
ON THE CHOICE OF THE NON-TRAINABLE INTERNAL WEIGHTS IN RANDOM

FEATURE MAPS FOR FORECASTING CHAOTIC DYNAMICAL SYSTEMS

Abstract. The computationally cheap machine learning architecture of random feature maps can be viewed

as a single-layer feedforward network in which the weights of the hidden layer are random but fixed and only

the outer weights are learned via linear regression. The internal weights are typically chosen from a prescribed
distribution. The choice of the internal weights significantly impacts the accuracy of random feature maps.

We address here the task of how to best select the internal weights. In particular, we consider the forecasting

problem where random feature maps are used to learn a one-step propagator map for a dynamical system.
We provide a computationally cheap hit-and-run algorithm to select good internal weights which lead to good

forecasting skill. We show that the number of good features is the main factor controlling the forecasting
skill of random feature maps and acts as an effective feature dimension. Lastly, we compare random feature

maps with single-layer feedforward neural networks in which the internal weights are now learned using

gradient descent. We find that random feature maps have superior forecasting capabilities whilst having
several orders of magnitude lower computational cost.
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1. Introduction

Estimation and prediction of the state of a dynamical system evolving in time is central to our under-
standing of the natural world and to controlling the engineered world. Often practitioners are tasked with
such problems without the knowledge of the underlying governing dynamical system. In such scenarios
a popular approach is to reconstruct the dynamical model from observations of the system [38, 1, 46, 5].
Predicting the future state of the system from these reconstructions is particularly challenging for chaotic
dynamical systems. Chaotic dynamical systems cannot be accurately predicted beyond a finite time known
as the predictability time due to their sensitive dependence on the initial conditions.

In recent times machine learning has achieved remarkable progress in learning surrogate models for dy-
namical systems from given data. Recurrent networks such as Long Short-Term Memory networks [45, 48]
and gated recurrent units [8] have been successfully applied in a plethora of time series prediction tasks
[10, 6, 28]. These methods however often contain learnable parameters of the order of O(106), and require
substantial fine tuning of hyperparameters and costly optimization strategies [27]. An attractive alternative
is provided by random feature maps [43, 42, 40] and their extensions such as echo state networks and reservoir
computers [36, 35, 41, 39]. These architectures can be viewed as a single-layer feedforward network in which
the weights and biases of the hidden layer, the so-called internal parameters, are randomly selected before
training and then are kept fixed. This renders the costly nonconvex optimization problem of neural networks
to a simple linear least-square regression for the outer weights. The output of random feature maps and their
extensions is hence a linear combination of a high-dimensional randomized basis. These methods have been
shown to enjoy the universal approximation property, which states that in principle they can approximate
any continuous function arbitrarily close [44, 3, 17, 13].

We focus here on classical random feature maps [43, 42, 40] which have recently been shown to have
excellent forecasting skill for chaotic dynamical systems [16, 15]. The fact that random feature maps enjoy
the universal approximation property does not provide practitioners with information on how to choose the
internal parameters. The internal parameters are typically drawn from some prescribed distribution such as
the uniform distribution on an interval or a Gaussian distribution. The forecasting capability of the learned
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surrogate map sensitively depends on the choice of the distribution [16]. To generate good internal param-
eters which lead to improved performance of random feature maps, several data-independent methods such
as Monte Carlo and quadrature based algorithms as well as data-dependent methods such as leverage score
based sampling and kernel learning have been proposed; for a detailed survey see [29]. Levine and Stuart
[26] performed Bayesian optimization to determine the internal weights together with other hyperparamters
such as the regularization parameter. Dunbar et al [9] choose the distribution of the random weights from
a parametric family. Its parameters are chosen to optimize a cost function motivated from Empirical Bayes
arguments, with the optimization performed with derivative-free Ensemble Kalman inversion. Here we intro-
duce a computationally cheap, non-parametric, optimization-free and data-driven method to draw internal
parameters which lead to improved forecasting skill. We argue that good features, corresponding to good
internal parameters, need to explore the expressive range of a given activation function. We consider here
as an example the tanh activation function. To allow for good expressivity, good parameters should neither
map the training data into the linear range of the activation function nor into the saturated range in which
different inputs cannot be discerned. This leads us to a definition of good features corresponding to good
internal parameters. We find that the set of good internal parameters is non-convex but can be expressed as
a union of convex sets. To sample from a convex set we employ a hit-and-run algorithm [47, 50]. Hit-and-run
algorithms are a class of Markov chain Monte Carlo samplers known for their fast mixing times in convex
regions [32, 34, 25]. In recent years, hit-and-run algorithms have also been analyzed for sampling nonconvex
regions [7, 22, 2].
The hit-and-run algorithms we develop allow us to generate any desired ratio of good features. We show
in numerical experiments that the ratio of good features as defined by our criterion controls the forecasting
capabilities of the learned surrogate map. Moreover, we illustrate the mechanism by which the least-square
solution enhances good features and suppresses bad ones.
A secondary objective of our work is to demonstrate that a random feature map typically achieves superior
forecasting skill when compared to a neural network of the same architecture, trained with gradient descent,
while being several orders of magnitude cheaper computationally. We show that the bad performance of the
single-layer feedforward network can be attributed to the optimization procedure not being constrained to
the set of good internal parameters. This can potentially lead to new design and improved training schemes
for more complex network architectures.

The outline of this paper is as follows. In Section 2 we describe the setup of data-driven surrogate maps
for dynamical systems and how to assess their forecasting capabilities. Section 3 introduces random feature
maps and illustrates how the choice of the internal weights affects the forecasting capabilities of the associated
trained surrogate maps. Section 4 defines the set of good internal parameters and introduces hit-and-run
algorithms to uniformly sample from this set. Section 5 illustrates the effect of sampling from the good set
of internal parameters on the forecasting skill and how the least-square training learns to distinguish good
features associated with good parameters from those associated with internal parameters drawn from the
complement of the good set. Section 6 compares random feature maps with single-layer feedforward networks
in which the internal parameters are learned using backpropagation, and establishes that random feature
maps with good parameters far outperform the single-layer feedforward neural network. Section 7 shows
that random feature maps with good internal parameters reproduce the long-time statistical behaviour of
the underlying dynamical system more accurately than those without. Finally, we conclude in Section 8 with
a summary of our results and possible future extensions.

2. Dynamical setup

We consider the forecasting problem for chaotic dynamical systems. Consider the following D-dimensional
continuous-time dynamical system,

u̇ = F(u), (1)

with initial data u(0) = u0, which we observe at discrete times tn = n∆t for n = 0, 1, . . . , N . We consider here
the case when the full D-dimensional state is observed and observations are noise-free. For the treatment of
noisy observations and partial observations see [16, 15]. We view the dynamical system of these observations
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in terms of a discrete propagator map,
un+1 = Ψ∆t(un). (2)

The aim of data-driven modelling is to construct a surrogate map Ψ̂∆t from the training data given by
the observations that well approximates the true propagator map Ψ∆t of (2). In the following we denote
variables associated with the surrogate map with a hat, and write the learned surrogate dynamical system
as

ûn+1 = Ψ̂∆t(ûn), (3)

with initial data û0 = u0. Throughout this work we use the D = 3-dimensional Lorenz-63 system [30, 31]
with u = (x, y, z) and

ẋ = 10(y − x),

ẏ = x(28− z)− y,

ż = xy − 8

3
z,

(4)

as the underlying continuous dynamical system (1). The Lorenz-63 system is chaotic with a positive Lya-
punov exponent of λmax ≈ 0.91 [49]. We generate independent training and validation data, un and
uvalidation
n , sampled at ∆t = 0.02 by randomly selecting independent initial conditions u0 and uvalidation

0 ,
respectively. We discard an initial transient dynamics of 40 time units to ensure that the dynamics has
settled on the attractor.

To test the predictive capability of a surrogate model, we apply it to unseen validation data and define
the forecast time τf associated with the surrogate model,

τf = inf

{
tnλmax :

∥ûvalidation
n − uvalidation

n ∥22
∥uvalidation

n ∥22
> θ

}
. (5)

The forecast time is measured in Lyapunov time units and measures when the prediction of the learned
surrogate map (3), initialized at ûvalidation

0 = uvalidation
0 , significantly deviates from the true validation

trajectory uvalidation
n . We employ here an error threshold of θ = 0.05.

3. Random feature maps

We consider random feature maps to learn the surrogate map (3) with

Ψ̂∆t(u) = Wσ(Winu+ bin), (6)

where u is the D-dimensional state vector, Win ∈ RDr×D is the internal weight matrix, bin ∈ RDr the
internal bias and W ∈ RD×Dr the outer weight matrix. The nonlinear activation function σ is applied
component wise and we choose here σ = tanh. Random features are characterized by the internal weights
(Win,bin) being drawn before training from a prescribed distribution p(win, bin). The internal weights remain
fixed and are not learned as it would be the case for a single-layer feedforward network which has the same
architecture as in (6). Random feature maps can hence be seen as a linear combination of features which
are the components of the Dr-dimensional random features vectors

ϕ = σ(Winu+ bin). (7)

The matrix W, controlling the linear combinations of the features, is learned from training data U ∈
RD×N , the columns of which are the observations un, n = 1, . . . , N of the system (2). We do so by solving
the following regularized optimization problem,

W∗ = argmin
W

L(W;U,Win,bin), (8)

with loss function

L(W;U,Win,bin) = ∥WΦ(U)−U∥2 + β∥W∥2. (9)

Here ∥ · ∥ denotes the Frobenius norm, β > 0 is a regularization hyperparameter, and Φ(U) is the feature
matrix whose n-th column is given by,

ϕ(un−1) = tanh (Winun−1 + bin). (10)
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The solution of the optimization problem (8) is given explicitly by linear ridge regression as

W∗ = UΦ(U)⊤(Φ(U)Φ(U)⊤ + βI)−1. (11)

The low training cost of random feature maps makes them a very attractive architecture. Training reduces
to the determination of the DrD outer weights W∗ by means of an explicit analytical formula once the inner
weights have been set to their fixed values. The total number of parameters for random feature maps is
Dr(2D + 1) which scales linearly in the feature dimension Dr unlike other architectures such as echo state
networks [20, 21] and long short term memory (LSTM) networks [19].

3.1. The effect of the internal weights on the performance of random feature maps. Random
feature maps enjoy the universal approximation property [44, 3]. This means that for a given feature
dimension Dr there exist internal weights such that the random feature map approximates any continuous
function. The approximation can get arbitrarily close for increasing feature dimension. The universal
approximation property, however, does not guide practitioners on how to find the internal weights (Win,bin)
which allow for such an approximation. The main objective of this paper is to sample the internal parameters
in a way that increases the forecasting skill of the random feature maps when compared to the usually
employed data-uninformed random draws from a specified distribution such as a Gaussian or a uniform
distribution.

Indeed, the forecasting skill of a learned random feature map (3) sensitively depends on the internal
weights. To illustrate the effect of the hyperparameters (Win,bin) on the forecast time τf we uniformly
sample Win and bin from the intervals [−w,w] and [−b, b], respectively, with (w, b) ∈ (0, wmax)× (0, bmax).
In particular, we use 30× 30 regular grid points over (0, wmax)× (0, bmax) with wmax = 0.4 and bmax = 4.0,
and probe the statistics by generating M = 100 feature maps for each grid point, while keeping the training
data and the validation data fixed for all realizations to focus on the effect of the internal weights. We fix the
feature dimension at Dr = 300 and the regularization parameter at β = 4× 10−5. Figure 1 shows a contour
plot of the mean and the standard deviation of the forecast time τf over the domain of the internal weights.
We can clearly see that certain regions in the hyperparameter space are associated with good performance
with mean forecast times τf > 4 while other regions produce poor mean forecast times. Moreover, regions
in the hyperparameter space corresponding to high mean forecast times τf may have large variance.

Ideally, we would like parameters which have both, high mean forecast time and low variance so that the
performance is not dependent on the particular training data used. It is clear that if the internal weights
(Win,bin) are chosen sufficiently small, the associated features (7) are essentially linear with ϕ ≈Winu+bin

for all input data u. This would reduce the random feature maps to linear models which are known to be
incapable of modelling nonlinear chaotic dynamical systems [11, 4]. On the other extreme, for sufficiently
large internal weights a tanh-activation function saturates, and one obtains ϕ ≈ ±1 independent of the
input data u, severely decreasing the expressivity of the random feature map. This suggests that one should
choose internal weights which sample the tanh-activation function in its nonlinear non-saturated range. This
is illustrated in Figure 2. We shall call features linear, if for all data u the argument of the tanh-activation
function lies within the interval centred around the origin in [−L0, L0]. Those features obtained by the
tanh-activation function that are approximately ±1 for all input data u, i.e. where the arguments of the
tanh-activation function lie in either of two unbounded sets (−∞,−L1], [L1,+∞), we label saturated features.
Those features which for all input data are neither linear nor saturated, i.e. for which the argument of the
tanh-activation function lies in either of the two intervals (−L1,−L0) or (L0, L1), are labelled good features.
We use L0 = 0.4 and L1 = 3.5 to define good, linear and saturated features throughout this paper.

We now illustrate the detrimental effect of linear and saturated features on the forecasting skill of random
features. From the random feature maps that were used in Figure 1, we select those that lead to particularly
large forecast times τf > 8 and those that lead to particularly low forecast times τf < 0.5. For each of
those feature maps we determine the fraction of features that correspond to (a) the linear region [−L0, L0],
(b) the saturated region (−∞,−L1] ∪ [L1,+∞), and (c) the good region (−L1,−L0) ∪ (L0, L1), averaged
over input data un. We denote these fractions by pl, ps and pg, respectively. We consider 5, 000 randomly
selected data points un on the attractor of the Lorenz-63 system to estimate these fractions. For each group
we randomly select 500 samples from the 90, 000 random feature maps used in Figure 1. In Figure 3 we
show the histograms of the fractions pg, pl and ps for these two groups. The group with low forecast times
τf < 0.5 contains a significantly higher fraction of linear or saturated features compared to the group with
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Figure 1. Contour plots of the mean and standard deviation of the forecast time τf com-
puted using Win,bin sampled uniformly from intervals of variable size [−w,w] and [−b, b]
respectively. Samples were drawn for grid points (w, b) on a 30×30 regular grid over the do-
main (0, 0.4)× (0, 4.0). Averages are taken over M = 100 realizations per grid-point (w, b),
for a feature dimension Dr = 300, training data length N = 20, 000 and regularization
parameter β = 4× 10−5, using the same training and validation data for ecah realization.

Figure 2. Domain and range of features produced by a tanh-activation function with
L0 = 0.4 and L1 = 3.5, leading to linear, saturated and good features.

large forecast times τf > 8. Conversely, the group with large forecast times τf > 8 contains a significantly
higher fraction of good features compared to the group with low forecast times τf < 0.5. This confirms our
hypothesis that good forecast skill is associated with an abundance of good features and a lack of linear and
saturated features. We remark that the pronounced peak at ps = 0 is a sampling effect: when sampling
uniformly from the grid (0, wmax)× (0, bmax) with wmax = 0.4 and bmax = 4.0, it is much more likely to draw
parameters which correspond to non-saturated features. Such random feature map samples are much more
likely to have higher forecast times and hence are concentrated entirely in the τf > 8 group.
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Figure 4 shows the mean forecast time E[τf ] as a function of the fractions of good, linear and saturated
features, for the same random feature maps as shown in Figure 3. It is clearly seen that the forecast skill,
as measured by the mean forecast time, monotonically improves for increasing number of good features.
Similarly, the forecast skill monotonically degrades with increasing number of saturated features. The effect
of the linear features is less obvious for the uniformly initialized random feature maps of Figure 1. However,
as we will see later (cf. Figure 12), linear and saturated features have the same negative effect on the mean
forecast time.

In the following Section we develop a computationally cheap algorithm to sample from the set of good
weights, and show in Section 5 how this increases the forecasting skill of random feature maps.

Figure 3. Empirical histograms of average fractions of good, linear and saturated features,
pg, pl and ps, respectively, for random feature maps corresponding to two groups: large
forecast times with τf > 8 and low forecast times with τf < 0.5. The random feature maps
are the same as those used in Figure 1. Each group contains 500 samples and the histograms
depict the probability of having a certain value of the respective fractions in each group.

4. How to sample good internal weights

We would like our random feature maps to produce good features ϕ(u) = Winu + bin by restricting
(Win,bin) to be neither linear nor saturated for all training data un. To that end, we select (Win,bin) such
that

L0 < |Winun + bin| < L1, ∀ n = 0, 1, . . . N. (12)

The lower bound L0 controls the linear features and the upper bound L1 controls the saturated features (cf.
Figure 2). Note that (12) is a vector inequality and is equivalent to Dr scalar inequalities. Denoting the i-th
row of Win with win

i and the i-th entry of bin with bini , for each i ∈ {1, 2, . . . Dr} we require

L0 < |win
i · un + bini | < L1, ∀ n = 0, 1, . . . N. (13)

Definition 4.1. We call the i-th row (win
i , bini ) of the internal parameters (Win,bin) good if it satisfies (13).

Similarly, we call (win
i , bini ) linear if

|win
i · un + bini | ≤ L0, ∀ n = 0, 1, . . . N, (14)

and we call (win
i , bini ) saturated if

|win
i · un + bini | ≥ L1, ∀ n = 0, 1, . . . N. (15)

For a streamlined discussion we call the i-th column of the outer weight matrix W, good if the associated
i-th row of the matrix of internal weights (Win,bin) is good and so on.

This categorization of rows of the internal parameters is useful for investigating the effects of different re-
alizations of the random feature map on its forecasting skill. Note that this is not an exhaustive classification
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Figure 4. Mean forecast time E[τf ] as a function of the fraction p of good, linear and
saturated features, respectively. The random feature maps are the same as those used in
Figure 1. The mean forecast times are computed over bins [p−∆p, p+∆p] with ∆p = 0.001.
The shaded region delineates one standard deviation from the mean. We only report on
bins which contain more than 100 samples.

since there exist rows that satisfy different inequalities for different observations un and do not satisfy (13)
for the whole data set U. Although not considered here, such mixed rows may be an interesting topic for
further exploration. The distinction into “good” (nonlinear, non-saturated) and “bad” (linear or saturated)
parameters only pertains to the task of longest possible sequential forecasting. For example, for the task of
predicting the state for only a single step, all parameters, good or bad, perform equally well.

We denote the set of good internal weights satisfying (12) by Ωg. The solution set Ωg is not convex, but
can be written as the disjoint union of two convex sets with

Ωg = S− ∪ S+, (16)

where

S− = {(w, b) ∈ RD+1 : −L1 < w · un + b < −L0 ∀ n = 0, 1, . . . , N}, (17)

S+ = {(w, b) ∈ RD+1 : +L0 < w · un + b < +L1 ∀ n = 0, 1, . . . , N}. (18)

Since the convex subsets are reflections of each other with

S− = −S+, (19)

it suffices to sample from only one of these convex sets and then uniformly sample the sign of the internal
weights to sample from Ωg. Hence, the sampling problem is effectively a convex problem. Analogously, we
define Ωl and Ωs to be the solution sets to the problems (14) and (15) respectively, and again sampling these
sets are convex problems. We will see that the data-informed constraint for good parameters (12) allows for
sufficient variability in the features (cf. Section 4.3).

We present, in the next two subsections, algorithms to effectively sample from the good set Ωg to enhance
the forecasting capabilities of random feature maps, as well as from the sets Ωl and Ωs to illustrate their
effect on random feature maps in Section 5. A naive choice of sampling algorithm would be to uniformly
sample from the D-dimensional hypercube with the 2D corners defined by the extremal training data points,
and checking the inequality (12), if we want to sample from Ωg, let’s say. This, however, is computationally
very costly as typically the solution set only occupies a small region within that hypercube.

Our aim is to sample good parameters. There is no a priori reason to sample uniformly from the convex
set of good parameters. However, as we will see, uniform sampling lends itself to an efficient implementation.
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Furthermore, we stress that sampling uniformly from the parameter space does not imply uniform sampling
in the feature space.

We consider a standard hit-and-run algorithm sampling from Ωg in Section 4.1 and then present a faster,
more efficient hit-and-run algorithm to sample from an equivalent restricted solution set in Section 4.2.

4.1. Standard hit-and-run sampling of good internal parameters. We now describe a computation-
ally cheap and easy to implement numerical algorithm to uniformly sample from the solution sets Ωg,Ωl

and Ωs. We shall employ hit-and-run algorithms [47, 50]. To uniformly sample a set Ω with hit-and-run,
one starts from a feasible point inside the set, considers the line through that point in a randomly chosen
direction, and then randomly picks a point on the intersection of that line and the set Ω as a new point.
This process is then repeated to generate further samples. For convex sets the hit-and-run samples converge
to uniform samples in total variation distance. The convergence depends polynomially on the number of
iterations and dimension with the polynomial dependence on dimension being of low order [32, 2, 33]. This
and the fast mixing properties make hit-and-run algorithms an attractive method to uniformly sample from
Ωg,Ωl and Ωs.

We sample the augmented internal weight matrix (Win,bin) row by row. Each sample lies then in a
D+1-dimensional search space for (win

i , bini ). Due to (19) it suffices to sample from S+. In order to perform
hit-and-run, given a point, we need to efficiently determine if it lies in S+. Focusing on a convex conical
subset of S+, it turns out that we can determine if a point belongs to S+ by checking just two inequalities.
Define the convex cone

V (s, b) = {(w, b) : sgn(wi) ∈ {si, 0} ∀ i = 1, 2, . . . , D}, (20)

where s is aD-dimensional sign vector with entries ±1 labelling the 2D corners of aD-dimensional hypercube.
To control the range of the training data set, we further define the vectors x∓(s) ∈ RD as

x−,i(s) =

 min
1≤n≤N

un,i, if si = 1

max
1≤n≤N

un,i, otherwise

x+,i(s) =

 max
1≤n≤N

un,i, if si = 1

min
1≤n≤N

un,i, otherwise,

(21)

where un,i is the i-th entry of the n-th training data point. Now for (w, b) ∈ V (s, b) we have,

max
1≤n≤N

(w · un + b) ≤ w · x+(s) + b,

and

min
1≤n≤N

(w · un + b) ≥ w · x−(s) + b.

(22)

Therefore, for (w, b) ∈ V (sgn(w), b), we have (w, b) ∈ S+ if

w · x−(sgn(w)) + b > L0,

and

w · x+(sgn(w)) + b < L1

(23)

The feasibility inequalities (23) simply check if the internal weights (w, b) map the training data into the
smallest D-dimensional hypercube that contains the training data.

To initialize the hit-and-run algorithm with a feasible point we choose (w, b) = (0, b0) ∈ S+ for b0 ∈
(L0, L1). To determine the line segments inside S+ we use bisection together with the feasibility criterion
(23). The hit-and-run algorithm requires a few iterations to ensure that the samples become independent of
the initial feasible point (w, b) = (0, b0).

We summarize this hit-and-run algorithm for randomly generating uniform samples from Ωg in Algo-
rithm 1.
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Algorithm 1 Standard hit-and-run sampling for a good row

1: Input: data U.
2: Choose number of decorrelation iterations K ∈ N and L0, L1 ∈ R>0.
3: Sample b uniformly from (L0, L1).
4: w← 0.
5: k ← 0.
6: while k < K do
7: Randomly select a unit vector d ∈ RD+1.
8: Determine A = the maximal line segment passing through (w, b) along direction d and contained

within S+, using the feasibility criterion (23) and the bisection method.
9: Uniformly sample (w′, b′) from A.

10: (w, b)← (w′, b′)
11: k ← k + 1.
12: end while
13: Uniformly sample a scalar z from {−1, 1} to determine which set to sample from, S− or S+.
14: if z = 1 then
15: (w, b) is our final good row sample.
16: else
17: (−w,−b) is our final good row sample.
18: end if

4.2. One-shot hit-and-run sampling. We now present a reduced hit-and-run algorithm which operates on
a smaller D-dimensional search space and does not require computationally costly bisection. This algorithm,
which we will coin one-shot hit-and-run algorithm, produces independent samples without the need for
sufficiently many iterations to ensure decorrelation from the fixed initial feasible point.

To generate good (or linear or saturated) random feature maps one can restrict the solution set Ωg (or Ωl

or Ωs) by first sampling b appropriately and then sampling w from a D-dimensional search space. For ease
of presentation, we describe the algorithm for sampling from the good set Ωg. We sample b uniformly from
the interval (L0, L1). The weights w are then sampled from the restricted solution set ΩR

g = SR
+ ∪ SR

− with

SR
− = {(w, b) ∈ S− : −L1 < b < −L0}, (24)

SR
+ = {(w, b) ∈ S+ : +L0 < b < +L1}. (25)

Since SR
− = −SR

+ , sampling from the nonconvex set ΩR
g can again be done by sampling from the convex set

SR
+ and then multiplying the sample with 1 or −1 uniformly randomly. This restriction allows us to perform

hit-and-run sampling on a D-dimensional random convex set instead of a (D + 1)-dimensional convex set.
Note that fixing b is akin to shrinking the search space from S+ to πSR

+ where π is the canonical projection:

π(w, b) = w. Also note that we can partition πSR
+ according to

πSR
+ =

⊔
s∈{−1,1}D

(πSR
+ ∩ V (s)), (26)

where we use
⊔

to denote almost disjoint union, and V (s) = πV (s, b) are D-dimensional orthants. Let
us randomly select a sign vector s ∈ {−1, 1}D or equivalently pick the random convex subset πSR

+ ∩ V (s).
Randomly choosing the sign vector or the corresponding convex subset is tantamount to assigning signs
randomly to the entries of w. In order to uniformly sample this conical subset we can pick a random
direction d in the cone V (s), determine the maximal line segment starting at the origin parallel to d that
is contained in πSR

+ ∩ V (s) and uniformly sample a point on this line segment. Figure 5 shows a schematic
for this one-shot hit-and-run algorithm. Since x±(sgn(w)) is constant for all w ∈ V (s), we can analytically
determine the maximal line segment without having to resort to bisection. Moreover, the special structure
of the cone lets us sample with a single iteration unlike the standard hit-and-run Algorithm 1. Thus the
computation of the line segment in the solution set and the final sampling both happen in one shot and
therefore the one-shot hit-and-run is much faster than its standard counterpart given by Algorithm 1.
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Figure 5. Schematic of the one-shot hit-and-run Algorithm 2. The weight point 0 is always
an interior point of πSR

+ and the cone V (s) is a D-dimensional orthant. The set πSR
+ is

drawn as bounded here, but it may be unbounded depending on the training data un.

Algorithm 2 summarizes the one-shot hit-and-run sampling of a good row. Note that, depending on the
training data U, it is possible for πSR

+ to be unbounded, which is why +∞ appears in the algorithm. We
can extend the notion of restriction to the coordinates of w as well by restricting the intervals where we
are allowed to sample them from, which is akin to regularizing parameters in machine learning [24, 23, 14]
but we do not consider such algorithms here. Obvious modifications of Algorithm 1 and Algorithm 2 let us
sample linear and saturated rows which we refrain from describing here to avoid repetition.

Algorithm 2 One-shot hit-and-run sampling for a good row

1: Input: data U.
2: Choose L0, L1 ∈ R>0.
3: Sample b uniformly from (L0, L1).
4: Select the sign vector s by uniformly generating D samples from {−1, 1}.
5: Randomly select a unit vector d ∈ V (s).
6: a0 ← 0.

7: a1 ← inf
({

L0−b
d·x−(s) ,

L1−b
d·x+(s)

}
∩ (R>0 ∪ {+∞})

)
with the convention inf ∅ = +∞.

8: Sample a uniformly from (a0, a1).
9: Uniformly sample a scalar z from {−1, 1} to determine which set to sample from, S− or S+.

10: if z = 1 then
11: (ad, b) is our final good row sample.
12: else
13: (−ad,−b) is our final good row sample.
14: end if
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Figure 6. Empirical histograms for samples generated using standard and one-shot hit-
and-run Algorithms 1 and 2, respectively. The left panel shows the distributions of the
entries of Win and the right panel shows the distributions of the entries of bin. For each
algorithm 10, 000 rows of internal parameters were generated. The standard hit-and-run
Algorithm 1 used K = 10 decorrelation iterations.

4.3. Performance and comparison of the hit-and-run algorithms. The two hit-and-run Algorithms 1
and 2 are designed to uniformly sample from the D + 1-dimensional set of good rows Ωg. This does not
imply that the individual entries of (Win,bin) are uniformly distributed. The distributions for the entries
of weights and biases sampled from the two hit-and-run algorithms are shown in Figure 6. For the standard
hit-and-run Algorithm 1 it was found that K = 10 decorrelation steps were sufficient and results were very
similar forK = 100 iterations. It is clearly seen that the distributions are far from being the usually employed
uniform or Gaussian distribution. The distributions are very similar for both algorithms. In particular, the
standard Algorithm 1 exhibits the same lack of biases b with small absolute value, as the one-shot hit-and-run
Algorithm 2.

Whereas the one-shot hit-and-run algorithm excludes biases b with absolute values smaller than L0 by
design, this may seem surprising for the standard hit-and-run algorithm. This can be explained as follows.
For 0 < b < L0 and (w, b) ∈ S+ we require that w · u lies in the positive interval (L0 − b, L1 − b) for all
training data u. Since the directions of the vectors u in the training data are typically distributed over some
range, w ·u is typically not sign-definite for all data points u. This implies that for all parameters in Ωg we
typically have |b| > L0; a similar argument shows that typically |b| < L1. Hence, for typical data u, we have
ΩR

g = Ωg and the search space of the one-shot hit-and-run Algorithm 2 is the same as that of the standard
Algorithm 1.

For the weights and biases which were obtained by sampling uniformly from an interval as in Figure 1, we
checked that the weights corresponding to high forecasting skill indeed all satisfy our criterion of being good
rows (12). This highlights the advantage of our non-parametric sampling over sampling strategies involving
a set of parametrized distributions.

The hit-and-run Algorithms 1 and 2 were designed to uniformly sample from the set Ωg. This does not
imply, however, that winu+ bin is uniformly distributed in the interval (−L1,−L0) ∪ (L0, L1). To quantify
the occupied range of random features we introduce the following notation. A sample (win

i , bini ) produces
outputs the absolute values of which lie in the interval [mi,Mi], i.e.

mi = min
1≤n≤N

|win
i · un + bini |,

Mi = max
1≤n≤N

|win
i · un + bini |.

(27)
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The effective range R of a random feature map vector can then be defined as

R =
1

Dr

Dr∑
i=1

(Mi −mi). (28)

By the central limit theorem, for Dr ≫ 1 the effective range (28) approaches a normally distributed random
variable. Figure 7 shows the histogram of the range R for the standard and the one-shot hit-and-run
algorithms when only good features are used with pg = 1. As expected both algorithms generate near-
Gaussian distributions of R.

The standard hit-and-run algorithm generates a wider range with E[R] = 1.0 and standard deviation
σ[R] = 0.03 compared to the one-shot hit-and-run algorithm with E[R] = 0.42 and standard deviation
σ[R] = 0.02. One would like the range R to be as large as possible, assuming that higher variability in the
features increases the expressivity of the random feature map, and hence the forecast skill. Figure 8 shows
the histogram of the forecast times τf for the two algorithms. The standard hit-and-run algorithm exhibits
a slightly better forecast skill as measured by an approximately 6% larger mean forecast time of E[τf ] = 5.4
compared to that of the one-shot hit-and-run algorithm with E[τf ] = 5.1, in accordance with our intuition
that larger range is beneficial.

The one-shot hit-and-run Algorithm 2 is ∼ 15 times faster than the standard hit-and-run Algorithm 1
(with 10 decorrelation steps) on an M1 CPU. Since the one-shot algorithm does not involve loops for each
realization, it allows for efficient parallelization on GPUs. The standard hit-and-run algorithm, on the
other hand, involves loops to execute the bisection, which prohibits effective parallelization on GPUs. As a
result, the one-shot algorithm is ∼ 825 faster than the standard algorithm on an A100 GPU. In applications
we hence use the computationally more efficient one-shot hit-and-run Algorithm 2, given the almost equal
performance in forecasting (cf.Figure 8).

Figure 7. Empirical histogram of the effective range R of random feature maps when only
good rows are used with pg = 1 for the standard hit-and-run Algorithm 1 (left) and the one-
shot hit-and-run Algorithm 2 (right). Each histogram represents 10, 000 samples differing
in the internal weights, the training data and the validation data. The feature dimension
is Dr = 512 and a regularization parameter of β = 2.79 × 10−5 is used with training data
length N = 20, 000. For the standard hit-and-run Algorithm 1, 10 decorrelation steps are
used. For the standard hit-and-run algorithm we obtain a mean forecast time of E[τf ] = 1.0
with σ[τf ] = 0.03. For the one-shot algorithm we obtain E[τf ] = 0.42 with σ[τf ] = 0.02.
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Figure 8. Empirical histogram of the forecast time τf when only good rows are used with
pg = 1 for the standard hit-and-run Algorithm 1 and the one-shot hit-and-run Algorithm 2.
The same random feature maps are used as in Figure 7. For the standard hit-and-run
algorithm we obtain the mean forecast time E[τf ] = 5.4 with σ[τf ] = 1.5. For the one-shot
algorithm we obtain E[τf ] = 5.1 with σ[τf ] = 1.5. The random feature maps shown here are
the same as those in Figure 7.

5. Results for forecasting individual trajectories

In this section we explore how increasing the number of good features improves the forecasting skill of
a surrogate map for the Lorenz-63 system (4), and conversely explore the effect of linear and saturated
features. To do so we define the number of good, linear and saturated features in a random feature vector
of dimension Dr as

Ng = pgDr, Nl = plDr, Ns = psDr, (29)

where the respective fractions satisfy pg + pl + ps = 1. We construct random feature maps with internal
weights (Win,bin) with specified fractions of good, linear or saturated rows using the one-shot hit-and-run
Algorithm 2.

5.1. Effect of the quality of internal weights on the forecast time τf . In this section we investigate
how the forecasting skill of a random feature surrogate model (3) improves with increasing number of good
rows Ng. We would like to have internal parameters resulting in large mean forecast times τf with relatively
small standard deviations. For chaotic dynamical systems we expect a residual variance of the forecast time
due to the sensitivity to small changes in the model: small changes in the internal parameters may cause
the surrogate models to deviate from each other after some time.

We estimate the mean of the forecast time τf and its coefficient of variation as a function of the fraction
of good features pg, varying pg from pg = 0 with only bad features to pg = 1 with only good features present.
For each value of pg we approximately uniformly distribute the remaining (1−pg)Dr features over the linear
and saturated features with pl ≈ ps ≈ (1− pg)/2. Note that we cannot always impose perfect equality since
Ng = pgDr, Nl = plDr and Ns = psDr are integers. We use 51 equally spaced values of pg in [0, 1] and
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compute averages over 500 realizations for each value of pg, differing in the draws of the random internal
weights, the training data and the validation data.

Figure 9 shows the dependence of the mean forecast time E[τf ] and the associated coefficient of variation
σ[τf ]/E[τf ] on pg for various values of the feature dimensions Dr and training data lengths N . It is clearly
seen that increasing the number of good rows increases the mean forecast time and decreases the coefficient
of variation, as desired. As expected, for fixed feature dimension Dr increasing the training data length N
is beneficial. A training data length of N = 78 is too small to provide any meaningful forecasting skill with
mean forecast times below one Lyapunov time for any value of pg and significantly larger variance. Similarly,
for fixed training data length N , increasing the feature dimension Dr is beneficial. The observation that,
for fixed data length N , the mean forecast time E[τf ] saturates upon increasing pg once a sufficiently large
number of good features Ng = pgDr are present, suggests that the distribution of the forecast time τf
converges reflecting a residual uncertainty of the chaotic surrogate model. This is confirmed in Figure 10
where we see convergence of the empirical histograms of the forecast time for increasing values of Dr in the
case when pg = 1.

Figure 11 shows the dependency of the mean forecast time E[τf ] on the fraction of good rows pg for
different values of Dr. We can clearly see that beyond Ng = pgDr = 256 (indicated by the vertical line),
the mean forecast time E[τf ] depends only on the number of good rows Ng = pgDr and not on the overall
feature dimension Dr. For smaller number of good rows Ng < 256 the mean forecast time depends on the
feature dimension Dr with larger feature dimensions implying larger mean forecast times. This suggests that
the number of good features Ng constitutes an effective feature dimension D∗

r , which controls the forecast
skill of the learned surrogate model. This implies that on average the forecast time τf is the same for a
random feature surrogate model of dimension Dr with only good features pg = 1 as a surrogate map with
a larger feature dimension αDr with α > 1 but only a fraction of 1/α good rows. This is confirmed in
Figure 12 which shows the empirical histogram of τf for fixed number of good features Ng = pgDr = 1, 024.
We compare the distribution of the forecast times for random feature maps with Dr = 1, 024 and pg = 1 to
those with Dr = 2, 048 and pg = 0.5. We show examples when the remaining bad features are either equally
distributed between linear and saturated features, or only linear or only saturated. The distributions for
all three examples are very similar and match the one with the smaller feature dimension but same number
of good features. This leads us to conclude that the number of good rows is the only determining factor
for the distribution of τf (all other parameters being equal), and that linear and saturated rows are equally
ineffective in terms of the forecasting skill.

We briefly discuss the effect of the regularization parameter β on the forecasting skill. We show in
Figure 13 the mean forecast time E[τf ] and coefficient of variation σ[τf ]/E[τf ] as a function of pg for a
range of regularization parameters β ∈ [2−25, 2−13]. For fixed feature dimension Dr = 300, we see that
β = 2−19 is optimal within this range in terms of the mean forecast time (left panel) and the coefficient of
variation (right panel) once sufficiently many good features are present with pg > 0.33. Note that we had
previously employed β = 4× 10−5 ≈ 2−14.6. The large difference in performance for different choices of the
regularization parameter β makes clear that, if optimizing for performance, the regularization parameter has
to be optimized. This could be achieved by line-search [37] or by Bayesian optimization [26]. Here we have
refrained from fine-tuning the regularization parameter as our focus is the sampling algorithm and the effect
of different types of features on the forecast skill.

5.2. Effect of the quality of internal weights on the outer weights W. In this section we explore
how the nature of the internal weights affects the learned solutions of the ridge regression (11) which we
denote simply as W, dropping the star.

We begin by recording the Frobenius norm ∥W∥ = Tr(W⊤W) of the learned outer weights as a func-
tion of the fraction of good features pg (bad features are again roughly equally distributed between linear
and saturated features). Figure 14 shows the mean of ∥W∥ as a function of pg on a log-log scale for the
simulations used in Figure 9. It is seen that ∥W∥ is a decreasing function of the number of good features.
The solution of the linear regression problem W minimizes the loss function (10). Once there are suffi-
ciently many good features, the training data can be sufficiently well fit, decreasing the first term of the
loss function. Further increasing the number of good features then allows for a decrease of the regularizing
term of the loss function, leading to a decrease of ∥W∥. Assuming that the true one-step map Ψ∆t in (2)
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Figure 9. The top row depicts the mean of the forecast time E[τf ] as a function of the
fraction of good features pg. The bottom row depicts the coefficient of variation σ[τf ]/E[τf ]
as a function of pg. Along the first column the feature dimension Dr = 300 is kept constant,
and along the second column the length of the training data set N = 20, 000 is kept constant.
Expectation are computed over 500 realizations of the internal parameters, the training data
and testing data. A regularization parameter of β = 4× 10−5 is employed.

lies in the domain of the random feature map (3) with infinitely many features, the first term of the loss
function should scale with the usual Monte-Carlo estimate scaling of O(1/Dr), suggesting a scaling of the
regularization term ∥W∥ ∼ 1/

√
Dr. In the right panel of Figure 14 we show that the mean of ∥W∥ roughly

scales as ∥W∥ ∼ 1/D0.54
r when all the internal weights correspond to good features with pg = 1, suggesting

that the true one-step map can be well approximated by random features with a tanh-activation function.
We remark that the Monte-Carlo scaling is valid for Dr > 256 only, i.e. provided sufficiently many good
features are present.

We now investigate how the decrease in the outer weights W is distributed over the various features. We
will see that the outer weights are learned to suppress the bad features provided there are sufficiently many
good features allowing for a reduction of the loss function. Let us denote the i-th column of W by Wi.
The columns Wi are the weights attributed to the features produced by the i-th row of the internal weights
(win

i , bini ). We expect the outer weights corresponding to good rows to be significantly larger than those
corresponding to bad rows.
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Figure 10. Empirical histogram of τf for different values of Dr when pg = 1 for increasing
feature dimension Dr. The same 500 realizations are used as in Figure 9 with N = 20, 000.

z

Figure 11. Forecast time mean E[τf ] as a function of good features Ng = pgDr. The
vertical line demarcates Ng = 256. The range of Ng is restricted to Ng ≤ 512, corresponding
to pg = 1 for the smallest value of the feature dimensionDr = 512. The same 500 realizations
are used as in Figure 9 with N = 20, 000.

To study the suppression of bad features by columns of W which have small norm, we design two sets of
numerical experiments: one in which bad features are entirely comprised of linear features and one in which
bad features are entirely comprised of saturated features.

In the first set we initialize a random feature map with Dr = 300 features consisting of only bad linear
features. We then successively replace one linear feature by a good feature, i.e. replacing one inner linear
weight row (win

i , bini ) by a good row. At each step we record the corresponding linear regression solution W.
Figure 15 shows the normalized supremum norm of columns of W after Ng = 10, Ng = 50 and Ng = 150
bad linear features have been replaced by good features. The red dots signify columns which do not contain
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Figure 12. Empirical histogram of the forecast time τf for Dr = 1, 024 and Dr = 2, 048.
In each case the number of good rows is Ng = 1, 024. For Dr = 2, 048 we show results
for an equal number of linear and saturated features with pl = ps = 0.25 (left), for only
linear bad features with pl = 0.5, ps = 0 (middle) and for only saturated bad features with
ps = 0.5, pl = 0 (right) for Dr = 2, 048. We used 500 realizations differing in the random
draws of the internal parameters, the training data and the validation data. We employed
a regularization parameter of β = 4× 10−5 and used training data of length N = 20, 000.

Figure 13. Mean forecast time E[τf ] (left) and coefficient of variation σ[τf ]/E[τf ] (right)
as a function of pg for a range of regularization parameters β. A regularization parameter
of β = 2−19 is optimal among the values presented here for pg > 0.33 (demarcated by a
vertical line). Results are shown for fixed Dr = 300 and N = 20, 000.

any entry with absolute value larger than 1. It is clearly seen that linear features are suppressed by the
columns of W. Note that not all linear features are entirely suppressed.

In the second experiment, we follow the same procedure as before except we start with only saturated
random features. In Figure 16 it is seen that saturated features are suppressed even stronger by the outer
weights than linear features. In contrast to linear features, saturated features are effectively fully suppressed
once the number of good features exceeds Ng = 50.
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Figure 14. Left: The mean of the Frobenius norm of the outer weights, ∥W∥, as a function
of pg on a log-log scale. Right: The mean of the Frobenius norm of the outer weights, ∥W∥,
as a function of the feature dimension Dr for pg = 1. The line of best fit with approximate
slope −0.54 is also shown on the right. The data are from the same experiments as shown
in Figure 9.

Figure 15. Normalized supremum norm of the columns of W for different numbers of
good features with Ng = 10, Ng = 50 and Ng = 150 and otherwise exclusively linear bad
features. The x-axis represents column indices. The good and linear columns are indicated
in blue and orange, respectively. The red dots signify columns with supremum norm less
than 1. The overall feature dimension is Dr = 300 and the outer weights were obtained
from training data of length N = 20, 000.
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Figure 16. Normalized supremum norm of the columns of W for different numbers of
good features with Ng = 10, Ng = 50 and Ng = 150 and otherwise exclusively saturated
bad features. The x-axis represents column indices. The good and saturated columns are
indicated in blue and green, respectively. The red dots signify columns with supremum
norm less than 1. The overall feature dimension is Dr = 300 and the outer weights were
obtained from training data of length N = 20, 000.

6. Comparison with a single-layer feedforward network trained with gradient descent

A natural question is if a single-layer feedforward network of the architecture (6) for which the internal
weights (Win,bin) are learned together with the outer weights W performs better or worse than random
feature maps with fixed good internal weights. In particular, we consider the non-convex optimization
problem

Θ∗ = argmin
Θ

L(Θ;U), (30)

with Θ = (Win,bin,W) and the loss function L defined in (10). To solve the optimization problem (30)
we employ gradient descent. To fairly compare with the results from the random feature model, we set the
internal layer width to Dr = 300, the regularization parameter to β = 4×10−5, and the training data length
to N = 20, 000. To initialize the network weights we use the standard Glorot initialization [12]. We use an
adaptive learning rate scheduler which is described in Appendix 9.1.

Figure 17 shows the evolution of the mean forecast time E[τf ] and the logarithm of the loss function L
during training. The expectation is computed over 500 different validation data sets. Optimization over
all weights clearly allows for a significantly smaller training loss L compared to random feature maps (cf.
Figure 18). The neural network achieves a final value of the loss function of L ≈ 0.09 which is a 95%
improvement when compared to a random feature map of the same size with only good internal parameters,
i.e. pg = 1, which has a loss of L ≈ 1.73 on average. However, the situation is very different for the
mean forecast time. The mean forecast time E[τf ] is a slowly growing function of the gradient descent steps
with the last 105 steps resulting in only about 0.32% improvement. The data are plotted every 104 steps
and therefore the typical fluctuations of gradient descent are not visible. Maybe surprisingly, optimizing
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the internal weights via gradient descent does not lead to a better forecasting skill when compared to the
random feature map surrogate model. After 1.5 × 106 steps the neural network achieves a mean forecast
time of only E[τf ] ≈ 3.75. Random feature maps of the same size with pg = 1 generate a mean forecast time
of E[τf ] ≈ 4.46 (cf. Figure 9). Furthermore, the training took approximately 8.2 × 104 seconds on the T4
GPU available through Google Colab cloud platform. In contrast, initializing and training a random feature
map of the same size took less than 1 second in total, i.e almost 100, 000 times faster.

Figure 17. Evolution of the mean forecast time E[τf ] and the logarithm of the loss function
(10) log(L) during training of a single-layer feedforward network with gradient descent. For
each step E[τf ] is computed using 500 test trajectories. The network with width Dr = 300
was trained with training data of length N = 20, 000 and a regularization parameter β =
4× 10−5. Results are shown every 104 gradient descent steps.

Figure 18. Mean loss L for random feature maps as a function of pg for different values
of the feature dimension Dr. The data shown here correspond to the experiments shown in
Figure 9 with N = 20, 000 and β = 4× 10−5.
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The left panel of Figure 19 shows that the mean forecast time E[τf ] and the logarithm of the loss function
log(L) are linearly related for the single-layer neural network. This is a direct manifestation of the exponential
sensitivity in chaotic dynamical systems: in each gradient descent step the loss experiences small changes
leading to small changes in the learned weights and hence in the resulting surrogate model. These small
changes in the chaotic surrogate model lead to an exponential divergence of nearby trajectories. This causes
an exponential in time loss of predictability, characterized here by the mean of the forecast time (5). The

Figure 19. Relationship between the mean forecast time E[τf ] and the logarithm of the loss
function L for a single-layer feedforward network (left) and for a random feature map with
only good internal parameters, i.e. pg = 1 (right). Each dot in the left panel corresponds
to a gradient descent step. Each dot in the right panel corresponds to one realization of a
random feature map. The expectation is computed over 500 validation trajectories. Each
descent step and each realization use the same training and testing data. The black line
in the left panel represents the best-fit line. In the right panel the orange crosses denote
the conditional mean E[τf | log(L)] and the black line represents the best-fit line. We use
a feature dimension of Dr = 300, training data length N = 20, 000 and regularization
parameter β = 4× 10−5.

same sensitive dependency on small changes of the surrogate model, quantified by small changes of the loss
function, is also present in random feature maps. The right panel of Figure 19 shows the mean forecast
time E[τf ] as a function of the logarithm of the loss function for random feature maps. Each dot represents
one realization of a random feature map with feature dimension Dr = 300, trained on the same data as the
single-layer feedforward network. The mean forecast time E[τf ] is computed using the same 500 validation
trajectories as the network. Averaged over bins of the logarithm of the loss function, the mean forecast time
shows the same linear relationship with the logarithm of the loss function (orange crosses in Figure 19). The
slopes of the best-fit lines in Figure 19 show that the forecasting skill of the random feature map improves
slightly faster with decreasing loss when compared to the single-layer network with an estimated slope of
−1.01 for the random feature map and −0.79 for the neural network.

The discrepancy between the neural network having worse forecasting skill compared to random feature
maps despite achieving smaller loss can be explained as follows. Minimizing the loss function L aims at
learning the single-step surrogate map (6). High forecasting skill, however, requires multiple applications of
the single-step surrogate model which is not explicitly accounted for in the loss function (10). In Section 3.1
we established that the main controlling factor for achieving high forecasting skill is the number of good
features. In random feature maps we can control and maximize this number simply by sampling good
parameters according to our hit-and-run Algorithms 1 and 2, respectively. On the other hand, the training
of the single-layer feedforward network is only designed to minimize the loss but not to maximize the
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number of good features to Ng = Dr = 300 in our case. Figure 20 shows the number of different types of
rows produced during the training instance of Figure 17. We see that only a single good row was produced
in (Win,bin) during the early steps of the optimization, and this good row was then quickly destroyed
during the training process. We checked that even when the network is initialized with only good internal
parameters, i.e. pg = 1, training eventually leads to a complete absence of good internal parameters with
pg = 0 for reasonable learning rates. To understand the absence of good rows in the trained network, note
that for any random feature map Θ = (Win,bin,W) essentially lies on the graph of a continuous function
due to the intricate relationship between the internal and outer weights dictated by (11). So the set of all
possible Θ for random feature maps has zero Lebesgue measure in RDr×(2D+1). It is therefore highly unlikely
that gradient descent finds the lower-dimensional subset of the random feature map weights in its search
space which is the full RDr×(2D+1). It would be interesting to see if the network generates good features
if the loss function is augmented by a penalty term promoting good features. In any case, random feature
maps are significantly cheaper to train.

Figure 20. Evolution of the number (normalized by Dr) of learned good, linear and satu-
rated rows (win

i , bini ) in the internal parameters during a single training episode of a single-
layer feedforward network. The data shown here correspond to the training instance shown
in Figure 17 where we used Dr = 300 and N = 20, 000. Results are shown every 104 gradient
descent steps.

7. Results for long-time statistical behaviour

We have so far focused on short-term integration and assessed the quality of a surrogate model by its
ability to remain close to a reference trajectory. In certain applications such as climate prediction, however,
it is more important to reliably recover the statistical properties of the dynamical system. Good short-term
forecasting, i.e. high mean forecasting times, does not necessarily imply reliable reproduction of the statistics,
and vice versa. In Figure 21 we compare the empirical histograms of the three variables of the Lorenz-63
system (4) with those of the corresponding random feature surrogate maps where we only used good features,
i.e. pg = 1, and only used linear and saturated features, i.e. pg = 0 with pl = ps = 0.5. The histograms
are obtained from long simulations over 2, 000 time units, approximating the invariant measure. It is seen
that the random feature map with only good features reproduces the invariant measure well. When only
linear and saturated features are employed, the histogram of the Lorenz-63 system is less well reproduced.
Remarkably, for pg = 0 the histogram is still reasonably well reproduced; in particular, the tail behaviour of
the histograms is well reproduced.

We further show in Figure 22 a comparison between the histograms obtained from the random feature
map surrogate model that used only good features with pg = 1, and the single-layer feedforward network. It
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is clearly seen that the neural network is not able to reproduce the long-time behaviour, with its empirical
histogram being wildly different from that of the original Lorenz-63 system. However, the neural network
also reproduces the tail behaviour of the histogram very well.

It is remarkable that including global information about the data, in the form of the constraints (13)
which take into account information about the attractor, is sufficient to ensure that the trained surrogate
model is able to recover the invariant measure. This makes random feature models with only good internal
weights a very attractive network architecture for dynamical systems.

Figure 21. Empirical histograms of the marginals of the invariant measure for the Lorenz-
63 system obtained from simulating the original dynamical system (4), and for random
feature map surrogate model with only good features (pg = 1) and without any good features
(pg = 0).

Figure 22. Empirical histograms of the marginals of the invariant measure for the Lorenz-
63 system obtained from simulating the original dynamical system (4), for a random feature
map surrogate model with pg = 1, and for a neural network (NN) surrogate model. The
same neural network is used as in Figure 17.

8. Summary and future work

We established the notion of good features and good internal parameters for random feature maps with
a tanh-activation function. These good internal weights are characterised by affinely mapping the training
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data into the nonlinear, non-saturated domain of the tanh-activation function. We established that the
number of good features Ng ≤ Dr is the controlling factor in determining the forecasting skill of a learned
surrogate map, rather than the feature dimension Dr. Interestingly, the forecasting skill was found to be
equally deteriorated by linear features as by saturated features. We developed computationally cheap hit-
and-run sampling algorithms to uniformly sample from the set of good internal parameters. The hit-and-run
Algorithms 1 and 2 sample the internal weights from a data-informed convex set, rather than obtaining them
by minimizing some cost function. We demonstrated how ridge regression engages with a given number of
good and bad features. In particular, saturated features are eliminated almost entirely by the outer weights,
provided a sufficient number of good features are present. Similarly, linear features are suppressed by the
outer weights, albeit to a lesser degree. Once there are sufficiently many good features present to allow for a
significant reduction of the data mismatch term of the loss function, regularization kicks in and reduces the
norm of the outer weights corresponding to good features.

We further showed that a single-layer feedforward network with the same width Dr trained with gradient
descent exhibits inferior forecasting skill compared to a random feature map surrogate map which used only
good internal parameters. The neural network achieves a significantly smaller value of the loss function.
Good forecasting skill, however, requires multiple applications of the surrogate map, and, as we showed, is
controlled by the number of good features. The lower forecasting skill is due to the optimization process not
finding solutions on the measure-zero set of good parameters. Even when initialized with good parameters,
the gradient descent quickly reduces the number of good internal parameters.

We found numerically that including global information about the attractor, in form of the constraints for
the internal weights (13), is sufficient to ensure that the trained random feature map reproduces the statisti-
cal properties of the underlying dynamical system and its invariant measure. The rationale for the choice of
good internal weights was entirely motivated by the nonlinear non-saturated structure of the tanh-activation
function. How far the constraints on the function domain (13) translate into dynamical information ensuring
the preservation of the invariant measure remains an open question, planned for further research.

The proposed optimization-free algorithm to choose internal non-trainable parameters can potentially
lead to new design and computationally cheap training schemes for more complex network architectures.
Our algorithms may be used to further improve the forecasting skill of reservoir computers [41, 11]. In
[37] it is shown that the hit-and-run algorithm can be used for initializing modified RFMs, which include
skip connections, and deep architectures, to achieve state-of-the-art forecasting skill, outperforming standard
reservoir computers with significantly less computational effort and model sizes.

The parameters L0 and L1 that define good parameters can, in principle, be considered as hyperparam-
eters, and could be tuned, for example, using Bayesian optimization [26]. We have refrained here from
doing so as we have not observed significant changes in the forecasting skill for values close to L0 = 0.4 and
L1 = 3.5 which we used throughout this work.

We considered here the tanh-activation function as it is widely used in reservoir computing. The sepa-
ration of the domain into linear, saturated and good regions can readily be extended to other continuous
sigmoidal functions. These activation functions are widely used for random feature maps and in reservoir
computing architectures. They are less frequently used for deep neural networks where the saturated regions
lead to the vanishing gradient problem [14]. However, we note that recently the tanh-function gained again
more interest in the machine learning community [51]. It is an interesting question whether our method-
ology can be extended to other commonly used activation functions such as the ReLU-type functions or
trigonometric functions as initially employed for random feature maps [43]. For example, for GELU [18]
one may define good features to be those that correspond to an interval around 0 where the function is
nonlinear and non-saturated. For classical Fourier random feature maps, one could separate the domain into
linear and saturated regions near the roots and maxima/minima of the sin- and cos-functions, and consider
the complement as the “good” region; the linear domain of the sin-function needs to be aligned with the
saturated domain of the cos-function, and vice versa. Exploring whether the good regions of such functions
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allow for sufficient variability of the corresponding features and if this can lead to an improved sampling is
planned for future research.
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9. Appendix

9.1. Adaptive learning rate for the single-layer neural network. We describe in Algorithm 3 the
adaptive learning rate algorithm we used when training the single-layer feedforward network in Section 6.
Essentially our scheduler computes the decay rate of the loss every I steps and modifies the learning rate by
increasing or decreasing it by a constant fraction ξ if necessary. We use an initial rate η0 = 10−3, update
interval I = 100, update fraction ξ = 0.1, update threshold γ = −10−4 and number of gradient descent steps
E = 1.5× 106 in our scheduler.

Algorithm 3 Adaptive learning rate scheduler

1: Input: Choose initial rate η0, update interval I, update fraction ξ, update threshold γ, number of gradient
descent steps E.

2: k ← 1 (gradient descent step).
3: L0 ← value of L at gradient descent step k.
4: η ← η0 (learning rate).
5: while k < E do
6: if k is divisible by I then
7: L1 ← value of L at gradient descent step k.
8: ∆← L1−L0

L0
.

9: if ∆ > γ then
10: if ∆ > 0 then
11: η ← η(1− ξ)
12: else
13: η ← η(1 + ξ)
14: end if
15: end if
16: L0 ← L1

17: end if
18: k ← k + 1
19: end while

We tried several other strategies such as finding an optimal learning rate every few steps using bisection,
random modifications of the learning rate based on the behavior of the loss function, aggressive constant
learning rates, conservative constant learning rates, piecewise linear learning rates etc. We found that the
simple strategy presented in Algorithm 3 leads to the lowest final value of the loss function for the same
number of gradient descent steps. Figure 23 shows the adaptive learning rate used during the training
instance shown in Figure 17.
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