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Abstract

We study the behaviour of steady-state solutions of a two-component flame filament

system subject to chaotic mixing. This system exhibits a saddle-node bifurcation

at a critical Damköhler number. We analyze the system through a one-dimensional

phenomenological lamellar model. We present a nonperturbative technique, which

allows us to describe the behaviour of the reduced lamellar model near the saddle

node bifurcation. The influence of the Lewis number on the solution behaviour is

investigated. We present a simple empirical formula for the wave speed valid for

large Damköhler and large Lewis numbers. This formula allows us to describe the

solution far away from the bifurcation. Numerical simulations show good agreement

with the results.
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1 Introduction

The field of active chaotic flows is a rapidly developing interdisciplinary area of nonlinear
science, which focuses on the effect of chaotic advection on chemical and biological reac-
tions [1]. It has been observed that imperfect mixing in diffusive nonlinear systems (such
as autocatalytic systems) can give rise to new and unexpected phenomena [2]. A recent
overview is given in [3]. The chaotic dynamics induced by advecting time-dependant flows
manifests itself in the distribution of fluid parcels along fractal patterns leading to the
formation of filamental structures. In the case of active processes, reactive tracers are
advected with these filaments, and the increase in their surface area has an effect on the
kinetics of the reaction. This often has important consequences in wide ranging fields. Be-
sides in the case of combustion, where mixing-induced bifurcations may lead to unwanted
termination of the reaction, the study of chaotically stirred reaction-diffusion systems also
has important consequences for a number of environmental processes, such as depletion of
ozone by chlorine filaments [4] and development of plankton patchiness [5, 6, 7, 8, 9, 10].
It has been observed that fluid mixing has a significant effect on combustion processes
and in particular on flame filamental structures [11, 13, 14, 15, 16, 17, 18]. The quench-
ing of a flame is strongly dependant on the Damköhler number Da, which is the ratio
between the advective and chemical time-scales. Much insight has been gained by reduc-
ing the typically 2-dimensional partial differential equations describing combustion to so
called lamellar models. The idea behind this reduction is as follows. A chaotic stirring
flow is characterized by hyperbolic regions of stretching and compression, which lead to
filamentation of the reactant. The stretching is directed along the filament whereas the
compression is directed transversal to the filament. Along the filament the concentration
of the reactant is approximately homogeneous. Hence, in order to study the dynamics
of such a filament, one may consider only the dynamics of the cross-section of a filament
which is aligned with the direction of compression. The dimensionality of the problem
is therefore reduced to one spatial dimension. In lamellar models, steady-state solutions
are formed as the balance of the inwards-directed compression and the outwards-directed
diffusive propagation of a reactant. If the compression is too large, the reaction will
be suppressed. Lamellar models have been widely used in different physical contexts
[6, 8, 18, 19, 20, 21, 22, 23, 24]. A critical account on such reductions is given in [25]. For
a different approach to this problem see [26].

We study in this work the influence of chaotic stirring on combustion waves. One
particularity for problems involving combustion waves is the strong dependence of the
reaction rate on the temperature. This is usually modelled by an Arrhenius term [30].
A combustion wave can be (at least for low stirring rates) divided into three distinct re-
gions. Ahead of the combustion waves, in the so called preheat zone, the temperature is
low and the reactant has not been burnt. When the temperature increases and becomes
sufficiently high, the reaction rate increases exponentially and and the reactant is quickly
burnt under heat release. This takes place in a narrow steep region called the reaction
zone. Behind the front there is the product zone where all reactant is burnt, no reac-
tion occurs and the temperature is constant. The behaviour of combustion waves is also
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characterized by the Lewis number. The Lewis number Le is a non-dimensional number
which measures the ratio of the diffusivity of the temperature with the diffusivity of the
reactant. Systems with a large Lewis number are often called “solid” whereas systems
with low Lewis numbers are called “gaseous”.

The stirred system is further characterized by the dimensionless Damköhler number
Da. The Damköhler number Da measures the ratio of the time scale of the stirring flow
with the time scale of the reaction. The smaller Da is the faster the stirring is compared
to the reaction. Chaotic stirring may lead to an unwanted termination of the reaction.
This combustion wave propagation failure occurs as a saddle node bifurcation. A saddle
node bifurcation - generic for chaotically stirred reaction-diffusion systems - was observed
in [18, 19] for a combustion system at a critical Damköhler number Dac. The bifurcation
point corresponds to the “quenching point”, below which the stirring rate exceeds the
rate at which the fuel burns and the flame is extinguished. The critical value of the
Damköhler number Dac depends on the Lewis number. It is this bifurcation that we are
mainly concerned with in this work. In [18] an asymptotic analysis was developed for
various limiting cases, where the ordinary differential equations describing the stationary
fronts were simplified. A numerical integration of these asymptotic equations was able
to determine the critical Damköhler number fairly well. However, the pulse behaviour
near the saddle node has not yet been described accurately. To fill this gap we will
employ a nonperturbative, non-asymptotic technique that was developed for excitable
media [27] and which had successfully been employed for chaotically stirred autocatalytic
and bistable reaction diffusion dynamics [28, 29].

In the next section, we present the lamellar model used to describe the flame filament
system. In Section 3, the nonperturbative, non-asymptotic technique is reviewed. In
Section 4, we use this method to describe the behaviour near the saddle node for different
values of Le, and in Section 5 we study the case of slow stirring (for solutions far away
from the bifurcation point). We conclude with a summary in Section 6.

2 The flame filament model

We study a simple combustion system in which the conversion of a fuel C of concentration
c and absolute temperature T , to an inert product P , is modelled as a first order process
through the reaction C → P . The model proposed in [18, 19] describes the resulting
filament structures of such a system when it is subjected to a chaotic stirring flow. The
temperature dependence of the reaction rate k(T ) is given by an Arrhenius law

k(T ) =







k0 exp

(

− E

RT

)

if T > Ti ,

0 if T ≤ Ti ,
(1)

with an ignition temperature Ti, and an activation energy E. Here R denotes the universal
gas constant. The cutoff temperature Ti allows for a simple solution to the so called cold
boundary problem. If Ti = 0, large preheat zones may arise which imply a non-zero
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temperature at the boundary, away from the reaction zone. Introducing this non-zero
cutoff allows for a finite box with a cold boundary of T = 0. This is a purely practical
issue introduced to simplify numerical simulations. We note that there is no change to
the results we present here if a purely Arrhenius reaction term is used.

The model is then given by

ρCp

(

∂T

∂t
− λx

∂T

∂x

)

= κ
∂2T

∂x2
+ qck(T ) , (2)

∂c

∂t
− λx

∂c

∂x
= D

∂2c

∂x2
− ck(T ) , (3)

in the region −∞ < x < ∞, where ρ represents the density of the reactant. Cp the
specific heat capacity, κ the thermal conductivity, D the diffusion coefficient, and k(T )
is the reaction rate given in (1). The parameter λ describes the compression of the
filament and can be thought of as the Lagrangian mean strain of the chaotic flow in the
contracting direction, and may be given by the absolute value of the negative Lyapunov
exponent of this flow. The boundary condition applied to this system is T → Ta, c→ c0
as |x| → ∞, where Ta is the ambient temperature (assumed to be less than the ignition
temperature Ti). We rescale the equations (2) and (3) by introducing nondimensional
variables T ′ = (T − Ta)/(Tb − Ta), c

′ = c/c0, t
′ = λt and x′ = x

√

λ/D, where Tb is the
burnt temperature Tb = Ta + (qc0/ρCp). Omitting the primes, we obtain

∂T

∂t
− x

∂T

∂x
= Le

∂2T

∂x2
+Da cK(T ) , (4)

∂c

∂t
− x

∂c

∂x
=

∂2c

∂x2
−Da cK(T ). (5)

Here, we have introduced the Damköhler number Da = k0/λ, and the Lewis number
Le = κ/ (ρ CpD). The Damköhler number measures the ratio of the timescale of the
stirring flow 1/λ with the time scale of the reaction 1/k0. For Le 6= 1 the diffusivities of
temperature and concentration are different. The rescaled system now has the boundary
conditions T → 0, c→ 1 as | x |→ ∞, while the reaction rate is now given by

K(T ) =







exp

(

− 1

ǫ ((1 − β)T + β)

)

if T > T̄i,

0 if T ≤ T̄i,

with parameters

ǫ =
RTb

E
, β =

Ta

Tb

, T̄i =
Ti − Ta

Tb − Ta

.

We are particularly interested in steady-state solutions of (4) and (5) which are given as
solutions of the ordinary differential equations

Le
d2T

dx2
+ x

dT

dx
+Da cK(T ) = 0 , (6)

d2c

dx2
+ x

dc

dx
−Da cK(T ) = 0. (7)
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We recall that a stationary front is given through a balance of the front velocity V with
the velocity of the chaotic stirring x. The front is a steady-state with a zero velocity when
V = x. For all following numerical simulations we use β = 0.1, ǫ = 1 and T̄i = 0.001,
unless explicitly stated otherwise.

It has been observed that the temperature and concentration profiles of these steady-
states depend strongly on Le. In the limiting cases of small and large Lewis numbers
the solution could be studied through an asymptotic analysis [18]. We will focus here
on applying a nonperturbative method, which does not require asymptotic expansions,
to describe the solution behaviour close to the bifurcation and far away from it. Instead
of obtaining a set of reduced ordinary differential equations which subsequently had to
be integrated numerically, we will obtain a set of algebraic equations determining the
parameters of the solutions and the actual bifurcation point. In the next Section we will
outline this nonperturbative method.

3 The Nonperturbative method

In the study of critical wave propagation in reaction-diffusion systems, it is observed that
asymptotic techniques break down near the bifurcation point. This is due to the fact that
the pulse shape in this region is approximately bell-shaped (see Fig. 1,5 and 7). Close
to the bifurcation the solution can not be separated into inner and outer regions, which
have been employed by asymptotic theories. Hence, a new method was developed in order
to determine the bifurcation point and the shape of near-critical pulses for critical wave
propagation in excitable media [27]. This method has since been successfully applied to
chaotically stirred autocatalytic and bistable systems [28, 29].

The idea is to restrict the solutions of the system under consideration, i.e. (4)-(5) or
(6)-(7), to a subspace of specified test functions C(η, ai), which are parameterised by ai.
For example we can use a Gaussian as a test-function, in which case the parameters are
given by its amplitude and its inverse pulse width. These parameters are then determined
by minimizing the error made by the restriction to the subspace defined by the test func-
tion ansatz. This is achieved by projecting the full partial differential equations onto the
tangent space of the restricted subspace, which is spanned by the partial derivatives of
the test functions with respect to the parameters ai. We set the integral of the products
of Eq. (4) and (5), or (6) and (7), with the basis functions of the tangent space to zero.
This will lead to algebraic equations for the parameters ai, and also yield the critical
Damköhler number Dac.

The question is which functions to use as test functions. Numerical solution of the
system (4)-(5) reveal that for lower values of Da the profiles of T (and 1−c) are pulse-like,
and are well approximated by bell-shaped functions, such as Gaussians (see Fig. 1,5 and
7). For higher values of Da the solutions are plateau-like with a clear separation of two
flat regions by a steep front, and can be approximated by test functions that show this
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behaviour, such as tanh-functions (see Fig. 1,5 and 7). However, it is to be noted that
the exact behaviour of the solution at any given value of Da is strongly dependent on the
value of Le, and in the following Sections, we shall examine some of these trends. The
general form of our solution is

T (x) = Θ(x, ai) and c(x) = 1 − Ω(x, ai) . (8)

We may choose the test functions Θ(x, ai) and Ω(x, ai) to be either bell-shaped or plateau-
like depending on the nature of the solution at the corresponding values of Da and Le.

Close to the bifurcation point the solutions are bell-shaped. The choice for the actual
functional form for these bell-shaped functions is arbitrary. There is no asymptotic ar-
gument that can be made to favour one functional form over the others. Unless stated
otherwise, we shall choose Gaussians

Θ(x, ai) = f0 exp (−η2) with η = w x ,

Ω(x, ai) = g0 exp (−ζ2) with ζ = v x . (9)

Here ai = {f0, w, g0, v}. But one may equally use sechn-functions or other such bell-
shaped functions for Θ and Ω. We will see later that the results do not significantly
depend on the actual functional form of the bell-shaped function - indicating the absence
of an asymptotic theory which may be able to deduce the functional form.
For plateau-like solutions at large Damköhler numbers we use

Θ(x, ai) =
f0

2
{tanh (η + ν w) − tanh (η − ν w)}

Ω(x, ai) =
g0

2
{tanh (ζ + µ v) − tanh (ζ − µ v)} , (10)

where again η = w x and ζ = v x, and now ai = {f0, w, ν, g0, v, µ}. Here ν and µ are
the widths of the corresponding test functions, and w and v measure the steepness of the
reaction zone. By choosing (10) we ignore the problem of a preheat zone which would
requires us to take two composite tanh-functions as test functions, each equipped with
two different widths w1,2 and v1,2. This was observed numerically for large Damköhler
numbers and also for small Lewis numbers, when the reaction zone becomes narrow. In
passing we note that for such cases the reaction term cK(T ) in (6) and (7) is zero except
in the narrow reaction zone. Outside this small steep region either c or T are close to
zero. The stationary equations can therefore be approximated by the uncoupled equations
0 = LeTxx + xTx and 0 = cxx + xcx, which are solved by error functions.

As described above, we restrict the solutions to the subspace of the test functions
Θ(η) and Ω(ζ), and determine the free parameters by minimizing the error made by this
restriction. We do this by projecting equation (4) onto the tangent space of the restricted
subspace spanned by ∂T/∂ai, and similarly, (5) onto the space with basis functions ∂c/∂ai,
where ai are the parameters of the tangent space. If we choose a combination of bell-
shaped test functions (9), the free parameters are ai = {f0, w, g0, v}, and the tangent
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space of the space of test functions is spanned by the basis functions

∂T

∂f0

=
Θ

f0

,
∂T

∂w
=
ηΘη

w
,

∂c

∂g0

= −Ω

g0

,
∂c

∂v
= −ζ Ωζ

v
. (11)

If we choose a plateau-like solution (10), we have the additional free parameters ν and µ,
and the basis functions of the tangent space are

∂T

∂f0

=
Θ

f0

,
∂T

∂w
=

1

2

( η

w
(s1 − s2) + ν(s1 + s2)

)

,
∂T

∂ν
=
w

2
(s1 + s2) ,

∂c

∂g0

= −Ω

g0

,
∂c

∂v
= −1

2

(

ζ

v
(s3 − s4) + µ(s3 + s4)

)

,
∂c

∂µ
= −v

2
(s3 + s4) ,

(12)

where s1 = sech2(η+ νw), s2 = sech2(η− νw), s3 = sech2(ζ +µv) and s4 = sech2(ζ −µv).
Hence, depending on our choices for the test functions, the basis functions of the tangent
space are represented by (11) or by (12). The projection is done by integrating the
product of the equations (6) and (7) with the corresponding basis functions over the η
and ζ domains. Minimizing the error caused by restricting the solutions requires this
projection to be zero. Inserting (8) into (6) and (7), we obtain

w2LeΘηη + ηΘη +Da (1 − Ω) K(Θ) = 0, (13)

v2 Ωζζ + ζ Ωζ +Da (1 − Ω) K(Θ) = 0. (14)

The projections of equations (13) and (14) onto the tangent space with basis functions
given in (11) or (12), depending on our choice of test functions, lead to the following
conditions

〈w2LeΘηη + ηΘη +Da (1 − Ω) K(Θ) | ∂T/∂ai〉η = 0, (15)

where the brackets indicate integration over the whole η domain, and

〈v2 Ωζζ + ζ Ωζ +Da (1 − Ω) K(Θ) | ∂c/∂bi〉ζ = 0, (16)

where the brackets indicate integration over the whole ζ domain. These are four (in the
case of bell-shaped functions) or six (in the case of plateau-like functions) equations for
the respective four or six parameters. However, for any of the choices of basis functions,
the resulting equations (15)-(16) are transcendental equations for the parameters, due
to the K(Θ) term. We therefore integrate this system numerically and use root finding
methods to obtain the free parameters.

In the following Section, we shall use this nonperturbative method to study the solution
near the bifurcation point for different values of the Lewis number. We will then study
the solution far from Dac in Section 5.

4 The solution near the saddle node

Numerical simulations of the system (6)-(7) reveals the existence of a saddle node bi-
furcation in which a stable solution branch collides with an unstable branch when the
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Damköhler number Da is decreased to a critical value Dac. As mentioned in Sec. 3, close
to the bifurcation point we may approximate the solutions of T and c by bell-shaped
functions. We therefore use such test functions in our ansatz (8) to solve (15)-(16). We
now show a comparison of the nonperturbative test function results with the correspond-
ing results from the numerical solution of the full system (6)-(7), obtained via shooting
methods for corresponding Da and Le.

4.1 Small Lewis numbers

For small Lewis numbers the reaction zone is narrow, and within the product zone tem-
peratures which are higher than the burnt temperature Tb (i.e. higher than 1 in our
rescaled model) can be obtained without much consumption of the reactant. However,
with increasing Damköhler number the temperature in the product zone will approach
the burnt temperature. In Fig. 1, we show the profiles of T and c for Le = 0.1, obtained
from the numerical solution of (6)-(7). We observe that the solutions of both T and c are
pulse-like near the bifurcation point, but as Da increases we see that the stable solutions
for both slowly become plateau-like. As we move away from Dac, the stable solution
for T first increases in amplitude, and then slowly decreases upon varying Da. On the
other hand, the unstable solutions for both T and c remain pulse-like (with decreasing
steepness) as we move further and further away from the saddle node.

−2 −1 0 1 2
0

0.5

1

1.5

2

x

T

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

c

(a) (b)

Figure 1: The steady solutions of the flame filament system (6)-(7) for Le = 0.1. Both
the stable solutions (denoted by solid lines) and the unstable solutions (denoted by dotted
lines) are shown for logarithmically spaced values of Da between Da = 4.62 (≈ Dac) and
Da = 150. (a) Profiles of T . (b) Profiles of c.

To model the pulse-like behaviour near the bifurcation point, we use bell-shaped test
functions (9) as our basis functions. As stated earlier, the exact functional form of our bell-
shaped function is arbitrary, and to illustrate this, we shall choose Gaussians (9) as well
as sech2-functions with Θ(η) = f0sech

2(η) and Ω(ζ) = g0sech
2(ζ) as our test functions.

From the numerical solution of the equations (15)-(16) with these basis functions, we can
obtain values for the amplitudes and inverse widths for our test functions over a range of
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Da. We compare these results with the amplitudes of T and c obtained from numerical
simulations of the full system (6)-(7). The full system of ordinary differential equations
is solved by a standard shooting method where we shoot from x = 0 to x = ∞.

As seen in Fig. 2, near the saddle node we find very good agreement between the
amplitudes f0 and 1−g0 obtained with these bell-shaped test functions, and the amplitudes
obtained by simulating the full ordinary differential equations (6) and (7). We observe
that there is not much difference between the set of results obtained using Gaussians,
and those obtained using sech2-functions. As we move away from the saddle node the fits
start to get worse along the stable branch, which is to be expected as the solutions of T
and c move away from pulse-like profiles as the Damköhler number increases. Also, as
expected, we find excellent agreement along the unstable branch even for larger Da, as
both the solutions of T and c remain pulse-like. This is true for all Lewis numbers (cf.
Fig. 6 and Fig. 8). In Fig. 3 we show the behaviour of the inverse pulse widths w and v of
the temperature and the concentration respectively. The inverse pulse width exhibits the
same functional dependence with Da typical for a saddle-node, at the same value of Dac,
as the amplitude in Fig. 2. Again good agreement between the test function approach
and the actual results of a simulation of the full system is seen. The pulse width for the
actual solutions of the full system (6) and (7) were determined by measuring the extent
x̄ of the pulse measured from x = 0 at which its value has dropped to half its value. For
a Gaussian, this implies that w =

√

ln(2)/x̄.
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1−
g 0

(a) (b)

Figure 2: Comparison of the numerical results for the amplitude, obtained using the
nonperturbative method with bell-shaped test functions (9), with the results for the full
system of ordinary differential equations (6) and (7) obtained via shooting for Le = 0.1
(denoted by stars). We use Gaussians (denoted by a solid line and a dashed line for
the stable and unstable branches respectively), as well as sech2-functions (denoted by a
dashed-dotted line and a dotted line for the stable and unstable branches respectively)
as our test functions. (a) The amplitude for the temperature, f0, versus Da. (b) The
amplitude for the concentration, 1 − g0, versus Da.
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Figure 3: Comparison of the numerical results for the inverse pulses widths, obtained
using the nonperturbative method with bell-shaped test functions (9), with the results
for the full system of ordinary differential equations (6) and (7) obtained via shooting for
Le = 0.1 (denoted by stars). We use Gaussians (denoted by a solid line and a dashed
line for the stable and unstable branches respectively) as our test functions. (a) The
inverse pulse width for the temperature, w, versus Da. (b) The inverse pulse width for
the concentration, v, versus Da. Note the different scales in (a) and (b).

We note that the combination of tanh-functions (10) which were initially designed to
approximate plateau-like solutions can also be used to approximate pulse-like solutions for
sufficiently small ν (or µ respectively). However, since the ansatz (10) involves 6 param-
eters (as opposed to 4 parameters for the bell-shaped functions (9)), and as root-finding
becomes more and more sensitive to a correct initial guess in higher dimensions, we use
bell-shaped functions (11) with less computational effort. However, the tanh-functions
are very well suited to reproduce the observed increase of the temperature within the
product zone with increasing Damköhler number and the subsequent decrease. This is
depicted in Fig. 4. Note that for this range of Damköhler numbers the combustion wave
has not reached a plateau-like shape (see Fig. 1).
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1.95
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Figure 4: Comparison of the numerical results describing the behaviour of the stable
branch of T in the range 10 < Da < 50 for Le = 0.1. The results for the amplitude, f0,
obtained using the nonperturbative method with basis functions (10) are denoted by a
solid line, and the results obtained via shooting of the full system of ordinary differential
equations (6) and (7) are denoted by stars.

4.2 Equal diffusion: Le = 1

The case Le = 1 has attracted much attention because it allows for a great simplification
due to the relation T = 1−c. The two equations (6)-(7) collapse into one single equation.
We therefore only need one test function to describe the full behaviour of the system. For
this case, the profiles of T and c obtained from numerical simulations of (6)-(7) are shown
in Fig. 5. Again we see that along the stable branch both the solutions are pulse-like near
the bifurcation point, and become plateau-like as Da increases. However, the transition
from pulse-like to plateau-like is a lot quicker than it is for smaller Le. Along the unstable
branch, the solution remains pulse-like for large Da.
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Figure 5: The steady solutions of the flame filament system (6)-(7) for Le = 1. Both the
stable solutions (denoted by solid lines) and the unstable solutions (denoted by dotted
lines) are shown for logarithmically spaced values of Da between Da = 6.963 (≈ Dac)
and Da = 50. (a) Profiles of T . (b) Profiles of c.

To model the behaviour of the solution near Dac, we once again use bell-shaped test
functions (9) as our basis functions. As seen in Fig. 6, near the saddle node we again
find good agreement between the amplitude, f0, and the inverse pulse width, w, obtained
from the solution of equations (15)-(16) with these test functions, and the amplitude and
inverse pulse width of T obtained by integrating the full system (6)-(7). Note that for
Le = 1 we have g0 = f0 and v = w since c = T . However, the fit quickly deviates from the
solution for the stable branch as anticipated. As with the case for small Lewis numbers,
we see that the fit along the unstable branch remains very good even as we move further
away from the saddle node.
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Figure 6: (a) Comparison of the numerical results for the amplitude of the temperature, f0,
obtained using the nonperturbative method with Gauss test functions (denoted by a solid
line and a dashed line for the stable and unstable branches respectively), with the results
for the full system of ordinary differential equations (6) and (7) obtained via shooting for
Le = 1 (denoted by stars). (b) Comparison of the numerical results for the inverse pulse
width of the temperature, w, obtained using the nonperturbative method with Gauss test
functions (denoted by a solid line and a dashed line for the stable and unstable branches
respectively), with the results obtained via shooting for Le = 1 (denoted by stars).

4.3 Large Lewis numbers

The large Lewis number regime is often called the “solid” regime. The heat conduction is
much larger than the diffusivity of the reactant. This implies a broader reaction zone when
compared to those corresponding to smaller Lewis numbers. The temperature within the
product zone is less than the burnt temperature (i.e. in our rescaled model less than
1) and the reactant is consumed more than in the case of small Lewis numbers. Again,
when increasing the Damköhler number, the temperature within the product zone will
approach 1. In Fig. 7 we show the profiles of T and c for Le=10, obtained from the
numerical solution of (6)-(7). We note that the profiles of both species broaden further
close to the bifurcation point. On increasing Da from Dac, the profiles of the solutions
very quickly change from pulse-like to plateau-like, and therefore the range of Damköhler
numbers for which a bell-shaped function is a good approximation is diminished. We shall
therefore consider the basis functions (9) as well as (10) to model the behaviour of the
solutions near the saddle node.
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Figure 7: The steady solutions of the flame filament system (6)-(7) for Le = 10. Both the
stable solutions (denoted by solid lines) and the unstable solutions (denoted by dotted
lines) are shown for logarithmically spaced values of Da between Da = 8.462 (≈ Dac)
and Da = 30. (a) Profiles of T . (b) Profiles of c.

In Figs. 8 and 9 we see that the amplitudes and inverse pulse widths obtained using
the nonperturbative method shows good agreement with the numerically obtained am-
plitudes near Dac. Again the behaviour of the unstable branch is well approximated by
using bell-shaped test functions. However, we see that in Fig. 8 the agreement of the am-
plitudes obtained by results from the test function approach (15)-(16) using bell-shaped
test functions (9) with the respective amplitudes of T and c obtained by the simulation
of the full system (6)-(7) is not as good for the stable branch as it is for smaller Lewis
numbers. The same can be seen for the inverse pulse widths in Fig. 9. From Fig. 7 we see
that the solution rapidly evolves into a plateau-like solution; we therefore use tanh-basis
functions (10). In Fig. 8 it is seen that the amplitudes are much better recovered using the
tanh-function ansatz (10). In Figs. 10 and 11 we show the results for the remaining four
parameters needed to approximate the solution by tanh-functions as calculated by our
nonperturbative test function method. To compare with solutions obtained by numerical
simulations of the full system (6)-(7) we measured the distance from x = 0 whereby the
solution of T and c have fallen to three quarters and to one quarter of its maximal value
at x = 0. This yields two equations each for T and c, which allows us to determine
the parameters w, ν and v, µ. Again the results are better for tanh-functions than the
corresponding results for the Gaussian test functions depicted in Fig. 9.
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Figure 8: Comparison of the numerical results for the amplitude, obtained using the
nonperturbative method with the basis functions for bell-shaped functions (9) (denoted
by a solid line and a dashed line for the stable and unstable branches respectively) and the
basis functions (10) (denoted by a dash-dotted line and a dotted line for the stable and
unstable branches respectively), with the results for the full system of ordinary differential
equations (6) and (7) obtained via shooting for Le = 10 (denoted by stars). (a) The
amplitude for the temperature, f0, versus Da. (b) The amplitude for the concentration,
1 − g0, versus Da.
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Figure 9: Comparison of the numerical results for the inverse pulse widths, obtained
using the nonperturbative method with the basis functions for bell-shaped functions (9)
(denoted by a solid line and a dashed line for the stable and unstable branches respec-
tively), with the results for the full system of ordinary differential equations (6) and (7)
obtained via shooting for Le = 10 (denoted by stars). (a) The inverse pulse width for the
temperature, w, versus Da. (b) The inverse pulse width for the concentration, v, versus
Da.
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Figure 10: Comparison of the numerical results for the inverse pulse widths, obtained using
the nonperturbative method with the basis functions for tanh-functions (10) (denoted by
a solid line and a dashed line for the stable and unstable branches respectively), with
the results for the full system of ordinary differential equations (6) and (7) obtained via
shooting for Le = 10 (denoted by stars). (a) The inverse pulse width for the temperature,
w, versus Da. (b) The inverse pulse width for the concentration, v, versus Da.
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Figure 11: Comparison of the numerical results for the extent of the reaction zone, ob-
tained using the nonperturbative method with the basis functions for tanh-functions (10)
(denoted by a solid line and a dashed line for the stable and unstable branches respec-
tively), with the results for the full system of ordinary differential equations (6) and (7)
obtained via shooting for Le = 10 (denoted by stars). (a) The extent of the reaction zone
of the temperature, ν, versus Da. (b) The extent of the reaction zone of the concentration,
µ, versus Da.

4.4 The solution at the saddle node

The solution of the flame filament system at the saddle node bifurcation depends on the
value of the Lewis number. From a numerical analysis of the system (4)-(5), the value of
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Dac is seen to increase with Le. In Fig. 12, we show a comparison of the critical values
of Da calculated by the nonperturbative method with the aforementioned numerically
obtained values of Dac, over a range of Lewis numbers. We see that the critical Damköhler
number does not vary much for large Lewis numbers. For small Lewis numbers we see
that both the tanh-test functions (10) and the Gaussian test functions (9) approximate
the critical Damköhler number very well. For larger values of Le, the tanh-test function
ansatz is better suited to calculate Da, as we have already seen in Section 4.3, due to the
rapid change of shape when varying Da.

0 5 10 15 20 25 30
4

5

6

7

8

9

Le

D
a c

Figure 12: Comparison of the numerically obtained values of the critical Damköhler
number (denoted by stars) obtained from integrating the full system (4)-(5), with the
values of Dac obtained using the nonperturbative method with bell-shaped test functions
(9) (denoted by a solid line) over a range of Le and with a tanh test function (10) (denoted
by a dashed line).

We note that the values of Dac calculated via the nonperturbative method approach a
finite value for large Le. This is qualitatively similar to the behaviour of the numerically
obtained values of Dac for large Le.

It has been shown in [18] that the critical Damköhler number depends very strongly
on the parameter ǫ which is related to the inverse of the activation energy. In Fig. 13 we
present a comparison of the functional dependency of Dac on ǫ, which we obtain from the
nonperturbative method using bell-shaped test functions (9), with the one obtained by
numerically simulating the full system (6)-(7) at Le = 0.1. From Sec. 4.1, we recall that
such test functions were found to be a good approximation to the solution for Le = 0.1
and ǫ = 1. As ǫ increases we see very good agreement between the two sets of values.
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Figure 13: Comparison of the values of the critical Damköhler number, Dac, at Le = 0.1
obtained from integrating the full system (6)-(7) numerically (denoted by stars) with those
obtained by the nonperturbative method using bell-shaped test functions (9) (denoted by
a solid line), over a range of the parameter ǫ.

5 The solution far from the bifurcation point

We recall that for Da≫ Dac the profiles of the stable solutions of T and c are plateau-like
solutions with a narrow reaction zone. The profiles of the unstable solutions are pulse-like
and, as we have shown in Sec. 4, they can be well described even for large Da using
bell-shaped test functions (11). In this section, we are concerned with the stable branch.

It can be seen from Figs. 1, 5 and 7 that for large Da the reactant is fully consumed
in the central region of the filament, and the extent of the product zone in which the
reactant is consumed increases with Da. This phenomenon is independent of the Lewis
number. We also note that for large Lewis numbers and large Damköhler numbers the
interior widths of the temperature and of the reactant zones product zone are equal and
we have µ = ν. The amplitudes f0 and g0 both tend to 1 for large Da. This significantly
simplifies the analysis of the solution. In the following we employ a phenomenological
argument to determine the extent of the reaction zone µ.

We now present an empirical formula for the wave speed V0 of unstirred combustion
fronts. For simplicity, we denote by Da the reaction kinetics for the unstirred case as well.
We measured the wave speed of the unstirred version of the system (4) using a shooting
algorithm. We find that V0 as a function of Da clearly exhibits square-root behaviour. In
particular we find that for large Lewis numbers V0 ∼

√
DaLe is a good approximation.

The scaling behaviour is reminiscent of an underlying autocatalytic structure for largeDa;
numerical simulations show that one can crudely approximate c ≈ 1−T and K(T ) ≈ αT ,
where α is a (Lewis number dependent) constant. We determined V0(Le) numerically
for several values of Da (Da = 100, 500, 1000, 5000, 10000). For large Le the quotient
V0/

√
DaLe reaches a constant value of 0.669 with only very small deviation for the

smaller values of the Damköhler number indicating that there is no Da-correction to the
square-root behaviour of the velocity. However we can find a Lewis-number correction by

17



employing linear regression. We find as an empirical formula for V0,

V0 = 0.669
√
DaLe(1 − 0.158

Le
) . (17)

We have verified this equation by fitting to the velocity V0 as a function of Da for sev-
eral values of a fixed Lewis number (Le = 1, 10, 25, 50, 1000, 5000, 10000). This formula
is similar in construction to the formula for a different solution branch recently derived
analytically in [31].

If we try to calculate the free parameters of the plateau-like test functions (10) from the
algebraic equations (15)-(16) for the free parameters of the plateau-like test functions (10),
we encounter difficulties. It turns out that the system of algebraic equations is degenerate.
These problems seem to occur with systems where the plateau-solution connects a stable
solution with an unstable one. In the Appendix we show analytical results for the tanh-
test function method for a simple autocatalytic system which illustrates this degeneracy.
However, for our system we may employ a simple phenomenological argument [21, 28]
to calculate ν and µ for large Lewis numbers and large Damköhler numbers. Stationary
fronts in lamellar systems arise from a balance between the diffusive front propagation
prompted by the kinetic reaction term and the contracting x-dependent velocity due to
the chaotic stirring. A balance of the front velocity V0 and the velocity of chaotic stirring
x is reached when V0 = x, which implies that we get a stationary front when V0 = ν.
Hence we approximate

ν = 0.669
√
DaLe(1 − 0.158

Le
) . (18)

In Fig. 14 we show that the phenomenological argument is indeed a good approximation
for ν and µ.
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Figure 14: Comparison of the results for the extent of the product zone, obtained using
the phenomenological formula (18) (denoted by a solid line), with the numerical results
obtained from the solution of the system (4)-(5) (denoted by stars), for the width of T
(given by ν), in the cases (a) Le = 1, (c) Le = 10 and (e) Le = 100, and the width of c
(given by µ), in the cases (b) Le = 1, (d) Le = 10 and (f) Le = 100.
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6 Summary

We studied the effect of stirring on a combustion system. We used a reduced one-
dimensional filament model introduced in [18, 19] to describe the dynamics of the cross-
filament structure. The effect of stirring is to remove heat from the filaments by quenching
it. Subsequently the front does not contain enough heat to ignite the preheat zone. For
small values of the Damöhler number, i.e. for large stirring rates, the reaction cannot be
sustained. Only above a critical Damköhler number can nontrivial states form through
the filaments. We used a nonperturbative method developed in [27], to determine the
critical Damköhler number and also the actual solutions close to the Damköhler number.
The critical Damköhler number Dac is not very sensitive to variations in the Lewis num-
ber provided it is large enough. This phenomenon is captured by our method. We found
that the behaviour close to criticality can be well described using bell-shaped functions
such as Gaussians (9) for small Lewis numbers, and for large Lewis numbers in the “solid”
regime by tanh-test functions. The unstable solution branch can be well described using
bell-shaped functions for all Lewis numbers. In Fig. 15 we show the actual solutions of
the full problem (4) and (5) for Le = 1 where we have T = c. We note that the case
Le = 1 is special in the sense that it allows us to use the test function method which
otherwise fails far away from the bifurcation for tanh-functions due to a degeneracy (see
Appendix). For Le = 1, we can actually use the test function approach to calculate the
inverse pulse width w = v provided we also employ the phenomenological formula for the
extent of the reaction zone ν = µ (18), and also fix f0 = 1.
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Figure 15: Comparison between numerical simulations of the PDE (4)-(5) and the test
function method for Le = 1. The plot shows a pulse like solution at Da ≈ Dac and
a plateau-like solution at Da = 1000. Superimposed with crosses are the results of the
test function method. We used Gaussian test functions (9) for the pulse like solution
at the respective Dac, and tanh-functions (10) for the plateau like solution. For the
tanh-function ansatz ν is calculated by the phenomenological formula (18).

We then described the solutions for large Damköhler numbers. For small Lewis num-
bers the temperature approaches the burnt temperature T = 1 from above, and higher
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temperatures can be reached in the product zone. For larger Lewis numbers the burnt
temperature is approached for higher Damköhler numbers from above. We note that the
largest change of the temperature with respect to the Damköhler number occurs close to
the critical Damköhler number. For all Le, the concentration of the reactant c reaches
0 within the product zone already slightly above the critical Damköhler number, corre-
sponding to a full consumption of the fuel within the product zone. The extent of the
product zone as a function of the Damköhler number was also described and a clear
square-root behaviour was observed. A simple phenomenological argument allowed us to
explain this dependence. We have determined an empirical formula for the wave speed
of the unstirred combustion system for high Damköhler and high Lewis numbers. This
empirical formula allowed us to determine the actual form of combustion fronts far away
from the bifurcation with good accuracy for large Lewis numbers.

We notice that V0 decreases (for a fixed Damköhler number) on decreasing the Lewis
number. This can be seen from Fig. 14, where ν = V0 is shown. Now, in dimensional
form, Le = κ/(ρCpD), where ρ, κ, Cp and D are the respectively the density, thermal
conductivity, specific heat capacity and molecular diffusivity of the fuel [30, 32]. Decreas-
ing the Lewis number is equivalent to increasing the relative importance of D, ρ and Cp in
relation to κ. Reducing κ obviously decreases the ability of heat to propagate, and hence
the combustion speed. Higher densities result in increased fuel mass in each location,
which means more heat is needed in a given area to ignite all of the fuel before the wave
moves on. Fuels with increased Cp require more heat to increase the temperature by the
a specified amount. Finally, increasing D increases the transport of burnt fuel into the
unburnt region and vice-versa, interfering with front propagation.

A Autocatalytic System for large Damköhler num-

bers

Here we perform explicitly the calculations for the test function ansatz using tanh-test
functions to describe the solution for large Damköhler numbers for the simple lamellar
model of the autocatalytic Kolomogorov-Petrovsky-Piscounoff equation [33]

∂u

∂t
= D

∂2u

∂x2
+ x

∂u

∂x
+Dau(1 − u) . (19)

Again the solution is plateau-like for large Damköhler numbers, which motivates a tanh-
function as a test function. We write u(x, t) in the form

u(x, t) =
1

2
fφ(η) with η = wx , (20)

where
φ(η) = tanh(η + wν) − tanh(η − wν) .

We note that

uxx =
1

2
fw2φ′′(η) and xux =

1

2
fηφ′(η) .
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We study steady-solutions of (19) using the test function (20) and consider the projections

〈Duxx + xux +Da(u− u2) | uf〉 = 0 ,

〈Duxx + xux +Da(u− u2) | uw〉 = 0 ,

〈Duxx + xux +Da(u− u2) | uν〉 = 0 .

Introducing a = wν and ψ(η) = sech2(η+a)+ sech2(η−a) we can rewrite the projections
as

−Dw2〈φ′2〉 − 1

2
〈φ2〉 +Da

(

〈φ2〉 − f

2
〈φ3〉

)

= 0 ,

− w2D

2

(

1 + a
∂

∂a

)

〈φ′2〉 + (〈η2φ′2〉 + νw〈ηφ′ψ〉)

+ Da

(

a
∂

∂a
− 1

)(

1

2
〈φ2〉 −

(

f

6

)

〈φ3〉
)

= 0 ,

−Dw
2

2

∂

∂a
〈φ′2〉 + 〈ηφ′ψ〉 +Da

∂

∂a

(

1

2
〈φ2〉 −

(

f

6

)

〈φ3〉
)

= 0 .

For large Damköhler numbers we note the scaling ν ∼
√
Da, w ∼

√
Da and subsequently

a ∼ Da. In the limit Da → ∞, the inner products simplify significantly (see [29] for the
explicit analytical expressions of the occurring inner products and their large Da-limits).
At the leading orders in Da we obtain

1 − f = 0 , (21)

−w
2D

3
+
Da

2
(1 − f) = 0 , (22)

−2

3
a+Da

(

1 − 2

3
f

)

= 0. (23)

This has the solution f = 1, w = 0 and a = Da/2. For Da→ ∞ we therefore obtain

ν =
a

w
→ ∞ . (24)

Hence the solution tends to the stable state u = 1, and not the observed plateau-like
solution.

If we ignore the second projection (22) we can obtain the correct solution by employing
the phenomenological argument that ν = V0 where V0 = 2

√
Da [34]. The third equation

(23) then yields w =
√
Da/4 which is a good approximation for the large Da-limit [28].
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