. Summary. Our aim in this work was two-fold. In a first part, we have for-
mulated a modification of the freezing method, introduced in [6]. We have formulated
the freezing method in polar and Cartesian coordinates for the time-dependent and
the stationary formulation to freeze spiral waves in excitable media with non-diffusive
inhibitors, typical for applications in cardiac dynamics.

In particular, we have proposed a simple method to overcome oscillations near
the boundary, which have so far obstructed the investigation of the large core limit.
Oscillations in the interior of the computational domain in the time-dependent prob-
lem were eliminated by employing a semi-implicit Crank-Nicolson scheme. We have
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Cartesian coordinates and NBCs, in computational domains with Lx = 50 and Ly = 62.5.

further introduced spiral boundary conditions by using Archimedean spirals and in-
volutes of circles as geometric constructs to approximate contour lines of spiral wave
solutions in unbounded domains and in computational domains whose size is much
smaller then the actual physical domain.

We have established the regions of applicability of our method. We found that to
study spiral waves in the small core limit polar coordinates with SBCs are favourable,
whereas to study spiral waves in the large core limit, Cartesian coordinates and NBCs
should be used.

In a second part of this work, we have numerically investigated the large core
limit of spiral waves. We have determined the shape of solutions near criticality, and
have determined their rotation frequency as well as their core radius. Further, we
discussed solutions of the freezing method for excitabilities beyond criticality, which
could be extended to the saddle node bifurcation of travelling waves. We have pre-
sented results on the scaling behaviour of the spiral wave parameters in the large core
limit and confirmed the linear scaling at the drift bifurcation developed in [1], and
discussed the limitations of the freezing method. We believe that these results may
be helpful in designing kinematic theories.

After submission of this work we became aware of work [16] in which the large core
limit is investigated using a similar numerical method. The authors also identify a
linear scaling regime in the large core limit, and study further meandering spirals
and electrophoresis. In this work a phase condition is used which pins the tip of the
spiral wave to the centre of the domain. We believe that this phase conditions with
our implementation of the boundary conditions will prove useful in further studies of
spiral wave dynamics.
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[5] W.J. Beyn, S. Selle, and V. Thümmler, Freezing multipulses and multifronts, SIAM J. Appl.
Dyn. Syst., 7 (2008), pp. 577–608.
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[40] V. Thümmler, Numerical analysis of the method of freezing traveling waves, PhD thesis,

Universität Bielefeld, 2005.
[41] , Numerical bifurcation analysis of relative equilibria with Femlab, in Proc. Comsol Users

Conference, Frankfurt, 2006.
[42] , Numerical approximation of relative equilibria for equivariant PDEs, SIAM J. Numer.

Anal., 46 (2008), pp. 2978–3005.
[43] J.J. Tyson and J.P. Keener, Singular perturbation theory of traveling waves in excitable

media (a review), Phys. D, 32 (1988), pp. 327–361.
[44] N. Wiener and A. Rosenblueth, The mathematical formulation of the problem of conduction

of impulses in a network of connected excitable elements, specifically in cardiac muscle,
Arch. Inst. Cardiol. Mexico, 16 (1946), pp. 205–265.

[45] A.T. Winfree, Spiral waves of chemical activity, Science, 175 (1972), pp. 634–636.
[46] , When time breaks down, Princeton University Press Princeton, Princeton, NJ, 1987.
[47] , Stable particle-like solutions to the nonlinear wave equations of three-dimensional ex-

citable media, SIAM Rev., 32 (1990), pp. 1–53.
[48] , Varieties of spiral wave behaviour: an experimentalist’s approach to the theory of

excitable media, Chaos, 1 (1991), pp. 303–334.
[49] , Electrical turbulence in three-dimensional heart muscle, Science, 266 (1994), pp. 1003–

1006.
[50] , The geometry of biological time, Springer, New York, NY, 2001.
[51] C. Wulff, Theory of meandering and drifting spiral waves in reaction-diffusion systems, PhD

thesis, Freie Universität Berlin, 1996.
[52] V.S. Zykov, Kinematics of rigidly rotating spiral waves, Phys. D, 238 (2009), pp. 931–940.
[53] V.S. Zykov and A.T. Winfree, Simulation of wave processes in excitable media, Manchester

University Press, New York, NY, 1987.

32


