
Model reduction for networks of coupled oscillators

Model reduction for networks of coupled oscillators
Georg A. Gottwald1

School of Mathematics and Statistics, The University of Sydney, Sydney 2006 NSW,

Australiaa)

(Dated: 5 May 2015)

We present a collective coordinate approach to describe coupled phase oscillators. We apply the method to
study synchronisation in a Kuramoto model. In our approach anN -dimensional Kuramoto model is reduced to
an n-dimensional ordinary differential equation with n≪ N , constituting an immense reduction in complexity.
The onset of both local and global synchronisation is reproduced to good numerical accuracy, and we are
able to describe both soft and hard transitions. By introducing 2 collective coordinates the approach is able
to describe the interaction of two partially synchronised clusters in the case of bimodally distributed native
frequencies. Furthermore, our approach allows us to accurately describe finite size scalings of the critical
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Kuramoto model with all-to-all coupling networks for several distributions of the native frequencies.
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Despite their inherent complexity large networks

of interacting dynamical entities often exhibit co-

ordinated ordered behaviour such as mutual syn-

chronisation. The macroscopic behaviour of com-

plex networks arises as a complicated interplay

between the dynamics of each microscopic node

and the overall topological properties of the net-

work. It is a formidable challenge to reduce the

dynamics of large networks to a small number

of active degrees of freedom that is capable of

capturing these complex dynamical phenomena.

This work is a contribution towards this goal.

1. INTRODUCTION

The collective behaviour of interacting oscillators
in complex networks is ubiquitous in nature and has
occupied scientists from as disparate areas as biology,
engineering, mathematics, physics and sociology for
many years now1,2,10,18,24. These systems often exhibit
collective synchronisation whereby some or all oscillatory
agents assume the same phase. Synchronisation be-
haviour is strongly dependent, amongst other factors, on
the nature of the distribution of the native frequencies.
In the case where all oscillators are connected with each
other and where their native frequencies are unimodally
distributed, for example, the onset of synchronisation as
a function of the coupling strength is a soft transition,
where the order parameter increases smoothly from zero
as in a second-order phase transition. On the other
hand, in the case of uniformly distributed frequencies,
the onset of synchronisation is a hard transition, where

a)Electronic mail: georg.gottwald@sydney.edu.au

at the critical coupling strength the order parameter has
a non-zero value as in first-order phase transitions, with
possible hysteresis6,10,11,20. Capturing all these different
dynamic behaviours is a challenging task.

The collective behaviour of coupled oscillators such
as synchronisation behaviour suggests that the dy-
namics of complex systems may (at least in certain
cases) be described by a low dimensional dynamical
system. To find these dimension-reduced descriptions is
a formidable challenge with some remarkable results in
recent years12,13,19,22,23. In this work we propose a new
approach to describe coupled phase oscillators and their
non-trivial dynamics. Our approach is not restricted to
a thermodynamic limit of infinite many oscillators and
allows for the study of finite size effects8,9,20,27, apparent
in any real world networks.

The particular approach proposed in this work seeks to
find an approximate parametrisation of the synchronisa-
tion manifold by means of appropriately chosen collective

coordinates4,7,14–16. The underlying premise is that the
actual solution of the dynamical system assumes a spe-
cific functional form the parameters of which are coined
collective coordinates. The temporal evolution of the ac-
tual solution is then described by the temporal evolution
of those parameters, constituting an immense reduction
in dimensionality. The functional form of the actual so-
lution and the associated collective coordinates have to
be specified upon inspection of numerical simulations of
the underlying system. For the Kuramoto model we will
establish that the phases are linearly correlated with the
native frequencies and we define the collective coordi-
nate to be the parameter relating the two. The method
deals directly with the dynamical system rather than its
associated macroscopic (infinite-dimensional) description
for the distribution or moments thereof12,13,19,22,23. It is
non-perturbative in the sense that the solution is not
written as an expansion in some small parameter. The
paper is organized as follows. In Section 2 we intro-
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duce the Kuramoto model which constitutes a paradigm
for studying coupled phase oscillators. Our approach to
achieve effective model reduction of the dynamics is intro-
duced in Section 3. In Section 4 the method is applied to
the Kuramoto model with all-to-all coupling with three
different distributions for the native frequencies and we
compare the results of direct numerical simulations of
the full Kuramoto model with those of the proposed 1-
(or 2-)dimensional reduced model. We consider here a
uniform native frequency distribution where a hard on-
set of synchronisation is experienced, a unimodal normal
frequency distribution where a soft onset of synchroni-
sation is experienced, and thirdly a bimodal frequency
distribution where global synchronisation is preceded by
partial synchronisation of weakly coupled synchronised
communities. We conclude with a summary and discus-
sion in Section 5.

2. KURAMOTO MODEL

Weakly coupled limit cycle oscillators can be described
in terms of their phases as an autonomous dynamical sys-
tem. A widely used model which governs the dynamics
of the phases ϕi of N oscillators with native frequencies
ωi is the celebrated Kuramoto model1,10,26

ϕ̇i = ωi +
K

N

N
∑

j=1

aij sin(ϕj − ϕi) . (2.1)

The adjacency matrix A = {aij} determines the topol-
ogy of the network and describes which oscillators are
connected. We restrict our analysis to unweighted, undi-
rected networks for which the adjacency matrix A =
{aij} is symmetric with aij = aji = 1 if there is an edge
between oscillators i and j, and aij = 0 otherwise. The
degree of a node di, i.e. the number of edges emanating
from node i, is then given by di =

∑

j aij .
For interacting oscillators, generically there exists a

critical coupling strength Kc such that for sufficiently
large coupling strength K > Kc the oscillators synchro-
nise in the sense that they become locked to their mutual
mean frequency and their phases become localized about
their mean phase10,18,26. This type of synchronous be-
haviour known as global synchronisation occurs if the
dynamics settles on a globally attracting manifold5. The
level of synchronisation is often characterised by the or-
der parameter10

r(t) =
1

N
|
N
∑

j=1

eiϕj(t)| , (2.2)

with 0 ≤ r ≤ 1. In practice, the asymptotic limit of this
order parameter

r̄ = lim
T→∞

1

T

∫ T0+T

T0

r(t) dt , (2.3)

is estimated whereby T0 is chosen sufficiently large to
eliminate transient behaviour of the oscillators.
In the case of full synchronisation with ϕi(t) = ϕj(t)

for all pairs i, j and for all times t we obtain r̄ = r = 1. In
the case where all oscillators behave independently with
random initial conditions r̄ = O(1/

√
N) indicates inco-

herent phase dynamics; values inbetween indicate partial
coherence.

3. COLLECTIVE COORDINATE APPROACH

We will employ a non-perturbative approach to study
synchronisation. Our approach is borrowed from the
theory of solitary waves where it is known as collective

coordinate approach25; it has since been used in the
context of dissipative pattern forming systems4,7,14–16.
The method we propose makes explicit use of the
functional form of the phases as suggested by numerical
simulations. The parameters describing the functional
form of the phases constitute the collective coordinates.
For example, if observations reveal that the functional
form of the solution is bell-shaped at all times, the
collective coordinates might be the amplitude and width
of a Gaussian. The temporal evolution of the full
solution is then described by the temporal evolution of
the collective coordinates, i.e. how the amplitude and
the width of the Gaussians evolve in time. Of course,
a specific assumed functional form is typically only an
approximation of the actual solution. To eek out most
of the assumed ansatz the collective coordinates are
determined to optimally describe the solution. The
most appropriate notion of optimality is to require
that the error made by restricting the solution to be
of the assumedz ansatz is minimised. Minimisation is
achieved if the error is orthogonal to the subspace of the
solutions spanned by the collective coordinates. This
projection yields an evolution equation for the collective
coordinates which allows to describe the actual solution
at all times.

We now establish the method of collective coordinates
for the Kuramoto model in detail. Without loss of gener-
ality we assume that the mean frequency is zero (unless
stated otherwise). Let us assume that the nodes are la-
belled in order of increasing native frequencies, i.e. i = 1
denotes the node with the most negative native frequency
ω1 and i = N denotes the node with the most positive na-
tive frequency ωN . In Figure 1 we show a snapshot of the
phases ϕj obtained by a numerical simulation of the Ku-
ramoto model with an underlying Erdős-Rényi topology
with N = 200 oscillators at a coupling strength K = 9.5.
The associated order parameter is r̄ = 0.78 indicating
a high level of synchronisation. The figure shows that
the phases of oscillators with native frequencies of suf-
ficiently small absolute value are frequency locked and
correlate highly with the underlying native frequency dis-
tribution. This observation suggests that the phases of
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those frequency-locked oscillators may be approximated
by

ϕi(t) = α(t)ωi . (3.1)

Oscillators with large absolute native frequencies which
could not be entrained at a given coupling strength,
do not obey this functional relationship but rather os-
cillate with their native frequencies. The ansatz (3.1)
is trivially exact for K = 0 with α(t) = t. Further-
more, in the case of an all-to-all coupling the ansatz (3.1)
can be formally motivated for large coupling strength as
follows. The stationary Kuramoto model (2.1) can be
rewritten as ωi = −Kr sin(ψ − ϕi) with ψ being the
mean phase10. Expanding ϕi = ψ + arcsin(ωi/(rK)) in
1/K for large coupling strength yields up to first order
ϕi = ψ + ωi/(rK). Since the Kuramoto model (2.1) is
invariant under constant phase shifts we may set ψ = 0
leading to our ansatz (3.1).
Our method consists of assuming that the phases of
the N oscillators are approximately given by our ansatz
(3.1). The time-dependent amplitude α(t) takes the role
of a collective coordinate. Our goal is to find an evo-
lution equation for α(t) and thereby reducing the N -
dimensional Kuramoto model of phase oscillators to a
one-dimensional ordinary differential equation for α(t)
(in Section 4 4.3 we will see how to modify the approach
to include more collective coordinates). We do so by re-
quiring that the error

Eα = α̇ωi − ωi −
K

N

N
∑

j=1

aij sin(α(ωj − ωi))

made by restricting the solution to the subspace defined
by the ansatz (3.1) is minimised. This is achieved by
assuring that the error Eα is orthogonal to the restricted
subspace spanned by (3.1). We therefore require that
the error Eα is orthogonal to the tangent space of the
solution manifold (3.1) which is spanned by ∂ϕi/∂α = ωi.
Projecting the error onto the restricted subspace spanned
by (3.1) yields the desired evolution equation for α

α̇ = 1 +
K

Σ2

1

N2

N
∑

i=1

ωi

N
∑

j=1

aij sin(α(ωj − ωi)) , (3.2)

with

Σ2 =
1

N

N
∑

j=1

ω2
j . (3.3)

Solutions α⋆ solving (3.2) with α̇ = Ω correspond to
phase-locked solutions rotating uniformly with frequency
Ω and phases ϕj = α⋆ωj + Ωt. The existence of such
solutions corresponds to a synchronised state. The
advantage of this approach is that it allows to study the
onset of synchronisation of the N -dimensional network
by analysing a one-dimensional problem and furthermore
that it allows to study synchronisation for finite network

size N .

In the limit N → ∞ we can simplify the expressions
by introducing the frequency distribution g(ω) and the
variance of the frequencies σ2

ω = limN→∞ Σ2. We obtain
in an all-to-all coupling network with aij = 1 for all i, j

α̇ = 1 +
K

σ2
ω

∫

ωg(ω)

∫

sin(α(η − ω))g(η)dη dω . (3.4)

The order parameter r̄ restricted to solutions ϕj(t) =
α(t)ωj is introduced as

r̂eiψ =
1

N

N
∑

j=1

eiαωj . (3.5)

In the limit N → ∞ the real part yields

r̂ =

∫

cos(αω)g(ω) dω , (3.6)

where we used that our ansatz (3.1) implies for the mean
phase ψ = 0.
We remark that this approach is not restricted to all-

to-all network topologies. For example, in an Erdős-
Rényi network, where nodes are connected independently
with probability p and where degrees dj are Poisson-
distributed with mean degree d = pN , the inner sum in
(3.2) can be evaluated as a sum of (on average) d random
variables ηj ∼ g(ω) with

lim
N→∞

N
∑

j=1

aij sin(α(ωj − ωi)) = d

∫

sin(α(η − ωi))g(η)dη .

The evolution equation for α(t) is then evaluated in the
limit N → ∞ as

α̇ = 1 + p
K

σ2
ω

∫

ωg(ω)

∫

sin(α(η − ω))g(η)dη dω . (3.7)

In the next Section we will employ our framework to
study the synchronisation properties of all-to-all coupling
networks for several frequency distributions g(ω).

4. EXAMPLES

We now set out to illustrate the capabilities of the
collective coordinate approach to describe the synchro-
nisation behaviour of phase oscillators in a Kuramoto
model with an all-to-all coupling topology. We do so
by determining the steady state solution α and the or-
der parameter r̂, in the case of finite N as well as in
the thermodynamic limit of N → ∞, for three different
distributions of the native frequencies: uniform distribu-
tion, normal distribution and bimodal distribution. The
results from the collective coordinate approach are then
compared with results from direct numerical simulations
of the corresponding Kuramoto model (2.1).
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FIG. 1. Snapshot of the phases ϕj for K = 9.5 for an N =
200 obtained for the Kuramoto model with an Erdős-Rényi
topology (with two nodes being connected with probability
p = 0.05) and native frequencies ωi = ξ3i − 0.3 ξi with ξi ∼

U [−1, 1]. The continuous line depicts a smooth cubic function.
The corresponding value of the order parameter is r̄ = 0.78.

Rather than performing averages over realisations of
the native frequencies according to the respective distri-
butions we will perform the calculations for the collective
coordinate approach by choosing N values of the native
frequencies such that the probability of a random draw
of a native frequency to fall in the interval (ωi, ωi+1) is
equal for all values of i.

4.1. Uniform distribution of native frequencies

In a first suite of experiments we consider native fre-
quencies which are distributed uniformly on the interval
[−1, 1] with distribution

g(ω) = 0.5 . (4.1)

Dividing the compact support of the frequency distribu-
tion [−1, 1] into N − 1 intervals of equal measure, i.e.
ωi = 2(i − (N + 1)/2)/(N − 1)) for i = 1, · · · , N , the
evolution equation (3.2) for α for finite N is readily eval-
uated as

α̇ = 1 +
3

2
K

1

N2(N + 1)
csc2

α

N − 1

×
(

cot
α

N − 1

(

cos
2Nα

N − 1
− 1

)

+N sin
2Nα

N − 1

)

,

(4.2)

with

Σ2 =
N + 1

3(N − 1)
.

In the thermodynamic limit this simplifies to

α̇ = 1 +
K

σ2
ω

sinα

α

α cosα− sinα

α2
, (4.3)

with σ2
ω = limN→∞ Σ2 = 1/3.

The expression (3.6) for the order parameter simplifies in
the thermodynamic limit to

r̂ =
sin(α)

α
. (4.4)

In Figure 2 we show the order parameter r̄ as a func-
tion of the coupling strength K obtained from a long
time integration of the full Kuramoto model (2.1). The
onset of synchronisation appears to be hard (see for ex-
ample, Pazó 20), i.e. there exists a non-zero value of the
order parameter at the critical coupling strengthKc. The
collective coordinate approach captures this very well as
shown in Figure 2. Figure 3 shows that within the frame-
work of collective coordinates the hard onset of synchro-
nisation is described as a saddle node bifurcation24: for
K > Kc = 1.234 a pair of stationary solutions ϕj = αωj
(a smaller stable and a larger unstable one) exist; at crit-
icality the two solutions collide in a saddle node bifur-
cation at α = αc ≈ 1.303, and there are no stationary
solutions for K < Kc. Evaluating the right-hand-side of
(4.3) around the critical value αc yields as an approxima-
tion of the stable and unstable stationary solutions αs,u

close to criticality

αs,u = αc ±m

√

1− Kc

K
, (4.5)

with the critical coupling strength Kc and
m =

√

0.270/0.177. Figure 3 shows a numerical
evaluation of the stationary solutions α of (3.1) as well
as the approximate solutions (4.5). Note that the stable
stationary solution is well approximated for a large range
of coupling strengths K even far away from criticality.
We now analyse the order parameter r̂ as given by (4.4).
Figure 2 shows the order parameter as a function of the
coupling strength obtained from a numerical simulation
of a large network with N = 10, 000 nodes simulating
the Kuramoto model (2.1), and as calculated within
the collective coordinate framework using (4.4). The
critical coupling strengths for the full Kuramoto model
with N = 10, 000 is Kc = 1.279 which is close to the
exact analytical result for the thermodynamic limit with
Kc = 4/π ≈ 1.27310,20,29. This is well approximated
by our simple model with an error of 3%. The non-
zero order parameter at the hard transition, which is
rc = π/4 ≈ 0.785 in the thermodynamic limit10,20,29, is
estimated as rc = 0.744 within the collective coordinate
approach implying a 5% error. Note that the order pa-
rameter is extremely well approximated for large values
of the coupling strength. This is not surprising since, as
pointed out in Section 3, the collective coordinate ansatz
(3.1) is consistent with an expansion of the stationary
solution in 1/K for all-to-all coupling networks.

A particular advantage of our approach is that it al-
lows us to study the finite size scaling of synchronisation
behaviour8,9,20,27. In Figure 4 we show a comparison of
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the critical coupling strength Kc(N) as calculated via
our collective coordinate approach for variable network
sizes N and results from direct simulations of the
Kuramoto model (2.1). The difficulty is determining the
critical coupling strength Kc in finite size networks is
that the order parameter has fluctuations of the order
1/

√
N which confounds the onset. As a proxy for the

critical coupling strength we record for each value of N
the smallest value of the coupling strength K such that
r̄ > 0.8. We have also used the criterion whereby the
critical coupling is determined as the coupling strength
when the minimal value of the order parameter r(t)
over some sufficiently long time window changes from
values close to zero to values significantly above zero28.
This method yields very pronounced onsets, but is not
able to detect global synchronisation in the case when
it is preceded by partial synchronisation. We therefore
present only results obtained using the first method.
In the case of uniformly distributed native frequencies,
however, both methods yield the same results.
Linear regression suggests a scaling Kc(N) − K⋆

c ∼ N
where we estimate the critical coupling strength in the
thermodynamic limit K⋆

c as K⋆
c = 1.279 for the full

Kuramoto model and K⋆
c = 1.234 for the collective

coordinate approach.

Besides being able to describe the collective behaviour
of oscillators and the onset of synchronisation, we
now show that the collective coordinate approach also
captures the temporal evolution of individual oscillators
through the evolution equation (3.2) or its equivalent
formulation (4.2) for uniformly distributed native fre-
quencies. For sufficiently small coupling strengths K,
where the oscillators only weakly interact, both models
produce indistinguishable trajectories with phases
growing linear in time (not shown). Figure 5 shows a
comparison of actual trajectories for a network with
N = 101 oscillators at coupling strength K = 1.5 > Kc

where the collective coordinate approach describes the
order parameter r̄ ≈ 0.9 very well (cf. Figure 2). We
show a comparison of the phase of the 75th oscillator ϕ75

with native frequency ω75 = 0.48 is obtained by solving
the full Kuramoto model (2.1) and by solving (4.2) for
the collective coordinate approach (3.1). If the initial
conditions are chosen to satisfy ϕj(0) = α0ωj with the
initial condition α(0) = α0 not too far away from its
equilibrium solution, the two trajectories are reasonably
close (top panel). This correspondence of the time
evolution of the solutions of the full Kuramoto model
and the collective coordinate approach is destroyed for
initial conditions which are too far from the asymptotic
state, i.e. if α0 is chosen too large. Their asymptotic
state, however, will be close and both systems will evolve
to the same fix point, implying that the order parameter
r̄ will be close for the two systems. Similarly, if the initial
conditions ϕj(0) of the Kuramoto model are distributed
around the initial condition the asymptotic state and
therefore differs from the initial condition ϕj(0) implied

0 1 2 3
0

0.2

0.4

0.6

0.8

1

K

r̄

FIG. 2. Order parameter r̄ as a function of the coupling
strength K for a network with uniformly distributed native
frequencies. Depicted are results from a direct numerical in-
tegration of the Kuramoto model (2.1) with N = 10, 000
(crosses, online red) and from the collective coordinate ap-
proach (4.4) (continuous line, online blue).

by the collective coordinate ansatz (3.1), the asymptotic
temporal evolution of the full Kuramoto model and
the reduced collective coordinate system are close (not
shown). This is consistent with the previous observation
that the order parameters r̄ are close for the respective
systems, as shown in Figure 2. We show a snapshot
depicting the phases of all oscillators in the phase-locked
state illustrating that the collective coordinate approach
captures the dynamics of the full model. Deviations
occur for the extreme oscillators with largest absolute
value of the native frequencies. As we have seen in
Figure 2 the collective coordinate approach predicts the
onset of synchronisation for smaller values of K than
observed for the actual Kuramoto model. For coupling
strength where the order parameter significantly differs
between the reduced model and the full model, there is
of course, also no correspondence between the temporal
evolution of the phases nor their asymptotic dynamics.
We remark that we obtain similar results for networks
differing in several orders of magnitude in size. For
small networks of, for example, size N = 20, the phases
are very well recovered if the native frequencies are
chosen such that they divide the interval [−1, 1] into
equiprobable partitions. For a particular random draw
from the uniform distribution, the phases and their
asymptotic states may differ though, in particular for
oscillators with large absolute native frequencies. This
discrepancy can be alleviated for the well-synchronised
oscillators if averages over many realisations of native
frequencies are taken. With increasing size of the
networks, the difference between solutions obtained for
random realisations of the native frequencies become
smaller.
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FIG. 3. Top: Plot of the term
∑N

i
ω2
i (dotted horizontal line,

online red) and the term proportional to the coupling strength
K in (3.2) as a function of the collective coordinate α for a
network with uniformly distributed native frequencies. In-
tersections denote stationary solutions of (3.2). Depicted are
the subcritical case at K = 1.1 (dashed curve, online cyan),
the critical case K = Kc = 1.234 (continuous curve, online
blue) and the supercritical case with K = 1.4 (continuous
line with circles, online magenta) for N = 1000. At critical-
ity we find αc = 1.303. Bottom: The stable and unstable
stationary solutions α as a function of the coupling strength
K as calculated from the collective coordinate approach (3.2)
(continuous lines) and from the approximation (4.5) (dashed
lines). The two approximations are hardly distinguishable on
the lower stable branch.

4.2. Normal distribution of native frequencies

In a second suite of experiments, we consider native
frequencies which are normally distributed with ωi ∼
N (0, σ2

ω). The distribution is given by

g(ω) =
1

Z
exp

(

− ω2

2σ2
ω

)

, (4.6)

with a normalisation constant Z =
√

2πσ2
ω. We use

here σ2
ω = 0.1. The evolution equation (3.2) for α for

finite N can be evaluated for random draws of ωi, but
we omit here the cumbersome expressions. In the ther-
modynamic limit the dynamic model for the collective
coordinate (3.4) simplifies to

α̇ = 1−Kα exp(−σ2
ωα

2) . (4.7)

4 5 6 7 8
−8

−7

−6

−5

−4

logN

lo
g(
K

c(
N
)−

K
⋆ c
)

FIG. 4. Scaling of the critical coupling strength Kc as a func-
tion of the network size N for a network with uniformly dis-
tributed native frequencies. Depicted are results from a direct
numerical integration of the Kuramoto model (2.1) (crosses,
online red) and from the collective coordinate approach (con-
tinuous line, online blue). The two lines have slopes of 1.

The equation for the order parameter (3.6) can be eval-
uated in the thermodynamic limit to

r̂ = exp

(

−σ
2
ωα

2

2

)

. (4.8)

It is well known that in the case of unimodal frequency
distributions, the onset of synchronisation is soft10,18.
This is illustrated in Figure 6 where r̄ is shown as a func-
tion of the coupling strength. At the so called “Kuramoto
coupling” K = Kl the order parameter becomes non-
zero and a few oscillators with native frequencies close
to the mean frequency mutually synchronise; increasing
the coupling strength allows more and more oscillators
to synchronise, implying a continuous change of the or-
der parameter r̄(K) as supposed to the hard transition
in the case of uniformly distributed native frequencies
described in the previous subsection. At some coupling
strength K = Kc global synchronisation sets in affecting
all oscillators30.
In the thermodynamic limit N → ∞ the Kuramoto cou-
pling can be approximated by Kl = 2/πg(0) ≈ 0.50510.
The transition to global synchronisation is not visible,
however, by just looking at the order parameter r̄ deter-
mined from numerical simulations of the full Kuramoto
model (2.1).
We will now show that the collective coordinate approach
is able to describe both, the onset of global synchronisa-
tion at K = Kc as well as the onset of local synchroni-
sation at the “Kuramoto coupling” K = Kl. The onset
of global synchronisation can be calculated as before. In
Figure 6 we show a result of the collective coordinate ap-
proach (4.8) which predicts the onset of global synchroni-
sation at Kc ≈ 0.730 with a non-zero value of r̄c ≈ 0.779.
By construction, the ansatz (3.1) cannot describe local
synchronisation where only a subset of the N phase os-
cillators are phase locked. We now modify the collective
coordinate approach to allow for local synchronisation.
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FIG. 5. Phases ϕ(t) calculated from simulations of the full
Kuramoto model (2.1) (continuous lines, online red) and from
the corresponding 1-dimensional system (3.2) for the collec-
tive coordinate with ϕi = α(t)ωi (crosses, online blue) for
a network of N = 100 oscillators with uniformly distributed
native frequencies at coupling strength K = 1.5. Top: Tem-
poral evolution of ϕ75(t) for initial conditions ϕi(0) = α0ωi

with α0 = 0.5. Bottom: Snapshot of the phases ϕi(T ) at time
T = 20.

We denote by Nl the size of the mutually synchronised
local group, consisting of those Nl oscillators with fre-
quencies closest to the mean frequency zero. Hence we
restrict our solutions to obey

ϕj(t) = α(t)ωj for
N −Nl

2
≤ j ≤ N +Nl

2
. (4.9)

The evolution equation for the collective coordinate α(t)
is again obtained by projecting the error made by the
ansatz (4.9) onto the restricted subspace spanned by
(4.9). We obtain

α̇ = 1 +
K

Σ2
l

1

NNl

Nl2
∑

i=Nl1

ωi

Nl2
∑

j=Nl1

sin(α(ωj − ωi)) , (4.10)

where the variance of the local group of frequencies is

Σ2
l =

1

Nl

Nl2
∑

j=Nl1

ω2
j , (4.11)

with Nl1 = N−Nl

2 and Nl2 = N+Nl

2 This is just the anal-
ogous formulation of (3.2) for a group of oscillators, cen-
tred around ωi = 0, of size Nl. Assuming that all those
oscillators which can synchronise do so, the size of the
locally synchronised group of oscillators Nl can be deter-
mined as the maximal value of Nl which supports sta-
tionary solutions of (4.10) for a given coupling strength
K. Note that Nl = N for K ≥ Kc.
Figure 7 shows how the normalised domain length of the
local synchronised cluster

Ldomain =
Nl
N

, (4.12)

increases from zero to Ldomain > 0 at K = Kl and then
reaches Ldomain = 1 at K = Kc at which point global
synchronisation sets in. The Kuramoto coupling, i.e.
the smallest value of K which gives rise to a non-zero
value of Ldomain, is estimated for N = 1000 by our
approach as Kl ≈ 0.5 corresponding very well with the
numerically observed onset of local synchronisation. The
asymptotic value is given by Kl ≈ 2/πg(0) ≈ 0.50510.
It is pertinent to mention that in the case of uniformly
distributed native frequencies, no stationary solutions
α exist for any Nl < N , consistent with the absence
of local synchronisation and the existence of a hard
transition, as seen in Figure 2.

In Figure 8 we illustrate again that the collective coor-
dinate approach can be used to study finite size scaling.
For normally distributed native frequencies the numer-
ics suggest a finite size scaling ofKc(N)−K⋆

c (N) ∼ N2/3.

We show again a comparison of the actual temporal
evolution of individual oscillators. Figure 9 shows
results for the global synchronisation regime at K = 0.9
and Figure 10 for the local synchronisation regime at
K = 0.6. In the case of the local synchronisation regime
we assume that the oscillators which do not take part in
the synchronised cluster are simply oscillating with their
native frequencies and satisfy ϕi(t) = (α0 + t)ωi. The
temporal evolution is well described by the collective
coordinate approach in both cases. It is clearly seen
that, whereas the collective coordinate approach is
able to capture the dynamics well of the well-entrained
oscillators, it has difficulties describing the dynamics
of the entrained extreme oscillators with large absolute
native frequencies as seen in the insets of Figures 9 and
10. This discrepancy is due to the collective coordinate
approach, as employed here, not taking into account the
interaction with the drifting extreme oscillators.
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FIG. 6. Order parameter r̄ as a function of the coupling
strengthK for a network with normally distributed native fre-
quencies. Depicted are results from a direct numerical integra-
tion of the Kuramoto model (2.1) with N = 1000 (continuous
line, online red) and from the collective coordinate approach
for global phase synchronisation (crosses, online blue) and for
local phase synchronisation (open circles, online cyan). The
curves coincide for sufficiently large values of the coupling
strength K.
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FIG. 7. Normalised length of phase synchronised domain as
a function of the coupling strength for a network with normal
native frequency distribution, calculated using the collective
coordinate approach.

4.3. Bimodal distribution of native frequencies

In a third suite of experiments, we consider native fre-
quencies which are distributed according to a bimodal
distribution with maxima at ω = ±Ω and

g(ω) =
1

2Z

(

exp

(

− (ω +Ω)2

2σ2
ω

)

+ exp

(

− (ω − Ω)2

2σ2
ω

))

.

(4.13)

We choose here σ2
ω = 0.1 and Ω = 0.75. The bimodal

distribution for these parameters is depicted in Figure 11.

The synchronisation behaviour of Kuramoto networks
with bimodal frequency distributions is more complex
than in the two previous examples3,5,10,12,17,21. If the

logN
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K
⋆ c
)
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-4
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FIG. 8. Scaling of the critical coupling strength Kc as a func-
tion of the network size N for a network with normally dis-
tributed native frequencies. Depicted are results from a direct
numerical integration of the Kuramoto model (2.1) (crosses,
online red) and from the collective coordinate approach (con-
tinuous line, online blue). The two lines have slopes of 0.664
suggesting a scaling with 2/3.

two peaks are sufficiently close together, the behaviour
is, roughly speaking, as described in the unimodal case,
discussed in the previous section, with local synchronisa-
tion being organised by oscillators with native frequencies
closest to the mean frequency zero. However, when the
peaks are sufficiently separated, a so called standing wave

state5 occurs at some critical coupling strength K = Kp

whereby the oscillators with native frequencies close to
the peak frequencies ±Ω may synchronise and form two
synchronised clusters which rotate with the same fre-
quency but in the opposite direction. Upon increasing
the coupling strength further, the oscillators will eventu-
ally globally synchronise at a critical coupling strength
K = Kc

12,21. In Figure 12 we show a snapshot of the
phases for the case Kp < K < Kc where two partially
synchronised clusters are established, centred around the
nodes with ωi = ±Ω, respectively, which together form
the standing wave state. In Figure 13 we show the order
parameter r̄, where one can see clearly the standing wave
state for Kp < K < Kc and global synchronisation for
K > Kc with Kp ≈ 1.05 and Kc ≈ 1.7.
First we apply our approach to the problem of global

synchronisation, i.e. for K > 1.7. In the thermody-
namic limit the dynamic model for the collective coordi-
nate (3.4) becomes

α̇ = 1− K

σ2
ω +Ω2

exp(−σ2
ωα

2)

× cos(Ωα)
(

σ2
ωα cos(Ωα) + Ω sin(Ωα)

)

) . (4.14)

The equation for the order parameter (3.6) can be eval-
uated in the thermodynamic limit to

r̂ = cos(Ωα) exp

(

−σ
2
ωα

2

2

)

. (4.15)

We have again omitted to write down the cumbersome
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FIG. 9. Phases ϕ(t) calculated from simulations of the full
Kuramoto model (2.1) (continuous lines or open circles, online
red) and from the corresponding 1-dimensional system (3.2)
for the collective coordinate with ϕi = α(t)ωi (crosses, online
blue) for a network of N = 1000 oscillators with normally
distributed native frequencies at coupling strength K = 0.9
corresponding to global synchronisation. Top: Temporal evo-
lution of ϕ750(t) for initial conditions ϕi(0) = α0ωi with
α0 = 0.5. The native frequency is ω750 = 0.212. Bottom:
Snapshot of the phases ϕi(T ) at time T = 20.

expressions for the case of finite N , which nevertheless
can readily be put into a numerical programme.

Figure 13 shows a remarkable skill of the collective co-
ordinate approach to describe the onset of global synchro-
nisation and the order parameter r̄. The critical coupling
strength for the global synchronisation at Kc = 1.70 is
well captured. Furthermore, finite-size scaling can be
described within our framework as shown in Figure 14
where we show a comparison of the critical coupling
strength Kc(N) as calculated via our collective coordi-
nate approach for variable network sizes N and results
from direct simulations of the Kuramoto model (2.1). As
before we use as a proxy for the critical coupling strength
the smallest value of the coupling strength K such that
r̄ > 0.8.
The normalised size Ldomain of the globally synchronised
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FIG. 10. Phases ϕ(t) calculated from simulations of the full
Kuramoto model (2.1) (continuous lines or open circles, on-
line red) and from the corresponding 1-dimensional system
(4.10) for the collective coordinate with ϕi = α(t)ωi (crosses
or dashed line, online blue) for a network of N = 1000 oscilla-
tors with normally distributed native frequencies at coupling
strength K = 0.6 with Nl = 805 corresponding to local syn-
chronisation. Top: Temporal evolution of ϕ750(t) for initial
conditions ϕi(0) = α0ωi with α0 = 0.5. The native frequency
is ω750 = 0.212. Bottom: Snapshot of the phases ϕi(T ) at
time T = 20.
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FIG. 11. Bimodal distribution g(ω) of native frequencies
(4.13) with σ2

ω = 0.1 and Ω = 0.75.
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FIG. 12. Snapshot of the phases ϕj for K = 1.2 for the
Kuramoto model with all-to-all coupling and bimodally dis-
tributed native frequencies with distribution (4.13). One can
see clearly the two partially synchronised clusters with fre-
quencies centred around Ω = ±0.75. The two clusters rotate
with angular velocities of opposite sign forming a standing
wave state.

cluster, which we determine as the largest number of
nodes for which non-trivial stationary solutions α exist,
is depicted in Figure 15. The smooth gradual decrease of
Ldomain with decreasing coupling strength K, is replaced
here by a different behaviour caused by the standing wave
state and the partial synchronisation of oscillators with
native frequencies close to ±Ω.

Oscillators with native frequencies ω ≈ ±Ω near the
maxima of the native frequency distribution experience
local synchronisation similar to the case of unimodally
distributed native frequencies discussed in Section 4 4.2.
In the case of a bimodal frequency distribution this leads
to two partially synchronised clusters - one with fre-
quency close to −Ω and another one with frequency close
to +Ω (cf. Figure 12). With increasing coupling strength
K the two clusters grow in size and will start to inter-
act before, upon further increasing K, they will merge
at the onset of global synchronisation. We recall that
this scenario only occurs provided the two peaks of the
distribution of the native frequencies are sufficiently far
separated allowing for a range in K for which they can
partially synchronise without interacting too strongly12

to form the standing wave state. We now set out to de-
scribe the standing wave state in our collective coordinate
approach.

In order to describe the effect of two partially syn-
chronised clusters which rotate with non-uniform angu-
lar speeds of opposite direction we modify our ansatz
and introduce a time-dependent phase function f(t) as
an additional collective coordinate. We split the phase
oscillators into two groups, one group ϕ−

i describing the
cluster centred around −Ω, and one group ϕ+

i describing

the cluster centred around +Ω. We make the ansatz

ϕ±

i = α(t)(ω±

i ∓ Ω)± f(t) , (4.16)

where ω±

i are the native frequencies of the nodes par-
ticipating in the cluster centred around ±Ω. Motivated
by the results from direct simulations of the Kuramoto
model we assume that each of the clusters consists of
N2 ≤ N/2 oscillators. Projecting the error onto the re-
stricted subspace spanned by (4.16), i.e. onto ∂ϕ±

i /∂α =
(ωi∓Ω) and onto ∂ϕ±

i /∂f = ±1, yields the desired evolu-
tion equations for α(t) and f(t). Projecting onto ∂ϕ−

i /∂α
and ∂ϕ−

i /∂f yields

α̇ = 1 +
K

2Σ2

1

N2
2

N2
∑

i

(ω−

i +Ω)

N2
∑

j

sinα(ω−

j − ω−

i )

− K

2Σ2

1

N2
2

N2
∑

i

(ω−

i +Ω)

N2
∑

j

sin(α(ω−

j + ω−

i ) + 2αΩ− 2f)

(4.17)

ḟ = Ω− 1

2

K

N2
2

N2
∑

i,j

sinα(ω−

j − ω−

i )

+
1

2

K

N2
2

N2
∑

i,j

sin(α(ω−

j + ω−

i ) + 2αΩ− 2f) , (4.18)

where here

Σ2 =
1

N2

N2
∑

j

(

ω−

j +Ω
)2

. (4.19)

The sums are taken over indices representing the nodes
within the clusters ϕ−

i (cf. (4.10)). Due to symmetry pro-
jecting onto ∂ϕ+

i /∂α and ∂ϕ+
i /∂f reduces to the same

equation. The first sum in the right hand side of (4.17)
describes the interaction of oscillators within the partially
synchronised cluster whereas the second sum describes
the interaction of oscillators of one cluster with those of
the respective other cluster.
In the thermodynamic limit N → ∞, the evolution

equations for the collective coordinates simplify in the
case when N2 = N/2 to

α̇ = 1− K

2
exp (−α2σ2

ω)α(1 + cos(2f)) (4.20)

ḟ = Ω− K

2
exp (−α2σ2

ω) sin(2f) . (4.21)

Whereas in the case of global synchronisation the collec-
tive coordinate evolves to a stationary value, in the stand-
ing wave regime solutions of the system (4.17)-(4.18)
or (4.20)-(4.21) are oscillatory. These solutions can be
found numerically. The order parameter can then be cal-
culated as an average of (3.6) over one period Tp of the
phase function f(t) and is given in the thermodynamic
limit as

r̄ =
1

Tp

∫ Tp

0

exp(−α
2(t)σ2

ω

2
) cos f(t) dt , (4.22)
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In the thermodynamic limit the period Tp can be de-
termined analytically. Defining the collective coordinate
ᾱ as an average over the period Tp, the Adler equation
(4.21) can be solved analytically as

f(t) = arctan

(

A+
√
Ω2 − A2 tan

√
Ω2 −A2t

Ω

)

,

(4.23)

with A = (K/2) exp(−ᾱ2σ2
ω). The associated period Tp

is then defined as

Tp =

∫ π

0

df

Ω−A sin(2f)
=

π√
Ω2 −A2

. (4.24)

Note that because there are two counter-rotating clus-
ters, the integration only goes to π rather than to 2π.
In Figure 13 we show results of the collective coordi-

nate approach for the order parameter r̄ as a function
of the coupling strength K. In practice we first test for
global synchronisation, and if this cannot be achieved for
any domain length Ldomain, we test for the standing wave
state. We have again allowed for local synchronisation
whereby not all of the N/2 oscillators ϕ−

i are synchro-
nised (cf. Figure 12) analogously to (4.9) and (4.10).
The onset of the standing wave state at Kp = 1.05 is
very well captured. The size of the synchronised clusters
is shown in Figure 15 where we count the total sum of
locally synchronised oscillators ϕ−

i and ϕ+
i in the case of

the standing wave state for K < 1.7.
In Figure 16 we show a comparison of the actual tem-

poral evolution of individual oscillators in the global syn-
chronisation regime at K = 2.5 and in Figure 17 in the
standing wave regime at K = 1.1. The phases of the
drifting oscillators which are not included within the col-
lective coordinate analysis, are plotted simply by assum-
ing that they are oscillating with their native frequencies.
The actual phase dynamics of the synchronized oscilla-
tors is well described by our collective coordinate ap-
proach. One sees clearly the oscillatory behaviour of the
phases in the standing wave regime which is caused by
the interaction of the two counter-rotating clusters. The
oscillation with period Tp = 5.8 is well captured by the
dynamics of the collective coordinates and matches ap-
proximately the analytically obtained period Tp = 5.6
if we use the sample mean and variance of the native
frequencies instead of Ω and σ2

ω in (4.24).

5. SUMMARY AND DISCUSSION

The collective coordinate approach we propose allows
for the description of networks of N oscillators. The
dimension N is drastically reduced to a few n judi-
ciously chosen collective coordinates; here we presented
examples with n = 1 and n = 2. The approach is not
restricted to the thermodynamic limit of infinite network
size and allows to study finite networks. The approach
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FIG. 13. Order parameter r̄ as a function of the coupling
strength K for a network with bimodal native frequency dis-
tribution. Depicted are results from a direct numerical inte-
gration of the Kuramoto model (2.1) with N = 500 (contin-
uous line, online red) and from the collective coordinate ap-
proach. We show results for global synchronisation (crosses,
online blue) and for the standing wave state (open circles,
online cyan).
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FIG. 14. Scaling of the critical coupling strength Kc for the
onset of global synchronisation as a function of the network
size N for a network with bimodal native frequency distribu-
tion. Depicted are results from a direct numerical integra-
tion of the Kuramoto model (2.1) (crosses, online red) and
from the collective coordinate approach (continuous line, on-
line blue). The direct numerical simulations scale with a slope
of 0.89.

can be used to study the synchronisation behaviour
of networks, both global and partial, and determine
the order parameter and the size of the synchronised
clusters. Besides capturing this collective behaviour of
oscillators the collective coordinate approach also is able
to resolve the temporal evolution of individual oscillators
for a wide range of coupling strength.

We have corroborated our approach for the Kuramoto
model with all-to-all coupling in numerical simulations
for different distributions of the native frequencies. We
found good agreement of our reduced 1-dimensional
model (or 2-dimensional model in the case of bimodal na-
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FIG. 15. Normalised length of phase synchronised domain as
a function of the coupling strength for a network with bimodal
native frequency distribution, calculated using the collective
coordinate approach. The globally synchronised branch with
Ldomain = 1 tis preceded for K < 1.7 by a standing wave
state in which, for K close to 1.7, all oscillators are involved
(i.e. Ldomain = 1), but where the two partially synchronised
clusters are not oscillating in phase.

tive frequency distributions) with the full N -dimensional
system. In particular, the behaviour of the order pa-
rameter was well captured and the approach was able to
describe soft second-order as well as explosive first-order
transitions to synchronisation. We have illustrated that
the collective coordinate approach reproduces finite size
scalings of the full system. Furthermore, the approach
allowed to describe the interplay between a standing
wave state involving partially synchronised counter-
rotating clusters and global synchronisation in networks
with bimodal distribution of native frequencies. We have
shown that the collective coordinates are able to capture
the dynamics of individual oscillators which is a much
stronger form of approximation than just reproducing
the collective behaviour.

It is pertinent to caution that the method is by no
means rigorous. The choice of collective coordinates is so
far limited to a priori information obtained from direct
numerical simulations of the full dynamical network.
We have seen that transitory temporal evolution of
oscillators in a Kuramoto model is only well described
by the collective coordinate method provided the initial
conditions are sufficiently close to the synchronisation
manifold. Furthermore, the temporal evolution of
individual oscillators at the edge of a synchronised
cluster is not accurately captured. To put our ansatz
on a firm theoretical footing which allows to describe its
limitations is an open question.

From a practical point of view, there are several is-
sues which require further attention and which we plan
to pursue in future research. First of all, whereas the
general framework of collective coordinates is formulated
for general network topologies, we have only presented
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FIG. 16. Phases ϕ(t) calculated from simulations of the full
Kuramoto model (2.1) (continuous lines or open circles, online
red) and from the corresponding 1-dimensional system (3.2)
for the collective coordinate with ϕi = α(t)ωi (crosses, online
blue) for a network of N = 501 oscillators with a bimodal dis-
tribution (4.13) of the native frequencies at coupling strength
K = 2.5 corresponding to global synchronisation. Top: Tem-
poral evolution of ϕ470(t) for initial conditions ϕi(0) = α0ωi

with α0 = 0.5. The native frequency is ω470 = 1.11.Bottom:
Snapshot of the phases ϕi(T ) at time T = 20.

numerical results for the case of an all-to-all coupling. It
is an interesting and important question to see whether
the success of the method translates to more complex
network topologies.
Second, it is by no means clear that our ansatz captures
all possible attractors of the full dynamical system. For
example, there are examples of networks where the Ott-
Antonson method of reduction19 does not account for the
actual dynamical behaviour observed in these networks
(see the discussion in Martens et al. 12 ). In particular,
chaotic dynamics is excluded from their framework. The
collective coordinate approach is, in principle, capable of
recovering chaotic dynamics by considering at least three
collective coordinates. To test whether it actually is able
to describe more complex dynamic behaviour is an inter-
esting avenue to pursue.
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FIG. 17. Phases ϕ(t) calculated from simulations of the full
Kuramoto model (2.1) (continuous lines or open circles, online
red) and from the corresponding 2-dimensional system (4.21)
for the collective coordinate with ϕi = α(t)(ω±

i ∓ Ω) ± f(t)
(crosses, online blue) for a network of N = 501 oscillators
with a bimodal distribution (4.13) of the native frequencies
at coupling strength K = 1.3 corresponding to the standing
wave regime. The size of the two respective counter-rotating
clusters is N2 = 210. Top: Temporal evolution of ϕ180(t)
for initial conditions ϕi(0) = α0(ωi + Ω) with α0 = 0.5, i.e.
α(0) = α0 and f(0) = 0. The native frequency is ω180 =
−0.57. Bottom: Snapshot of the phases ϕi(T ) at time T = 20.

Thirdly, the success in describing the interaction between
two partially synchronised clusters in the case of bi-
modally distributed native frequencies suggests that col-
lective coordinates may be used to reduce complex net-
works involving several clusters or communities.
Fourthly, as we have seen in the numerical simulation,
the collective coordinate approach does not capture the
interaction between the drifter oscillators and the syn-
chronised oscillators. This leads to the collective coordi-
nate behaviour not being able to accurately capture the
oscillators which sit on the edge of the cluster. At a next
step one can extend the approach to include drifters.
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