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Abstract. The breeding method is a computationally cheap way to generate flow-adapted
ensembles to be used in probabilistic forecasts. Its main disadvantage is that the ensemble
may lack diversity and collapse to a low-dimensional subspace. To still benefit from the
breeding method’s simplicity and its low computational cost, approaches are needed to in-
crease the diversity of these bred vector (BV) ensembles. We present here such a method
tailored for multi-scale systems. We describe how to judiciously introduce stochastic per-
turbations to the standard bred vectors leading to stochastically perturbed bred vectors.
The increased diversity leads to a better forecast skill as measured by the RMS error, as
well as to more reliable ensembles quantified by the error-spread relationship, the con-
tinuous ranked probability score and reliability diagrams. Our approach is dynamically
informed and in effect generates random draws from the fast equilibrium measure condi-
tioned on the slow variables. We illustrate the advantage of stochastically perturbed bred
vectors over standard BVs in numerical simulations of a multi-scale Lorenz 96 model.

1. Introduction

Weather and climate forecasting faces the problems that the underlying dynamics is in-
herently chaotic with often high sensitivities to small errors in the initial conditions [37]
and involves coupled processes running on spatial scales from millimetres to thousands of
kilometres, and temporal scales from seconds to millennia. This implies that in many sit-
uations generating a single forecast fails to provide sufficiently accurate information about
a future state of the system and has to be viewed as only one particular realisation drawn
from a high-dimensional probability distribution function. In chaotic dynamical systems
probabilistic forecasts are more appropriate, and one seeks to estimate not only the ex-
pected state of the atmosphere but also some measure of the reliability of the forecast. A
commonly used method to produce probabilistic forecasts is ensemble forecasting in which
a Monte-Carlo estimate of the probability density function is obtained from multiple sim-
ulations, each starting from a different initial condition [12, 34, 35]. The high phase-space
dimension of the atmosphere, however, would require large ensembles to estimate the full
probability density function, which is out of reach given current computational resources.
An attractive method to generate initial conditions for an ensemble forecast with low com-
putational cost is the ”breeding method” introduced by [59, 60]. The breeding method
generates initial conditions which, rather than being random draws, encode information
about locally fast growing modes. The rationale behind this is that the probability den-
sity function is supported in phase-space by regions which grew rapidly. It was used for
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more than a decade after its introduction in 1992 at the National Centers for Environ-
mental Prediction (NCEP) for their operational 1-15 day ensemble forecasts, and has been
widely used in atmosphere and climate probabilistic forecasts such as ENSO prediction
[9, 10], seasonal-to-interannual forecasting in coupled general circulation models (CGCMs)
[68] and forecasting Mars’ weather and climate [40, 21].

In the breeding method a fiducial trajectory is propagated with the full nonlinear model
starting from an (analysed) initial condition, along with an ensemble of nearby trajecto-
ries initialised from perturbed initial conditions, propagated under the same dynamics. To
avoid saturation of instabilities, the perturbed trajectories are periodically rescaled to be
of some finite-size distance δ away from the fiducial trajectory. The difference at the time
of rescaling is coined as the bred vector (BV). The breeding algorithm is conceptually re-
lated to the method for generating Lyapunov vectors, but in contrast to Lyapunov vectors,
bred vectors are calculated by using the full nonlinear model. Most importantly, Lyapunov
vectors employ an infinitesimal perturbation size δ → 0, whereas BVs are generated using
finite-size perturbations. This is motivated by the observation that typically the most un-
stable processes, i.e. those with the largest Lyapunov exponent, are small-scale processes,
but become nonlinearly saturated at a much smaller level than slower growing large-scale
instabilities. Hence, we can adjust the finite size of the perturbation to select the amplitude
range of the instabilities to target specific growing modes. For example, BVs project onto
baroclinic instabilities when the perturbation size is comparable to 1− 10% of the natural
variability in the atmosphere [60, 11]. Furthermore, in multi-scale systems that exhibit
regimes, regime changes can be predicted for perturbation sizes in a certain range [51, 41].
We remark that in contrast to Lyapunov vectors which are mapped by the linear tangent
dynamics onto each other, BVs with finite perturbation sizes are technically not vectors and
there is no linear map relating them. We will adopt here the point of view that the object of
interest are the perturbed states themselves, which serve as initial conditions, rather than
the differences between them and a control run. We nevertheless keep with the convention
of calling them vectors.

It has long been noticed that bred vector ensembles lack diversity as they collapse onto
a low dimensional subspace, and in the worst case most of the ensemble forecast variability
is contained in a single BV [61, 64, 7, 45]. This effective reduction in ensemble size impedes
their usage in sampling the forecast probability density function. For small perturbation
sizes, bred vectors naturally align with the leading Lyapunov vector associated with the
largest Lyapunov exponent leading to an effective ensemble dimension of one1. In a realis-
tic operational forecasting situation uncertainty in the saturated sub-synoptic scales such
as convective events may provide sufficient stochasticity to prevent bred vectors from col-
lapsing into a single BV [60]. Nevertheless, despite the presence of unresolved sub-synoptic
perturbations in realistic forecast systems, BVs tend to be under-dispersive [45].

Several mitigation strategies have been devised to increase the effective size of an ensem-
ble of bred vectors. [3, 31] proposed to orthogonalise the BVs. [63] combined BVs with the
ensemble transform Kalman filter [6, 58] to increase the diversity. [16, 15, 17] introduced
nonlinear local Lyapunov vectors as an orthogonalised modification to classical BVs. [44]
employed stochastic backscattering to increase the diversity. [52, 50, 48] generated BVs

1This is strictly speaking only true locally; the sign of the disjoint local patterns is arbitrary [60].
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employing the geometric rather than the Euclidean norm when rescaling. [5] proposed a
different rescaling procedure based on the largest BV. [21] added small random pertur-
bations to the BVs at each rescaling period, an idea already proposed by [30]. Here we
will introduce two new methods to stochastically modify bred vectors, targeted at multi-
scale systems to increase the ensemble spread by increasing the diversity of perturbation
patterns. We introduce stochastically perturbed bred vectors (SPBV) and random draw
bred vectors (RDBV). Our method to generate SPBVs is dynamically informed and views
BVs as providing initial conditions which are likely to be good candidates to be used as
a Monte-Carlo estimate for the future probability density function. We exploit the fact
that the joint probability measure in a slow-fast system can be approximated by a product
measure comprised of the measure of the slow variables and the equilibrium measure of
the fast variables conditioned on the slow variables. The collapse of BVs for small values
of the perturbation size then implies that we have only one single random draw from the
probability measure of the fast variables conditioned on the slow variables. We present a
way to generate a diverse ensemble from this collapsed ensemble representing an ensemble
drawn from this fast conditional probability density function by a cost-effective stochas-
tic perturbation. We further consider random draws from the marginal fast equilibrium
probability density function to generate random draw bred vectors (RDBV). In RDBVs,
as opposed to SPBVs, the fast components are drawn independent of the current state of
the slow components. The stochastically modified bred vectors both introduce variance in
the sub-synoptic scales, where our uncertainty about the current state is largest, consistent
with an analysed state obtained from data assimilation. We will show that the sub-synoptic
variance propagates into synoptic scales where most of the energy resides.

We shall illustrate in numerical simulations of a multi-scale Lorenz-96 model (L96, [38])
several advantages of SPBVs and RDBVs over the standard BVs. The ensemble dimension
of SPBVs and RDBVs is significantly increased, in particular for small but finite values
of the perturbation size δ. This increased diversity leads to much better forecasting skill
when compared to the standard BVs, with RDBVs having lower forecast error than SP-
BVs. Furthermore, whereas the RMS forecast errors of standard BVs drop significantly
when the perturbation size δ is increased from small values for which BVs align with the
leading Lyapunov vector to values which correspond to the nonlinear regime, the RMS error
varies smoothly for SPBVs and RDBVs. This has the advantage that the forecast skill is
much less sensitive to the choice of the perturbation size which in practice should be chosen
to be compatible with the analysis covariance provided by, for example, data assimilation
[60, 61, 11]. In probabilistic forecasts, the reliability of an ensemble is of great importance.
An ensemble is called reliable if the associated forecast probability provides an unbiased
estimate of the observed relative frequencies. Using error-spread relationships, the contin-
uous ranked probability score and Talagrand diagrams we show that SPBV and RDBV
ensembles are more reliable than the standard BVs. Bred vectors also have the desirable
feature that they are dynamically consistent in the sense that their time evolution is close
to the actual dynamics of the dynamical multi-scale system. Using the mean-variance dia-
grams for the logarithm of the bred vectors, which illustrate characteristic features of the
temporal evolution of errors in chaotic dynamical systems, we show that SPBVs inherit the
dynamical consistency whereas RDBVs, despite having better forecast skill, lack dynamical
consistency.
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The paper is organised as follows. In Section 2 we introduce the multi-scale Lorenz-96
model [38]. Section 3 provides a brief introduction to bred vectors and the breeding method.
In Section 4 we introduce our dynamically informed modified method of stochastically
perturbed bred vectors and the dynamically inconsistent method of random draw bred
vectors. We then continue to show the efficiency of our stochastically modified bred vectors
in numerical simulations using the L96 model. Section 5 presents numerical simulations
illustrating the advantages of stochastically modified bred vectors over classical bred vectors.
In Section 5.1 we show how the ensemble dimension is increased, and in Sections 5.2-5.3
we present results on the forecast skill and the reliability of the ensemble, respectively.
The dynamical features of bred vectors and their stochastically perturbed counterparts are
investigated in Section 5.4. Here we show how bred vectors project onto covariant Lyapunov
vectors, and investigate the dynamical consistency of bred vectors by looking at their mean-
variance of the logarithm (MVL) diagram. We conclude in Section 6 with a discussion and
an outlook.

2. The Multi-Scale Lorenz-96 System

We consider the multi-scale Lorenz 96 system [38], which was introduced as a caricature
for the atmosphere. The model describes K slow variables Xk which are each coupled to J
fast variables Yj,k, governed by the following equations

d

dt
Xk = −Xk−1(Xk−2 −Xk+1)−Xk + F − hc

b

J
∑

j=1

Yj,k,(1)

d

dt
Yj,k = −cbYj+1,k(Yj+2,k − Yj−1,k)− cYj,k +

hc

b
Xk,(2)

with cyclic boundary conditions Xk+K = Xk, Yj,k+K = Yj,k and Yj+J,k = Yj,k+1, giving
a total of D = K(J + 1) variables. The variables Xk can be interpreted as large scale
atmospheric fields arranged on a latitudinal circle, such as synoptic weather systems. Each
of the Xk variables is connected to J small-scale variables Yj,k with smaller amplitude and
frequency, modelling for example convective events. The coefficient c signifies the time-scale
separation, and the ratio of the amplitudes of the large-scale and the small-scale variables
is controlled by b. The coupling strength is given by the parameter h. The uncoupled
dynamics of both the large-scale and the small-scale variables is given by nonlinear transport
and linear damping; the large-scales are subjected to external forcing F .

Parameter Description Value

K number slow variables 12
J number fast variables per slow variable 24
c time-scale ratio 10
b amplitude ratio 10
F forcing 20
h coupling constant 1

Table 1. Parameters used for the multi-scale L96 System (1)-(2).

We select parameter values, listed in Table 1, leading to chaotic behaviour. The choice
c = b = 10 implies that the variables Yj,k fluctuate with a 10 times higher frequency and
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with an approximately 10 times smaller amplitude when compared to the Xk. We also set
the coupling constant h = 1, corresponding to strong coupling where the dynamics is driven
by the fast sub-system [25]. For the parameters given in Table 1 the climatic variance is
estimated as σ2

X,clim = 31.62 for the slow variables and as σ2
Y,clim = 0.1061 for the fast

variables. We also estimate the decorrelation (e-folding) time of the slow variables to be
τX,c = 0.1705 and of the fast variables is τY,c = 0.0345. The maximal Lyapunov exponent
is measured as λmax = 18.29.

To numerically simulate the multi-scale L96 system we employ a fourth-order Runge-
Kutta method with a fixed time step dt = 0.0005. In our simulations we employ an initial
transient time of 250 time units to assure that the dynamics will have settled on the at-
tractor. A typical time series of the slow and fast variables is shown in Figure 1. It is seen
that the small-scale activity is regionally localised and is correlated to excited large-scale
variables Xk. Figure 2 provides a snapshot of the state of the system at time t = 2.5.
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Figure 1. Spatio-temporal dynamics of the multi-scale L96 model (1)-(2)
for (a) large-scale variables X and (b) small-scale variables Y .

3. Bred Vectors and the breeding method

We first briefly describe the standard breeding method developed by [59, 60] before intro-
ducing our stochastically modified bred vectors. BV’s are finite-size, periodically rescaled
perturbations generated from the full non-linear dynamics of the system. Given a control
trajectory zc(ti) at some time ti, we define a perturbed initial condition

zp(ti) = zc(ti) + δ
p

‖p‖ ,

where p is an initial arbitrary random perturbation and δ is the size of the perturbation.
In realistic applications, control trajectories zp(ti) are seeded from an analysed state. The
control and the perturbed initial condition are simultaneously evolved using the full non-
linear dynamics for some integration time window T until t = ti+1 = ti + T . At the end of
the integration window the difference between the two trajectories is calculated

∆z(ti+1) = zp(ti+1)− zc(ti+1)
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Figure 2. Snapshot of the large-scale variables Xk and the small-scale vari-
ables Yk,j for the multi-scale L96 model (1)-(2) (corresponding to Figure 1
at t = 2.5). Shown are the K = 12 slow variables Xk and for each slow
sector the J = 24 fast variables Yk,j.

and the bred vector is defined as the difference rescaled to size δ with

b(ti+1) = δ
∆z(ti+1)

‖∆z(ti+1)‖
.

The perturbation b(ti+1) is then used to redefine the perturbed trajectory zp(ti+1) =
zc(ti+1) + b(ti+1) at the start of the next breeding cycle. For the L96 system we employ
a breeding cycle length of T = 0.005 time units. This process of breeding is repeated for
several cycles until the growth rate of perturbations saturates and until the perturbations
converge in the sense that at time ti the BVs span the same space as BVs obtained if the
breeding cycle was initialised further in the past. These converged BVs are then employed
for ensemble forecasts. In our simulations we employ a spin-up time for the BVs of 25 time
units (which amounts to 5000 breeding cycles). An ensemble of N+1 initial conditions from
which to start an ensemble forecast is then provided by adding N separate BVs (that have
each started from different initial perturbations p) to the control and by the control itself.
Figure 3 shows a snapshot of a typical BV for δ = 0.1, revealing their localised character.
The slow components of the bred vector are small and of order of magnitude of 10−3 at
some active sites (here at the sites k = 2, 3 and at sites k = 6, 7) and otherwise are even
smaller with amplitudes of the order of 10−5. The fast components of the BV are generally
localised to those regions which correspond to the small but non-zero activity of the most
dominant slow components.

A forecast ensemble should consist of a diverse set of initial conditions that project onto
likely areas of error growth in phase space. The performance of a bred vector ensemble
depends on the perturbation size δ. Ideally, the perturbation size should correspond to the
analysis error [60]. In practice, however, the perturbation size may have to be inflated to
ensure that the evolving perturbations acquire sufficient spread at the desired lead time
(see, for example, [60, 39]). If the perturbation size is chosen too large, the RMS error of
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the forecast will deteriorate; on the other hand, for small values of the perturbation size the
spread of the ensemble may remain too small and not overlap with the truth, leading to poor
forecasts. Furthermore, alignment with the leading Lyapunov vector (LLV) may lead to an
ensemble collapse. Indeed, in the limit δ → 0 the perturbations are infinitesimal and after
multiple spinup cycles the BV aligns with the LLV, with an average growth rate equal to the
maximal Lyapunov exponent. For the BV depicted in Figure 3 with δ = 0.1, we observe that
an ensemble of N = 20 BVs, which were initialised with different random perturbations,
all collapse and are indistinguishable by eye from the one depicted in Figure 3. The lack
of diversity of an ensemble of bred vectors and the collapse to the LLV for perturbation
sizes corresponding to the analysis error of the day constitutes a major draw back of bred
vectors. In the following we will devise a method how to generate a diverse ensemble of
BVs.

Figure 3. Bred vector BV for the multi-scale L96 model (1)-(2) with per-
turbation size δ = 0.1. Shown are the K = 12 slow components and, for
each slow sector, the J = 24 fast components.

4. Stochastically Perturbed Bred Vectors

An ensemble generated using BVs presents a set of initial conditions which are likely to
be propagated into regions of high measure in phase-space. Hence ideally a BV ensemble
allows for a sampling of the joint density ρ(X,Y, τ) at the lead time τ2. In the case when the
perturbation size δ is not sufficiently large to prohibit the collapse of the BV ensemble, the
BV was characterised by slow components of small amplitude and by fast components which
are localised in the sectors corresponding to the higher amplitude states of the slow variables.
Note that BVs in general do not lie on the attractor, but typically relax rapidly onto the
attractor along the stable manifold. Each ensemble member therefore is (after some short
transient time) drawn from ρ(X,Y, 0) (conditioned on fast growth). In multi-scale systems
with time-scale separation parameter ε = 1/c the joint density can be approximated (see
for example, [20, 47]) as

ρ(X,Y, t) = ρ̂(X, t)ρ∞(Y |X) +O(ε),(3)

2We ignore the issue that technically we are dealing in deterministic dynamical systems with measures
which are not absolutely continuous with respect to the Lebesgue measure and which are singularly supported
only on the attractor.
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where ρ∞(Y |X) is the equilibrium probability density function of the fast variables con-
ditioned on the slow variables X. The collapse can hence be viewed as having only one
single realisation from this fast conditional equilibrium density. Our aim now is to generate
additional draws from ρ∞(Y |X) from this single realisation. Estimating the fast conditional
measure ρ∞(Y |X) is computationally too involved. We propose here instead the following
simple low-cost method to generate random draws from ρ∞(Y |X). Denote by H the pro-
jection onto the slow components and by h the projection onto the fast components. We
introduce the stochastically-perturbed bred vector (SPBV) of scale δ by multiplying the
fast components of a classical BV b with independent random noise

Hbsp = Hb

hbsp = δfast
(Id+η)hb

‖(Id+η)hb‖ ,(4)

with η a diagonal JK×JK matrix with diagonal entries ηii ∼ N (0, σ) for sufficiently large
σ. The rescaling size δfast is the perturbation size of the fast variables only, determined
by the requirement that the overall perturbation size of the SPBV bsp is δ. An ensemble
of N SPBVs is generated by applying independent stochastic perturbations according to
(4) for each of the members of the BV ensemble. The stochastic perturbation is performed
only once as a post-processing step when generating initial conditions for a forecast en-
semble. The stochastic perturbation essentially acts solely on the dominant components
of the BV since we are applying multiplicative noise. It therefore preserves the localised
structure associated with the conditioning on the slow X variables. This is illustrated in
Figure 4a which shows a snapshot of typical SPBV for δ = 0.1, together with its parent
BV. It is pertinent to mention that the stochastic perturbation causes the SPBV to lie off
the attractor. However, since the SPBVs exhibit the same localisation structure as the
dynamically consistent BVs, the fast relaxation of the fast variables towards the attractor
ensures that after a brief transient SPBVs explore the attractor for fixed slow variables X.
Hence the SPBVs represent independent draws from the conditional density ρ∞(Y |X). The
generation of SPBVs is dependent on the variance σ of the random perturbation η. We will
provide numerical evidence in Section 5 (cf. Figure 6) that the rescaling of the SPBVs to
the size δfast in (4) causes the properties of SPBVs to statistically converge once the noise
strength σ is sufficiently large.

4.1. Random Draw Bred Vectors. To highlight the importance of sampling from the
conditional distribution ρ∞(Y |X) to generate dynamically consistent ensembles we now
consider a another stochastic variant of BVs, where we generate random draws from the
marginal distribution ρ∞(Y ) =

∫

ρ∞(Y |X)dX rather than from the conditional distribution
ρ∞(Y |X). This is achieved by considering again a single classical BV with size δ, and then
generating a new ensemble member by replacing its fast components by the fast components
of a randomly selected BV from a library of bred vectors with size δ. We coin these random-
draw bred vectors (RDBV). In practice, we generate the library on the fly by running N
independent simulations simultaneously, that have started from random initial conditions.
Each simulation is used to generate one independent BV, where only the fast components are
taken and used to produce the RDBVs. As with SPBVs the slow components of an RDBV
are left unchanged from the original BV. In RDBVs the fast components are uncorrelated
and independent of the slow components which renders RDBVs as almost orthogonal due
to the localised character of BVs. An example of an RDBV is shown in Figure 4b. Whereas
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(a) (b)

Figure 4. Stochastically modified bred vectors and associated BV for the
multi-scale L96 model (1)-(2) with perturbation size δ = 0.1 (cf. Figure 3).
Shown are the K = 12 slow components and, for each slow sector, the J = 24
fast components. (a): SPBV, (b): RDBV.

SPBVs sample the measure of the system locally, conditioned on the slow variables, the
dynamically inconsistent perturbations of RDBVs have the potential to drive the dynamics
away from the local region of the truth during their relaxation towards the attractor.

5. Numerical results

We now present results from numerical simulations of the multi-scale L96 system (1)-(2),
illustrating that SPBVs and RDBVs provide a more diverse and reliable forecast ensemble
with improved forecasting skill and furthermore showing that SPBVs are dynamically con-
sistent. We will show in Section 5.1 that stochastic perturbations of classical BVs increases
the diversity of the ensemble. The forecasting skill is investigated in Section 5.2 in terms of
the RMS error of the ensemble forecast. The reliability is studied in Section 5.3 in terms
of the RMS error-spread relationship, the continuous ranked probability score and the Ta-
lagrand diagram. Sections 5.4.1 and 5.4.2 are concerned with the dynamical consistency of
bred vectors; by means of covariant Lyapunov vectors we show that SPBVs project onto
the unstable subspace for small to moderate values of δ, and that their temporal evolution
is consistent with the true dynamics measured by the mean-variance of their logarithm.

5.1. Ensemble dimension. To illustrate the lack of diversity of classical BVs and how
stochastically modified BVs improve on diversity, we consider the ”ensemble dimension”
[8, 42], also known as the ”bred vector dimension” [46]. The ensemble dimension is a
measure for the dimension of the subspace spanned by a set of vectors. For an ensemble of
N BV’s {b(n)(t)}n=1,...,N at a given time, the ensemble dimension is defined as

Dens(t) =

(

∑N
n=1

√
µn

)2

∑N
n=1 µn

,(5)



10 STOCHASTICALLY PERTURBED BRED VECTORS IN MULTI-SCALE SYSTEMS

where the µn’s are the eigenvalues of the N ×N covariance matrix C

Cn,m(t) =
b(n)(t)[b(m)(t)]T

‖b(n)(t)‖2‖b(m)(t)‖2
.(6)

The ensemble dimension takes values between Dens = 1 and Dens = min(N,D), where
D = K(J + 1) is the total dimension of the dynamical system, depending on whether the
ensemble members are all aligned or are orthogonal to each other. Figure 5 shows the en-
semble dimension D̄ens averaged over 2500 ensembles as a function of the perturbation size
δ for a 20-member ensemble, for each of the BV ensemble types.

Let us first focus on the classical BVs. For a perturbation size δ < 0.7, BVs collapse
to the local leading Lyapunov vector resulting in an ensemble dimension of D̄ens = 1. For
δ > 0.7 the perturbations are sufficiently large to allow for nonlinear dynamics to come into
effect, resulting in BVs deviating from the local LLV and in an effective increase in D̄ens.
For δ < 5.5 the slow components of the BVs are several orders of magnitude smaller than
those associated with the fast variables, with the slow components making up less than 0.2%
of the total perturbation size (not shown). Hence, the ensemble dimension is determined
by the dynamics in the fast subspace. Once δ ≈ 4.5 the fast variables have nonlinearly
saturated, meaning that any increase in δ can only increase the magnitude of the slow com-
ponents. At δ ≈ 5.5, the slow variables make up approximately K/D = 12/300 = 4% of
the total perturbation size (not shown), implying that the slow and fast components are
equal in magnitude on average. As δ continues to increase the slow components of the BVs
begin to exceed in size over that of the fast components, rapidly dominating the ensemble
dimension. Consequently the ensemble dimension is then only reflecting the dimension of
the slow subspace spanned by the perturbations (plus some negligible noise contribution
from the fast subspace). Since there are fewer slow variables (K = 12) than fast variables
(K × J = 288) the ensemble dimension decreases for δ > 5.5. We indicate in Figure 5 two
particular values of the perturbation size δ: δ = 0.103 where D̄ens = 1 and δ = 1.047 where
the ensemble dimension of standard BVs has increased to values larger than 1 and nonlinear
effects are active.

RDBVs lead to a near maximal ensemble diversity of D̄ens = 19.64 for the relevant
range δ < 5.5, since their fast variables are essentially independent random draws with
respect to each other. We note that they will not attain the maximal ensemble dimension
D̄ens = N = 20 since the ensemble is not explicitly orthogonalised. Much like for classical
BVs, their ensemble dimension decreases for δ > 5.5 for the same reason listed as above
since their slow variables are left unchanged from the original BV.

SPBVs feature an ensemble dimension D̄ens ≈ 12 for a perturbation size δ < 0.7 3.
Increasing the perturbation size further increases the ensemble dimension which remains
significantly larger than that of the classical BVs (recall that each BV in an ensemble is
stochastically perturbed). Figure 6 shows that for sufficiently large values of σ the ensemble
dimension saturates. The saturation is associated with the rescaling of the perturbation to

3We remark that observing D̄ens ≈ K is accidental. We checked that the ensemble dimension of an SPBV
ensemble is related to the number Da of sites of significant fast activity of the parent BV. Stochastically
perturbing BVs with multiplicative noise, as done in (4), then implies that the maximal ensemble dimension
is equal to min(N,Da) = Da for Da ≈ 12 < N = 20.
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overall size δ (cf. (4)). This insensitivity of SPBVs to the noise strength σ translates to a
robustness of other measures presented in the next subsection against changes in σ.

Figure 5. Time-averaged ensemble dimension D̄ens as a function of δ for
each ensemble generation method using a 20-member ensemble for the multi-
scale L96 system (1)–(2) with K = 12 and J = 24. D̄ens was obtained as an
average over 2500 ensembles. Dashed vertical lines are drawn to delineate
values of δ = 0.103 and δ = 1.047.

Figure 6. Time-averaged ensemble dimension D̄ens for SPBVs as a function
of the noise strength σ of the stochastic perturbation for two values of the
perturbation size δ. D̄ens was obtained as an average over 2500 ensembles.

5.2. Ensemble forecast skill. To study the performance of the various bred vector en-
sembles, we use here several forecast verification measures to test their predictive ability
and their respective uncertainty quantification. We seed an ensemble of bred vectors to be
used in a subsequent ensemble forecast around an analysed state obtained during a data
assimilation procedure, assuming no model error. We employ here an ensemble Kalman
transform filter (ETKF) to provide the analysed state and its associated error covariance
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Pa. We provide details on the data assimilation procedures used in Appendix 7. We con-
sider here the worst case scenario where the classical BVs collapse to a single mode, as well
as the case where BVs span a low-dimensional subspace with dimension larger than one
but still suffer from under-dispersiveness. We achieve both cases in the L96 system (1)–(2)
by frequently observing all variables and varying the initial perturbation size of the BVs.
To ensure that the ensemble mean of the bred vector ensemble coincides with the analysis,
centred pairs of bred vectors with opposite signs are constructed [60, 62]. We remark that
this is admissible for small values of the perturbation size δ when bred vectors indeed are
vectors; for large values of δ, however, the negative of a bred vector might correspond to an
initial condition which is not likely to grow. Alternatively, one may use the simplex method
proposed by [54] or may subtract the mean of the rescaled perturbations from all ensemble
members [28] to centre the ensemble. The perturbation size δ of bred vectors ideally corre-
sponds to the analysis error, and the perturbation size δ for the bred vector ideally would
be chosen in accordance with the uncertainty of the analysis with δ =

√
TrPa. In many

situations, however, this is not sufficient to obtain good forecast skill, as the support of the
BV ensemble might not contain the observation. It is common practice to choose δ larger
than the analysis error to achieve better forecasting skill [60, 39]. The data assimilation
is provided by ETKF with 100 ensemble members with observations being analysed every
0.005 time units, matching the breeding cycle. We employ error covariance inflation with
a factor of 1.1. We choose the observational noise to have variances of 5% and 10% of the
slow and fast climatic variances of X and Y , respectively (cf. Section 2). We employ a
spin-up period of the ETKF of 25 time units, before starting the generation of bred vector
ensembles for another 25 time units. We find an average analysis error of

√
TrPa = 0.103.

Ensembles of each bred vector type are generated with N = 20 members. Each ensemble
member is evolved freely, under the same dynamics as the truth, for some lead time τ , at
which point the ensemble mean provides the forecast. We report forecast skills for lead
times τ = 1.0, τ = 1.5 and τ = 2 time units. New forecasts are produced after each analysis
cycle every 0.5 time units, meaning that there are 100 BV breeding cycles between forecasts.
All metrics are averaged over a total of M = 2500 forecasts (analysis cycles).

To measure the performance of the BV ensembles we consider the root-mean-square error
(RMS Error) of the ensemble average with respect to the truth of the slow variables only.

With a slight abuse of notation we denote by X
(n)
k the kth slow component of the nth

ensemble member. Here k = 1, . . . ,K and n = 1, . . . , N . The ensemble mean is denoted
with angular brackets and we have

〈Xk〉 =
1

N

N
∑

n=1

X
(n)
k .(7)

We define the site-averaged root-mean-square error (RMS Error) between the truth Xtr
k

and the ensemble average

E(τ) =

√

√

√

√

1

M

M
∑

m=1

1

K

K
∑

k=1

‖Xtr
k,m(τ)− 〈Xk,m〉(τ)‖2(8)
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as a function of the lead time τ . The index m denotes the realisation with m = 1, . . . ,M .
Similarly, as a measure of the uncertainty of the ensemble average, we consider the site-
averaged root-mean-square spread (RMS Spread)

S(τ) =

√

√

√

√

1

M

M
∑

m=1

1

K

K
∑

k=1

〈‖X(n)
k,m(τ)− 〈Xk,m〉(τ)‖2〉.(9)

Figure 7 shows the RMS Error as a function of δ for three fixed lead times for each
ensemble generation method. Classical BVs exhibit the largest RMS errors for δ < 0.7
compared to SPBV and RDBV. This poor performance is due to the fact that for δ < 0.7
ensembles of classical BVs suffer ensemble collapse with D̄ens = 1 and the ensemble as a
whole eventually diverges from the true state of the system. The diversity of the stochas-
tically modified bred vectors SPBVs and RDBVs causes the ensemble mean to lie closer to
the truth with smaller RMS errors. We observe that RDBVs, despite not being dynamically
consistent, have the lowest RMS error. Around δ ≈ 0.7, when the ensemble dimension of
classical BVs increases from a value of 1, the RMS error of BVs is significantly reduced, and
approaches the values of SPBV and RDBV from above upon increasing δ. As δ is increased
further past δ ≈ 5.5 the RMS error rapidly rises for all ensemble forecast methods. At this
point the slow components of the bred vector begin to dominate in magnitude, resulting in
perturbations that are starting much further from the truth. Since our modifications only
affect the fast components, all ensemble generation methods then become indistinguishable
and yield the same RMS error. Note that for small lead times τ = 1.0, the improvement in
forecast error of SPBVs and RDBVs over the classical BVs is rather small, suggesting that
the ensemble mean has not deviated much from the control forecast.

The RMS spread, shown in Figure 8, displays a similar behaviour. With D̄ens = 1 the
BVs have a very low RMS spread score for δ < 0.7. RDBV’s spread is slightly higher than
the spread of SPBVs; both outperforming classical BVs. Near δ ≈ 0.7, the RMS spread
of BVs is significantly increased, consistent with the increase of D̄ens, and approaches the
values of SPBV and RDBV from below. As with the RMS error, all methods yield the same
RMS spread for δ > 5.5.

We remark that BVs exhibit a strong dependency of both the RMS error and the RMS
spread, when varying the perturbation size δ from values where the ensemble suffers col-
lapse with D̄ens = 1 to the nonlinear regime where D̄ens > 1. The stochastically perturbed
modification SPBVs and RDBVs on the contrary exhibit much less sensitivity of their RMS
error and RMS spread when varying the perturbation size. We also note that, for δ < 0.7,
the RMS error and the RMS spread curves of BVs are less smooth than those of their
stochastically modified counterparts. This is because the ensemble average in the RMS
quantities is not reducing statistical fluctuations for classical BVs since all BV members are
approximately identical in this range.

Figure 9 shows a typical ensemble forecast for the multi-scale L96 system (1)–(2) for one
slow component X1, with a perturbation size of δ = 0.1. The figure depicts a scenario in
which small sub-synoptic perturbations may cause the trajectory to explore several parts of
phase-space and acquire synoptic variance. The particular case here allows for two possible
synoptic ”futures” of the trajectory near lead time t = 1. We show the truth together with
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the ensemble mean, as well as all the individual ensemble members. The lack of diversity of
BVs is clearly seen to be detrimental and the ensemble collectively diverges from the truth
for lead times larger than 1, causing the poor performance in the RMS error reflected in
Figure 7. The stochastically perturbed bred vectors feature more diversity, allowing some
ensemble members to explore the different synoptic ”futures” and different parts of the
phase space. The spread is particularly large for RDBVs where the fast components are
independently drawn, allowing the ensemble to sample more distant parts of phase space.
This increased spread leads to less ensemble divergence from the truth and is reflected in
the superior RMS error performance of RDBVs (cf. Figure 7).

For the small value of δ = 0.103 which corresponds to the average analysis error, all three
ensembles have insufficient spread in the sense that the truth has a high likelihood of being
outside of the support of the implied probability density function of the ensemble. In the
following we therefore consider increased perturbation sizes δ = 1.047 for which the RMS
error of the BVs is considerably reduced [60, 39]. We remark, that if the slow analysed
state is too far from the truth of the slow variables, stochastic perturbations of the localised
fast components of the BVs will not have any impact on the spread despite increasing the
ensemble diversity.

Figure 7. RMS error E as a function of δ of each ensemble generation
method for three fixed lead times. Dashed vertical lines are drawn to delin-
eate values of δ = 0.103 and δ = 1.047.

5.3. Reliability. In probabilistic forecasting one aims to predict the probability density
function at a later time rather than just issuing a forecast of the state. A method which
minimises the RMS error of the ensemble forecast mean is not necessarily a method which
provides a good probabilistic forecast. Moreover, there are many situations, such as in the
case when the probability density function has disjoint support, when the ensemble mean is
a bad forecast and is not physically meaningful. We therefore investigate here the reliability
of the various bred vector ensembles. In a so called perfect ensemble each ensemble member
and the truth are independent draws from the same probability density function ρ(X,Y ).
In perfect ensembles the ratio between the RMS error of the ensemble mean and the spread
of the ensemble approaches 1 as the ensemble size increases [65, 35]. Ratios smaller or larger
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Figure 8. RMS spread S as a function of δ of each ensemble generation
method for three fixed lead times. Dashed vertical lines are drawn to delin-
eate values of δ = 0.103 and δ = 1.047.

(a) (b) (c)

Figure 9. A typical ensemble forecast for the multi-scale L96 system (1)–
(2) with 20 ensemble members. Depicted are the truth, ensemble members
and the ensemble average for the slow component X1 for (a) BVs, (b) SPBVs
and (c) RDBVs. The perturbation size is δ = 0.1. For better visibility we
only show the BVs and not their negative counterparts.

than 1 indicate that the ensemble is either under or over-dispersive, respectively.

We explore the RMS error versus the RMS spread relationship for the various ensem-
bles for δ = 1.047 for which the error dynamics has transitioned from linear to nonlinear
dynamics and bred vector ensembles have acquired sufficient diversity to allow for some
degree of reliability given the analysis error (cf. Figure 7 and Figure 8). Figure 10a
shows the RMS error-spread relationship for the various ensembles as a function of the
lead time τ , averaged over 2500 forecasts. Lines lying above/below the one-to-one line indi-
cate under/over-dispersion (error is higher/lower than expected for the amount of spread).
BVs are clearly under-dispersive for all lead times. SPBVs have a significantly improved
error-spread relationship but still exhibit a certain degree of under-dispersiveness whereas
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(a) (b)

Figure 10. (a): Averaged RMS error vs spread for each ensemble genera-
tion method parameterised by increasing lead times from τ = 0 to τ = 2.5
time units for δ = 1.047. (b): RMS error-spread relationship averaged over
10 subsamples of increasing RMS spread with lead time τ = 1.5 for δ = 1.047.
Each data point represents the average value of each bin and bins increase
by 10%-percentiles of RMS spread. The grey dot-dashed line indicates a
one-to-one ratio of error and spread, indicating a reliable ensemble.

RDBVs are slightly over-dispersive.

Ideally we would like the RMS error-spread relationship to hold for sufficiently large
subsamples of cases conditioned on the predicted spread. In the cases when the predicted
ensemble spread is small, this should also be reflected in the error. In a perfect ensemble
the spread S can then be used to predict the standard deviation of the ensemble mean
forecast error distribution [61, 35]. We therefore stratify the data based on each forecast’s
individual RMS spread S for a fixed lead time. This data is placed into 10 bins of equal size
sorted by increasing values of the RMS spread S, so that the first bin contains the forecasts
with the 10%-percentile of S, etc. We then calculate the averaged S and E for each bin.
These results are displayed in Figure 10b, again for δ = 1.047 at lead time τ = 1.5. The
results show again that BVs are under-dispersive for all magnitudes of the spread S. SPBVs
improve upon classical BVs but still have a small degree of under-dispersiveness, except in
the case when the predicted forecast error is small. RDBVs provide the most reliable error
spread relationship.

Next, we examine the continuous ranked probability score (CRPS). This is a measure of
how well the probabilistic forecast matches the truth combining reliability, uncertainty and
resolution of a probabilistic forecast [27]. The CRPS is defined as

CRPS(τ) =
1

K

K
∑

k=1

∫

∞

−∞

[

P (Xk(τ))− P tr(Xk(τ))
]2

dXk,(10)
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averaged over each slow variable site k for a particular lead time τ . P and P tr are the
cumulative probability distributions of the forecast ensemble and truth, respectively, with

P (Xk) =
1

N

N
∑

n=1

H
(

Xk −X
(n)
k

)

,(11)

P tr(Xk) = H
(

Xk −Xtr
k

)

,(12)

where H(x) is the Heaviside function with H(x) = 0 for x < 0 and H(x) = 1 otherwise.
Here we have made the common choice of estimating the cumulative forecast distribution

as a step-function, with steps at the value of each ensemble member X
(n)
k .

The features of the CRPS function, depicted in Figure 11, are very similar to that of the
RMS error curves shown in Figure 7. This is not surprising as the CRPS is a generalisation
of the mean absolute error [27]. BVs display the largest CRPS for small values of δ, before
sharply decreasing at δ ≈ 0.7. SPBVs and RDBVs have very similar values of CRPS
across all perturbation sizes, with RDBVs maintaining a slight edge over SPBVs. The most
notable difference is that the CRPS punishes the BV ensemble more heavily than the RMS
error for δ < 0.7. In particular, for τ = 1.0 BVs exhibit significantly higher values of CRPS
compared to SPBVs and RDBVs for δ = 0.103, which is not a feature of the RMS error
curve (cf. Figure 7), reflecting the increase in reliability of stochastically perturbed BVs.

Figure 11. CRPS as a function of δ of each ensemble generation method
for three fixed lead times. Dashed vertical lines are drawn to delineate values
of δ = 0.103 and δ = 1.047.

Another property of a reliable ensemble is that the ensemble spread of the forecast rep-
resents the variance of the underlying probability distribution, and that the truth and the
ensemble members are statistically indistinguishable random draws from the same proba-
bility distribution. This property is conveniently probed in a so called Talagrand or Rank
histogram [1, 24, 57]. To generate a Talagrand histogram, the N ensemble members are
sorted at each forecast time and for each variable and used to define a set of N + 1 bins.
We then increment whichever bin the truth falls into at each forecast step to produce a
frequency histogram of the truth being in bin i. A reliable ensemble then implies that the
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truth is equally likely to occur in any of those ranked bins leading to a flat histogram. A
convex histogram indicates a lack of spread of the ensemble, and a concave diagram indi-
cates an excess of spread of the ensemble [65]. A flat Talagrand diagram does not necessarily
imply reliability (see, for example, Hamill [23], Wilks [66] for a discussion); however, in the
setting of the cyclic Lorenz-96 model (1)-(2) with equally weighted ensemble members, flat
histograms do imply reliability.

Figure 12 displays the Talagrand Histogram for each ensemble generation strategy for
δ = 1.047 for the three lead times τ = 1, τ = 1.5 and τ = 2, averaged over all slow variables.
BVs are under-dispersive for all lead times. The peak in the center of the histogram is
caused by using ± BV pairs to center the ensemble around the analysis. RDBVs are
shown to be slightly over-dispersive for all lead times, and the degree of over-dispersiveness
decreases with increasing lead time τ . SPBVs are shown to be slightly under-dispersive for
all lead times, and the degree of under-dispersiveness decreases with increasing lead time
τ . Generally, SPBVs and RDBVs form a reliable ensemble for all perturbation sizes for
τ > 1.5.

Figure 12. Talagrand diagrams for δ = 1.047 at lead times τ = 1.0, τ = 1.5
and τ = 2.0 for ensembles of BVs, SPBVs and RDBVs.

5.4. Perturbation dynamics. We now concentrate on the dynamical features of bred
vectors and how classical BVs and stochastically perturbed BVs capture the dynamical
evolution of perturbations of the full dynamical system (1)-(2). Following Pazó et al. [49] we
investigate here Lyapunov vectors and the mean-variance of the logarithm (MVL) diagram.

5.4.1. Backward and covariant Lyapunov vectors. The asymptotic growth of infini-
tesimal perturbations is captured by Lyapunov vectors. Several types of Lyapunov vectors
are commonly used [33]; for example, one can construct Lyapunov vectors initialised in
the asymptotically distant past as so called backward Lyapunov vectors. These backward
Lyapunov vectors are generated by solving the linear tangent model of the dynamical sys-
tem under a Gram-Schmidt orthogonalisation procedure to keep them orthogonal. Each of
these backward Lyapunov vectors will evolve, if propagated into the future, to the leading
Lyapunov vector and hence backward Lyapunov vectors are not covariant under the tan-
gent dynamics. Covariant Lyapunov vectors, i.e. those for which each Lyapunov vector



STOCHASTICALLY PERTURBED BRED VECTORS IN MULTI-SCALE SYSTEMS 19

at time t is propagated to a Lyapunov vector at some later time t′ under the linearised
dynamics, have been proven to exist under general conditions [43]. Contrary to backward
Lyapunov vectors, covariant Lyapunov vectors generally do not form an orthogonal basis.
[67, 19] designed efficient numerical algorithms to calculate covariant Lyapunov vectors.
We remark that, similar to BVs, covariant Lyapunov vectors exhibit a localised ”spatial”
structure for the L96 system. We use here the algorithm by [19] as described in [32] to
numerically calculate covariant Lyapunov vectors, with a spin-up period of 250 time units
to ensure convergence of the backward Lyapunov vectors and of 250 time units to ensure
convergence of the expansion coefficients of the covariant Lyapunov vectors. In the following
we establish how bred vectors project on backward and onto covariant Lyapunov vectors.
For the backward Lyapunov vectors we perform an orthonormalisation at each time step.
Figure 13 shows the Lyapunov exponents for the multi-scale L96 model (1)-(2) with the
parameters given in Table 1. There is a total number of 72 positive Lyapunov exponents.

Figure 13. Lyapunov exponent spectrum for the multi-scale L96 model
(1)-(2) with parameters listed in Table 1.

To assess the dynamic adaptivity of bred vectors we now study their average projection
onto backward and onto covariant Lyapunov vectors. To do so, we normalise the bred
vectors and the Lyapunov vectors and introduce the following measure for the degree of
projection

πn
i (t) =

∣

∣

∣

∣

bn(t)

‖bn(t)‖ · li(t)

‖li(t)‖

∣

∣

∣

∣

,(13)

where bn(t) denotes the nth bred vector ensemble member at time t and li(t) denotes the
Lyapunov vector corresponding to the ith largest Lyapunov exponent at time t. We report
here on the average π̄i where we average πn

i (t) over time and over the ensemble members
n. Hence π̄i = 1 corresponds to perfect alignment and πi = 0 corresponds to (on average)
no alignment. Figure 14 and 15 show π̄i using the first leading 100 backward and covariant
Lyapunov vectors respectively on a logarithmic scale.

Let us first focus on the projections of the bred vectors on the backward Lyapunov vec-
tors. It is clearly seen that classical BVs align with the first dominant Lyapunov vectors
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with indices i ≤ 3 for δ < 0.7, consistent with the small ensemble dimension D̄ens = 1 in
that range, and do not exhibit significant projections onto the orthogonal complement with
i > 3. SPBVs, despite their stochastic perturbation, exhibit a similar collapse on average in
the range i ≤ 3 but with a lower average projection. This is to be expected since in the range
δ < 0.7 SPBVs are created from one single collapsed BV and hence they exhibit on average
similar projections as their parent BV. RDBVs on the other hand have, as expected, no
dominant projection onto any mode since they are composed from BVs at different times.
We remark that the projection of BVs and SPBVs for δ < 0.7 suggests that indeed BVs
can be thought of as linear vectors, spanning (parts of) the unstable subspace. Increasing
δ past δ = 0.7 the bred vectors lose their linear character and do not exhibit any significant
projection onto the linear Lyapunov vectors. At δ ≈ 5.5 when the fast components have
saturated, the projection onto the unstable Lyapunov vectors (associated with the fast Y
variables) is further remarkably reduced. We remark that for δ > 5.5 the bred vectors are
dominated by their slow components and all bred vector types (BV, SPBV and RDBV) are
essentially indistinguishable as they only vary in their fast components.

Contrary to backward Lyapunov vectors, covariant Lyapunov vectors do not form an
orthogonal basis. Hence, as shown in Figure 15, BVs project onto several unstable covari-
ant Lyapunov vectors (approximately the first i ≤ 30) for δ < 0.7. SPBVs, on the other
hand, have an average projection of π̄i ≈ 1 only for the first three covariant Lyapunov
vectors and a lesser but non-trivial contribution onto the vectors with indices 4 ≤ i < 10.
Rather than being linked to dynamic properties of SPBVs, this is mainly due to the fact
that SPBVs are generated stochastically from a single collapsed BV which causes π̄1 ≈ 1
due to the ensemble averaging involved in the definition of π̄i. Within an SPBV ensemble,
however, individual members may exhibit significant projections onto different covariant
Lyapunov vectors (not shown). Both, BVs and SPBVs, have nontrivial projections onto
the neutral mode with zero Lyapunov exponent at i = 72, which is tangential to the flow
direction. This is due to the fact that in the L96 model (1)–(2) perturbations propagate
to the west (i.e. towards decreasing indices k and j; cf. Figure1)4 and that BVs and SP-
BVs exhibit non-trivial activity in the fast and the slow components in the same sectors
which are dynamically active. RDBVs, which have unchanged slow components but uncor-
related fast components, naturally show no significant projection onto the linear unstable
subspace spanned by the covariant Lyapunov vectors. They only exhibit nontrivial projec-
tions onto the neutral mode for large values of δ > 5.5 when the slow dynamics is dominant.

Our simulations show that BVs exhibit a localisation structure of their fast components
which is very similar to that which is exhibited by the first 20 covariant Lyapunov vec-
tors, with activity confined to a few well separated spatial regions (cf. Figure 3 and see
also Figure 5 in [26]). This is not the case for the first dominant backward Lyapunov vec-
tors which tend to have active fast components in different spatial regions induced by the
orthogonality constraint. The confined spatial localisation structure of BVs is inherited
by SPBVs, and both BV and SPBV ensembles are dynamically adapted in the sense that
their spatial localisation resembles closely that of the dynamical covariant Lyapunov vectors.

4The nonlinear terms in the L96 system (1)–(2) can be viewed as a finite-difference discretisation of the
advective transport term in geophysical fluid dynamics.
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(a) (b) (c)

Figure 14. Averaged absolute value projection π̄i of backward Lyapunov
vectors onto (a) BVs, (b) SPBVs and (c) RDBVs. Results are shown on a
logarithmic scale.

(a) (b) (c)

Figure 15. Averaged absolute value projection π̄i of covariant Lyapunov
vectors onto (a) BVs, (b) SPBVs and (c) RDBVs. Results are shown on a
logarithmic scale.

5.4.2. Evolution of perturbations. Besides the temporal evolution of error growth, the
spatial structure and correlation of perturbations and their evolution encodes important
information and has characteristic features which ensemble dynamics should reproduce
[36, 22, 49]. In this section we study the free evolution of bred vectors, as done in an
ensemble forecast, without rescaling. Rather than studying the evolution of the size of the
perturbation ‖bi(t)‖ we now study its logarithm [36]

hi(t) = ln |bi(t)|,(14)

for i = 1, . . . ,D, where we recall the total dimension of the multi-scale L96 system D =
K(J + 1), and its spatial mean h̄(t) = 1

D

∑D
i=1 hi(t). The ensemble averaged spatial mean

of the interface of a bred vector is defined as

M(t) = 〈h̄(t)〉.(15)
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The variance of the fluctuations around the mean is defined as

V (t) = 〈 1
D

D
∑

i=1

(

hi(t)− h̄(t)
)2〉.(16)

The mean M(t) initially grows linearly in time with the growth rate corresponding to the
maximal Lyapunov exponent. In this linear regime the spatial structure is roughly constant
with a constant variance V (t). After this initial time, perturbations grow nonlinearly and
lose their spatial localisation, i.e. V (t) decreases. In the asymptotic regime t → ∞, the
mean saturates to the size of the attractor and the variance decreases until the statistics
becomes Gaussian. The mean-variance of the logarithm (MVL) diagram, depicting time
traces (as a function of lead time) of V (t) versus M(t), was introduced in [22] to condense
the interplay between the temporal mean growth and the spatial growth. MVL diagrams
and the characterisation of the spatial structures of bred vectors were used in operational
weather prediction models [53] and in ensemble prediction systems [18] to compare models.
We show in Figure 16 the MVL diagram for the multi-scale L96 system (1)–(2) where per-
turbations of classical BVs, SPBVs and RDBVs were taken as initial perturbations, each
with 20 ensemble members, as well as the MVL curve for the leading Lyapunov vector.

BVs for perturbation sizes δ < 0.7 have an ideal MVL diagram, reproducing the dynamic
behaviour of the actual system as characterised by the MVL relationship of the covariant
Lyapunov vector. The log-perturbations initially grow linearly in time maintaining a con-
stant variance of V ≈ 9. Eventually as the trajectory grows further from the truth the mean
M(t) increases nonlinearly and the variance of the perturbation declines when M ≈ −8;
curves starting aroundM ≈ −8 correspond to perturbations with δ ≈ 0.7, where linearity of
the perturbation is lost (cf Figures 14 and 15). The MVL diagram for SPBVs clearly reveals
that for small perturbation sizes the curves track the reference MVL curve of the leading
Lyapunov vector. The initial rapid decline of the variance represents the fast relaxation of
the SPBVs towards the attractor with V = 9; once on the attractor the SPBVs reproduce
the error growth behaviour of the leading Lyapunov vector. As the stochastic perturbations
of an SPBV ensemble are conditioned on the slow variables, the state towards which the
perturbations grow will be close to the actual state of the control analysis forecast. For
RDBVs, however, the variance significantly decreases below V = 9 in its initial phase. This
is due to RDBVs being too far off the attractor that their dynamics experiences nonlinear
growth of M before developing the spatial localised structure quantified by V = 9. The
RDBVs do not settle on the attractor close to the control analysis forecast but explore
large regions of phase space instead. The MVL diagrams show that classical BVs are well
adapted to the dynamics of the L96 system. SPBVs are well adapted after a brief transient
time needed to relax to the attractor. RDBVs are again, as expected, not dynamically
consistent in the sense of the MVL behaviour.

6. Discussion and outlook

When designing algorithms to generate initial conditions for ensemble forecasting, one
would like that the initial ensemble satisfies that they (i) lie on (or at least close to) the
attractor, (ii) are reliable, (iii) provide good error skill relationship and (iv) are capable of
evolving into areas of large measure [49]. [49] performed a detailed comparison between
several ensemble methods and argue that CLVs are optimal in the sense of satisfying these
four properties; CLVs are, however, computationally very involved. Classical BVs, as we
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(a) (b) (c)

Figure 16. MVL diagram of (a) BVs, (b) SPBVs and (c) RDBVs. Each
coloured line represents a different value of δ, increasing from left to right
from δ = 0.1 to δ = 10. The dashed line denotes the MVL curve for the
leading Lyapunov vector.

have shown here as well, are dynamically consistent with realistic temporal and spatial error
growth evolution, but in the toy model we considered here they lack diversity implying poor
forecasting skill and resulting in an under-dispersive ensemble.

To mitigate the lack of diversity in classical BV ensembles, we introduced two versions of
stochastically modified bred vectors: SPBVs are designed to sample from the equilibrium
density of the fast variables conditioned on the slow variables and as such have a theoretical
underpinning in the context of multi-scale systems, whereas RDBVs are designed to sample
from the marginal equilibrium density of the fast variables and are not conditioned on the
slow variables. Both RDBVs and SPBVs significantly improve on forecast skill and on
reliability measures compared to classical BVs, with RDBVs outperforming SPBVs with
consistently smaller forecast errors. Moreover, whereas the forecast skill of BVs varies
significantly when adapting the perturbation size δ from a regime when they are governed
essentially by the linearised dynamics to the nonlinear dynamics, SPBVs’ and RDBVs’
forecast measures vary smoothly with perturbation size. We showed that SPBVs retain
the desirable properties of classical BVs of being dynamically consistent with realistic error
growth and realistic evolution of the spatial error structure, but remedy their shortcomings
related to their low spread for small perturbation sizes, such as reliability and forecast skill.
Furthermore, SPBV ensembles are adapted to the dynamics of the flow in the sense that
they exhibit the same localised spatial structure as covariant Lyapunov vectors with very
similar temporal and spatial growth.

The superior performance of SPBVs is achieved by the judicious choice of the stochastic
perturbation employed to generate them. The stochastic perturbation (4) preserves the
localised structure of the parent bred vector. Hence, after a rapid relaxation towards the
attractor the initial condition associated with the SPBV will be close to the fiducial tra-
jectory in phase space and the initial condition can be thought of as a random draw from
the desired conditional probability measure ρ(Y |X). This causes the spread of an SPBV
ensemble to be near optimal in the sense of their RMS error-spread relationship and their
Talagrand diagram. RDBVs, on the contrary, do not preserve the local structure of their
parent BVs and rather represent an almost orthogonal ensemble. This implies that initial
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conditions associated with RDBVs are likely to reach the attractor after a brief transient
period not near the fiducial trajectory but rather may explore a region in phase space cor-
responding to different dynamic states. Hence their spread is larger and RDBV ensembles
were found to be slightly over-dispersive. Despite being less dynamically consistent and
lacking a theoretical justification, the increased diversity of RDBVs allows them to obtain
smaller RMS forecast errors when compared to the more theoretically sound SPBVs. We
remark that the observed relative ordering of the forecast skill performance of the different
bred vector ensembles remains when for each ensemble method the perturbation size δ is
chosen to provide a fixed forecast variance at a fixed lead time τ (not shown), as suggested,
for example, in Toth and Kalnay [60].

The stochastic modifications of bred vectors proposed in this work rely on the localised
character of perturbations. This is indeed observed in the multi-scale setting of the L96
system (1)–(2). We note that stochastically perturbing localised BVs may not be advanta-
geous and may not generate sufficient spread in situations when the dominant perturbations
of the actual dynamics exhibit activity in different sectors than those identified by a bred
vector. In this case the multiplicative stochastic perturbation employed for SPBVs would
not allow the ensemble to explore the relevant region in phase space. It is planned to ex-
tend the ideas of stochastic perturbations to the classical single-scale Lorenz 96 model and
explore how they translate to the situation of moderate localisation of perturbations.

From a practical point of view, generating an SPBV ensemble requires the same low
computational effort of classical BVs. To generate an ensemble of N SPBVs the propagation
of N BVs is required; to generate an ensemble of N RDBVs we would need to evolve 2N
perturbations (the N BVs as well as N perturbations to sample the fast attractor with
different slow initial conditions). Both methods require, of course, far less resources than
that which is required for calculating covariant Lyapunov vectors.
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Appendix

7. Ensemble Kalman filter

We briefly describe the ensemble Kalman filter used to obtain the numerical results
presented in Section 5. For more details on data assimilation and ensemble filters the
reader is referred to text books such as [29, 14, 56, 55, 4]. In an ensemble Kalman filter
(EnKF), proposed by [13], an ensemble with N members zn ∈ R

D

Z = [z1, z2, . . . , zN ] ∈ R
D×N
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is propagated by the full nonlinear dynamics Ż = f(Z) with f(Z) = [f(z1), f(z2), . . . , f(zN )] ∈
R
D×N . The ensemble is decomposed into its mean

z̄ =
1

N

N
∑

i=1

zi

and its ensemble deviation matrix

Z′ = Z− z̄eT ,

where e = [1, . . . , 1]T ∈ R
N . The ensemble deviation matrix Z′ is used to provide a Monte-

Carlo estimate of the forecast covariance matrix

Pf (t) =
1

N − 1
Z′(t)Z′(t)T ∈ R

D×D.

In addition to the forecast ensemble we are also given observations yo ∈ R
d which we express

as a perturbed truth with
yo(ti) = Hz(ti) + ro,

where the observation operator H : RD → R
d maps from the whole space into observation

space, and ro ∈ R
d is i.i.d. observational Gaussian noise with associated error covariance

matrix Ro and zero mean.
Given a forecast Zf = Z(ti − ǫ) of a chaotic system and its associated forecast error co-
variance matrix (also known as the prior) Pf (ti − ǫ) as well as noisy observations yo(ti),
data assimilation aims to find the best estimate of the system and updates a forecast into a
so-called analysis (also known as the posterior). We adopt the convention that evaluation
at times t = ti − ǫ evaluates a quantity before taking observations yo, taken at t = ti, into
account in the analysis step, and evaluation at times t = ti + ǫ evaluates quantities after
the analysis step when the observations have been taken into account.
In the first step of the analysis the forecast mean z̄f is updated to the analysis mean

z̄a = z̄f −K [Hz̄f − yo] ,(17)

where the Kalman gain matrix is defined as

K = PfH
T
(

HPfH
T +Ro

)−1
.(18)

The analysis covariance Pa is given by

Pa = (Id−KH)Pf .(19)

To calculate an ensemble Za which is consistent with the analysis error covariance Pa in
the sense that the ensemble satisfies

Pa =
1

N − 1
Za Z

T
a ,

we use the method of deterministic ensemble square root filters which expresses the anal-
ysis ensemble as a linear combination of the forecast ensemble. In particular we use the
method proposed by [58, 62], the so called Ensemble Transform Kalman Filter (ETKF). A
new forecast Z(ti+1 − ǫ) is then obtained by propagating Za(ti + ǫ) with the full nonlinear
dynamics to the next time of observation, where a new analysis cycle will be started.
A common problem encountered with ensemble Kalman filters is filter divergence which
refers to the problem that in finite ensembles the estimated forecast error covariance Pf

may be too small, potentially prohibiting the analysis to be corrected towards incoming
observations, which renders the analysis to be effectively a free running forecast. This
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underestimation of the error covariance is commonly mitigated by multiplying the error
covariance with a so called inflation factor [2]. We choose in our simulations Pf → 1.1Pf .

To seed an ensemble of bred vectors to be used in a subsequent ensemble forecast from an
analysis, the perturbation size δ for the bred vector ideally would be chosen in accordance
with the uncertainty of the analysis with δ =

√
TrPa.
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