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Abstract. We develop algorithms built around properties of the transfer op-

erator and Koopman operator which 1) test for possible multiscale dynamics
in a given dynamical system, 2) estimate the magnitude of the time-scale sep-
aration, and finally 3) distill the reduced slow dynamics on a suitably designed

subspace. By avoiding trajectory integration, the developed techniques are
highly computationally efficient. We corroborate our findings with numerical
simulations of a test problem.

1. Introduction

Effective numerical simulation of multiscale systems constitutes a formidable
challenge. Consider a system which has slow dynamics on a time-scale of order one
and fast dynamics on the scale of order 1/ǫ for some parameter ǫ≪ 1. To accurately
simulate orbits numerically and to assure numerical stability, the time step of the
integrator must be of the order of ǫ. To capture the relevant slow dynamics a total
number of integration steps of the order of 1/ǫ is required, making direct numerical
simulations of orbits computationally impractical.

Numerical integrators are subject to two main sources of error. The first is
truncation error, which is the inability of the numerical method (Runge–Kutta,
Euler–Maruyama, etc.) to fully capture the actual dynamics of the system. The
second is round-off error, due to implementing the numerical method on a computer
with finite precision arithmetic. While truncation error decreases with a smaller
time step, round-off error increases [17, 15]. In a multiscale system, if the time-scale
separation is large, it may be impossible to find a time step which is simultane-
ously small enough to avoid significant truncation error for the fast dynamics and
sufficiently large to avoid detrimental accumulation of round-off error for the slow
dynamics.

Even if orbits could be computed exactly, analysing a multiscale system using
a time series extracted from a true orbit can still yield incorrect data about the
diffusion process of the slow variables [21]. To avoid this problem, the time series
must be sampled at a rate intermediate between the slow and fast variables and
these rates might not be known in advance.

There exists a variety of numerical methods dealing with one or more aspects of
these numerical difficulties (see [6] and references therein). These methods rely on
producing trajectories of the dynamical system via some form of time-integration
with some of the issues mentioned above remaining. In this paper, we develop
algorithms which avoid trajectory integration altogether. Besides the advantages
relating to the issues of time-integration mentioned above, the algorithm allows for
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a huge reduction in computational time. Our main objective is to develop numerical
algorithms which, given a dynamical system,

1. test whether the system exhibits multiscale behaviour, and if so
2. determine the order of the time-scale separation, and then
3. construct effective reduced equations for the slow dynamics allowing for the

application of large time steps.

The framework we adopt for this integration-free approach is based on the infini-
tesimal generator associated to the underlying continuous-time dynamical system.

The construction of effective reduced equations (point 3 above), requires estima-
tion of coordinates in which the fast and slow dynamics operate. In the situation
where there is an attracting slow manifold, existing numerical methods to determine
the slow manifold include [23, 27, 19, 12, 24] (see [18] for a recent review). Most
of these methods rely on the existence of some attracting slow manifold towards
which transient fast dynamics is approaching along fast fibres. Here we consider
the situation of multiscale systems whose asymptotic behaviour does not necessar-
ily occur on an attracting slow manifold. In contrast to methods which determine
the fast fibres locally, we instead globally estimate the nonlinear foliation of fast
fibres.

Once slow and fast coordinates are established, it is a further challenge to iden-
tify their dynamics. There are two approaches; either to devise an effective nu-
merical method which allows for the reliable simulation of the slow coordinates or
to construct closed equations for the slow coordinates. The first avenue has been
successfully pursued by numerical methods such as the equation-free method [12]
and the heterogeneous multiscale method [7, 29] which employ short finely resolved
bursts of the full dynamics to numerically estimate the averaged slow vector field
which then subsequently may be propagated with a large time step. Here we tackle
the second avenue of determining the slow dynamics explicitly without the need
for temporally resolving the fast dynamics at each step. To compute reduced equa-
tions on the (in general, non-unique) slow coordinates, we nonlinearly project local
computations along the fast fibres. Our approach does not rely on any temporal
integration to estimate the reduced equations. Hence it does not suffer from pos-
sible sensitivity of these estimates to the choice of the length of the fast bursts.
For example, in the case where the fast dynamics itself involves transitions between
metastable states, a short temporal sampling of the full dynamics might not be
sufficient to capture the fast invariant measure. This would then bias the averaged
slow vector field.

In Section 2 we briefly review the notion of generators of transfer and Koopman
operators. Section 3 introduces a trajectory-free test for multiscale behaviour. The
degree of time-scale separation is estimated in algorithms described in Sections 4
and 5. A method to determine the reduced slow dynamics from a multiscale sys-
tem without relying on statistics obtained from long time-integrations is given in
Section 6. The algorithms are tested in numerical simulations in Section 7. We
conclude with a discussion in Section 8.

2. Generators

We describe our methodology for Itō drift-diffusion processes, as these are a
large and flexible class of dynamical systems, and the spectral properties of the
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corresponding transfer operators are relatively straightforward. Consider a drift-
diffusion process

(1) dζi = µi dt+

ℓ∑

k=1

σik dWk with i = 1, . . . , d

defined on a subset Z of Rd where l ≤ d and each Wk for k = 1, . . . , ℓ represents an
independent Wiener process. Given a probability density function at time t = 0,
the density at future times is determined by the Fokker–Planck equation

∂ρ

∂t
= Lρ

where

(2) Lρ = −
N∑

i=1

∂

∂zi

[
µi ρ

]
+

1

2

N∑

i,j=1

∂2

∂zi ∂zj

[
Dij ρ

]
.

The second order differential operator L is called the Fokker–Planck operator. At
each point z in the phase space Z, the vector µ(z) ∈ R

d represents the drift of
the process and the positive semi-definite matrix D(z) = σ(z)σ(z)⊤ ∈ R

d×d the
diffusion. The operator L generates a family of operators etL for t ≥ 0 such that
esLetL = e(s+t)L and limt→0

1
t
[etL − Id] = L. If ρ ∈ L1(Z) is an initial probability

density, then etL(ρ) is the density after time t. Thus, etL may be thought of as
a transfer operator defined on L1(Z). Since the underlying system is a random
dynamical system and etL represents an average over all possible random paths, it
is an annealed transfer operator [1].

We now consider a setting where the Fokker–Planck operator has compact re-
solvent. Suppose the domain Z is a compact subset of Rd with piecewise smooth
boundary. We also allow periodic boundary conditions, such as systems defined
on the torus T

d = R
d/Zd, so long as the fundamental domain is compact with

smooth boundary. Under such assumptions, the Lebesgue measure of Z is finite,
and with respect to this measure, the Hilbert space L2(Z) is a subset of L1(Z).
Further assume that the operator is uniformly elliptic, which holds if the matrix
D(z) is positive definite for every z ∈ Z. Results in the theory of partial differential
equations then imply that the Fokker–Planck operator defined on L2(Z) has com-
pact resolvent. See [22, Chapter 7] for further details and proofs. The condition
of uniform ellipticity can in some cases be replaced with the weaker condition of
hypo-ellipticity; see [22, 25, 26].

Assuming the resolvent is compact, the spectrum of the operator then consists
of a countable set of eigenvalues {λk}∞k=0 which, when ordered by the convention

(3) 0 = Reλ0 ≥ Reλ1 ≥ Reλ2 ≥ · · · ,
satisfy limk→∞ Reλk → −∞. As a consequence, for each t > 0 the operator etL is
compact with eigenvalues etλk tending to zero as k → ∞. The invariant density ρ0
of the system is an eigenfunction of L associated to the eigenvalue λ0 = 0.

The Kolmogorov backward equation is given by ∂f
∂t

= L∗f where the adjoint of
the Fokker–Planck operator is given by

(4) L∗f =
N∑

i=1

µi
∂f

∂zi
+

1

2

N∑

i,j=1

Dij

∂2f

∂zi ∂zj
.
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This adjoint operator generates a family of operators Kt := etL
∗

= (etL)∗ for
t ≥ 0. If f ∈ L2(Z), then Kt(f) ∈ L2(Z) is given by Kt(f)(z) = Ef(ζ(t)) where
the expectation is over all paths ζ(t) in the drift-diffusion process which satisfy
ζ(0) = z. The operator Kt may therefore be regarded as an annealed Koopman or
composition operator.

The operators L∗ and L share the same eigenvalues λk. Consider the eigenfunc-
tion ψk ∈ L2(Z) of L∗ associated to λk. This function ψk is an observable which
evolves according to

Ktψk = etλkψk

and therefore decays to zero at the rate given by |etλk | for t > 0. In general, the
eigenfunctions of L∗ associated to eigenvalues with real part closest to zero are
the observables of the system which decay at the slowest speeds possible. The
eigenvalues λk for small k therefore correspond to speed of the slowest dynamics
present in the system. These ideas have been exploited to identify almost-invariant
sets [5, 10, 8] for deterministic and annealed random dynamics, and coherent sets
[11] for quenched random or time-dependent dynamics.

Suppose that the system under study is a multiscale system. That is, assume
there is a value 0 < ǫ ≪ 1 representing the time-scale separation and transverse
directions of fast and slow dynamics such that the components of the drift and
diffusion are on the order of O(ǫ−1) in the fast direction and O(1) in the slow
direction. Further suppose that λk is an eigenvalue of L∗ such that |Reλk| ≪ ǫ−1.
Then, one may choose an intermediate time t≫ ǫ such that

|Re tλk| ≪ 1 ⇒ etλk ≈ 1 ⇒ Ktψk ≈ ψk.

Since t ≫ ǫ, the system after time t has evolved towards equilibrium in the fast
dynamics implying that Ktψk is nearly constant along the direction of the fast
dynamics. Therefore, ψk should be approximately constant in this direction as
well. This observation is developed in more detail in [3, 9].

Given the ordering in (3), we refer to the eigenvalues λk for small k (and therefore
small |Reλk|) as the leading eigenvalues with the associated leading eigenfunctions
ψk . By the above observations, in a multiscale system, the level sets of a leading
eigenfunction ψk closely approximate fast fibres, submanifolds of the system along
which the fast dynamics occurs. This property is used in the following sections to
develop algorithms which test for multiscale behaviour.

3. An algorithm to test for multiscale behaviour

We now use these properties of the Fokker–Planck operator and its adjoint to
develop an algorithm to test for multiscale behaviour. We focus on the case of sto-
chastic differential equations (SDEs) where the slow dynamics is one-dimensional.
The only information used by the algorithm are functions µ and D defining the drift
and diffusion of the process. In particular, we do not assume any a priori knowledge
of the slow or fast directions (if they exist) or that these directions align with the
coordinates in which the system is defined. We first outline the idea behind the
algorithm before providing the actual algorithm.

As established in the previous section, the level sets of the leading eigenfunctions
ψk of the adjoint Fokker-Planck operator L∗ contain information about the multi-
scale behaviour of the dynamics. If the system has multiscale behaviour, these level
sets will approximate a fast fibre of the system. We use the eigenfunction ψ1 and
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numerically compute a fibre F as a connected component of a level set ψ−1
1 ({s})

(cf. step 3 in Algorithm 1). If the leading eigenfunctions are complex valued, we
may choose without loss of generality the real (or imaginary) part of the eigenfunc-
tions to define the fibres (in Section 7 we will give such an example). There is a
significant history of computing eigenfunctions of the Fokker–Planck operator or
its adjoint numerically [2, 10] which we will employ to determine eigenfunctions ψk
of L∗ associated to the eigenvalues λk for small k (cf. step 2 in Algorithm 1).

If the system actually exhibits multiscale dynamics and the fibre F approximates
a fast fibre, then the speed of the dynamics will be much faster along the fibre than
transverse to it. Therefore, one expects in this case that the drift and the diffusion
along one or both of the averages tangent to the fibre F will be significantly larger
than those corresponding to the direction normal to F . We therefore calculate
the drift and diffusion coefficients for a set of points on the fibre F and then sub-
sequently use their averages along the fibre to probe for fast dynamics along the
fibre and slow dynamics transverse to the fibre (this is achieved in steps 4 and 5 of
Algorithm 1, respectively).

Computing the drift and diffusion coefficients µnor(z), µtan(z), Dnor(z), and
Dtan(z) normal and tangent to the fibre at a finite set of points Q uniformly dis-
tributed over F constitutes the most complicated step of the algorithm and is
explained in further detail below in Subsection 3.1.

The most natural way to compute the averages of the drift and diffusion coeffi-
cients µnor(z), µtan(z), Dnor(z), and Dtan(z) along the fibre is using the invariant
density along the fibre. As an approximation for the invariant density of the fast
dynamics on the fibre, we use the invariant density function ρ0 of the full multiscale
system and simply restrict ρ0 to F . The property that ρ0 is invariant is equivalent
to Lρ0 = 0. Therefore, we estimate ρ0 by solving numerically for the eigenfunction
of L whose associated eigenvalue is closest to zero (cf. step 1 of Algorithm 1).
The measure on F can be approximated by a measure supported on a finite set.
We choose a finite set of points Q uniformly distributed over F and define weights
wz ∈ R such that

∑
z∈Q wzδz approximates the density ρ0 on F . Here, δz is the

Dirac measure at z and wz := cρ0(z) where the scaling constant c is defined such
that

∑
z∈Q wz = 1 (cf. step 4 of Algorithm 1).

As a criterion for the presence or absence of multiscale behaviour we then com-
pare the averages along the fibre of the absolute values of the normal and tangential
drift and diffusion coefficients; if the tangential components are much larger than
the perspective normal ones, this is indicative of F being a fast fibre and the system
exhibiting multiscale behaviour (cf. step 7).

3.1. Computing normal and tangent components. We now explain step 5 of
Algorithm 1 in detail. To compute the values µnor(z), µtan(z), Dnor(z), and Dtan(z)
one must split the dynamics at a point z ∈ F into the dynamics along the fibre
F and dynamics normal to F . There is a subtle issue caused by the diffusion. If
the embedding of the fibre into the overall phase space is non-linear, then diffusion
along the fibre will generate a drift term for the full system. As a simple example
of this, consider the embedding of R into R

2 given by u 7→ (u, u2) and consider a
(drift-free) diffusion process du = dW where W is the standard Wiener process on
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Figure 1. Once a fast fibre F is identified, a linear transformation
A is applied so that A(F ) in a neighbourhood of A(z) may be
expressed as the graph {(v, g(v)) : v ∈ V } of a function g : V →
R where V ⊂ R

d−1. A non-linear transformation can then be
applied which takes A(F ) to the flat subset V ×{0} ⊂ R

d. In these
coordinates, the tangent and normal components of the dynamics
can be analysed directly.

R. For a point (x, y) on this embedded curve, Itō’s lemma [20] gives

dx = du = dW,

dy = d(u2) = 2u du+
1

2
2 du2 = 2x dW + dt.

In the notation of (1), this corresponds to a drift vector µ = (0, 1) at every point and
a diffusion matrix D = σσ⊤ with σ = (1, 2x)⊤ at each point (x, y) on the parabola.
Notice that while σ is everywhere tangent to the parabola, the drift vector µ always
points in the vertical y direction and is not tangent to the parabola. To give an
intuition for this, one can consider a point mass at (x, y) = (0, 0) at time t = 0. As
time progresses, the mass spreads out along the parabola {(x, y) : y = x2} and at
each time t > 0 the center of mass (as calculated in R

2) is at the point (0, t) off
of the parabola. Because of this effect of diffusion along a fibre leading to drift for
the full system, we must apply a non-linear change of coordinates to determine the
components of the drift and diffusion both normal and tangent to the fibre.

This may be done in two steps as depicted in Figure 1. Let U ⊂ Z be a
neighbourhood of the point z ∈ F . First, find a linear change of coordinates
A : Rd → R

d, given by a d × d matrix, so that A(F ∩ U) is equal to the graph
{(v, g(v)) : v ∈ V } of a function g : V → R for some V ⊂ R

d−1. As F is the level
set of an eigenfunction, such a graph exists due to the implicit function theorem so
long as the gradient of the eigenfunction is non-zero at z.

A subsequent non-linear change of coordinates (v, y) 7→ (v, y− g(v)) flattens the
graph out, mapping A(F ) to the subset V × {0} ⊂ R

d−1 × R. After transforming
the dynamics to lie in the hyperplane R

d−1 × {0}, it is straightforward to isolate
the normal and tangent components of the diffusion process.

For completeness, we give here the formulas for transforming the drift and diffu-
sion. These formulas can be derived either by Itō calculus on (1) or by applying a
deterministic change of variables to the linear operator L∗. For a linear change of
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coordinates A : Rd → R
d the drift vector µ(z) at z is mapped to Aµ(z) now at the

point A(z) and the diffusion matrix D(z) is mapped to AD(z)A⊤. In what follows,
we write µA and DA for drift and diffusion functions after this linear transforma-
tion.

Now consider the change of coordinates (v, y) 7→ (v, y − g(v)) which in all d
coordinates may be written as

(z1, . . . , zd−1, zd) 7→ (z1, . . . , zd−1, zd − g(z1, . . . , zd−1)).

This transforms the drift-diffusion process given by µA and DA to one given by µ̂
and D̂ where

µ̂i = µAi for i < d,(5)

µ̂d = µAd −
∑

i<d

µAi gi +
1

2

∑

i,j<d

DA
ijgij(6)

and

D̂ij = DA
ij for i, j < d,(7)

D̂id = DA
id −

∑

j<d

DA
ijgj for i < d, and(8)

D̂dd = DA
dd − 2

∑

i<d

DA
idgi +

∑

i,j<d

DA
ijgigj .(9)

In the above equations, gi and gij are the partial derivatives of g with respect
to x. Since only first and second-order partial derivatives appear above, only a
second-order approximation of g is necessary in order to compute the new values.

We propose the following method to realize these two changes of variables nu-
merically. Suppose the fibre F in a neighbourhood of a point z is represented
numerically by a collection of points {qn} near z. First, perform linear regres-
sion on this set of points to get a hyperplane H ⊂ R

d such that the set H + z is
tangent to F at z. Using a numerical orthogonalization process such as the QR
decomposition, construct an orthonormal basis {u1, . . . , ud−1, ud} of Rd such that
u1, . . . , ud−1 ∈ H. This basis then gives the rows of an orthogonal d × d matrix
representing A.

Next, write each point A(qn) in the form (vn, yn) with vn ∈ R
d−1 and yn ∈

R.1 By polynomial regression or a similar fitting technique, find a polynomial
pg : Rd−1 → R such that pg(vn) ≈ yn and where this approximation is to at least

second order. Using pg in place of g, compute µ̂ and D̂ as above.
If the fibre F truly corresponds to a fast fibre in a multiscale system, one expects

the drift and diffusion terms to be large for coordinates tangent to F and small
otherwise. As a test of this, one can check that the values of µ̂d are small in
comparison to the values µ̂i with 1 ≤ i < d and similarly that D̂id and D̂dd are
small in comparison to D̂ij with 1 ≤ i, j < d.

1Here and later in the paper, we adopt the convention that subscripts with the letters m and

n refer to distinct points in the phase space Z ⊂ R
d and subscripts with i and j denote the

coordinates of a point. That is, zi, zj ∈ R for 1 ≤ i, j ≤ d would refer to the coordinates of a point
z = (z1, . . . , zd) ∈ Z whereas qm and qn would refer to points in Z. Throughout the paper, the

subscript k is used only to index the eigenvalues and eigenfunctions of a linear operator.
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To make this comparison precise, we wish to calculate scalar quantities corre-
sponding to the amounts of drift and diffusion both tangent and normal to the
fibre. For the one-dimensional normal direction, the component µ̂d corresponds to
the normal drift and D̂dd the normal component of the diffusion. Therefore, define
µnor(z) = |µ̂d| and Dnor(z) = |Ddd|.

For the tangent direction, define µtan(z) =
√
µ̂2
1 + · · ·+ µ̂2

d−1 which is the norm

of the vector (µ̂1, . . . , µ̂d−1). Define Dtan(z) as the largest eigenvalue of the (d −
1)× (d− 1) submatrix of D̂. This is equivalent to

Dtan(z) = sup{u⊤D̂u : u ∈ R
d−1 × {0}, ‖u‖ = 1}

and corresponds to the largest amount of diffusion in any direction tangent to
R
d−1 × {0}. Since D̂ is symmetric, the value Dtan(z) is also the largest singular

value of the submatrix and can easily be computed numerically (say by the norm

function in MATLAB). In the special case where d = 2, the definitions reduce down

to µtan(z) = |µ̂1| and Dtan(z) = |D̂11|.
In general, the definitions of µtan and Dtan depend on the choice of A. If we

impose the restriction that A is an isometry then one can show that µtan and Dtan

depend only on the subspace A−1(Rd−1 × 0) and not on the choice of A itself.
Because of this property, we only consider the case where A is an isometry. This
property holds exactly when the matrix representing A is orthogonal. The numer-
ical methods given above for constructing this matrix ensure that it is orthogonal.

We now summarize the algorithm.

3.2. Local test for multiscale dynamics.

Algorithm 1

1. Given an Itō drift-diffusion process on a subset Z of Rd, compute the invari-
ant density ρ0 by numerically solving Lρ0 = 0.

2. Compute the leading eigenvalues λk and eigenfunctions ψk of the adjoint
operator L∗.

3. For the eigenvalue λ1 6= 0 and associated eigenfunction ψ1, compute a fibre
F which is the connected component of a level set ψ−1

1 ({s}) for some s ∈ R.
4. Define a finite subset Q ⊂ F consisting of points uniformly sampled over
F . Define weights wz := c ρ0(z) for z ∈ Q with c > 0 chosen such that∑
z∈Q wz = 1.

5. For each point z ∈ Q:
(a) Using linear regression on points of F near z, find a hyperplane H such

that H + z is approximately tangent to F at z.
(b) Construct an isometry A : Rd → R

d taking H to R
d−1 × {0}.

For a neighbourhood U of z, the image A(U ∩ F ) is equal to a graph
{(v, g(v)) : v ∈ V } of a function g : V → R with V ⊂ R

d−1.
(c) Approximate the first and second derivatives of g using polynomial re-

gression on points in A(F ) near A(z).

(d) Compute the drift vector µ̂ and diffusion matrix D̂ at the point (v, g(v)) =
A(z) using equations (5)–(9). From this, compute the normal and tan-
gent components µnor(z), µtan(z), Dnor(z), and Dtan(z) as explained
above.
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6. Compute the average values

µnor
avg =

∑

z∈Q

wz µ
nor(z), µtan

avg =
∑

z∈Q

wz µ
tan(z),

Dnor
avg =

∑

z∈Q

wzD
nor(z), Dtan

avg =
∑

z∈Q

wzD
tan(z).

7. If either of µtan
avg or Dtan

avg is significantly larger than both µnor
avg and Dnor

avg, this
is evidence that the full system has multiscale behaviour.

In the above algorithm, steps 3 through 7 may be repeated for a number of distinct
fibres in order to test for multiscale behaviour throughout the domain.

4. Estimating the time-scale separation

We now propose a further test for multiscale behaviour which also estimates the
magnitude of the time-scale separation between the slow and fast dynamics. This
estimation is achieved by comparing the spectrum of the operator L on the full
system to the spectrum of an operator defined by dynamics along the fibre F .

Recall from Section 2 that the leading eigenvalues of L (which are the same as
those of its adjoint L∗) correspond to the slowest rates of decay for observables
under the dynamics of the system. Therefore, they give an estimate of the speed
of the slow dynamics which can be computed from the full system.

We now define a Fokker–Planck operator L̂tan for the dynamics tangent to the

fast fibre F . For a multiscale system, the dynamics associated to L̂tan is entirely fast
and does not capture any of the slow dynamics. Therefore, its leading eigenvalues

λ̂k correspond to the speed of the fast dynamics alone.
We are assuming that the slow dynamics evolves on a time-scale of O(1) and the

fast dynamics on a time-scale of O(1/ǫ) for some unknown value ǫ. The leading
eigenfunctions ψk of L∗ are observables which decay to zero at the rate of the
slow dynamics of the systems. Because of this, the real part of the associated

eigenvalues λk are O(1). The leading eigenfunctions of L̂∗
tan are observables along

the fibre F which decay at a speed associated to the fast dynamics and so the

associated eigenvalues λ̂k are O(1/ǫ). The ratio of the real parts of the leading λk
and the leading λ̂k then gives a quantitative estimate of the time-scale separation
between the slow and fast variables. See also the discussion in [3, 9].

We now give an algorithm for determining these values λ̂k numerically. Let F
be a fibre as computed in Algorithm 1. Further suppose that F is such that it can
be represented globally as the graph of a function. That is, after a linear change of
coordinates A : Rd → R

d, the image A(F ) is equal to the set {(v, g(v)) : v ∈ V } for
some function g : V → R defined on a subset V of Rd−1. One may then define a
drift-diffusion process on V where the drift and diffusion components are given by
µ̂i and D̂ij for 1 ≤ i, j ≤ d− 1 as defined in the previous section. Using this data,

the leading eigenvalues λ̂k for the operator L̂tan may be computed numerically.
We summarise the algorithm for the estimation of the time-scale separation as

Algorithm 2A

1. Given an Itō drift-diffusion process on a subset Z of Rd, compute the leading
eigenvalues λk and eigenfunctions ψk of the adjoint L∗ of the Fokker–Planck
operator.
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2. For the eigenvalue λ1 6= 0 and associated eigenfunction ψ1, compute a fibre
F which is the connected component of a level set ψ−1

1 ({s}) for some s ∈ R.
3. Find a linear change of coordinates A : Rd → R

d such that A(F ) is equal to
a graph of a function g : V → R with V ⊂ R

d−1.
4. Define a drift-diffusion process on V where for each point v ∈ V the drift

is given by the first d − 1 components of µ̂(z) and the diffusion by the

(d− 1)× (d− 1) submatrix of D̂(z) where z = A−1(v, g(v)).

5. Numerically compute the leading eigenvalues λ̂k of the Fokker–Planck oper-

ator L̂tan (and/or its adjoint) for this drift-diffusion process on V .

6. Compare the eigenvalues λ̂k computed in step 5 to the eigenvalues λk com-

puted in step 1. If the ratios Re(λk)/Re(λ̂k) are all of similar magnitudes
and are close to zero, then this implies multiscale behaviour and the ratio
gives an estimate of the time-scale separation of the slow and fast dynamics.

For this algorithm, it is not necessary to estimate the partial derivatives of g. This
is because these derivatives do not occur in equations (5) and (7).

Ideally, Algorithms 1 and 2A should both be performed on a given system to
test for multiscale behaviour. Algorithm 1 tests that on a fibre F the tangent
components of the drift and diffusion dominate the normal components. Therefore,
it justifies approximating the fast dynamics by a drift-diffusion process restricted to
the fibre and defined purely by these tangent components. Algorithm 2A then uses

the eigenvalues of the resulting operator L̂tan associated to this process in order to
estimate the speed of the dynamics restricted to the fibre.

Algorithm 2A assumes that the fibre F can be expressed globally as the graph of
a function. If the shape of F is such that finding a graph is not possible, then one
could instead estimate these eigenvalues by using methods of trajectory integration
and projection to the fibre as described in [9]. This alternative method does not
follow the general trajectory-free framework proposed in this work. It may therefore
be slower in general and subject to the concerns listed in the introduction. In the
next section, we give a variant of Algorithm 2A which is always applicable in the
specific case where the slow and fast directions are one-dimensional.

5. Parameterizing by arc length

In the case that the fast fibre is one-dimensional (and the full system is therefore
two-dimensional), an alternative to expressing the fibre as a graph is to parameterize
the fibre by arc length. This is always possible, as topologically a one-dimensional
fibre F will either be a line or a circle.

Given a representation of the curve F , compute a sequence of points {qn} such
that each point is at a uniform distance from the previous. To analyse the drift and
diffusion at qn, first approximate the tangent to the curve at qn by the vector qn+1−
qn−1. Apply a rotation A : R2 → R

2 such that A(qn+1−qn−1) is roughly horizontal.
Writing (vn, yn) = A(qn), apply a regression method to find a polynomial pg such
that ym ≈ pg(vm) for points (vm, ym) near (vn, yn). By adjusting the angle of the
rotation A, one may further assume that the first derivative p′g satisfies p′g(vn) = 0.
Using the rotation A composed with the change of coordinates mapping (v, y)
to (v, y − pg(v)) compute the drift and diffusion data tangent and normal to the
curve. Applying (5)–(9) in this specific case and using that p′g(vn) = 0, the resulting
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coefficients are

µ̂1 = µA1 , µ̂2 = µA2 − 1

2
DA

11p
′′
g , D̂11 = DA

11, D̂12 = DA
12, D̂22 = DA

22.

For v > vn the arc length of the graph {(u, pg(u)) : u ∈ [vn, v]} is given by

ℓ(v) =

∫ v

vn

√
1 + [p′g(u)]

2 du.

Using p′g(vn) = 0, the first and second derivatives satisfy

dℓ

dv

∣∣∣
v=vn

= 1 and
d2ℓ

dv2

∣∣∣
v=vn

= 0.

If we take the derivative of v with respect to itself, then

dv

dv

∣∣∣
v=vn

= 1 and
d2v

dv2

∣∣∣
v=vn

= 0

as well. This implies that two different parameterizations of the curve—one by arc
length and the other by v—agree up to second order at vn. Therefore, the Fokker–
Planck operators coincide for the two parameterizations with the same drift and
diffusion coefficients at the point (vn, yn). Using this data, one can find for any
point on F the components tangent to the curve. One can therefore define a drift-
diffusion process on the curve F as parametrized by arc length and numerically
compute the leading eigenvalues of the corresponding Fokker–Planck operator as
before.

We present this as a variant of Algorithm 2A to estimate the time-scale separa-
tion:

Algorithm 2B

1. Given an Itō drift-diffusion process on a subset Z of R2, compute the leading
eigenvalues λk and eigenfunctions ψk of the adjoint L∗ of the Fokker–Planck
operator.

2. For the eigenvalue λ1 6= 0 and associated eigenfunction ψ1, compute a fibre
F which is the connected component of a level set ψ−1

1 ({s}) for some s ∈ R.
3. Define a uniformly spaced finite sequence of points {qn} along F .
4. Using the techniques in this section, calculate for each {qn} the components

µ̂1 and D̂1 which are tangent to F . These values define a drift-diffusion
process on F .

5. Numerically compute the leading eigenvalues λ̂k of the Fokker–Planck oper-

ator L̂tan (and/or its adjoint) for this drift-diffusion process on F .

6. Compare the eigenvalues λ̂k computed in step 5 to the eigenvalues λk com-

puted in step 1. If the ratios |λk|/|λ̂k| are all of similar magnitudes and are
close to zero, then this implies multiscale behaviour and the ratio gives an
estimate of the time-scale separation of the slow and fast dynamics.

6. Determining the reduced dynamics

Once the existence of multiscale dynamics has been established, one further step
is to compute the reduced slow dynamics. We give here a simple technique to
perform the reduction to a lower dimensional SDE. As with the other methods
developed in this paper, the algorithm does not rely on trajectory integration.
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C

z
Pc

Figure 2. A depiction of the curve C, which intersects each fast
fibre in a single point and the resulting projection Pc : Z → C
defined by letting Pc(z) be the unique point on C which is on the
same fast fibre as z. We define reduced slow dynamics on the curve
C.

First, consider a multiscale system where model reduction is applicable. That
is, following the formalism given in [13, 9], there is a projection P : Z → X from
the domain of the full system Z to a smaller dimensional space X and an SDE on
X such that orbits of the reduced system on X resemble projected orbits of the full
system. Our goal is to reconstruct this reduced dynamics.

As before, let L denote the Fokker–Planck operator for the full SDE on Z and
let (λk, ψk) be the eigenpairs for the adjoint L∗. For ease of notation, we assume
here that all eigenvalues are simple. Similar reasoning holds in the more general
case. Let L̃ denote the Fokker–Planck operator for the reduced SDE on X and let
(λ̃k, ψ̃k) be the eigenpairs of L̃∗. Assume both sequences are indexed by decreasing
real part as in (3).

Recall that the leading eigenvalues λk of L∗ are associated to the speed of the
slow dynamics and the eigenfunctions ψk are approximately constant along fast
fibres. In fact, using operator approximation theory, one may show that for ǫ
sufficiently small, the approximations λk ≈ λ̃k and ψk ≈ ψ̃k ◦ P hold [3].

Suppose C ⊂ Z is a smooth curve transverse to the fast fibre which intersects
each fibre exactly once. Define a projection Pc : Z → C by letting Pc(z) be the
unique point on C which is on the same fast fibre as x. Then C may be identified
with X and Pc with P. The above approximations then imply that (λk, ψk|C) is an
approximation of the eigenpair (λ̃k, ψ̃k). Moreover, the objects λk, ψk, and C can
all be computed numerically from the operator L∗ for the full system. This means
that even though we have no direct way of representing the operator L̃∗ associated
to the reduced dynamics on X , we still have an indirect method of computing its
leading eigenpairs.

There are a number of techniques for reconstructing the drift and diffusion of a
system from its spectral data. For instance, see the survey [16] and more recent

work in [4, 3]. We use a method attributed in [16] to S. G. Demoura. Let µ̃ and D̃
be the (as yet unknown) coefficients of the drift and diffusion for the reduced SDE
on C. Consider the formula (4) for the adjoint of the Fokker–Planck operator in the
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one-dimensional setting along the curve C. One sees that each eigenpair (λ̃k, ψ̃k)

of L̃∗ satisfies the equation

(10) λ̃kψ̃k = µ̃ψ̃′
k +

1
2D̃ψ̃

′′
k

where the prime denotes derivatives along the curve C. Using ψk|C as an ap-

proximation for ψ̃k, one may estimate the derivatives ψ̃′
k and ψ̃′′

k numerically. By

considering (10) for two distinct eigenpairs, say (λ̃1, ψ̃1) and (λ̃2, ψ̃2), one may solve
the linear system of equations

(11)

[
ψ̃′
1

1
2 ψ̃

′′
1

ψ̃′
2

1
2 ψ̃

′′
2

] [
µ̃

D̃

]
=

[
λ̃1ψ̃1

λ̃2ψ̃2

]

pointwise along C in order to solve for the drift µ̃ and diffusion D̃ of the reduced
system.

This technique requires an accurate estimate of the first and second derivatives of
the eigenfunctions. In some settings, accurate derivative estimation is not possible
and more sophisticated techniques must be applied, such as solving a quadratic
programming problem based on the eigenfunction equations [14, 4, 3].

7. Numerical example

We now apply these techniques to an example studied in [4] and given by

ẋ = sin y +

√
1 +

1

2
sin y Ẇx,(12)

ẏ =
1

ǫ

[
−y + sinx

]
+

1√
ǫ
Ẇy(13)

where Wx and Wy are independent Wiener processes. This SDE is defined on
[0, 2π]×R with periodic boundary conditions on x. In order to have an example with
nonlinear fast fibres, we consider the system after a change of coordinates taking
(x, y) to (x + sin(y), y). After this change, the system is given by the (admittedly
much uglier) equations

ẋ =

[
sin y +

cos y

ǫ

(
sin(x− sin y)− y

)
− sin y

2ǫ

]
(14)

+

√
1 +

1

2
sin y Ẇx +

1√
ǫ
cos y Ẇy,

ẏ =
1

ǫ

[
sin(x− sin y)− y

]
+

1√
ǫ
Ẇy.(15)

Note that terms involving ǫ now occur in the formulas for both ẋ and ẏ and so
these equations have no obvious slow-fast splitting. As in [4] we fix ǫ = 10−3. We
now apply the steps of Algorithm 1 to test for multiscale behaviour.

For step 1 of the algorithm, we compute the invariant density ρ0 by solving
numerically for the leading eigenfunction of the Fokker–Planck operator L using a
collocation method [2]. As x is periodic and y is not, we restrict the domain to
[0, 2π]× [−L,L] with L = 5 and use as basis the tensor product of a Fourier basis in
x and a Chebyshev basis in y. A 50× 50 grid of points is used for the collocation.
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Figure 3. The real part of the eigenfunction ψ1 corresponding
to the eigenvalue λ1 = −0.6467 + 0.1097i for the adjoint L∗ of
the Fokker–Planck operator for the SDE given by (14)–(15) with
ǫ = 10−3. The function is plotted for x ∈ [0, 4π] using the 2π-
periodicity of the x variable. Also plotted are the resulting level
sets, used as a numerical approximation of the fast fibres.

Since one expects the density to decay to zero as |y| → ∞, we impose a Dirichlet
boundary condition that ρ0 is zero on [0, 2π]× {−L} and [0, 2π]× {L}.

From a theoretical standpoint, the restriction to [0, 2π] × [−L,L] also ensures
that the Fokker–Planck operator has compact resolvent as discussed in Section 2.

For step 2, we solve for the leading eigenpairs (λk, ψk) of the adjoint operator
L∗ using the same domain and basis. However, since the eigenfunctions of L∗

corresponding to the eigenvalue λ0 = 0 are given by the constant functions, we
impose the boundary condition ∂ψ

∂y
= 0 on [0, 2π] × {−L} and [0, 2π] × {L}. The

leading eigenvalues are given in the first column of Table 1. After the eigenvalue
λ0 = 0 (numerically computed as 2.0971 × 10−11), the eigenvalues with greatest
real part are λ1 = −0.6467+ 0.1097i and its conjugate λ2 = λ̄1. The eigenfunction
ψ1 associated to λ1 is complex valued and the real part of this function is plotted
in Figure 3.

This real part is used to compute level sets which closely approximate fast fibres
of the system when multiscale behaviour is present (cf. step 3). For concreteness,
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Figure 4. The drift components computed in coordinates
adapted to the fibre. The µ̂1 component corresponds to drift along
the fibre and µ̂2 to drift normal to the fibre.

we use a fibre F defined by the level set of Reψ1 which passes through the point
(x, y) = (5, 0). Other choices of level sets yield similar results.

Once this fibre F is computed, we define a finite subset Q by sampling points
along F where each point is at a distance 0.1 from the previous. Taking weights
wz proportional to ρ0(z), this defines a measure on the fibre (cf. step 4).

For each point in Q, we construct a change of coordinates (cf. step 5). This
change of coordinates yields at each point a new drift vector µ̂ and diffusion matrix
D̂. The components of the computed µ̂ and D̂ are plotted in Figures 4 and 5. Note
that the components µ̂1 and D̂11 are the largest in magnitude, and these correspond
to the dynamics tangent to the fibre F .

From the original equations (12) and (13), one sees that the dynamics on a fast
vertical fibre in these original coordinates are given by a process with drift (−y +
sinx)/ǫ and diffusion 1/

√
ǫ. These drift and diffusion formulas can be transformed

under the change of coordinates (x, y) 7→ (x + sin(y), y) to give exact analytical

formulas for the drift µ̂1 and diffusion D̂11 along the fibre when it is parameterized
by arc length. These exact functions for µ̂1 and D̂11 are also plotted in Figures 4
and 5 and agree closely with the computed values. Since these analytical formulas
are long and not elucidating, we do not include them here.

To compare the tangent and normal components quantitatively, we apply step
6 of Algorithm 1, computing the weighted averages over the fibre. The resulting
averages for the drift are µtan

avg = 704.27 and µnor
avg = 25.165 and for the diffusion

are Dtan
avg = 1.4809 × 103 and Dnor = 1.4216. Note that µtan

avg and Dtan
avg are both

significant larger than µnor
avg and Dnor

avg. By step 7, we conclude that the system has
multiscale behaviour.
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Figure 5. The diffusion components computed in coordinates
adapted to the fibre. The D̂11 component corresponds to diffu-
sion along the fibre.

We now apply Algorithms 2A and 2B to the system. Before discussing the nu-
merics, first note that from the original equations (12) and (13), one sees that
the dynamics on a fast vertical fibre in these original coordinates is given by an
Ornstein–Uhlenbeck process with drift (−y+ sinx)/ǫ and diffusion 1/

√
ǫ. For such

processes, the eigenvalues of the Fokker–Planck operator can been determined ana-
lytically [28]. For (13), the eigenvalues are given exactly by λk = −k/ǫ for integers
k ≥ 0. Since the spectrum of the operator is not affected by a change of coordinates,

these are also the exact values for the eigenvalues of the operator L̂tan associated
to the fast dynamics of the system given by (14)–(15).

In the application of Algorithm 1 above, we computed the values µ̂1 and D̂11 at
points uniformly distributed along the fast fibre F . These define a drift diffusion

process along F with associated Fokker–Planck operator L̂tan. Applying Algorithm

2B, we calculate leading eigenvalues λ̂k of this operator L̂tan numerically. A fourth-
order central finite difference method was used. The computed eigenvalues are given

in the second column of Table 1. Note that the eigenvalues λ̂k are all of order 103

and the eigenvalues λk are of order 1. Applying the final step of Algorithm 2B,

the ratios Re(λk)/Re(λ̂k) are all between 10−4 and 10−3 and give an estimate of
the time-scale separation. This agrees with the value ǫ = 10−3 used in defining the
system.

For each computed eigenvalue λ̂k, the relative error

(16) errk =
|λ̂k − (−k/ǫ)|

|−k/ǫ|
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is also given in the table.

We now consider Algorithm 2A and perform eigenvalue calculations by express-
ing the fibre globally as a graph. A fast fibre F is of the form {(x, y) : x = sin(y)+c}
for some constant c. Therefore, if A is a rotation matrix

A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

with θ between 45 degrees and 135 degrees, then A(F ) is the graph of a function
g : R → R. For values of θ at every 5 degrees between 55 and 125, we applied
Algorithm 2A with the corresponding A and computed seven leading eigenvalues

λ̂
(θ)
0 > λ̂

(θ)
1 > · · · > λ̂

(θ)
6 for the associated Fokker–Planck operator. This compu-

tation was achieved by first determining the values µ̂1(zn) and D̂11(zn) for points
zn := (vn, g(vn)) ∈ A(F ) where the vn are given by 200 evenly spaced numbers

across an interval in R. Then, these sampled values of µ̂1 and D̂11 are used to

approximate the Fokker–Planck operator L̂tan and the eigenvalues are solved us-
ing a fourth order central finite difference method. As noted above, the leading

eigenvalues for the actual system are given by −k/ǫ and the computed values λ̂
(θ)
k

agreed with these theoretical values with a relative error less than one percent for
all computed θ and 1 ≤ k ≤ 6. This shows that Algorithm 2A produces estimates

of the eigenvalues λ̂
(θ)
k for the fibre dynamics that are robust with respect to the

parameterization the fibre.

Algorithms 1 and 2 have established the presence of multiscale behaviour for the
system and determined the time-scale separation. As a final step, we compute the
drift and diffusion data for the reduced slow system using the technique described in
Section 6. We restrict the leading eigenfunctions ψ1 and ψ2 of the full system to the
line C = [0, 2π]× {0} which is transverse to the fast fibres. Each eigenfunction ψk
on the full space was solved numerically by collocation and the result is represented
by the values that ψk takes on a 50×50 grid on [0, 2π]× [−L,L]. Restriction of this
eigenfunction to C may therefore be performed simply by taking the appropriate
row from the matrix representing the computed function. The restriction ψk|C is
then given by the values that the function takes on a set X × {0} consisting of
50 points uniformly spaced along C. At each point x ∈ X, we look at a window
of points consisting of x and the ten other points in X closest to x. Using these
eleven data points, we fit a cubic polynomial to ψk|C . This polynomial is used to

estimate the first and second derivatives of ψ̃k ≈ ψk|C at the point x which are
then used to solve pointwise the linear equations given by (11). The computed

values for the drift µ̃ and diffusion D̃ of the reduced system are plotted in Figures
6 and 7. Using homogenization techniques (see [4]) the reduced slow system of the
multiscale system (12)–(13) can be determined as

dX = e−
1

4 sin(sin(X)) dt+
(
1 + 1

2e
− 1

4 sin(sin(X))
)
dWt .(17)

The drift and diffusion functions of this reduced slow equation are also plotted in
the figures and the values determined by computation agree closely with those given
by homogenization theory.

In all the numerical results above, the system (14)–(15) was considered with ǫ =
10−3 as this was the value of the time separation used in [4]. We also performed the
same numerical computations for the system with different values of ǫ. The results
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Table 1. Leading eigenvalues λk computed for the adjoint of
the Fokker–Planck operator for the SDE given by (14)–(15) with

ǫ = 10−3. Also computed are the leading eigenvalues λ̂k of

the Fokker–Planck operator L̂tan on a fast fibre F . The ratios

Re(λk)/Re(λ̂k) give a computable estimate of the time-scale sepa-

ration ǫ. Analytically, λ̂k should be equal to −k/ǫ = −k× 103 and
the relative error in computation, as defined in (16), is also given.

k λk λ̂k Re(λk)/Re(λ̂k) errk

0 2.0971× 10−11 −3.3707× 10−6 — —
1 −0.6467 + 0.1097i −9.9275× 102 6.5139× 10−4 7.2535× 10−3

2 −0.6467− 0.1097i −2.0325× 103 3.1816× 10−4 1.6268× 10−2

3 −2.0508 + 0.2465i −3.0931× 103 6.6303× 10−4 3.1044× 10−2

4 −2.0508− 0.2465i −4.0126× 103 5.1110× 10−4 3.1492× 10−3

5 −4.4543 + 0.3912i −4.9614× 103 8.9780× 10−4 7.7173× 10−3

6 −4.4543− 0.3912i −5.9946× 103 7.4306× 10−4 8.9551× 10−4
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Figure 6. The drift component µ̃ computed for the reduced slow
dynamics along the line C = [0, 2π] × {0}. Plotted as circles is
the value determined by computation for (14)–(15) with ǫ = 10−3.
Plotted as a solid line is the value derived by homogenization the-
ory in the limit ǫ→ 0.

for (14)–(15) with ǫ = 10−6 were qualitatively similar to those listed above. In
particular, the algorithms correctly identified the slow and fast directions, isolated
the fast dynamics, and determined the reduced slow dynamics. For values of ǫ <
10−6, the diffusion matrix D becomes ill-conditioned and numerical instabilities
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Figure 7. The diffusion component D̃ computed for the reduced
slow dynamics along the line C = [0, 2π] × {0}. Plotted as circles
is the value determined by computation for (14)–(15) with ǫ =
10−3. Plotted as a solid line is the value derived by homogenization
theory in the limit ǫ→ 0.

prevent a reliable computation of the reduced slow dynamics. However, in the case
of the original undistorted system (12)–(13) the diffusion is aligned with the axes,
meaning D is diagonal, and the algorithms perform acceptably for values of ǫ as
small as 10−10.

8. Discussion

To conclude, we look at the computational overhead of the techniques introduced
in this paper in comparison to other methods for analyzing multiscale systems. In
the example in Section 7, building the matrices used in steps 1 and 2 of Algorithm
1 required evaluating the functions for the drift and diffusion at every point of
a 50 × 50 grid. Other steps in Algorithms 1, 2A, and 2B consider the drift and
diffusion on lower-dimensional fibres and require even fewer evaluations. Overall,
the computation of the drift and diffusion data at various points do not significantly
contribute to the run time of the algorithms. In fact, the construction of the
matrices representing the partial derivatives are more time consuming. Since there
were no severe bottlenecks, all of the computations in Section 7 were performed
with a total runtime of 25 seconds on a desktop computer.2 This running time is
small in comparison to techniques which rely on trajectory integration to analyse
a system.

2The computer used was an Intel Core i7-4770 with four CPUs at 3.40 GHz and 16 GB of RAM

running Ubuntu 12.04 with 64-bit Linux kernel 3.13.0-39-generic and MATLAB R2013b.
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A time series long enough to accurately capture the statistics of the slow dy-
namics of (12)–(13) could easily be of length 106 or longer. Assuming the time
step used to compute this orbit at least on the order of the time-scale separation
ǫ−1 = 103, this corresponds to 109 individual time steps of the Euler–Maruyama
method.

This paper is a continuation of the work developed in [9]. There, we relied solely
on trajectory integration to analyze a system and used Ulam’s method to compute
the eigenfunctions of etL for a dynamical system. To apply Ulam’s method to
the multiscale system, the length of orbits computed need to be at least on the
order of the slow dynamics and many individual segments of orbit need to be
computed. For instance, for the numerical examples given in [9], each orbit segment
was computed using 2 × 104 time steps and 104 individual orbits were computed
in each square of a 200 × 200 grid. This gives a total count of 8 × 1012 steps of
the Euler-Maruyama method where each step must compute the values of the drift
and diffusion coefficients of at point in the phase space. In [9], this computation
was achieved by splitting the construction of the matrix over many computers in
parallel. Methods based on the infinitesimal generator avoid these issues and can
thus lead to large gains in computation speed.

That said, the infinitesimal generator method is not always applicable. If the
diffusion in the actual reduced slow process is very small, it may be dominated
by numerical diffusion in the full space arising when computing the eigenfunctions
of the Fokker-Planck operator. In this case, other less efficient methods, such as
Ulam’s method with a large enough time step, must be used to yield accurate
results.

The analysis and numerical experiments of this paper consider multiscale systems
with one-dimensional slow dynamics. The techniques likely also apply to systems
with higher-dimensional slow dynamics and we give an outline of how the algorithms
might be extended. The application of such techniques is left as an area of future
research. See also the Discussion section of [9].

Assume now that the slow dynamics has dimension r where 1 < r < d. In
Algorithm 1, several leading eigenfunctions ψk are computed. Instead of just con-
sidering a fiber defined as ψ−1

1 ({s}) for some s ∈ R, a fiber F is now defined as
an intersection ψ−1

1 ({s}) ∩ · · ·ψ−1
r ({s}) of the level sets of several eigenfunctions.

Polynomial regression may still be used to compute the normal and tangential
components of the drift and diffusion. In Algorithm 2A, the function g is now a
function g : V → R

r where V ⊂ R
d−r, but otherwise the algorithm is unchanged.

In Section 6, the drift and diffusion of the reduced slow dynamics are determined
from several eigenpairs associated to the Fokker–Planck operator of the reduced
system. When the reduced system is one-dimensional this can be readily achieved
with a small number of eigenfunctions, but techniques exist which also apply in the
higher-dimensional setting [3].
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