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1. Introduction

The ubiquity of normal diffusion can be understood by
the Central Limit Theorem which, roughly speaking,
states that an appropriately scaled sum of many inde-
pendent identically distributed random variables with
finite variance converges in distribution to a normally
distributed random variable. Hence, the erratic motion
of a grain of pollen suspended in water, as observed by
the botanist Brown in 1827, can be understood as the
relatively heavy grain experiencing the sum of many
uncorrelated kicks of the chaotic much lighter water
molecules. It has become evident that Brownian mo-
tion and its associated normal diffusion is too simplistic
to describe the variety of diffusion processes in complex
systems. There are many situations where the Central
Limit Theorem fails [1, 2, 3, 4, 5], and their fluctu-
ations are of the so called Lévy type rather than of
the Gaussian type. Whereas Gaussian processes are
continuous processes with finite variance, Lévy pro-
cesses (or α-stable processes) exhibit jumps of all sizes
and have infinite variance. The recent survey articles
[6, 7, 8, 9, 10] discuss a plethora of experimental sit-
uations in which anomalous diffusion is observed and
provide an overview of current analytical approaches.

Distilling the information relevant to anomalous dif-
fusion, in particular determining accurately the diffu-
sion rate, ns, presents a significant scientific challenge.
Here, s = 1

2 denotes normal diffusion and s 6= 1
2 de-

notes anomalous diffusion. Of particular interest is
the case of α-stable processes with superdiffusive rate
s = 1

α > 1
2 . In the case of i.i.d. data, this problem is

well-understood and various techniques such as max-
imum likelihood methods [11, 12], quantile matching
[13] and linear regression of the empirical characteris-
tic function [14, 15] are very effective for determining
α and hence s; see for example the exposition in [12].
However, these methods are not designed to deal with
data that is noisy and/or non-i.i.d. In practice, the na-
ture of a given time series (which may be i.i.d., noisy,
or even deterministic [2, 3]) is not known in advance.
Hence it is of great importance to have a method that
applies to time series regardless of their origin.

One such method involves the analysis of the mean-
square displacement which grows linearly for normal
diffusion and sub-linearly or super-linearly for anoma-
lous sub- and super-diffusion, respectively. We show

numerically that estimating the asymptotic growth
rate of the mean-square displacement is not an efficient
method for distinguishing anomalous from normal dif-
fusion; in finite-size time series the statistical behaviour
of rare large jumps is not resolved. We therefore sug-
gest to use lower-order moments of order q ≪ 1 where
the many well-resolved small jumps contribute more
than the rare large jumps.

In addition it is well known that the estimation of
asymptotic growth rates often suffers from a bias
caused by a non-zero mean of the observables, and re-
quires error prone pre-processing of the data to sub-
tract the mean, or the employment of detrended fluc-
tuation analysis [16, 17]. We propose a new method
where an eventual non-zero mean is inherently removed
by calculating the q’th moments not of the time series
directly but of a related twisted time series obtained by
rotating the original data with a deterministic periodic
driver.
A different approach to detect anomalous diffusion is to
employ the p-variation which recently found lots of ap-
plication in successfully detecting anomalous behaviour
in time series [18, 19, 20, 21, 22]. In this method,
however, contamination of the data with additive noise
has been shown to mask underlying anomalous diffu-
sive behaviour as discussed in [23]. We compare our
method with the standard method of estimating the
asymptotic growth rate of the q’th moment as well as
with the method of p-variation and various other stan-
dard methods, such as the maximum likelihood method
[11, 12], quantile matching [13] and linear regression of
the empirical characteristic function [14, 15], for uncon-
taminated data and for data contaminated by biased
additive measurement noise. We use data generated
from i.i.d. random variables as well as from determin-
istic weakly chaotic maps.

The paper is structured as follows. In Section 2 we
construct time series exhibiting anomalous diffusion.
In Section 3 we present numerical results of the
asymptotic growth rates of the q’th moment and
show that high moments such as the mean-square
displacement are not well suited to detect anomalous
diffusion in a quantitative way. Section 4 briefly
describes the standard methods for i.i.d. data, the
methods to estimate the asymptotic growth rate of
the low moments, including our new method, and two
versions of the p-variation method. Numerical results
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are presented in Section 5. We conclude in Section 6
with a summary and discussion.

2. Time series data

We will apply the tests to discrete time series
{ϕ(j)}j=1,··· ,N which are generated both stochastically
and deterministically. To distill information about the
diffusive nature of the underlying system we construct
from the time series the Birkhoff sums

Φ(n) =

n−1
∑

j=0

ϕ(j) . (1)

In the stochastic case, we consider i.i.d. sequences
of α-stable random variables ϕ(j). Such random
variables Sα(β, µ, σ) are uniquely characterized by
four parameters: asymmetry parameter β, location
parameter µ and spread parameter σ together with α.
Numerically, we generated these random variables via
the method of Chambers, Mallows and Stuck [24]. In
Figure 1 we show Φ(n) for α = 1.5, β = 1, µ = 1 and
σ = 0.1. The linear drift in the Birkhoff sum Φ(n)
caused by µ 6= 0 has been subtracted by computing
the sample mean for α > 1, i.e. by considering ϕ(j) →

ϕ(j) − (1/n)
∑n−1

m=0 ϕ(m).
To generate the time series deterministically we employ
Pomeau-Manneville intermittency maps [25]. In
particular, we use the map yn+1 = f(yn) with f :
[0, 1] → [0, 1] studied by [26]

f(y) =

{

y(1 + 2zyz), y ∈ [0, 12 )

2y − 1, y ∈ [ 12 , 1]
. (2)

This map has a neutral fixed point at y = 0. For z = 0
the map reduces to the doubling map which preserves
the uniform measure on the interval [0, 1] and exhibits
exponential decay of correlations. For z ∈ (0, 1),
there exists a unique absolutely continuous invariant
ergodic probability measure, and correlations decay at
the rate n−(z−1−1) [27]. Correlations are summable if
and only if z < 1

2 , and in this situation the central limit

theorem applies with n− 1

2Φ(n) converging in law to a
normal distribution for mean zero Hölder observables
ϕ [28]. For z ∈ (12 , 1), however, Gouëzel [3] proved
that for sufficiently smooth mean zero observables ϕ(y)
which are non-zero at the neutral fixed point, the
central limit theorem fails and instead n−z

∑n−1
j=0 ϕ(yj)

converges in distribution to a stable law of exponent
α = 1/z, asymmetry β = ±1 and mean µ = 0. The
jumps are produced by the orbit spending prolonged
times near 0 with ϕ ≈ ϕ(0). In order to get
better statistics, we consider the induced map, which
effectively condenses the many small jumps to a single
big jump. The inducing is performed by passing from

the nonuniformly expanding map f : [0, 1] → [0, 1] to
the uniformly expanding first return map F = f τ :
Y → Y with Y = [1/2, 1] where τ(y) = inf{n ≥ 1 :
fny ∈ Y } is the first return time back into the set Y
for y ∈ Y . Induced observables are then defined as

ϕI(y) =

τ(y)−1
∑

ℓ=0

ϕ(f ℓy), (3)

leading to Φ(n) =
∑n−1

j=0 ϕI ◦ F j via iteration of this
procedure.

In Figure 1 we show the time series Φ(n) for
α = 1.25 generated via the map (2) with z = 0.8
for the observable ϕ(y) = 1 + y. The linear drift of
the Birkhoff sum Φ(n) was again approximately elimi-
nated by subtracting the sample mean.

3. Scaling behaviour of the q’th moments

We now investigate the scaling behaviour of the
q’th moment E|Φ(n)|q. Envoking ergodicity the q’th
moment is expressed by the time average

E|Φ(n)|q = lim
N→∞

1

N

N−1
∑

j=0

|Φ(j + n)− Φ(j)|q . (4)

In the case of zero-mean i.i.d. α-stable random
variables, the q’th moments exist for q < α and scale
as

E|Φ(n)|q ∼ n
q

α . (5)

For q ≥ α the q’th moments do not exist. In the case of
anomalous diffusion of underlying deterministic weakly
chaotic dynamics, the moments exist for all values of q
and scale as follows

{

E|Φ(n)|q ∼ nq/α q < α

E|Φ(n)|q ≈ nq+1−α q > α
. (6)

(We write an ∼ bn if there exists a constant c > 0 such
that limn→∞ an/bn = c. We write an ≈ bn if there ex-
ists constants C1, C2 > 0 such that C1 ≤ an/bn ≤ C2

for all n ≥ 1.) For the Brownian motion case we ob-
tain the linear scaling of the mean-square displacement
E|Φ(n)|2 ∼ n. Bi-linear scaling as in (6) was experi-
mentally observed in active transport of polystyrene
beads in living cells [29] and has been studied theoret-
ically in infinite horizon billiards, intermittent maps
and Lévy walks [30, 31, 32, 33]. For a rigorous mathe-
matical proof of (6), see [34, 35].

We now investigate the scaling behaviour of the
q’th moments by plotting the growth rate

γ(q) = lim
n→∞

log(E|Φ(n)|q)

log(n)
(7)
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Figure 1: Realization of an α-stable process Φ(n) generated from i.i.d. variables with α = 1.25, β = 1, µ = 1,
σ = 0.1 (left) and through the deterministic map (2) with z = 1/1.25 = 0.8 and observable ϕ(y) = 1 + y. The
sample mean has been subtracted from the observables ϕ(j).

for several values of q for i.i.d. observables and for ob-
servables obtained from a deterministic intermittency
map. To avoid any issue with a non-zero mean of
the observables creating non-negligible drift terms, we
symmetrize the intermittency map (2) and consider the
map yn+1 = fsym(yn) with fsym : [−1, 1] → [−1, 1]

fsym(y) =











−2y, 0 ≤ y ≤ 1
2

1− (1 − y)(1 + 2z(1− y)z), 1
2 ≤ y ≤ 1

−fsym(−y), −1 ≤ y ≤ 1

(8)

with neutral fixed points at y = ±1. To determine the
asymptotic growth rate γ(q) from a single time series,
we need to respect the double limit in the temporal
average (4). The double limit requires us to choose
n ≪ N . In practice we use n ≤ N/10. The asymptotic
growth rate is then determined by linear regression of
E|Φ(n)|q .

Figure 2 shows results of numerical simulations
for time series of length N = 500, 000. Whereas the
simulations confirm the theoretical growth rate γ(q)
implied by (6) for small values of q, it is clearly vio-
lated for large q > α. In particular, for the usual value
q = 2, the implied value for the anomalous diffusion
is αest = 2/γ ≈ 2. This suggests that the estimation
of the mean-square displacement (q = 2) would falsely
classify anomalous diffusion as normal with a linear
growth.
In Figure 3 we show the q’th moment as a function
of n for several values of N for q = 0.2 and q = 2
for α = 1.25. For q = 0.2, the convergence to the
theoretical scaling result (5) and (6), respectively, is
clearly seen (top panel). For q = 2 (bottom panel), the

growth rate is approximately equal to 1 for the i.i.d.

case as well as for the Pomeau-Manneville case, consis-
tent with the results presented in Figure 2. It is also
clearly seen that the 2nd moments have not converged.
Note that this is consistent with the nonexistence of
the 2nd moment in the i.i.d. case. For the determinis-
tic Pomeau-Manneville case in which the 2nd moment
exists, however, this illustrates that N = 500, 000 is
insufficient to determine the slope of 3− α (cf (6)).

The results show that calculating the mean-square
displacement is not satisfactory for distinguishing
anomalous superdiffusion and normal diffusion in finite
time series; note that the time series of N = 500, 000
data points is rather large. The results rather suggest
to use lower moments with small values of q to estimate
the anomalous coefficient α. A heuristic explanation
for the superior performance of lower moments is
that in a finite data set the statistics of the large
jumps are necessarily not well resolved. For low
values of q ≪ 1 the smaller jumps, for which better
statistics are available within a finite data set, receive
a relatively larger weighting than larger jumps in the
time average (4). The relative importance of large
jumps in the q’th moment (4) is increased for large
values of q.

4. Methods of detection

4.1. Standard estimation methods

Parameter estimation for α-stable distributions is well-
developed for the case of i.i.d. random variables which
are not contaminated by noise. There are numerous
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Figure 2: The growth rate γ of the q’th moment E|Φ|q ∼ nγ for ϕ(y) = y as a function of q for the i.i.d. case
with µ = 0, σ = 0.1, β = 0 and α = 1.25 (left) and for the Pomeau-Manneville map (8) (right) for α = 1.25.
The continuous curve (online red) depicts the theoretical result according to (5) or (6), respectively.

techniques such as maximum likelihood estimators
[11, 12], quantile matching [13] and linear regression
of the empirical characteristic function [14, 15]. The
reader is referred to [36, 12] for a detailed description
and for numerical comparisons in the case of pure i.i.d.
random variables. In the numerical results presented
in Section 5 we use publicly available matlab routines
for the quantile matching [37, 38] and for the linear
regression method [38], and use the software package
STABLE [39] for the maximum-likelihood estimator‡.

4.2. Measuring the asymptotic growth rate of the q’th
moment

The first method is the standard determination of
the asymptotic growth rate γ of the q’th moment via
linear regression for a given time series of length N .
Motivated by the numerical results from the previous
Section we choose q = 1/8. A non-zero mean of
the observables ϕ(j) would dominate the asymptotic
behaviour of the q’th moments leading to γ(q) = q,
independent of the underlying diffusive nature of the
dynamics. We therefore subtract the sample mean
N−1

∑N−1
j=0 ϕ(j) from the observables for α > 1. Note

that the mean is not defined for α < 1 in the case of
i.i.d. random variables (cf. Section 3). Hence, without
a priori knowledge of α, subtracting the sample mean
is problematic.

‡ We have also used the matlab built-in command mle [40] for
the maximum-likelihood estimator, but found it less reliable than
the command stablefitmle from the STABLE package.

4.3. Measuring the asymptotic growth rate of the

twisted q’th moment

To account for a possible non-zero mean of the
observables ϕ(j) we consider instead of (1) the
following rotated Birkhoff sum

Φc(n) =

n−1
∑

j=0

ϕ(j) cos cj (9)

where c 6= 0 is fixed. Including the rotational variable
cos cj assures that the mean of Φc is automatically
zero. (A rigorous justification is based on [41, Section
3] via the ergodic theorem. Intuitively, the linear
drift of the Birkhoff sum Φc(n) has no preferred
direction in the complex plane due to the rotation
variable, and hence averages to zero. The inclusion
of a rotational variable has proven very useful in the
detection of deterministic chaos using the 0-1 test for
chaos [42, 43, 44, 45].) We will see in Section 5 that this
has advantages over manually subtracting the sample
mean, as in the Section 4.2, which may contaminate
the statistics. We then calculate the q’th moment
E|Φc|

q and measure its asymptotic growth rate γc. We
again use q = 1/8. Possible resonances between the
rotational variable and the actual underlying dynamics
encoded in the observable will obscure the information
contained in γc(q). Such resonances correspond to a
term in the Fourier decomposition of the time series
ϕ(j) proportional to exp(−ick) leading to Φc(n) ∼
n implying an asymptotic growth rate γc = q,
independent of the actual diffusive behaviour. We
therefore compute the median of γc over several values
of c. We choose to compute the median rather than the
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Figure 3: The qth moment E|Φ|q for ϕ(y) = y for the i.i.d. case (left) and for the Pomeau-Manneville map
(8) (right). Results are shown for α = 1.25 for time series of length N = 500, 000 (dashed line, online blue),
N = 100, 000 (crosses, online red), N = 50, 000 (open circles, online magenta) and N = 25, 000 (diamonds,
online cyan). Top: For q = 0.2 < α. Bottom: For q = 2 > α. The dashed lines in the top figures show the
theoretical slope as calculated via (5) and (6), respectively. The slope in the bottom figures is approximately 1
(cf. Figure 2).

mean to avoid the effect of outliers. In practice we find
that 100 randomly chosen values of c ∈ (π/5, 4π/5) are
sufficient.

4.4. p-variation method

The p-variation associated with a process Φ is defined
as the asymptotic limit

Vp(t) = lim
n→∞

V n
p (t) , (10)

where V n
p (t) is the partial sum of increments of the

observable Φ(n) given by

V n
p (t) =

⌊nt⌋
∑

k=1

∣

∣

∣
Φ
(k

n

)

− Φ
(k − 1

n

)∣

∣

∣

p

.

For p = 1, V1(t) reduces to the total variation, and
for p = 2, V2(t) reduces to the quadratic variation.
It is known that for Brownian motion, V2(t) ∼ t and
Vp(t) = 0 for any p > 2. In the case of subdiffusion, the
p-variation allows to distinguish fractional Brownian
motion and Continuous Time Random Walk (CTRW)
diffusion [18, 20]. For fractional Brownian motion,
V2(t) = ∞ and V2/γ⋆(t) ∼ t, whereas for CTRW,
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V2(t) is a monotonically increasing step function and
V2/γ⋆(t) = 0, where γ⋆ = γ(2) is the asymptotic
growth rate of the mean-square displacement. For
superdiffusion, V n

p (t) converges for p > α and
diverges for p < α as n → ∞. This suggests to
estimate α by determining the smallest value p⋆ for
which convergence occurs and set αest = p⋆. In
practice, we subsample a time series of length N
into 2m data points with equal spacing N/2m with
m = 0, · · · , ⌊logN/ log 2⌋. For the finest samplings
we estimate a linear approximation V̂ n

p (t) by linear
regression of V n

p (t). We then determine p⋆ as the
minimal value of p for which the ℓ1-norm of the
difference between two consecutive samplings |V̂ n

p (t)−

V̂ n−1
p (t)| falls below some threshold θp. The choice of

the threshold θp is, of course, arbitrary and depends on
the underlying dynamical system which is analyzed.

4.5. Modified p-variation method

In [46, 21] theorems were proved showing that for an α-
stable random variable with location parameter µ = 0
and α = p/2 (and any values of β and σ) its p-variation
V n
p (t) converges in distribution to an α = 1/2-

stable random variable S1/2(1, 0, σ) with some specified
spread parameter σ. In [21] this was developed into
a time series analysis method using a Kolmogorov-
Smirnov test and finding the value of p = 2α for
which the empirical cumulative distribution function is
closest to the target cumulative distribution function of
S1/2(1, 0, σ). To estimate the cumulative distribution
function of V n

p (t), an ensemble of p-variations is
generated by segmenting the time series into M
pieces, each being of length ⌊N/M⌋. This tacitly
assumes that the samples are uncorrelated which is
only approximately true for sufficiently long segments
in the deterministic case. The minimal Kolmogorov-
Smirnov distance is determined by varying the spread
parameter σ of the target distribution S1/2(1, 0, σ) for
each value of p. The value p⋆ for which the minimum
is attained then determines α = p⋆/2. The precise
mathematical statement is provided in the appendix.
For details on the modified p-variation method see
[46, 21].

5. Numerical results

We use a time series of length N = 25, 000 calculated
from i.i.d. random variables and from weakly chaotic
deterministic variables. We show results for pure data
and for noise-contaminated data. To calculate the q’th
moments E|Φ|q we employ q = 1/8. For the p-variation
method we use θp = 0.01 and cycle through p in
increments of ∆p = 0.005. We found that larger values
of θp perform better for larger values of α but worse
for smaller values of α. For the modified p-variation

method, we choose M = 250 samples of length 100
each, and cycle through 10, 000 values of the spread
parameter σ ∈ (10−2, 1010) (equidistant in log-space).

5.1. Results for the i.i.d. case

We use a time series of length N = 25, 000 constructed
by the Chambers, Mallows and Stuck [24] method. We
set the asymmetry parameter β = 1 and the spread
parameter σ = 0.1, and allow for a non-zero mean
parameter µ = 2.

In Figure 4 we show results for the estimated value
of α for the methods described in the previous Section.
For the methods using the asymptotic growth rate γ
we estimate the implied value for αest = q/γ for α > q.
The method of estimating α via the asymptotic growth
rate of the q’th moment for low q performs very well for
α < 1, but has large errors for α > 1. This is due to the
non-accuracy in determining the mean via the sample
mean which is subtracted for α > 1. This undesirable
property is alleviated when estimating the asymptotic
growth rate of the twisted q’th moment, where α is well
estimated for the whole range of α. The standard p-
variation performs well except near α = 1 and α = 2. It
is more accurate than the twisted low moment method
for 1 < α < 1.5. The modified p-variation has strong
difficulties in estimating the anomalous diffusion near
α = 1 and α > 1.75. We have tested that the bad
performance of the modified p-variation method near
α = 1 is due to the non-vanishing mean parameter
µ = 2 and the asymmetry β = 1. For µ = 0 and β = 0
(and all other parameters unchanged), the modified p-
variation method performs well near α = 1. The bad
performance near the Brownian case α = 2 remains
though for µ = 0 and β = 0. As expected, the meth-
ods described in Section 4.1 perform best in the case
of noise-less i.i.d. random variables. The methods of
quantile matching, linear regression of the empirical
characteristic function and, in particular, the maxi-
mum likelihood estimator very accurately estimate α
for the whole range of α.

We also present results where we contaminate the
observations ϕ(n) by biased uniform noise according to
ϕ(n) → (1+ ηu)ϕ(n) with u ∼ U(0, 1) in Figure 5. We
choose here relatively large additive measurement noise
with η = 0.5. The additive noise makes detection more
difficult for determining the asymptotic growth rate
of the q’th moment but much less so for the twisted
low moment method. The standard p-variation also
becomes less reliable for 1 < α < 2 when additive noise
is included, consistent with the results reported in [23].
The modified p-variation exhibits some deteriorating
sensitivity to additive noise. Contrary to the superior
performance of the methods described in Section 4.1
in the case of noise-less i.i.d. random variables, these
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Figure 4: Estimates αest as calculated for several values α ∈ (0.2, 2) for i.i.d. observations. Top left: method
of low q’th moment with q = 1/8. Top right: method of twisted low q’th moment with q = 1/8. Middle left:
p-variation method. Middle right: modified p-variation method (note the larger range on the y-axis). Bottom
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straight lines show the theoretical answer αest = α.
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methods are not able to reliably estimate the stable
parameter α when the data is contaminated by noise
as shown in the bottom row of Figure 5.

5.2. Results for the Pomeau-Manneville case

We use a time series of length N = 25, 000 constructed
from the Pomeau-Manneville map (2) for α ∈ (0.6, 2).
We choose ϕ(y) = 1+ y. Figure 6 shows the analogous
results to Figure 4.

In the deterministic case, we observe the same be-
haviour of low moments as in the i.i.d. case where
anomalous diffusion is very well classified for α < 1
but not so well for α > 1 where the error in estimating
the sample mean has a detrimental effect. The twisted
low moment method performs well, except near the
Brownian case of α = 2 where it underestimates the
anomalous scaling coefficient. The slow convergence
may be related to cross-correlation effects that arise in
the diffusion parameter via the Green-Kubo formula.
Such cross-correlations are not present in the superdif-
fusive case α < 2 [3]. The p-variation also does not
perform well. Near α = 1 and the Brownian case
α = 2 the p-variation strongly flattens and underesti-
mates the anomalous scaling coefficient. The modified
p-variation, in contrast, performs well for the whole
range of α. As in the case of noisy i.i.d. variables, the
standard i.i.d. estimation methods described in Sec-
tion 4.1 do not reliably estimate the stable parameter
α for the whole range of α. Curiously, the quantile
matching method performs well for α < 1.

Again, we also present results for observations
which have been contaminated with biased uniform
noise with η = 0.5 in Figure 7. As in the i.i.d.

case, the performance of the low moment method and
the p-variation method is diminished by the additive
measurement noise. The performance of the twisted
low moment method and the modified p-variation
method, however, are robust against additive measure-
ment noise. The standard i.i.d. estimation methods de-
scribed in Section 4.1 fail to reliably estimate the stable
parameter α for the whole range of α. Again, the quan-
tile matching method performs well for α < 1. The
method of linear regression of the empirical charac-
teristic function and the maximum likelihood method
significantly underestimate the value of α.

6. Summary and Discussion

We have introduced a new method to quantitatively
estimate the degree of anomalous superdiffusion. Our
method uses the asymptotic growth rate of a twisted
low moment derived from the data rotated with a pe-
riodic deterministic signal.

We established that the standard method of estimat-
ing the growth-rate of the mean-square displacement is
not able to reliably distinguish superdiffusion from nor-
mal diffusion in finite time series. We have compared
our method then with ive other methods, a method
based on (untwisted) low moments, two versions of the
p-variation method as well as the standard estimators
analysing the empirical characteristic function and es-
timating the maximum likelihood developed for i.i.d.

random variables.
Whereas the standard methods such as quantile match-
ing, linear regression of the empirical characteristic
function and maximum likelihood estimators are by far
superior in estimating the stable parameter α in the
case of noise-free i.i.d. random variables, they fail in
the case of noisy i.i.d. random variables and/or deter-
ministically generated variables. Our numerical simu-
lations on noisy i.i.d. data and data generated deter-
ministically from weakly chaotic Pomeau-Mannneville
maps, reveal that our new method and the modified
p-variation as proposed in [21] perform best and are
most robust to additive measurement noise, which is in-
evitable in any real-world application. The modified p-
variation and our newly proposed twisted low moment
method have been shown to have complementary ad-
vantages. Whereas the modified p-variation performs
very well in the case of deterministic data, it did less
so for the i.i.d. case, in particular for values of α near
1 and 2. In contrast, our new method performs well
in the case of i.i.d. random variables, but becomes less
accurate in the deterministic case for values of α ap-
proaching Brownian diffusion with α = 2. We therefore
propose our method to be used in conjunction with the
p-variation to gain further insights into the quantita-
tive analysis of anomalous diffusion from time series.
The computational cost involved in applying those
methods varies significantly. The standard p-variation
method and the method of estimating the asymptotic
growth rate of a low moment are the least computa-
tionally demanding methods. For the twisted low mo-
ments, one needs to cycle over typically 100 different
values of the frequency c of the periodic signal. The
modified p-variation method requires cycling through
values of σ, which requires tuning over a large range
of values. Despite the variation in the computational
cost of the methods, all the methods use only a single
sample time series.
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Figure 5: Estimates αest as calculated for several values α ∈ (0.2, 2) for i.i.d. observations with 50% biased
measurement noise. Top left: method of low q’th moment with q = 1/8. Top right: method of twisted low q’th
moment with q = 1/8. Middle left: p-variation method. Middle right: modified p-variation method (note the
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Maximum likelihood estimator. The straight lines show the theoretical answer αest = α.



On the detection of superdiffusive behaviour in time series 11

1 1.5 2
0.5

1

1.5

2

2.5

1 1.5 2
0.5

1

1.5

2

2.5

1 1.5 2
0.5

1

1.5

2

2.5

1 1.5 2
0.5

1

1.5

2

2.5

1 1.5 2
0

0.5

1

1.5

2

2.5

1 1.5 2
0

0.5

1

1.5

2

2.5

Figure 6: Estimates αest as calculated for several values α ∈ (0.6, 2) for the Pomeau-Manneville map (2). Top
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Appendix A. Modified p-variation

We recall here Theorem 2.1 from [21]

Theorem 1 For an α-stable process Xt with Xt ∼
Sα(β, 0, σ), we have for p > α/2 that its p-variation
V n
p (t) converges in the Skorohod topology with

V n
p (t)− ntBn(α, p) →d X ′

t as n → ∞,

where X ′
t ∼ Sα

p
(1, 0, σ′) with spread parameter

σ′ =







σp
(

cos(πα

2p
)Γ(1−α

p
)

cos(πα

2p
)Γ(1−α)

)p/α

p 6= α

σ p = α
,

and normalising sequence

Bn(α, p) =











n−p/αE|X |p p ∈ (α/2, α)

E sin
(

n−1|X |α
)

p = α

0 p > α

.
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