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Abstract

Using a sensitive statistical test we determine whether or not one can detect
the breakdown of linear response given observations of deterministic dynam-
ical systems. A goodness-of-fit statistics is developed for a linear statistical
model of the observations, based on results on central limit theorems for
deterministic dynamical systems, and used to detect linear response break-
down. We apply the method to discrete maps which do not obey linear
response and show that the successful detection of breakdown depends on
the length of the time series, the magnitude of the perturbation and on the
choice of the observable.
We find that in order to reliably reject the assumption of linear response for
typical observables sufficiently large data sets are needed. Even for simple
systems such as the logistic map, one needs of the order of 106 observa-
tions to reliably detect the breakdown with a confidence level of 95%; if
less observations are available one may be falsely led to conclude that linear
response theory is valid. The amount of data required is larger the smaller
the applied perturbation. For judiciously chosen observables the necessary
amount of data can be drastically reduced, but requires detailed a priori
knowledge about the invariant measure which is typically not available for
complex dynamical systems.
Furthermore we explore the use of the fluctuation-dissipation theorem (FDT)
in cases with limited data length or coarse-graining of observations. The
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FDT, if applied naively to a system without linear response, is shown to be
very sensitive to the details of the sampling method, resulting in erroneous
predictions of the response.

Keywords: linear response theory; fluctuation-dissipation theorem;
climate science

1. Introduction

An important question in the study of probabilistic properties of dynamical
systems is how to determine the response of a system if subjected to a small
perturbation. For example, in climate science we would like to know how the
global mean temperature changes upon increasing CO2 levels. This problem
was solved in statistical physics in the context of thermostatted Hamiltonian
systems, establishing the framework of linear response theory [45, 11, 65, 51].
In essence, linear response theory employs a Taylor expansion of the per-
turbed invariant measure around the unperturbed equilibrium measure; this
then allows to calculate averages of observables in the perturbed system en-
tirely from knowledge of the statistics of the unperturbed system.
The study of linear response involves two issues: proving differentiability
of the response and finding an expression for the derivative of the response.
To establish linear response, the invariant measure needs to be differentiable
with respect to the parameter describing the magnitude of the perturbation.
For the existence of an analytical formula for the response in terms of the
equilibrium fluctuations of the unperturbed system, which is the statement
of the celebrated fluctuation-dissipation theorem (FDT), the invariant mea-
sure needs additionally to be differentiable with respect to the phase space
variables.
Applying this framework to deterministic dynamical systems, in particular
to forced dissipative systems whose dynamics evolves on an attractor of zero
Lebesgue measure in the full space, has been a challenge. In a series of pa-
pers, Ruelle showed that the response is linear for the class of uniformly
hyperbolic Axiom A systems, i.e. the invariant measure is differentiable
with respect to the magnitude of the perturbation [59, 60, 61, 62].

Due to the singular nature of the invariant measure of forced dissipative
systems the fluctuation-dissipation theorem, however, cannot hold. Heuris-
tically this failure can be understood by realizing that typical perturbations
will have a non-zero projection along the stable manifold, generally trans-
verse to the attractor, whereas the invariant measure is supported entirely
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on the attractor. Therefore one cannot estimate the response by solely con-
sidering correlations of the unperturbed system. A linear response formula
can still be expressed, but involves the full linear tangent dynamics and
must take into account the evolution of exponentially attenuated perturba-
tions along stable directions rather than just the unperturbed fluctuations
along the unstable manifolds as in the FDT.
The hope that linear response theory can be extended to more general
chaotic dynamical systems has been dampened by numerical results on the
tent map [28] and rigorous analysis by Baladi and co-workers [7, 8, 6, 10, 24].
In particular, it was shown that the logistic map does not obey linear re-
sponse. This is due to the non-smooth changes of the invariant measure
when perturbing from a chaotic parameter value to a periodic one or vice
versa. Even worse, even when restricting to the Cantor set of chaotic pa-
rameter values the measure is not differentiable in the sense of Whitney.
On the other hand, there are numerical simulations suggesting that linear
response might exist for some examples of non-uniformly hyperbolic systems
[57, 16, 48] including the Lorenz ’63 system which involves homoclinic tan-
gencies. Furthermore, the lack of structural stability, which was believed to
be an obstruction to linear response theory in the climate system [52], does
not preclude the existence of linear response as was rigorously shown in [26].
The current belief in the mathematical community is that a sufficient condi-
tion for the existence of linear response is the summability of the correlation
function; the summability of the correlation function is, however, shown not
to be necessary for general observables [44, 9].

Notwithstanding the lack of rigorous mathematical proofs for its validity for
general forced dissipative non-equilibrium systems, linear response theory
has been taken up in the climate sciences to predict the response of the
climate, as was first proposed by Leith [47]. Linear response theory and
the fluctuation-dissipation theorem has since been used with some success
by several groups. It has been applied to various toy models related to
atmospheric chaos [50, 48, 1, 2, 22, 23], barotropic models [12, 34, 3], quasi-
geostrophic models [27], atmospheric models [55, 18, 35, 33, 36, 58, 37] and
coupled climate models [46, 43, 29, 56]. These successes lead scientists to
believe that high-dimensional complex systems may very well obey linear
response. The standard argument is that complex systems involve a mul-
titude of interacting processes on several temporal and spatial scales and
behave effectively stochastically with a smooth invariant measure [50]. This
point of view seems at least reasonable for observables of the slow dynamics
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of complex multi-scale systems which in the limit of infinite time-scale sep-
aration are asymptotically stochastic [54, 32, 42]. In the case of stochastic
dynamical systems linear response theory can indeed be justified [39, 38].
However, several instances are now known where atmospheric and oceanic
dynamics exhibits a rough dependence on parameters [17], and where, even
if linear response theory is observed, the fluctuation-dissipation theorem is
not valid [21].

On a more fundamental level, however, it is by no means clear that high-
dimensional complex systems do obey linear response theory. In this paper
we do not attempt to answer this question. Rather, we consider the fol-
lowing practical issue: systems which do not obey linear response theory
are observed with finite time series. In such cases we seek to show that the
breakdown might not be detectable, and the system’s observed behavior may
appear consistent with linear response theory. Moreover, the choice of the
observable is crucial for the detectability of the breakdown of linear response
in finite time series. In particular, we will show that global observables are
less able to detect the non-smoothness of the invariant measure whereas lo-
cal observables which hone in on the roughness of the invariant measure will
make the non-smoothness apparent for smaller amounts of data. Finally,
the perturbation size also impacts on the detectability of breakdown, with
smaller perturbations requiring more data for successful breakdown detec-
tion.

This work is motivated by the contradiction between the reported success
of linear response theory in the climate sciences and rigorous mathematical
results proving the non-existence of linear response theory for a large class
of dynamical systems.

The paper is organized as follows. In Section 2 we briefly review linear
response theory and the fluctuation-dissipation theorem. In Section 3 we
propose a goodness of fit test to probe for the validity of linear response in
time series. In Section 4 we discuss the logistic map, demonstrate the mech-
anism leading to the breakdown of linear response for this one-dimensional
map and show how this breakdown might not be apparent with time series
of insufficient length. We show the effect of finite data size as well as how the
choice of the observable can either mask or emphasize the non-smoothness
of the invariant measure. In Section 6 we show further that an application
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of the FDT in situations where linear response does not exist, cannot pro-
vide any reliable statistical information, not even in an averaged sense. We
conclude with a summary in Section 7.

2. Linear response theory

We consider here a family of dynamical systems fε : M → M on some
space M . We assume that the map fε depends smoothly on the parameter
ε and that for each ε the dynamical systems admits a unique invariant
physical measure µε, e.g. absolutely continuous measures or Sinai-Ruelle-
Bowen measures (SRB). An ergodic measure is called physical if for a set
of initial conditions of nonzero Lebesgue measure the temporal average of
a typical observable converges to the spatial averages over this measure.
Considering an observable A : M → R, we are interested in the change of
the average of the observable

〈A〉ε =
∫

M
Adµε

upon varying ε. A system is said to have linear response if the deriva-
tive

〈A〉′ε0 :=
∂

∂ε
〈A〉ε|ε0

exists. It is obvious that a sufficient condition for linear response is that
the invariant measure µε is differentiable with respect to ε. If the limit does
not exist, we say there is a breakdown of linear response. We assume that
the observable captures sufficient dynamic information about the dynami-
cal system; for example, an odd observable on a system symmetric about
0 would be identically zero regardless of whether the system had a linear
response or not.

One may further ask whether, if linear response exists, a computable ana-
lytical expression for the linear response

〈A〉ε ≈ 〈A〉ε0 + 〈A〉′ε0 δε (1)

can be found for small values of δε = ε − ε0. To write down an expression
of the linear response, we introduce a vector field X as X ◦ fε0 := ∂εfε|ε=ε0 .
Note that the introduction of the vector field X is the standard way of
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formulating perturbations in statistical physics as fε = fε0 + δεX(fε0). The
linear response 〈A〉′ε0 can then be formally expressed as

∂

∂ε
〈A〉ε|ε0 =

∞
∑

n=0

〈X(x)∇(A ◦ fn
ε0)(x)〉ε0 , (2)

for x ∈ M . Provided the unperturbed invariant measure µε0 has a density
ρε0(x) that is differentiable with respect to x ∈ M and non-vanishing, one
can perform partial integration in (2) to rewrite the linear response in terms
of an integral of a correlation function. This form of the linear response
formula is known as the fluctuation-dissipation theorem [60, 51] and reads
as

∂

∂ε
〈A〉ε|ε0 = −

∞
∑

n=0

〈(∇(ρε0(x)X(x))

ρε0(x)

)

A ◦ fn
ε0(x)

〉

ε0

. (3)

In the form (3) the response formula is easier to apply to a numerical inte-
gration or to experimental data than the original response formula (2), as it
can be estimated directly from a long integration. The assumption that the
invariant measure is differentiable is, however, a strong limitation, as it fails
for dissipative systems with singular measures with support on an attractor
as well as for absolutely continuous maps involving singularities such as the
logistic map (see Section 4).

Introducing the notation of a divergence operator with respect to a density
ρ

divρB (x) =
div (ρB)(x)

ρ(x)
,

the response formula (3) can be concisely written as

∂

∂ε
〈A〉ε|ε0 = −

∞
∑

n=0

Cn(divρε0 X,A) , (4)

with the correlation function Cn between two observables A and B defined
as

Cn(A,B) = 〈A B ◦ fn〉ε0 − 〈A〉ε0 〈B〉ε0 .
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For sufficiently fast decay of correlations one can estimate (3) from a time
series xi=1,...,N of finite length N via

∂

∂ε
〈A〉ε|ε0 ≈ −

nmax
∑

n=0

1

N − n

N−n
∑

i=1

(

divρε0 X
)

(xi)A(xi+n) (5)

with 1 ≪ nmax ≪ N . This expression allows for the estimation of the first-
order response to a perturbation using a times series of the unperturbed
system, provided the unperturbed density ρε0 can be estimated form the
time series as well. In the climate sciences ρε0 is mostly approximated ei-
ther via a quasi-Gaussian approximation [33, 36] or by kernel smoothing [22].

Before exploring examples where linear response does not exist, we show
in Figure 1 an example of linear response for the doubling map fε(x) =
mod(2x + ε sin(4πx), 1) which for ε = 0 admits the Lebesgue measure as
its invariant measure. Here the fluctuation-dissipation formula (5) which
becomes

∂

∂ε
〈A〉ε|ε0 = −π

accurately reproduces the actual response. We estimate the actual response
numerically using a spectral method. In particular, we approximate the
transfer operator which propagates densities under the perturbed dynam-
ics fε (see, for example, [5]) by projecting onto a finite number of basis
function[25, 15, 63]. For the doubling map we choose 100 trigonometric
functions. The invariant measure ρε is then approximated by the eigen-
function corresponding to the eigenvalue 1 of the approximated transfer
operator. The advantage of spectral methods over using a long but finite
time series with subsequent binning is its high accuracy and fast conver-
gence with the number of resolved eigenfunctions [63]. Their applicability,
however, is restricted to low-dimensional systems.

3. Testing for linear response in finite time series

In this section we develop a quantitative goodness-of-fit test for the de-
tectability of linear response in time series of finite size which allows to make
statements about the significance of an observed linear response. Given a
family of chaotic maps fε that may or may not obey linear response, we
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Figure 1: Response of the doubling map to the perturbation X(x) = sin 2πx for an
observable A(x) = cos 2πx. The continuous line represents the actual response, the dashed
line depicts the result of the fluctuation-dissipation theorem (5). Note that for small values
of the perturbation ε the two curves are indistinguishable.

test for linear response at some reference state with parameter ε = ε0 by
examining the linear dependency of the response

δA = 〈A〉ε − 〈A〉ε0 (6)

for M > 2 different values of the perturbation parameter ε1, . . . , εM , by
sampling N1, . . . , NM consecutive values from the equilibrium dynamics of
fε1 , . . . , fεM , respectively. Explicitly, for each i = 1, . . . ,M , we have time
series xin = fεi(x

i
n−1) for n = 1, . . . , NM . The initial conditions xi0 are dis-

tributed according to the physical measure associated with fεi .
We consider bounded and continuous observables and assume that for each
member of the family fεi the autocorrelation Cj(A,A) decays sufficiently
rapidly, and that the lengths of the time series Ni are large compared to
typical decay times of the autocorrelation function; in practice we choose
Ni ≫ τA,εi, where τA,εi is the 1/e-folding time of A under the dynamics fεi .
We further set, for simplicity, Ni = N for all i.

For a large class of chaotic dynamical systems, the sample averages of the
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observations

Āi =
1

Ni

Ni
∑

n=1

A(xin) (7)

obey the central limit theorem and are distributed asymptotically asN
(

〈A〉εi , σ2
i /Ni

)

[53, 20]. The variances σ2
i are given by the Green-Kubo formula in terms of

lag-correlations of fεi as

σ2
i = C0(A,A) + 2

∞
∑

j=1

Cj(A,A) . (8)

Numerically, the variances are determined as a Monte-Carlo estimate from
observations of the observables under the perturbed dynamics using the
central limit theorem. According to the central limit theorem

Āi = 〈A〉εi +
σi√
N

ξi , (9)

for i = 1, . . . ,M and iid noise ξi ∼ N(0, I). If the dynamical system in-
deed has linear response and provided the perturbations δεi = εi − ε0 are
sufficiently small, the following statistical model holds for Āi

Āi = α0 + α1 δεi +
σi√
N

ξi , (10)

with α0 = 〈A〉ε0 and α1 = 〈A〉′ε0 for some unperturbed reference state with
ε = ε0. Note that the ξi are independent as the samples from each perturbed
system are independent.

To determine the parameters α0 and α1 of the model (10) from time series
we apply a weighted least squares fit to obtain

(

α̂0

α̂1

)

= (DTD)−1DTY

with the design matrix

D =







1/σ1 δε1/σ1
...

...
1/σM δεM/σM
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and the vector of scaled observations

Y =







Ā1/σ1
...

ĀM/σM






.

Higher-order responses can naturally be incorporated by adding a quadratic
term α2 δε

2
i to (10) and employing higher-order regression allowing, in prin-

ciple, for a larger range of perturbations (in case linear response exists).

To test whether the observations could have been drawn from the linear
model (10) with normally distributed errors ξi with mean zero and vari-
ance 1, we choose a Pearson χ2-test to test the goodness-of-fit test with
statistics

χ2 = N
M
∑

i=1

(

Yi −
1

σi
(α̂0 + α̂1εi)

)2

= N Y T (I −H)Y, (11)

where the idempotent hat matrix

H = D(DTD)−1DT

maps scaled observations Y to their linear fits, i.e. HY = D(α̂0 α̂1)
T [14].

If the response of the underlying dynamical system is linear, χ2 has a χ2-
distribution with M −2 degrees of freedom and expectation value Eχ2

M−2 =
M − 2. We therefore introduce as a measure for the breakdown of linear
response the difference between the χ2 test statistic for the scaled obser-
vations Yi = Āi/σi and the expectation of the test statistic under the null
hypothesis of linear response

q =
1

N

(

χ2 − Eχ2
M−2

)

. (12)

Defining W as the vector with components Wi = 〈A〉εi/σi we can use the
central limit theorem (9), which holds independent of the existence of linear
response, to obtain the following expressions for the mean and variance of
the breakdown parameter. The mean is calculated as

Eq =
1

N

(

Eχ2 − Eχ2
M−2

)
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= E

(

(W +
1√
N

ξ)T (I −H)(W +
1√
N

ξ)− 1

N
Eχ2

M−2

)

= ‖W −HW‖2, (13)

where we used that H is idempotent. Hence q is a random variable whose
expected value measures the difference between the actual response 〈A〉εi
and an assumed linear response α0 + α1εi as calculated via least square
regression. We have Eq ≥ 0 with equality only for W = HW , i.e. if the
actual response is linear. The variance of the breakdown parameter q is
calculated as

Vq = E

(

(W +
1√
N

ξ)T (I −H)(W +
1√
N

ξ)− M − 2

N
− Eq

)2

=
1

N
E

(

ξT (I −H)(2W +
1√
N

ξ)− M − 2√
N

)2

.

This shows that q is a consistent estimator for the mismatch Eq = ‖W −
HW‖2 since Vq → 0 for N → ∞. In the numerical experiments in Section 5
we will consider Monte-Carlo estimates of the mismatch over realizations qj
differing in their initial condition and set

q̂ =
1

K

K
∑

j=1

qj . (14)

Now, consider a dynamical system which does not obey linear response, i.e.
Eq 6= 0. Using Chebyshev’s inequality we have that for all b < NEq,

P (Nq < b) ≤ P (|q− Eq| > Eq− b/N)

≤ V(q)

(Eq− b/N)2
.

Since, as we have shown above, Vq → 0 as N → ∞ we conclude that
Nq → ∞ in probability as N → ∞. Hence, if F is the cumulative distribu-
tion function of the χ2

M−2 distribution, the p-value obtained using the χ2-
test

p = 1− F (χ2) = 1− F (M − 2 +Nq) (15)

converges quickly in probability to zero as N → ∞ [14]. In practical terms
this means that the probability of falsely accepting the null hypothesis of
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linear response at any significance level can be made arbitrarily small if N
is large enough.

For a specified significance level α we can now define

qα =
1

N

(

F−1(1− α)− (M − 2)
)

. (16)

This defines a threshold value for the observed random variable q̂ such that
if q̂ > qα the null hypothesis of linear response is rejected with significance
level α (i.e. with probability 1−α); conversely, if q̂ < qα the null hypothesis
of linear response is accepted with significance level α (i.e. with probability
1− α).

The detectability of breakdown of linear response is linked to the amount
of available data. As N → ∞, a breakdown will always become detectable
at any specified significance level α. Conversely, if the mismatch Eq be-
tween the true response of the dynamical system and the linear response is
too small and there is an insufficient amount of data available, the actual
response will be swamped by the sampling noise, and one will not be able
to detect the breakdown of linear response with a reasonable significance
level.

In Section 5 we will use our goodness-of-fit test to study the detectability of
breakdown of linear response in time series of finite length.

4. Breakdown of linear response theory

A standard dynamical system for which linear response fails [6] is the logistic
map f : [0, 1] → [0, 1] given by

f(x) = ax(1− x) (17)

for a ∈ [0, 4]. This family of maps is particularly well-understood [49, 4]: we
can decompose the parameter interval according to [0, 4] = P ∪C ∪N where
N has Lebesgue measure zero and the asymptotic dynamics consists of a
periodic attractor for a in the open and dense set P and a strongly chaotic
attractor for a in the set C of positive measure. For a ∈ C the logistic map
admits a unique absolutely continuous invariant measure (a.c.i.m.) [40, 13]
and moreover satisfies the Collet-Eckmann condition [19], i.e. there exists
d > 0, λ > 1 such that

|Dfn(f(12))| ≥ dλn for all n ≥ 1.
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Then the Lyapunov exponent is positive, the attractor Λ consists of finitely
many intervals Λ1, . . . ,Λq permuted cyclically by f , and f q|Λi has exponen-
tial decay of correlations for Hölder observables for each i = 1, . . . , q [41, 64].

The logistic map is not uniformly expanding and has a critical point at
x = c = 1/2 with f ′(c) = 0. The critical point gives rise to a complicated and
rough absolutely continuous invariant measure, because f and its iterates
fn compress the phase space around x = 1/2 non-uniformly (see Figure 2).
We summarize here the analysis given in [62]. Near the critical point c we
approximate y = f(x) ≈ c1 + 1

2f
′′(c)(x − c)2 with cn = fnc and hence

x− c = ±
√

2(c1 − y)/f ′′(c) +O(b− y). This implies that an initial smooth
density ρ0(x) including the critical point x = c in its support will evolve
under the dynamics into a spike with a square-root singularity at x = c1.
Propagating the density for a further time step this spike will transport this
peak to x = c2 and create a second, new spike at x = c1, and so forth. The
expanding action of the logistic map away from the critical point leads to
a broadening of the spikes, and thereby consecutive spikes will have smaller
amplitudes preserving the normalization of the initial density ρ0(x). This is
illustrated in Figure 3 and can be formalized to find an explicit formula for
the unique a.c.i.m. in terms of its density

ρ(x) = φ(x) +

∞
∑

n=1

ηn(x). (18)

Here φ(x) represents a continuous background density with φ(c1) = φ(c2) =
0. The countably infinite family of spikes ηn are found to be

ηn(x) ∼ Υn
1√

x− fnc
, (19)

with magnitude

Υn = ρ(c)

∣

∣

∣

∣

∣

1

2
f ′′(c)

n
∏

i=1

f ′(ci)

∣

∣

∣

∣

∣

−
1

2

. (20)

For large n the product in (20) is asymptotically αn, where 1 < α < 2
denotes the Lyapunov multiplier, hence the magnitude Υn of the spikes
decays as α−n/2. This implies that the widths of the spikes (defined as the
distance from the singularity at x = fnc where the amplitudes drops to
some chosen threshold) scale like α−n.
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We will now study the effect of parameter perturbations a = a0(1 + ε)
onto the logistic map (17) and its a.c.i.m. ρ(x)dx. We may ask how fast
the spikes move upon increasing ε. Expanding the displacement length
ℓε =

∣

∣fn+1
ε (c)− fn+1

0 (c)
∣

∣ around ε = 0 yields that the speed vn = ℓε/ε is
proportional to ∂εf

n+1
ε (c) =

∏n
i=1 f

′(ci)+O(ε) and hence is proportional to
αn for large n. Hence the smaller spikes move faster than the larger spikes
corresponding to small values of n. This is illustrated in Figure 4 where we
overlay the invariant densities corresponding to a small perturbation with
ε = 6.05 × 10−4. The family of perturbed invariant measures can then be
formally written in terms of their associated densities as

ρε(x) = φε(x) +

∞
∑

n=1

η(ε)n (x+ εαn),

where the spikes are given as in (19)-(20) with f replaced by fε, and the

magnitude of the perturbed spikes also decay as Υ
(ε)
n ∼ α−n/2. Differentia-

tion of ρε(x) with respect to ε produces an exponentially growing term αn/2

inside the sum which prevents the differentiability of the a.c.i.m., and hence
causes the breakdown of linear response. A different way to see the non-
differentiability of the invariant measure is to consider the linear response
of an indicator function with support [0, cn]. Without loss of generality we
assume that the spike has support to the right of cn and moves to the left
upon perturbation (if this is not the case, take ε → −ε to change the direc-
tion). Upon applying a perturbation ε the spike will enter the support of the
observable and the probability mass moving into the interval is proportional
to

δρspike ∼
∫ αnε

0

α−
n

2√
x
dx ∼ √

ε,

and therefore δρspike/ε ∼ 1/
√
ε. Since spikes are dense on the support of

the a.c.i.m., the non-smoothness extends to the whole a.c.i.m. The non-
differentiability of the a.c.i.m. is clearly seen in Figure 5 where we show
the observable 〈A〉ε as a function of ε. The results shown are obtained here
again employing spectral methods [25, 15, 63].

5. Resolving breakdown of linear response in finite time series

The rigorous theory by Baladi and co-workers [7, 8, 6, 10] shows that certain
dynamical systems such as the logistic map do not obey a linear response.
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Figure 2: The a.c.i.m. of the logistic map (17) with a = 3.8 (black lines), and a cobweb
diagram (online orange) relating the spikes of the a.c.i.m. to the first 17 iterates of the
forward orbit of the critical point.

In this section we will investigate how the finitude of data may prevent the
breakdown to be detectable and one may falsely be lead to believe that linear
response was valid.

As seen in Section 4 the non-smoothness of the invariant measure is caused
by the rapid displacement of spikes upon perturbation. The smaller and
narrower the spike, the faster it moves. This points to an issue of resolution:
the faster spikes carry less mass and therefore require a certain amount of
data to be reliably resolved; the slower spikes carry more mass but their
smaller displacement upon perturbation requires sufficient data to be re-
solved. This means that a sufficiently large amount of data is needed for
the breakdown parameter q to accurately estimate the mismatch Eq, and
to determine whether a system obeys linear response or not. This issue of
resolving the mismatch Eq is an additional finite size issue to the one dis-
cussed in Section 3 whereby N needs to be sufficiently large to assure that
the observed p-value is properly estimated (cf. (15)).

Throughout the paper we simulate the logistic map (17) with a = a0(1 + ε)
and a0 = 3.8. In the notation of Section 2 we set ε0 = 0 from now on.
We chose M = 20 equidistant values εi =

2i−M+1
2 dε with i = 0, . . . ,M − 1

for some dε > 0 to determine the breakdown parameter q. Note that the
breakdown parameter cannot be determined at an exact perturbation size
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Figure 3: The repeated action of the logistic map (17) with a = 3.8 on a continuous density
(blue), with a.c.i.m. (light blue). The dashed lines (online orange) show the image of the
critical point after n iterations of the logistic map. The continuous lines (online green)
show the image of a few points within the support of the initial density at n = 0 upon
subsequent iteration of the map.
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ε but we determine the validity of a linear approximation over a range of
perturbation sizes parametrized by dε (for fixed M = 20). We restrict the
set of perturbations εi to include only those which belong to the chaotic
Cantor set.

The variances σ2
i (8) are estimated as a Monte-Carlo estimate from the

observed response using the central limit theorem (9) with 200 realizations
for each i = 1, · · · ,M .

5.1. Effect of finite data length N

Figure 6 shows how the breakdown parameter q behaves with increasing
data length N for given perturbation size dε = 10−6. For each value of N
the breakdown parameter is calculated for the above mentioned range of
M = 20 perturbation sizes εi. Shown is the Monte-Carlo estimate q̂ of the
expectation value of the breakdown parameter Eq over K = 200 realizations,
differing in the initial condition of the logistic map as well as the threshold
value qα corresponding to a significance level α = 0.05. We show error
bars obtained from the ensemble statistics indicating the two-sided 90%
prediction interval for q. We see clearly the saturation of the breakdown
parameter with increasing data length N towards the deterministic limit Eq
which eventually leads to detection of the breakdown above a significance
level of p = 0.05. The breakdown can, however, only be detected reliably
with a statistical significance level larger than 0.05 for long time series with
N > 600, 000. The corollary of this is that when analyzing single time series
of length N < 600, 000 at several values of the perturbation size ε the error
bars lie below qα and the dynamics may be falsely classified as obeying linear
response.
For comparison we have included in Figure 6 a plot showing the breakdown
parameter as a function of N for the doubling map which does obey linear
response with Eq → 0 for ε → 0. Here the observed breakdown parameter
q̂ decreases with N according to the law of large numbers and the sample
statistics is consistent with the two-sided 90% prediction interval for the
whole range of N . Since the expectation of the breakdown parameter Eq

approaches zero for vanishing perturbation size, the estimator of Eq is noisy
due to sampling errors, and hence may be small and negative1.

1In the doubling map we have Eq ∼ O(ε4) since deviations of Wi from a linear fit are
O(ε2i ); cf. (13).
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A concrete example of how statistical noise may impede the detection of
linear response breakdown from observations is shown in Figure 7 for an
observable A(x) = x. Shown is the observed sample average Ā (7) as a
function of the perturbation size. The error bars are calculated from the
standard deviation as calculated for the single available time series, which
is the situation for scientists analyzing observations. For insufficient data
length N = 105 a linear response is consistent within the available statistical
significance levels (top of Figure 7). Only for significantly larger time series
with data length N = 106, does the breakdown become detectable in a
statistically significant way (bottom of Figure 7).

5.2. Effect of the perturbation size ε

The critical length of the data Nb above which breakdown of linear response
can be detected in a statistically significant way depends on the perturbation
size ε. In particular, χ2 is an increasing function of ε for sufficiently large
values of ε, cf. (11). This dependency can be intuitively understood since
the response to small perturbations must be distinguished from the varia-
tions in the unperturbed system due to the sampling error. This implies
that to be able to identify a deviation from linear response at a specified
perturbation size ε with a significance level p the perturbation size needs
to be sufficiently large. This is illustrated in Figure 8 where we show the
Monte-Carlo estimate q̂ of the expectation value of the breakdown param-
eter as a function of the perturbation size which is parametrized by the
perturbation interval dε. For each value of dε the perturbed system is sam-
pled at εi =

2i−M+1
2 dε with i = 0, . . . ,M − 1 for fixed data length N = 106.

For perturbation sizes dε < 8 × 10−7 the observations are consistent with
linear response theory and only for dε > 8× 10−7 can the actual breakdown
be detected in a statistically significant way. For comparison we have again
included in Figure 8 a plot showing the breakdown parameter as a function
of dε for the doubling map where linear response assures Eq → 0 for ε → 0.
Recall that for each value of dε we choose M = 20. Here linear response
is consistent with the observations for the whole range of perturbation sizes
considered.

Figure 9 illustrates that the smaller the applied perturbation the larger the
data length has to be to detect breakdown. Shown is the critical data length
Nb above which breakdown can be detected for a given perturbation size.
The critical data length Nb was determined to be the value of N such that
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Figure 6: Breakdown parameter q̂ (solid line) as a function of the data size N , estimated
using dε = 10−6. Top: logistic map (17) with fixed range of perturbations a = 3.8(1 + ε)
and observable A(x) = x. Bottom: doubling map with perturbation X(x) = sin 2πx and
observable A(x) = cos 2πx.
The error bars show the two-sided 90% prediction interval for q as estimated from K = 200
realizations differing in the initial conditions. The dashed line shows qα for α = 0.05. Note
that for the doubling map (bottom) the breakdown parameter q̂ assumes values below the
plotted range for some values of N .
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Figure 7: The observed sample average Ā as a function of the perturbation size ε for an
observable A(x) = x and a linear fit (solid line). Top: for data length N = 105 where
q̂ = 5.03×10−5 and the breakdown is not detectable (p = 0.148). Bottom: for data length
N = 106 where q̂ = 5.32 × 10−5 and the breakdown is detectable (p = 1.31× 10−8).
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q̂ = qα for α = 0.05. A linear fit suggests Nb ∼ ε−γ , where γ was estimated
in Figure 9 to be 0.91.

5.3. Effect of the observable

In the previous sections we presented results for a global observable A(x) = x
which probes the dynamics over the full support of the invariant measure.
The breakdown is caused by the spikes in the a.c.i.m. and their rapid dis-
placement under perturbation. It is therefore natural to expect that ob-
servables which locally probe the displacement require less data to see the
breakdown of linear response. We now consider localized observables

A(x) = exp

(

−(x− xs)
2

2w2

)

.

This observable allows us to probe the local non-smooth behavior of a spike
ηn at location xn with width wn. Recall the displacement length ℓε = vnε of
the spike upon perturbation with ε where vn ∼ αn with α being the average
expansion rate. Hence, for xs ≈ xn and wn ≈ w ≤ w⋆ := ℓε/2 the spike ηn
can be resolved by the observable and the displacement will be detectable
when it leaves the effective support of the observable upon perturbation by
ε. An example of such a judiciously chosen Gaussian observable is given in
Figure 10.

The effect of a localized observable on the ability to detect breakdown of
linear response is illustrated in Figure 11. We performed two sets of simula-
tions. In the first we fixed the characteristic scale of the observable w = w⋆

to equal half the displacement length of the n = 11th spike, w⋆ ≈ 1.9×10−4,
and varied the centre xs of the observable. A clear peak of statistically
significant values of the breakdown parameter q̂ above a significance level
with p = 0.05 is obtained for xs close to the location of the 11th spike
at x⋆s := x11 = 0.573. Note that the size of the displacement window
within which breakdown is detectable corresponds roughly to the displace-
ment width of the spike (cf. Figure 10). In a second set of simulations
we centered the Gaussian observable at the location of the n = 11th spike
with xs = x⋆s and varied the observational scale w. Again, a pronounced
peak of the expected value of the breakdown parameter q̂ is seen above the
significance level for w = w⋆. The maximum is not obtained exactly at
the estimated value of w⋆ due to approximations made when relating vn for
finite n to its asymptotic value αn.
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Figure 8: Breakdown parameter q̂ (solid line) as a function of the perturbation size dε for
fixed N = 106. Top: logistic map (17) with a = 3.8(1 + ε) for an observable A(x) = x.
Bottom: doubling map with perturbation X(x) = sin 2πx for an observable A(x) =
cos 2πx.
The error bars show the two-sided 90% prediction interval for q as estimated from K = 200
realizations differing in the initial conditions. The dashed line shows qα for α = 0.05. Note
that for the doubling map (bottom) the breakdown parameter q̂ assumes values below the
plotted range for some values of dε.
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Figure 9: The critical data length Nb above which the breakdown of linear response is
detectable as a function of the perturbation size ε, parametrized by dε. The slope of the
linear fit is −0.91.

Figure 12 shows the breakdown parameter q̂ as a function of the available
data length N for a given perturbation size dε = 10−6 for a Gaussian ob-
servable where xs = x⋆s and w = w⋆ is chosen to focus on the displacement
of the 11th spike. It is revealed that a time series with only N = 30, 000 is
needed to reliably detect breakdown of linear response; this should be com-
pared to the required length of N = 600, 000 when an observable A(x) = x
is used (cf. Figure 6). Similarly, Figure 13 shows the breakdown parame-
ter q̂ as a function of the perturbation size (here the perturbation interval
dε) for fixed data length N = 106 for a Gaussian observable with finely
tuned w = w⋆ and xs = x⋆s. Breakdown is reliably detected for perturbation
size of dε > 1.2 × 10−7; for an observable A(x) = x with N = 106 one
needs larger perturbation sizes with dε ≥ 8× 10−7 to detect breakdown (cf.
Figure 8).

The preceding discussion indicates that detailed knowledge of the underlying
dynamical system (both the location of a spike x⋆s and its displacement
scale w⋆) is required for the successful detection of the breakdown of linear
response given a time series of finite length N . In particular, these finely
tuned observables depend on the magnitude of the perturbation ε. Figure 14
illustrates how a lack of this knowledge may indeed mislead us into deducing
the validity of linear response. We show the observed sample average Ā (7)
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for a Gaussian observable as a function of the perturbation size ε in the
case when the characteristic observational scale w and the location xs are
judiciously chosen to probe for a particular spike and in the case when
they are not chosen to align with a spike and its displacement length. In
the latter the existence of linear response is consistent with the observations
and a scientist might be mislead in believing in a linear relationship between
the perturbation and the response. If, however, the location and scale of
the observable are tuned to match a particular spike and its least rapid
displacement of the perturbation sizes under consideration, the breakdown
is clearly detectable. This, of course, as we have seen above, requires the
length of the time series to be sufficiently large. The saturation of the
response for sufficiently large perturbations in the case of a finely tuned
localized observable (cf. bottom plot in Figure 14) is an indication that the
length of the time series is insufficient to detect the contribution of the other
spikes to the non-smoothness of the invariant measure.

It is pertinent to state that the mere inclusion of a scale w = w⋆ in the
observable to probe the non-smooth dynamic behavior of the spikes of the
invariant measure is not sufficient to detect breakdown for smaller values
of N (for fixed ε) or for smaller perturbation sizes ε (for fixed N). For
example, an observable A(x) = cos(2π(x−xs)/w) with wave length w = w⋆

and xs = x⋆ finely tuned to capture the displacement of the 11th spike does
not exhibit any variation of the expected value of breakdown parameter q̂ as
a function of the scale parameter w. Figure 15 reveals that there is no peak
in the breakdown parameter near w = w⋆ for finite N = 5×104. The failure
of the cosine-function to enhance the detectability for breakdown of linear
response, despite its wave length matching the characteristic displacement
length of a particular spike, is due to the global character of the cosine-
function. Although the non-smooth behavior of the fast and narrow spike is
resolved by the observable, this is swamped by the dominant contribution of
the observable stemming from other parts of the a.c.i.m., in particular from
the smooth background and from the larger slower spikes.

6. The fluctuation-dissipation theorem

The methods presented in Section 5 are based on performing the pertur-
bation experiment by brute force, i.e. by running a numerical experiment
for a range of values of ε. However, one of the aspects of linear response
theory that has attracted a lot of attention from practitioners is the fact
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Figure 10: Gaussian observable probing the displacement of the n = 11th spike upon
perturbation the logistic map (17) from a = 3.8(1−ε) to a = 3.8(1+ε) with ε = 2.5×10−6.
The dash-dotted line shows the invariant measure at a = 3.8(1 − ε) and the dashed line
shows the invariant measure at a = 3.8(1 + ε).

that for many systems, if linear response holds, formulae exist (see Eqs. (2)
and (3)) that express the linear response in terms of properties of the unper-
turbed dynamical system, providing the tantalizing prospect of predicting
the linear response without having to perform the kind of brute perturbation
experiment used in Section 5.

In that vein, the fluctuation-dissipation theorem has been applied to various
atmospheric and climate models. It has been mostly applied in the form of
the so-called quasi-Gaussian approximation, where the invariant measure
is assumed to be Gaussian, resulting in a response in the form of an inte-
grated auto-covariance function [47]. This autocovariance function can be
estimated from unperturbed model integrations or from measurements. The
assumption of Gaussianity may be reasonable for some large-scale climatic
observables, but it is not valid universally, for example for observables re-
lated to bi-stable subsystems such as the Kuroshio Extension or the El Niño
Southern Oscillation. A more general approach was taken in [22], where the
invariant measure was not assumed to be Gaussian, but was obtained by
smoothing the observed empirical density with a smoothing kernel. Since
we are dealing here with highly non-Gaussian densities, we will investigate
this approach rather than imposing Gaussianity.
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Figure 11: Breakdown parameter q̂ (solid line) for a Gaussian observable, for the logistic
map with a = 3.8(1 + εi) with dε = 10−6 and N = 5 × 105. Top: as a function of the
location of the center xs of the observable with x⋆

s := x11 the location of the n = 11th
spike. Here w = w⋆ is fixed to equal half the displacement length of the 11th spike.
Bottom: as a function of the width ratio w/w⋆ with xs = x⋆

s fixed.
The error bars show the two-sided 90% prediction interval for q as estimated from K = 200
realizations differing in the initial conditions. The dashed line shows qα for α = 0.05.
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Figure 12: Breakdown parameter q̂ (solid line) as a function of the data size N for the
logistic map with fixed range of perturbations a = 3.8(1+ε) with dε = 10−6 and Gaussian
observable with width w = w⋆ and location xs = x⋆

s tuned to capture the displacement of
the n = 11th spike.
The error bars show the two-sided 90% prediction interval for q as estimated from K = 200
realizations differing in the initial conditions. The dashed line shows qα for α = 0.05.
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Figure 13: Breakdown parameter q̂ (solid line) as a function of the perturbation size dε for
fixed N = 106 for the logistic map (17) with a = 3.8(1+ ε) for a Gaussian observable with
width w = w⋆ and location xs = x⋆

s tuned to capture the displacement of the n = 11th
spike.
The error bars show the two-sided 90% prediction interval for q as estimated from K = 200
realizations differing in the initial conditions. The dashed line shows qα for α = 0.05.
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Figure 14: The observed sample average Ā as a function of the perturbation size ε for
an observable A(x) = exp((x − xs)

2/(2w2)) with N = 5 × 104 where w = w⋆ is half the
displacement length of the n = 11th spike, and a linear fit (solid line). Top: when the
location of the observable xs is not centered at the location of the spike x⋆

s. Bottom: when
the location of the observable xs is centered at the location of the spike x⋆

s .
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Figure 15: Breakdown parameter q̂ (solid line) for the logistic map with a = 3.8(1+ε) with
dε = 10−6 as a function of the wavelength w of an observable A(x) = cos(2π(x− x⋆

s)/w)
where x⋆

s and w⋆ denote the location and half the displacement length of the n = 11th
spike.
The error bars show the two-sided 90% prediction interval for q as estimated from K = 200
realizations differing in the initial conditions. The dashed line shows qα for α = 0.05.

In this section we consider the situation where one is unaware of the existence
or absence of linear response for the system of interest, but only has access
to a data set of observations of the unperturbed system. In such a case a
practitioner might be lead to estimate the right hand side of (3) from data
and hope that the obtained quantity gives an indication of the response
over a certain range of ε. When linear response holds this will be the case,
however here we investigate whether such an approximation of the response
is possible when the response is non-differentiable.

To this end we perform a perturbation experiment for the logistic map and
compare the actual response to the prediction obtained through (3). The
actual response is obtained through spectral methods [25, 15, 63], in order
to avoid finite sample size effects. We have followed the non-parametric
method based on kernel smoothing for estimating the linear response from
the FDT as described in [22]. The density of the a.c.i.m. ρ0 is smoothed
by convolution with a Gaussian with smoothing width ωs. This removes
the non-differentiable character of the spikes and allows the derivative to be
taken in Eq. (3).

The results of such an estimation of the linear response using the fluctuation-
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Figure 16: Expectation value 〈A〉 as a function of the parameter a of the logistic map
(17) for an observable A(x) = x. Gaps in the curve correspond to periodic windows.
At two values of a the predictions of the fluctuation dissipation theorem (3) are shown
for two different kernel-smoothing widths ωs. The continuous lines (online green) are for
ωs = 0.005 and the dashed lines (online blue) are for ωs = 0.015.

dissipation theorem is shown in Figure 16. The experiment was performed
for an observable A(x) = x at two different reference states a = 3.789 and
a = 3.805 and for two different smoothing widths ωs = 0.015 and ωs = 0.005.
It is evident that the results are sensitive to both these parameters and that
the actual response is not well approximated by the slope as constructed
through the FDT.

We also present results showing that kernel-smoothing allows for a reliable,
convergent estimation of the fluctuation-dissipation theorem in the case of a
topological conjugate of the doubling map in Figure 17. We use the smooth
conjugation h(x) = 1

2π cot−1(0.25+cot 2πx), which transforms the doubling
map’s physical Lebesgue measure into dρ(x) = h′(x)dx. We use perturba-
tion X(x) = sin 2πx, and an observable A(x) = cos 2πx. It is seen that
using kernel smoothing in the fluctuation-dissipation formula (3) approxi-
mates the true linear response well for a variety of kernel widths ωs. Fur-
thermore the linear response estimated using kernel smoothing converges
to the true linear response as O(ω2

s) as ωs → 0. In the appendix we show
analytically that the linear response as estimated using kernel smoothing
converges for uniformly expanding maps to the true linear response upon
decreasing smoothing width and the error decreases with ω2

s .
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Figure 17: Top: Expectation value 〈A〉 as a function of the perturbed conjugation of
the doubling map for an observable A(x) = cos 2πx, and perturbation X(x) = sin 2πx.
Around ε = 0, the predictions of the fluctuation dissipation theorem (3) are shown for two
different kernel smoothing widths ωs. The continuous line (online green) is for ωs = 0.05
and the dashed line (online blue) is for ωs = 0.07. The dotted straight line shows the true
linear response. Bottom: Discrepancy between the linear response estimate from kernel
smoothing and the true linear response, as a function of the kernel smoothing width ωs.
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7. Summary and conclusion

We have provided a detailed numerical investigation of the manifestation
of breakdown of linear response caused by the non-smooth change of the
invariant measure with respect to a small perturbation in a finite time series
analysis. We presented results for the logistic map for which the breakdown
of linear response is analytically well understood [7, 8, 6, 10].

The main messages which can be deduced from our results are that in order
to detect breakdown of linear response in time series of finite length, the data
length needs to be sufficiently long and furthermore that the detectability of
linear response strongly depends on the observable and on the perturbation
size. We summarize our key findings:

• The amount of data N required to detect a breakdown of linear re-
sponse for a given perturbation size can be very large. For the logistic
map with a given perturbation size of the order of ε = O(10−6) one
needs at least N = 600, 000 for a smooth observable A(x) = x. Hence,
an apparent linear response seen in a given time series might be spu-
riously caused by an insufficient quantity of data.

• The smaller the perturbation size the longer the data need to be to
detect a breakdown in general.

• The global character of an observable may inhibit the detection of
breakdown of linear response. For a given finite data length and given
perturbation size, suitably localized observables may be needed to
probe linear response. This, however, requires either detailed knowl-
edge of the underlying dynamical system or computationally involved
scans of the parameters of the observable such as its scale and its
location.

• Predicting response using the fluctuation-dissipation theorem is highly
sensitive to the applied smoothing needed to assure differentiability of
the density, and to the point in parameter space where the response
is calculated, negating its predictive value. In the case when the FDT
is valid, however, our results suggest that kernel smoothing as applied
by climate scientists yields a valid approximation to the true linear
response.

These findings can be taken as a word of caution for practitioners inter-
preting observational or numerical time series. Our results aim to narrow
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the gap between the body of rigorous theoretical work and the applied re-
search done, for example, in climate science and in atmosphere and ocean
dynamics.

Since we currently have no means of deciding whether the coupled atmosphere-
ocean system or the whole climate system satisfies linear response theory or
whether it does not, our work does not per se question the validity of the
many results obtained using linear response theory.
The chaotic hypothesis of Gallavotti-Cohen [31, 30] is often invoked to argue
that a high-dimensional chaotic physical system can be treated for all prac-
tical purposes as if it were Axiom A. It is, however, pertinent to mention,
that the chaotic hypothesis only makes a statement about the existence of
time averages computed with a probability distribution capturing the statis-
tics of macroscopic observables and satisfying a large deviation law at one
parameter value; it does not make any statement about the smoothness of
the underlying probability density with respect to changes in this parame-
ter and about whether the invariant measures of the approximating Axiom
A systems at nearby parameter values are approximately linearly related,
which is what is required for linear response theory. We adhere, however,
to the current general belief that large complex systems with multi-scale
dynamics behave as stochastic systems and therefore linear response theory
is valid for large-scale observables (provided the dynamics is not close to a
critical point).

For scientists analyzing time series, we propose the following as a practical
guide, which could be drawn from our work. In the case when the time
series is obtained by costly numerical simulations, prohibiting the usage
of very large time series, or by a limited amount of observational data,
scientists could perform an ensemble of (parallel) simulations for several
moderate data lengths N or of subsamples. If the number of realizations
which produce values of the sample mean of the breakdown parameter q̂

exceeding the corresponding threshold value for a specified significance level
increases with increasing data length N , then this indicates breakdown of
linear response as for example seen in Figure 6. The figure suggests that
another indication for a finite value of Eq and breakdown of linear response
is the case where q̂ either increases or saturates over the available range of
N . These two criteria, although far from being decisive, may be used as
sufficient conditions for breakdown of linear response.
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Appendix

We prove the convergence of the estimated linear response using kernel
smoothing to the true linear response in the case of a uniformly expand-
ing one-dimensional map on a compact manifold Λ, under the assumptions
that the invariant measure ρ is C4, and the smoothing kernel has a zero first
moment. We further assume that our observable A(x) is an L1 function.
For simplicity we assume the map has two branches, and each individual
branch is at least C2. This includes the doubling map as discussed in the
main part.

We recall the fluctuation-dissipation theorem (3)

〈A〉′ε0 = −
∞
∑

n=0

〈(

(ρε0X)′

ρε0

)

(

A ◦ fn
ε0 − 〈A〉ε0

)

〉

ε0

. (21)

which gives the linear response in terms of correlations.

Analogously, in the case where the density is kernel smoothed, the linear
response is written as

〈A〉′ε0,ωs
= −

∞
∑

n=0

〈(

(Sρε0X)′

Sρε0

)

(

A ◦ fn
ε0 − 〈A〉ε0

)

〉

ε0

, (22)

where S is a convolution by a kernel density φ with zero first moment and
variance ω2

s . In particular, we have for the kernel smoothed density

Sρ(x) =
∫

ρ(x− y)φ(y)dy.

Dropping the ε0 subscripts, the difference between the kernel smoothed and
the true linear response is given by

〈A〉′ωs
− 〈A〉′ = −

∞
∑

n=0

〈(

(SρX)′

Sρ − (ρX)′

ρ

)

(A ◦ fn − 〈A〉)
〉

= −
∞
∑

n=0

〈

X

(Sρ′
Sρ − ρ′

ρ

)

(A ◦ fn − 〈A〉)
〉

,

which can be bounded for C2 maps with two branches by

∣

∣〈A〉′ωs
− 〈A〉′

∣

∣ ≤
∥

∥

∥

∥

X

(Sρ′
Sρ − ρ′

ρ

)∥

∥

∥

∥

Lip

C|A|1
1− γ

, (23)
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for some C > 0, γ ∈ (0, 1) independent of A [53]. Here the Lipschitz-norm
satisfies

‖B‖Lip = LipB + ‖B‖∞ ≤ ‖B′‖∞ + ‖B‖∞.

The right-hand-side of (23) can be further bounded by using

∥

∥

∥

∥

X

(Sρ′
Sρ − ρ′

ρ

)∥

∥

∥

∥

Lip

≤ (‖X ′‖∞ + ‖X‖∞)

∥

∥

∥

∥

Sρ′
Sρ − ρ′

ρ

∥

∥

∥

∥

∞

+ ‖X‖∞
∥

∥

∥

∥

(Sρ′
Sρ − ρ′

ρ

)

′
∥

∥

∥

∥

∞

. (24)

Furthermore, we can bound

∥

∥

∥

∥

Sρ′
Sρ − ρ′

ρ

∥

∥

∥

∥

∞

≤ ‖ρSρ′ − ρ′Sρ‖∞
inf ρ inf Sρ (25)

and
∥

∥

∥

∥

(Sρ′
Sρ − ρ′

ρ

)

′
∥

∥

∥

∥

∞

≤ ‖ρSρ′ − ρ′Sρ‖∞(‖ρ‖
∞
‖Sρ′‖

∞
+ ‖Sρ‖

∞
‖ρ′‖

∞
)

(inf ρ inf Sρ)2

+
‖ρSρ′′ − ρ′′Sρ‖

∞

inf ρ inf Sρ . (26)

Note that since we assume the dynamics to be uniformly expanding on a
compact manifold the invariant measure is bounded away from zero with
ρ(x) > c for some c > 0. Since φ ≥ 0, we have also Sρ(x) > c, and hence,
inf ρ > 0 and inf Sρ > 0.

Now for any twice-differentiable functions p and q, we have

(p Sq − q Sp)(x) =
∫

(p(x)q(x− y)− q(x)p(x− y))φ(y)dy.

Taylor expanding p and q in y, we find

(p Sq − q Sp)(x) =
∫ (

p(x)

(

q(x)− yq′(x) +
y2

2
q′′(ξ1(y))

)

− q(x)

(

p(x)− yp′(x) +
y2

2
p′′(ξ2(y))

))

φ(y)dy

=

∫

(

p(x)q′′(ξ1(y))− q(x)p′′(ξ2(y))
) y2

2
φ(y)dy ,
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where ξ1,2 ∈ Λ and where we have used that φ(y) has a vanishing first
moment. Hence we can bound

‖p Sq − q Sp‖∞ ≤ 1

2

(

‖p‖
∞

∥

∥q′′
∥

∥

∞
+
∥

∥p′′
∥

∥

∞
‖q‖

∞

)

ω2
s .

Applying the last inequality to (25) and (26), we can bound the right-hand-
side of (23) and arrive at our final estimate for the difference between the
true linear response and the kernel smoothed linear response

∣

∣〈A〉′ε0,ωs
− 〈A〉′ε0

∣

∣ < Q|A|1 ω2
s ,

for some Q > 0 independent of ωs and A. Hence the difference between
the true linear response and the kernel smoothed linear response scales with
the square of the kernel width as observed in Figure 17. We remark that
this proof can be readily extended to the case where the kernel depends on
x.
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