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Model reduction techniques have been widely used to study the collective behavior of globally coupled os-
cillators. However, most approaches assume that there are infinitely many oscillators. Here we propose
a new ansatz, based on the collective coordinate approach, that reproduces the collective dynamics of the
Kuramoto model for finite networks to high accuracy, yields the same bifurcation structure in the thermody-
namic limit of infinitely many oscillators as previous approaches, and additionally captures the dynamics of
the order parameter in the thermodynamic limit, including critical slowing down that results from a cascade
of saddle-node bifurcations.

Model reduction methods reduce the dynamics
of high-dimensional complex systems to a small
number of active degrees of freedom, which en-
ables theoretical and analytical understanding of
observed phenomena. Here we expand on the re-
cently introduced collective coordinate approach
to study globally coupled oscillators by treating
the order parameter explicitly as a collective co-
ordinate and by introducing a new ansatz func-
tion. We achieve a model reduction which ac-
curately captures the macroscopic dynamics of
finite populations of oscillators, and also recov-
ers well-known analytical results in the thermo-
dynamic limit of infinitely many oscillators which
were previously derived using self-consistency re-
lations. Our approach enables deeper analytical
insight into the dynamics of the system. For in-
stance, the transition from global synchronization
to partial synchronization, and then to incoher-
ence, occurs for finite networks as a cascade of
saddle-node bifurcations. This is reflected in the
thermodynamic limit by a critical slowing down
of the macroscopic dynamics.

I. INTRODUCTION

Many natural phenomena and industry applications
can be modeled as networks of coupled oscillators, in-
cluding firefly flashing1, neuron firing2,3, and power grid
dynamics4. A common phenomenon in networks of
coupled oscillators is synchronization. Model reduc-
tion techniques aim to understand and quantify this
low-dimensional emergent macroscopic dynamics. For
a recent review of model reduction approaches see Bick
et al. 5 . For the Kuramoto model6–13, which is widely
used to model networks of coupled oscillators, Ott and
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Antonsen14,15 introduced a method that describes its
low-dimensional dynamics by deriving a closed set of
equations for mean-field variables restricted to an ansatz
manifold. Many studies have since applied and gen-
eralized the Ott-Antonsen approach to describe low-
dimensional phenomena such as chimera states16–18, clus-
ter synchronization from higher order coupling19 or sym-
plectic coupling20, chaotic intercluster dynamics21, and
hysteretic synchronization22. While the Ott-Antonsen
approach is exact under the assumptions of infinitely
many oscillators and smooth frequency distributions,
it cannot describe the collective behavior in real-world
networks which are finite in size. In particular, the
Ott-Antonsen approach cannot describe dynamical phe-
nomena which are entirely determined by finite size ef-
fects, such as stochastic drift of the synchronized clus-
ter in the stochastic Kuramoto model23–26. Another
commonly used model reduction approach is Watanabe-
Strogatz theory27 which yields an exact system of ordi-
nary differential equations for a small number of macro-
scopic parameters, and is not restricted to the thermo-
dynamic limit of infinitely many oscillators. However,
the Watanabe-Strogatz approach only applies to popu-
lations of identical oscillators28. The Ott-Antonsen and
the Watanbe-Strogatz approaches can be connected in
the thermodynamic limit29.

Recently a new approach based on collective coor-
dinates was developed which is not restricted to the
thermodynamic limit of infinitely many oscillators or to
identical oscillators and which accurately describes the
macroscopic dynamics of the Kuramoto model26,30–33.
We improve here the original collective coordinate frame-
work by considering an improved ansatz function de-
scribing the shape of the synchronized cluster. We treat
the order parameter as the collective coordinate, yielding
evolution equations for its dynamics along a judiciously
chosen ansatz manifold. We will show that both the pre-
vious ansatz function (which is based on a linearization)
and the improved ansatz function quantitatively capture
the collective dynamics for small finite populations of os-
cillators, accurately capturing finite size effects. The im-
proved ansatz function yields a significant improvement
compared to the previous ansatz function. Moreover, we
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will show that the improved ansatz describes the col-
lective behavior of coupled oscillators across the whole
range from finite networks to the thermodynamic limit.
We will show that the new collective coordinate ansatz
yields identical bifurcation structure as the Ott-Antonsen
ansatz in the thermodynamic limit of infinitely many
oscillators, recovering well-known conditions for partial
synchronization. Unlike the Ott-Antonsen approach, the
collective coordinate approach is also applicable to non-
analytic natural frequency distributions, such as uniform
distributions, and captures critical slowing down of the
order parameter that results from a cascade of saddle-
node bifurcations.

The paper is organized as follows. In Section II the
collective coordinate framework for model reduction is
described and the new ansatz is presented. In Section III
numerical and analytical results are presented for finite
networks with several natural frequency distributions. In
Section IV we show that for finite networks the transition
from synchronization to incoherence occurs as a cascade
of saddle-node bifurcations. In Section V the thermody-
namic limit is studied. Section VI summarizes the re-
sults.

II. COLLECTIVE COORDINATE REDUCTION FOR
FINITE NETWORKS

For a network ofN coupled oscillators, each with phase
φi, the Kuramoto model6 with all-to-all coupling is given
by

φ̇i = ωi +
K

N

N∑
j=1

sin(φj − φi), (1)

where K is the coupling strength and the natural fre-
quencies ωi have distribution g(ω). Without loss of gen-
erality we assume here that g(ω) has zero mean, as can
be achieved by moving into a co-rotating reference frame.
While not a necessary assumption for the collective coor-
dinate framework, here we will consider examples where
g(ω) is unimodal and symmetric.

The general method of collective coordinates is to as-
sume an ansatz φ̂ for the synchronized state, i.e. φi ≈
φ̂i(α;ωi) for i ∈ C, where C is the set of oscillators that
partake in the synchronized dynamics. The collective
coordinate α(t) controls the shape of the synchronized
state. One then performs a Galerkin approximation of
the Kuramoto model (1) with the ansatz function. The
error incurred by this ansatz is given by substituting the
ansatz into the Kuramoto model (1),

Ei = α̇
dφ̂i
dα
− ωi −

K

N

∑
j∈C

sin(φ̂j − φ̂i),

for i ∈ C. We ignore non-entrained “rogue” oscillators
with i /∈ C that do not partake in the collective synchro-
nized dynamics. For symmetric frequency distributions,

these rogue oscillators have no effect on the synchronized
cluster in the thermodynamic limit, since rogue oscilla-
tors with positive frequencies cancel out corresponding
rogue oscillators with negative frequencies. For finite
networks with symmetric frequency distributions the ef-
fect of the rogue oscillators can also be assumed to be
negligible33, since the time-average of the fast rogue dy-
namics cancels to zero. Since we are assuming a solution
to the Kuramoto model (1) of the form φ = φ̂(α), the
error vector E is minimized provided that it is orthogo-
nal to the tangent space of the synchronization manifold
spanned by dφ̂

dα . The condition〈
E, dφ̂
dα

〉
= 0, (2)

where 〈-, -〉 denotes the Euclidean scalar product, then
yields the evolution equation for the collective coordinate

α̇ =
1

||dφ̂dα ||2

〈ω, dφ̂
dα

〉
+
K

N

∑
i,j∈C

dφ̂i
dα

sin(φ̂j − φ̂i)

 .

(3)
A stable stationary point α? of (3) corresponds to a syn-
chronized state φi = φ̂i(α

?), for i ∈ C. Under the hypoth-
esis that all oscillators that can synchronize will synchro-
nize, the set C is defined as the maximal set of oscillators
such that stationary points α? of (3) exist. The identifi-
cation of C is discussed in more detail in Section III B.

The collective coordinate method is illustrated di-
agrammatically in Fig. 1, where φ̂(α) is the one-
dimensional ansatz manifold in R|C|, with |C| denoting
the cardinality of C. The collective coordinate method
describes the evolution of the Kuramoto model pro-
jected orthogonally onto the ansatz manifold, with non-
entrained rogue oscillators ignored, i.e.,

Π dφ̂
dα

φ̇ = α̇
dφ̂

dα
, (4)

where φ̇ is the dynamics of the full Kuramoto model (1)
and Π dφ̂

dα

denotes orthogonal projection onto the tangent

vector dφ̂dα . The temporal evolution equation of the collec-
tive coordinate (3) thus describes the dynamics restricted
to the ansatz manifold. The full Kuramoto model con-
verges to the stationary point φ? ∈ R|C| (given as a time-
average when rogues are included), and the collective
coordinate model converges to φ̂(α?) which lies on the
ansatz manifold φ̂(α).

The collective coordinate framework requires to specify
the shape function φ̂(α;ω), and the choice of the collec-
tive coordinate α which parameterizes the ansatz mani-
fold φ̂(α;ω). To motivate the choice of φ̂, we introduce
the complex order parameter

z(t) = r(t)eiψ(t) =
1

N

∑
j

eiφj .
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FIG. 1. The collective coordinate method describes the evolu-
tion of the Kuramoto model projected orthogonally onto the
ansatz manifold φ̂(α) ∈ R|C| (blue).

The Kuramoto model (1) can be rewritten as a mean-field
equation

φ̇i = ωi +Kr sin(ψ − φi), (5)

where we have assumed that the mean natural frequency
is zero6. Similarly, we can assume that ψ = 034. In
the synchronized state, oscillators in C become approxi-
mately stationary, so that

φi ≈ arcsin
( ωi
Kr̄

)
, (6)

where

r̄ = lim
T→∞

1

T

∫ T

0

r(t)dt, (7)

is the time-averaged order parameter. For large K, (6)
can be expanded to obtain φi ≈ ωi

Kr̄ + O(K−3), which
motivates the ansatz

φ̂i = αωi, (8)

used in previous studies26,30–32. Note that α ∼ 1/(Kr̄).
We refer to (8) as the linear collective coordinate ansatz.
Motivated by (6) we now consider the arcsin collective
coordinate ansatz

φ̂i = arcsin
( ωi
Kα

)
. (9)

Here we use the order parameter r̄ – the only dynamical
quantity in (4) – as the shape parameter α. For the
arcsin ansatz (9), the evolution equation for the collective
coordinate (3) becomes

α̇ = − K

||dφ̂dα ||2

(∑
i∈C

s2
i√

1− s2
i

)1− 1

Nα

∑
j∈C

√
1− s2

j

 ,
(10)

where si = si(α,K) = ωi
Kα . If |C| > 1, there is a non-

trivial cluster of synchronized oscillators, and the sum in
round brackets in (10) is positive. We remark that (3) is
true in general, whereas (10) assumes that

∑
i∈C ωi = 0.

This is true for finite networks if the natural frequencies

are symmetric about zero, as is the case for symmet-
ric frequency distributions g(ω) with equiprobable sam-
pling. However, it is generally not true that

∑
i∈C ωi = 0

for random sampling from symmetric or non-symmetric
frequency distributions. In such cases, (10) can still be
obtained by moving into the reference frame that rotates
with the synchronized cluster C, i.e., rotating with fre-
quency ΩC =

∑
i∈C ωi, so that in this reference frame∑

i∈C ωi = 0. In this new reference frame the total mean
frequency may not be zero.

Following from (10), stationary points α? of the evolu-
tion equation (10) correspond to solutions of

1 =
1

Nα?

∑
j∈C

√
1− sj(α?,K)2. (11)

This recovers the self-consistency equation for finite net-
works (cf. eq. (22) in Rodrigues et al. 13 and eq. (3) in
Mirollo and Strogatz 35). While self-consistency analysis
yields the same stationary points as the collective coor-
dinate approach (solutions to (11)), the collective coordi-
nate approach also yields dynamical information through
the full evolution equation (10). In particular, linear
stability of the stationary points can be inferred easily
from (10). The dynamical nature of the collective coor-
dinate approach also allows description of non-stationary
attracting states, which occurs, for example, for multi-
modal natural frequency distributions22,30,32,36,37. From
a computational standpoint, we note that (11) involves
only a single sum, compared to the double sum in the
general form of the collective coordinate approach (3).

For both collective coordinate ansatzes, the solution
φ̂(α?) allows us to express the order parameter restricted
to the ansatz manifold as

r̄CC =
1

N

∣∣∣∣∣∣
∑
j∈C

eiφ̂j(α
?)

∣∣∣∣∣∣ . (12)

For the arcsin collective coordinate ansatz (9), the collec-
tive coordinate α replaces r̄ in the mean field solution (6),
and also satisfies the finite network self-consistency equa-
tion (11). Therefore, the arcsin ansatz is self-consistent in
the sense that α? = r̄CC, which is not true for the linear
collective coordinate ansatz used in previous work26,30–32.

We will show in the following section that both collec-
tive coordinate ansatzes accurately capture the collective
dynamics and finite size effects of finite networks, with
the arcsin ansatz yielding a significantly better approx-
imation compared to the original collective coordinate
ansatz (8).

III. PERFORMANCE OF THE COLLECTIVE
COORDINATE FRAMEWORK FOR FINITE NETWORKS

We quantify the accuracy of the respective collective
coordinate approaches by analyzing the differences be-
tween the order parameter r̄ obtained from the full Ku-
ramoto model (7) and r̄CC obtained from the respective
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collective coordinate reductions (12) for several natural
frequency distributions, as well as accuracy in identifying
the synchronized cluster C.

We consider here two network sizes for the numerical
simulation and the corresponding collective coordinate
reduction of the Kuramoto model; a small network with
N = 50 where the finite size effects are clearly visible
and a larger network with N = 500 which qualitatively
resembles the thermodynamic limit but still exhibits sig-
nificant differences from it.

For all computations of the order parameter of the full
Kuramoto model (7) using direct numerical simulation,
we use an adaptive fourth order Runge-Kutta scheme
(ode45 in MATLAB) with a maximum step size of 0.2.
We discard a transient of 7000 time units, and use 2000
time units for the time-averaging to ensure convergence.

A. Order parameter

To highlight the significance of finite size effects, and
the ability of the collective coordinate methods to accu-
rately capture them, we also show the order parameter
obtained in the thermodynamic limit of infinitely many
oscillators. By classical self-consistency analysis7,9, the
order parameter in the thermodynamic limit satisfies for
even frequency distributions g(ω)

K

∫ 1

−1

g(Kru)
√

1− u2du = 1, (13)

which is the limit of (11) as N → ∞, and can also be
obtained via the Ott-Antonsen ansatz38,39. We will show
in Section V that the self-consistency relationship (13)
can also be derived from the arcsin collective coordinate
ansatz in the thermodynamic limit (which follows from
(11)).

1. Equiprobable draw of natural frequencies from a
Lorentzian distribution

We first consider a Lorentzian natural frequency dis-
tribution

g(ω) =
∆

π(ω2 + ∆2)
, (14)

centered at zero with spread ∆ > 0. In all simulations we
choose ∆ = 1. For the distribution (14), the thermody-
namic limit self-consistency equation (13) can be solved
explicitly, yielding

r∞ =

√
1− 2∆

K
if K ≥ 2∆. (15)

The solution (15) of the self-consistency equation (13)
is also found as the stationary solution of the evolution
equation

ṙ = −∆r +
K

2

(
r − r3

)
, (16)

derived via the Ott-Antonsen ansatz14,15. The evolution
equation (16) allows characterization of the stability of
the order parameter. In particular, at Kc = 2∆ the
incoherent state (r = 0) loses stability and a partially
synchronized state with r = r∞ emerges in a pitchfork
bifurcation. This is shown by the green curve in Fig. 2(a).

For finite size networks, equiprobably drawn natu-
ral frequencies minimize finite size effects and are best
suited to mimic the thermodynamic limit for finite but
large N . Equiprobable draws are performed as follows.
Let G(ω) denote the cumulative distribution function of
the frequencies, then natural frequencies are drawn such
that G(ωj) = j

N+1 , for j = 1, . . . , N . Fig. 2(a) shows
r̄KM, estimated using (7), as a function of the coupling
strength K for the full Kuramoto model (1) with a small
(N = 50, closed circles) and a larger (N = 500, open
circles) number of oscillators. At Kc ≈ 2∆ = 2 there is
a second order transition from the incoherent state, with
r̄KM ∼ O(1/

√
N), to a partially synchronized state. The

order parameter curves for N = 50 and N = 500 are
very similar, albeit the curve for N = 500 is smoother as
it more closely represents the thermodynamic limit r∞
(15), shown as the green curve. The effect of a finite size
network, quantified as the difference between the finite
network order parameter and r∞, is shown in Figs. 2(b,c)
by the green diamonds. We see that for N = 50 the dif-
ferences are O(10−2) and for N = 500 the differences are
O(10−3).

The error in the approximations r̄CC compared to r̄KM
obtained from the full Kuramoto model (1) with N = 50
and N = 500 are shown in Fig. 2(b) and Fig. 2(c), respec-
tively, for the linear collective coordinate ansatz (8) and
the arcsin collective coordinate ansatz (9). The errors are
shown for K > Kc ≈ 2, for which a synchronized cluster
of oscillators exists. For N = 50 (Fig. 2(b)), the arcsin
ansatz (9) gives the best approximation for r̄ (lowest er-
ror), and both collective coordinate ansatzes yield a more
accurate approximation than the thermodynamic limit,
and, hence, can be considered effective. For N = 500
(Fig. 2(c)), the arcsin ansatz again yields the best ap-
proximation (with errors in the range 10−2 − 10−4), and
less than half the error for K ≥ 3 compared to the ther-
modynamic limit approximation. This indicates that a
network of N = 500 oscillators is not yet sufficiently large
to be described by the thermodynamic limit. However,
the thermodynamic limit yields a better approximation
than the linear collective coordinate ansatz for N = 500.
We note that the pronounced dip in the error associated
with the linear collective coordinate ansatz at K ≈ 3 in
Fig. 2(c) corresponds to a change in sign of r̄ansatz− r̄KM,
i.e., the linear ansatz shifts from over-prediction to under-
prediction of r̄.
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FIG. 2. (a) Time-averaged order parameter r̄KM for the Ku-
ramoto model (1) with N = 50 (closed circles) and N = 500
(open circles) oscillators with equiprobably drawn Lorentzian
distributed natural frequencies (14) with ∆ = 1. The order
parameter r∞ in the limit N →∞ (given by (15)) is shown in
green. (b,c) Error in the approximation r̄ansatz obtained from
the collective coordinate approaches (12) compared to the full
Kuramoto model r̄KM [(b) N = 50, (c) N = 500]. Results are
shown for the linear ansatz (8) (blue circles) and the arcsin
ansatz (9) (orange triangles). The difference |r̄KM − r∞| is
shown by green diamonds to highlight finite size effects. The
errors are shown forK > Kc ≈ 2, when a synchronized cluster
exists.

2. Random draw of natural frequencies from a Lorentzian
distribution

We now show that the collective coordinate method, in
particular the arcsin ansatz, accurately captures the col-
lective dynamics when the natural frequencies are drawn
randomly and finite size effects become exacerbated.

0.0
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arcsin CC
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FIG. 3. (a) Time averaged order parameter r̄KM for the Ku-
ramoto model (1) with a single realization of N = 50 oscil-
lators with randomly drawn Lorentzian distributed natural
frequencies (14) with ∆ = 1. The order parameter r∞ in the
limit N →∞ (given by (15)) is shown in green and the collec-
tive coordinate approximations using the arcsin ansatz (9) are
shown by the orange triangles. (b) Error in the approxima-
tion r̄ansatz obtained from the collective coordinate approaches
(12) compared to the full Kuramoto model r̄KM. Results are
shown for the linear ansatz (8) (blue circles) and the arcsin
ansatz (9) (orange triangles). The difference |r̄KM − r∞| is
shown by green diamonds to highlight finite size effects. The
errors are shown for K ≥ 2.2, when a synchronized cluster
with at least 10 oscillators exists.

Fig. 3(a) shows r̄KM for the full Kuramoto model (1) with
N = 50 oscillators with randomly drawn Lorentzian dis-
tributed frequencies for a single realization. Compared
to equiprobably drawn frequencies (Fig. 2(a)), the tran-
sition from the incoherent state to the partially synchro-
nized state is not as well defined for randomly drawn fre-
quencies (Fig. 3(a)). This is due to the existence of small
synchronized clusters which gradually merge as K in-
creases. As one would expect, the order parameter in the
thermodynamic limit (15) (green curve in Fig. 3(a)) fails
to capture finite size effects, such as non-monotonicity of
the second derivative of r(K). The collective coordinate
ansatzes (8) and (9), on the other hand, reproduce the
order parameter r̄KM to high accuracy, again the arcsin
ansatz being superior. The approximation given by the
arcsin collective coordinate ansatz is shown by the or-
ange diamonds in Fig. 3(a), where it is clearly seen that
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the approach captures finite size effects very well, such as
non-monotonicity of the second derivative of r(K) near
the onset of partial synchronization. Analyzing in more
detail, the error in reproducing the order parameter of
the full Kuramoto model is shown in Fig. 3(b) for the
collective coordinate ansatzes and the thermodynamic
limit. The errors in r̄ are shown for values K ≥ 2.2,
such that there exists a synchronized cluster with at least
10 oscillators. For smaller values of K there are several
small synchronized clusters consisting of only a few oscil-
lators, which interact. We ignore here this complicating
issue but remark that the interaction of clusters can be
approximated by a more complex collective coordinate
ansatz30–32. We see clearly that the arcsin collective coor-
dinate ansatz provides the best approximation for r̄, and
that both collective coordinate ansatzes generally yield a
significantly more accurate approximation than the ther-
modynamic limit. As in Fig. 2 the pronounced dips of
the errors for both the thermodynamic limit and the lin-
ear collective coordinate ansatz are due to changes in the
sign of r̄approx − r̄KM, i.e., changes from over-prediction
to under-prediction, or vice versa, as can be clearly seen
for the thermodynamic limit by the two intersections of
the r̄KM and r∞ curves in Fig. 3(a).

3. Gaussian distributed natural frequencies

For Gaussian distributed natural frequencies with
mean zero and variance σ2 the self-consistency equation
in the thermodynamic limit (13) becomes

√
πK exp

(
−K

2r2

4σ2

)
2
√

2σ

(
I0

(
K2r2

4σ2

)
+ I1

(
K2r2

4σ2

))
= 1,

(17)
where In(z) denotes Bessel functions of the first kind.
This implicit equation can be solved numerically to ob-
tain r∞(K) for any value of K, shown as the green curve
in Fig. 4(a) for σ2 = 0.1. The critical coupling strength
Kc corresponding to the onset of partial synchronization
can be found by substituting r = 0 into (17), yielding

Kc = 2σ
√

2/π,

which amounts for Kc ≈ 0.5 for σ2 = 0.1.
As for Lorentzian distributed natural frequencies, we

compare the error in reproducing the order parameter
r̄KM associated with the linear and the arcsin collective
coordinate ansatzes, as well as the difference |r̄KM − r∞|
to illustrate the significance of finite size effects. The
results are shown in Fig. 4(b) for N = 50 oscillators
with equiprobably drawn natural frequencies. We see
that both collective coordinate ansatzes accurately cap-
ture finite size effects, since they yield smaller errors than
the thermodynamic limit. The arcsin ansatz yields the
best approximation. In fact, for values of K ≥ Kg, where
Kg denotes the onset of global synchronization when all
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FIG. 4. (a) Time averaged order parameter r̄KM for the Ku-
ramoto model (1) with N = 50 oscillators with equiproba-
ble Gaussian distributed natural frequencies (mean zero, and
variance σ2 = 0.1). The order parameter r∞ in the limit
N →∞ (given as solution of (17)) is shown in green. (b) Dif-
ference between r̄KM obtained from the full Kuramoto model
(7) and r̄CC obtained from collective coordinate ansatzes (12).
Results are shown for the linear ansatz (8) (blue circles)
and the arcsin ansatz (9) (orange triangles). The difference
|r̄KM−r∞| is shown by green diamonds to highlight finite size
effects. The differences are shown for K ≥ Kc ≈ 0.5, when a
synchronized cluster exists.

N oscillators synchronize (Kg ≈ 0.8), the difference be-
tween r̄CC obtained from the arcsin collective coordinate
approach compared to r̄KM obtained from the full Ku-
ramoto model (7) is O(10−13), corresponding to the nu-
merical precision of the computational methods. This is
because the arcsin ansatz is both exact for globally syn-
chronized states and self-consistent in the sense that the
static collective coordinate r is equal to the order param-
eter r̄.

4. Uniformly distributed natural frequencies

For uniformly distributed natural frequencies on the
interval [−a, a] the self-consistency equation in the ther-
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modynamic limit (13) becomes

1 =

{
πK
4a if Kr ≤ a
K
2

(√
K2r2−a2
K2r2 + 1

aarccsc
(
Kr
a

))
if Kr > a

.

(18)
This implies an explosive first-order transition from in-
coherence to global synchronization40, with Kc = 4a/π,
and the order parameter at the transition is rc = π/4.
This explosive transition in the thermodynamic limit is
shown in Fig. 5(a) by the green curve.

Fig. 5(b) shows that, like the Gaussian and Lorentzian
frequency distributions, both the linear and arcsin collec-
tive coordinate ansatzes yield good approximations for
the collective dynamics and accurately capture finite size
effects, with the arcsin ansatz performing significantly
better. For the case of uniformly distributed natural
frequencies, the arcsin ansatz is exact for all values of
K > Kc ≈ 1.3 because the transition to synchronization
is explosive and all oscillators synchronize atK = Kc, i.e.
Kg = Kc, leading to errors of O(10−13), corresponding
to the numerical precision of the computational methods.

B. The synchronized cluster C

Along with accurately predicting the order parameter,
the collective coordinate approach has the advantage of
being able to predict the set of oscillators C that will syn-
chronize. The set of synchronized oscillators C is iden-
tified within the collective coordinate approach as the
maximal set of oscillators such that (3) has a stable sta-
tionary solution α?. The set C can be found by starting at
a high value of K such that most oscillators synchronize,
and then successively removing oscillators from C when-
ever stationary solutions of (3) cease to exist (resulting
from saddle-node bifurcations that will be discussed in
Section IV). In the case of all-to-all coupling, which is
what we consider here, when decreasing K, the oscillator
that becomes desynchronized is always the oscillator with
natural frequency furthest from the mean frequency of
the current synchronized cluster, ΩC = (1/|C|)

∑
j∈C ωj .

With this criterion, oscillators can also be added to the
synchronized cluster when increasing K by including the
non-entrained oscillator with natural frequency closest to
the mean frequency of the synchronized cluster. For more
complex network topologies, the oscillators that become
desynchronized can be identified within the collective
coordinate framework by linearizing the full Kuramoto
model (1) around the ansatz solution φ̂(α?)31.

For the full Kuramoto model (1) the set C is found by
computing the effective frequency of each oscillator,

ω̄i = lim
T→∞

1

T

∫ T

0

φ̇idt = lim
T→∞

φi(T )− φi(0) + 2πwi(T )

T
,

where wi(T ) ∈ Z is the winding number of the i-th oscil-
lator. Synchronized clusters are sets of oscillators with
the same effective frequency, and C is the largest such

0.0

0.2

0.4

0.6

0.8

1.0(a)

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10- 14

10- 11

10- 8

10- 5

10- 2

linear CC
arcsin CC

FIG. 5. (a) Time averaged order parameter r̄KM for the Ku-
ramoto model (1) with N = 50 oscillators with equiprobable
uniformly distributed natural frequencies between −1 and 1.
The order parameter r∞ in the limit N →∞ (given as solu-
tion of (18)) is shown in green. (b) Difference between r̄KM

obtained from the full Kuramoto model (7) and r̄CC obtained
from collective coordinate ansatzes (12). Results are shown
for the linear ansatz (8) (blue circles) and the arcsin ansatz
(9) (orange triangles). The difference |r̄KM − r∞| is shown
by green diamonds to highlight finite size effects. The dif-
ferences are shown for K ≥ Kc ≈ 1.3, when a synchronized
cluster exists.

synchronized cluster. Labeling the oscillators in order
of increasing natural frequencies in an all-to-all coupled
network, the synchronized cluster consists of all oscilla-
tors with indices between some minimum index imin and
some maximum index imax. Hence, the size of the syn-
chronized cluster is imax − imin + 1. Fig. 6 shows the
lower (imin) and upper (imax) boundaries of the cluster
for N = 50 oscillators with randomly drawn Lorentzian
distributed natural frequencies (the same as in Fig. 3).
As expected, the synchronized cluster grows in size mono-
tonically upon increasing the coupling strength K, with
the lower boundary imin decreasing monotonically and
the upper boundary imax increasing monotonically. We
observe that the arcsin collective coordinate ansatz (9)
(orange triangles) agrees with the full Kuramoto model
(solid black curve) for most values of K, whereas the lin-
ear collective coordinate ansatz (8) generally overpredicts
the size of the synchronized cluster.
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FIG. 6. Lower (imin) and upper (imax) boundaries of the syn-
chronized cluster for N = 50 oscillators with randomly drawn
Lorentzian distributed natural frequencies (as in Fig. 3). Re-
sults are shown for the full Kuramoto model (solid black),
and for collective coordinates [linear ansatz (8) (blue circles)
and arcsin ansatz (9) (orange triangles)], for K ≥ 2.2, when
a synchronized cluster with at least 10 oscillators exists.

IV. CASCADE OF SADDLE-NODE BIFURCATIONS

For the linear ansatz (8), and a set of oscillators C, sta-
tionary points of (3), if they exist, form a pair (one sta-
ble and one unstable) which annihilate via a saddle-node
bifurcation at K = K1(C)30. For C consisting of all oscil-
lators, i.e., global synchronization, this agrees with the
analysis of Mirollo and Strogatz35 which showed that the
transition from global synchronization to partial synchro-
nization occurs as a saddle-node bifurcation for finite net-
works. As for the linear collective coordinate ansatz, for
each set of oscillators C a saddle-node bifurcation occurs
for the arcsin ansatz (9), as shown in Fig. 7(a) for N = 50
oscillators with equiprobable Lorentzian distributed nat-
ural frequencies, with C consisting of the |C| = 42 oscilla-
tors with natural frequencies closest to the (zero) mean
frequency. For some range of coupling strengthsK > K1,
C forms the synchronized cluster. We note that for the
arcsin ansatz, at K = K2(C) > K1 the unstable station-
ary point of (10) satisfies

sj∗(α
?,K2) =

ωj∗

K2 α?
= 1,

where j∗ is such that ωj∗ = maxi∈C |ωi| =: ωC . This
means that at K = K2 the unstable solution curve
(dashed black) intersects tangentially with the curve
α = ωC/K (cyan curve in Fig. 7). For α < ωC/K (below
the cyan curve) the evolution equation for the collective
coordinate (10) is complex valued, and has no physical
meaning. For K > K2, the unstable solution of (10)
switches to a different complex branch (dotted gray) such
that

√
1− s2

j∗ is negative in (10).
For both collective coordinate ansatzes, stable station-

ary points of (3) may be found for K < K1(C) for smaller

2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4
0.50

0.55

0.60

0.65

0.70

4.235 4.240 4.245 4.250 4.255
0.738

0.740

0.742

0.744

0.746

0.748

0.750(a)

(b)

FIG. 7. (a) Stable (solid black) and unstable (dashed black
and dotted gray) stationary solutions of (10) annihilate via
a saddle-node bifurcation at K = K1 ≈ 4.237. For K >
K2 ≈ 4.245 the unstable solution switches to the complex
branch such that

√
1− s2j∗ is negative, where j∗ is such that

ωj∗ = maxi∈C |ωi| =: ωC . At K = K2 the unstable station-
ary solution intersects tangentially with the curve α = ωC/K
(cyan). (b) Cascades of saddle-node bifurcations for N = 50
and N = 500. The bifurcation points are marked by closed
circles and open circles, respectively. The stable stationary
solutions of (10) are shown as solid colored curves. The order
parameter r̄KM of the full Kuramoto model is shown by the
dashed gray curve for N = 50. Both (a) and (b) consider
equiprobable Lorentzian distributed natural frequencies.

subsets C′ ⊂ C, and the bifurcation sequence repeats.
Therefore, for both collective coordinate ansatzes, the
transition from global synchronization to partial syn-
chronization, and then to incoherence, as K decreases,
occurs for unimodal frequency distributions as a cas-
cade of saddle-node bifurcations, successively removing
more and more oscillators from the synchronized set C.
This cascade is shown for the arcsin collective coordinate
ansatz in Fig. 7(b), where the stable stationary solution
branches of (10) are shown as solid curves for a range
of cluster sizes with the saddle-node bifurcations marked
by black points at the left end of each solution branch.
We terminate solution branches for smaller cluster sizes
at the saddle-node bifurcation of larger cluster sizes, e.g.,
the solution branch with |C| = 34 terminates at K ≈ 3.07
where the branch with |C| = 36 begins. This follows
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from the assumption that all oscillators that can syn-
chronize will synchronize, and so the steady state of the
system will have maximal synchronized cluster size |C|.
Due to symmetry of the natural frequencies, oscillators
are successively removed from C in pairs as the coupling
strength decreases. We note that the collective coordi-
nate approach reproduces the order parameter of the full
Kuramoto model (dashed gray in Fig. 7(b)) most accu-
rately at each saddle-node bifurcation, with gradual devi-
ation from the full Kuramoto model as K increases away
from each saddle-node bifurcation. This phenomenon
is also evident in Fig. 2(b), where for K > 3.5 the er-
ror of the arcsin collective coordinate ansatz experiences
sharp decreases followed by gradual increases. The col-
lective coordinate approach clearly captures finite size ef-
fects such as non-monotonicity of the second derivative of
r(K), with points of inflection at each saddle-node bifur-
cation. This cascade of saddle-node bifurcations is con-
sistent with the onset of synchronization being a second
order phase transition for unimodal frequency distribu-
tions. We note that the saddle-node bifurcation is only
for the order parameter. The actual Kuramoto model
(1) undergoes a complex bifurcation from one (possibly
chaotic) attractor to another one.

A similar cascade has been studied by Pazó40 for fre-
quency distributions with compact supports (such as uni-
form distributions), where there is a cascade of frequency
splittings, such that the globally synchronized cluster
splits into multiple smaller clusters, each having a differ-
ent effective frequency. This frequency splitting cascade
could also be described by the collective coordinate ap-
proach, albeit with a more complex ansatz function that
allows for multiple synchronized clusters30–32.

V. COLLECTIVE COORDINATE REDUCTION IN THE
THERMODYNAMIC LIMIT

We now show analytically that in the thermodynamic
limit the arcsin collective coordinate ansatz reproduces
the same results for the bifurcation structure of the order
parameter as the Ott-Antonsen ansatz (15), and recovers
well-known relations between the coupling strength and
the order parameter for partially synchronized states for
general natural frequency distributions. In addition, the
collective coordinate framework provides dynamical in-
formation for the evolution of small perturbations of the
synchronized state along the ansatz manifold, which is
not captured by the Ott-Antonsen ansatz (16).

Taking the limit as N → ∞ in the evolution equation
for the collective coordinate (3) involves replacing sum-
mations with integrals, i.e.,

lim
N→∞

1

N

∑
i∈C

h(ωi) −→
∫ ωC(∞)

−ωC(∞)

h(ω)g(ω)dω,

for some function h, where ωC(∞) = limN→∞ ωC(N)
and ωC(N) = maxi∈C |ωi|. For the arcsin ansatz (9),

ωC(∞) = Kα (since the domain of arcsin is [−1, 1]). For
finite networks, there are finitely many coupling strengths
K1(C) that correspond to saddle-node bifurcations of the
collective coordinate dynamics (10) (cf. Fig. 7) because
each saddle-node bifurcation corresponds to removing os-
cillators from C, and there are only finitely many oscilla-
tors that can be removed. As N increases, the intervals
between successive saddle-node bifurcations decreases,
as demonstrated in Fig. 7(b) by comparing N = 50 to
N = 500. In the thermodynamic limit the intervals be-
tween saddle-node bifurcations converge to zero, so that
saddle-node bifurcations occur at every coupling strength
K, with oscillators satisfying |ω| = ωC being neutrally
stable in the synchronized set C.

In the thermodynamic limit the evolution equation for
the collective coordinate (3) becomes

I3(α,K) α̇ = I1(α,K) +KI2(α,K), (19)

where

I1(α,K) = lim
N→∞

1

N

〈
ω,

dφ̂

dα

〉

I2(α,K) = lim
N→∞

1

N2

∑
i,j∈C

dφ̂i
dα

sin(φ̂j − φ̂i)

I3(α,K) = lim
N→∞

1

N

〈
dφ̂

dα
,
dφ̂

dα

〉
.

Recall that for the arcsin ansatz (9) we have α(t) = r(t).
In this case (19) can be expanded to yield

I3ṙ =

∫ Kr

−Kr
g(ω)

dφ̂

dr
ω×[

1 +
K

ω

∫ Kr

−Kr
g(η) sin

(
φ̂(η)− φ̂(ω)

)
dη

]
dω.

(20)

Making the change of variables s = ω
Kr and u = η

Kr , for
the arcsin collective coordinate ansatz (9), equation (20)
becomes

I3ṙ = −J1(r,K) r (1− J2(r,K)) , (21)

where

J1(r,K) = K2

∫ 1

−1

g(Krs)s2

√
1− s2

ds, (22)

J2(r,K) = K

∫ 1

−1

g(Kru)
√

1− u2du. (23)

Note that J1 > 0 provided that the synchronized set of
oscillators (i.e., those satisfying |ω| < Kr) has non-zero
measure. Stationary solutions r? of (21) are given by
r? = 0 and as the solutions of

J2(r?,K) = 1. (24)
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This recovers the well-known self-consistency equation
(13) for the Kuramoto model in the thermodynamic
limit7,9,38,39. As such, through the collective coordinate
approach we recover the relations r(K) described explic-
itly by (15) for Lorentzian distributed natural frequen-
cies, and described implicitly by (17) and (18) for Gaus-
sian and uniformly distributed natural frequencies, re-
spectively.

We remark that while the Ott-Antonsen ansatz14,15
also yields an evolution equation for the order parame-
ter in the thermodynamic limit, the Ott-Antonsen ap-
proach is only applicable to analytic frequency distribu-
tions, whereas the collective coordinate evolution equa-
tion (19) can be applied to any natural frequency dis-
tribution. For uniform distributions, which are not an-
alytic, the dynamics can be approximated by the Ott-
Antonsen approach by approximating the distribution by
a sequence of rational functions41.

We now study the evolution equation for the collective
coordinate in the thermodynamic limit for Lorentzian
distributed natural frequencies. We shall see that besides
recovering the results from the Ott-Antonsen ansatz (15)
and mean field theory (24) on the stationary points, the
collective coordinate approach also encapsulates dynam-
ical information on the behavior of small perturbations.

A. Lorentzian natural frequency distribution

For a Lorentzian distribution (14), the evolution equa-
tion (21) reduces to

ε−1ṙ = −∆r +
K

2

(
r − r3

)
, (25)

where ε = D/I3 with

D =
2∆

E (∆ + E) (Kr2 + ∆ + E)
and E =

√
K2r2 + ∆2.

1. Bifurcation structure

The right hand side of (25) is identical to that obtained
via the Ott-Antonsen approach14,15. Therefore, the col-
lective coordinate approach recovers the same pitchfork
bifurcation occurring at K = 2∆, such that for K < 2∆
the incoherent state r = 0 is stable, and for K > 2∆ the
incoherent state is unstable, and a stable synchronized
state emerges, with r given by (15) (cf. Fig. 2(a) and
Fig. 3(a)).

2. Relaxation rate toward the synchronized state

In the limit as ωC → Kr, the integral I3 → ∞, and,
hence, ε → 0. This has a physical interpretation linked
to the cascade of saddle-node bifurcations discussed in
Section IV and illustrated in Fig. 7. Linearizing (25) near

the stationary point r? =
√

1− 2∆/K, with r = r? + δr
and |δr| � 1, yields

δ̇r = λ δr.

with relaxation rate

λ = ε(2∆−K). (26)

It is important to notice that the perturbation δr (of the
collective coordinate) is a perturbation along the ansatz
manifold φ̂. Note that λ converges to zero as ε → 0.
This corresponds to the critical slowing down associated
with the saddle-node bifurcations shown in Fig. 7(b) for
finite N and which occurs at every value of K for infi-
nite N . It is pertinent to mention that having saddle-
node bifurcations for finite networks is consistent with
the thermodynamic limit experiencing a pitchfork bifur-
cation, since pitchfork bifurcations are structurally un-
stable and transform into a saddle-node bifurcation upon
a small perturbation. To understand the transition from
a finite network experiencing a cascade of saddle-node
bifurcations to an infinite network where saddle-node
bifurcations appear at each coupling strength, consider
the following approximation of a large but finite net-
work illustrated in Fig. 8. We consider a continuously
distributed frequency distribution on a compact support
[−(Kr− δ),Kr− δ], for example, the region between the
two vertical blue dashed lines in Fig. 8 for K = 4.24 and
δ = 1. The offset δ denotes the difference between the
largest (resp. smallest) natural frequency that will syn-
chronize and Kr (resp. −Kr), which, when δ → 0, yields
the set of natural frequencies which will become synchro-
nized. We note that for finite networks, as N → ∞, δ
effectively converges to zero. This is because increased
sampling of the frequency distribution g(ω) yields natu-
ral frequencies closer and closer to Kr (or to −Kr). We
can now write the integral I3 as

I3 = lim
δ→0

Ĩ3(δ),

where

Ĩ3(δ) =

∫ Kr−δ

−(Kr−δ)

(
dφ̂

dr

)2

g(ω)dω

=
∆

πKrE2

[
− log δ + log(2Kr − δ)

− 2∆

Kr
arctan

(
Kr − δ

∆

)]
.

The relaxation rate λ (26) can analogously be expressed
as the limit

λ = lim
δ→0

D

Ĩ3(δ)
(2∆−K). (27)

Fig. 9 shows the relaxation rate λ (27) (solid black curve)
for K = 4.24, and, as expected, λ converges to zero as
δ → 0 (− log(δ)→∞).
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FIG. 8. Lorentzian natural frequency distribution with ∆ =
1. The limits ±ωC = ±Kr? are shown for K = 4.24, with r?

given by (15). N = 100 equiprobably drawn natural frequen-
cies are shown as ticks on the horizontal axis, colored blue for
ωi ∈ [−Kr? + δ,Kr? − δ] with δ = 1, and red otherwise.
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FIG. 9. Relaxation rate λ toward the stationary solution r?

along the ansatz manifold φ̂(r) for K = 4.24, given by (27)
for N →∞ (solid black curve) and given by (29) for finite N ,
where the cluster C = C′(δ,N) is determined by (28).

The linearized equation (27) for the order parameter
can be connected to the collective coordinate approach
for finite networks and to the full Kuramoto model (1).
The connection to the collective coordinate approach for
finite networks is obtained by considering Ĩ3(δ) as the
limit

Ĩ3(δ) = lim
N→∞

1

N

∑
i∈C′(δ,N)

(
dφ̂i
dr

)2

,

where

C′(δ,N) = {i ∈ C : ωi ∈ [−(Kr − δ),Kr − δ]}. (28)

For example, in Fig. 8 the natural frequencies belong-
ing to C′(δ,N) for δ = 1 and N = 100 are shown by the
blue ticks on the horizontal axis, with the red ticks repre-
senting natural frequencies not belonging to C′(δ,N). For

finite N and a set C, the dynamics along the ansatz man-
ifold is given by (10), and so the relaxation rate along the
ansatz manifold toward the stationary state φ̂(r?) (i.e.,
the solution to (11)) is

λ = − K

||dφ̂dr ||2

(∑
i∈C

s2
i√

1− s2
i

)

×

 1

r?
− 1

N(r?)2

∑
j∈C

s2
j√

1− s2
j

 . (29)

This relaxation rate is shown in Fig. 9 for N = 103 (green
diamonds), N = 104 (orange triangles) and N = 105

(blue circles) with C = C′(δ,N) given by (28). Fig. 9
shows that the relaxation rate (29) for finite networks
converges to the relaxation rate (27) of the thermody-
namic limit as N → ∞ and δ → 0 (− log(δ) → ∞).
Hence, the collective coordinate approach in the thermo-
dynamic limit accurately captures the limiting dynamics
of the finite population model. In particular, we observe
critical slowing down, with λ→ 0 as δ → 0, correspond-
ing to the approach to the saddle-node bifurcation. The
disagreement between the relaxation rate in the finite
and infinite cases for large δ is due to the fact that in
(19) only the integral I3 has its support truncated to the
interval [−Kr? + δ,Kr? − δ], since the integrals I1 and
I2 converge and can be found analytically (cf. (25)).

We now provide a geometric interpretation of the lin-
earized collective coordinate equation (29). We show that
it can be derived directly from the full Kuramoto model
(1) as the equation describing the relaxation along the
ansatz manifold φ̂(r). Recall from (4) that the collec-
tive coordinate evolution equation can be expressed in
the form

Π dφ̂
dr

φ̇ = ṙ
dφ̂

dr
,

where φ̇ is the dynamics of the full Kuramoto model (1)
and Π dφ̂

dr

denotes orthogonal projection onto the tangent

vector dφ̂
dr (cf. Fig. 1). Therefore, the relaxation rate

obtained from the finite collective coordinate approach
(29) can be related to the Jacobian of the full Kuramoto
model, given by,

L(φ)ij =
K

N

{
−
∑
k 6=i cos(φk − φi), if i = j

cos(φj − φi), if i 6= j
, (30)

through the equation

λ =

〈
∇ dφ̂

dr

φ̇
(
φ̂(r?)

)
, dφ̂dr

〉
〈
dφ̂
dr ,

dφ̂
dr

〉
=

〈
L
(
φ̂(r?)

)
dφ̂
dr ,

dφ̂
dr

〉
〈
dφ̂
dr ,

dφ̂
dr

〉 ,
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where ∇v denotes the directional derivative in the direc-
tion v. It can be readily shown that this reduces to the
right hand side of (29).

To summarize, the collective coordinate method accu-
rately describes the synchronized states as well as the
the dynamics along the ansatz manifold of the full Ku-
ramoto model, for both finite networks and in the ther-
modynamic limit. The time-scale ε → 0 for the ther-
modynamic limit reflects the critical slowing down that
occurs for finite networks as they approach saddle-node
bifurcations that occur at discrete values of the coupling
strength K (shown in Fig. 7), and that occur in the ther-
modynamic limit for every value of K.

VI. CONCLUSIONS

In summary, the collective coordinate framework with
both the linear ansatz (8) and the arcsin ansatz (9) ac-
curately describes the collective dynamics of finite pop-
ulations of coupled oscillators. The arcsin ansatz yields
a significantly improved approximation compared to the
linear collective coordinate ansatz. In addition to cap-
turing finite size effects, in the thermodynamic limit the
arcsin collective coordinate ansatz recovers well-known
analytical results, as well as dynamics of the order pa-
rameter along the ansatz manifold.

The collective coordinate approach identifies bifurca-
tions of partially synchronized states as saddle-node bi-
furcations. When going to the limit N → ∞ we have
shown that these saddle-node bifurcations occur at ev-
ery value of the coupling strength K. In the thermody-
namic limit, the collective coordinate method predicts a
pitchfork bifurcation, consistent with the Ott-Antonsen
approach14,15. The almost continuous cascade of saddle-
node bifurcations for finite N is consistent with the ther-
modynamic limit experiencing a pitchfork bifurcation,
since the latter are structurally unstable to any finite
size perturbation and transform into a saddle-node bi-
furcation.

We note that since the arcsin collective coordinate
ansatz (9) is based on the mean field formulation of
the Kuramoto model (5), it is only applicable to net-
works of globally coupled oscillators. In contrast, the
linear collective coordinate ansatz (8), which is based
on a linearization of the Kuramoto model, can be ap-
plied to any network topology31,32, and is able to de-
scribe partial synchronization in the presence of topolog-
ical clusters31. However, the arcsin ansatz is well suited
to study frequency clustering, and the complex inter-
and intra- cluster dynamics that results. Frequency clus-
tering occurs when the natural frequency distribution is
multimodal22,36,37, or in finite networks when random
frequency gaps occur as finite size effects, as well as fi-
nite networks with uniformly distributed natural frequen-
cies that exhibit a cascade of frequency splittings40. For
such cases, the collective coordinate approach results in
a system of coupled equations describing the dynamics

of the order parameters and phases of the synchronized
clusters30,32. The complex non-stationary collective dy-
namics that results from these systems, including col-
lective chaos32, cannot be described by self-consistency
approaches.

Here we have considered only the case of sinusoidal
coupling between oscillators. The collective coordinate
approach has recently been extended to the Kuramoto-
Sakaguchi model which includes a phase-frustration
parameter33. We believe that the collective coordinate
framework can readily be extended to coupling functions
with higher harmonics19 and symplectic coupling20 by
considering multiple synchronized clusters, similar to the
case of frequency clustering. This is a topic for future
research.
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