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This study investigates how dynamical systems may be learned and modelled with a neu-

romorphic network which is itself a dynamical system. The neuromorphic network used

in this study is based on a complex electrical circuit comprised of memristive elements

that produce neuro–synaptic nonlinear responses to input electrical signals. To determine

how computation may be performed using the physics of the underlying system, the neuro-

morphic network was simulated and evaluated on autonomous prediction of a multivariate

chaotic time series, implemented with a reservoir computing framework. Through ma-

nipulating only input electrodes and voltages, optimal nonlinear dynamical responses were

found when input voltages maximise the number of memristive components whose internal

dynamics explore the entire dynamical range of the memristor model. Increasing the net-

work coverage with the input electrodes was found to suppress other nonlinear responses

that are less conducive to learning. These results provide valuable insights into how a

practical neuromorphic network device can be optimised for learning complex dynamical

systems using only external control parameters.

1

mailto:zdenka.kuncic@sydney.edu.au


Learning Chaotic Dynamics with Neuromorphic Network Dynamics

I. INTRODUCTION

Neuromorphic computing aims to achieve efficient computation by emulating the brain’s

powerful information processing abilities1–4. Two broad approaches that have been success-

fully demonstrated are: (i) electrical circuits that emulate point neuron spike models and/or

spike–based learning models5,6; and (ii) nano–electronic materials with inherent neuro–synaptic

dynamics1,7–9. The latter includes resistive switching memory (memristive) materials10–13. Neu-

romorphic computing with memristors has been demonstrated with crossbar arrays, which can

be used to perform physical matrix–vector operations to accelerate inference of artificial neural

network models14,15. Alternately, memristor crossbar arrays have also been used to implement

reservoir computing (RC)16. Neuromorphic RC with memristive systems is a particularly promis-

ing approach given that electronic reservoirs with neuromorphic dynamics closely resemble the

brain’s physical reservoir17,18. However, a drawback of memristor crossbars for neuromorphic RC

is their regular structure and limited scale.

This study focuses on neuromorphic RC using memristive nanowire networks. These are com-

plex, self-organised electrical circuits comprised of axon-like nanowires and synapse-like mem-

ristive junctions between overlapping nanowires, where conductance changes — the physical re-

alisation of synaptic weights — are triggered by migration of atoms similar to the transmission

of neurotransmitter molecules, constrained by physical equations of state and conservation laws1.

Memristive nanowire networks exhibit emergent brain–like dynamics, such as dynamical phase

transitions (continuous and discontinuous) and synchronisation. Previous studies have shown that

different dynamical regimes may be exploited for learning8,19–21. As a consequence of their self–

organisation (i.e. their ability to acquire non–trivial structure–function properties), a single volt-

age pulse may have cascading effects that evolve all memristive elements in the neuromorphic

network, in contrast to digital implementations of artificial neural networks, where large numbers

of transistors must be individually addressed to update a similar number of network weights2.

Nanowire networks naturally self–organise into a Recurrent Neural Network (RNN) structure,

with a functional connectivity that is highly suitable for RC. In standard algorithmic RC, the reser-

voir is typically a fixed random RNN of which each node evolves according to a mathematical

activation function, and only a single linear output layer is trained with a computationally efficient

linear regressor or classifier22. In this way, RC approaches can achieve excellent performance in

various learning tasks involving temporal data23–25, with training times that are orders of mag-
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nitude shorter than standard machine learning approaches. Physical RC, however, may operate

differently because of the dynamics of the physical reservoir. In the case of neuromorphic RC

with memristive nanowire networks, all the network dynamics are driven by the memristive edge

junctions and are constrained by physics26.

To further investigate how memristive nanowire networks operate as physical reservoirs for

neuromorphic RC, we present a simulation study focusing on a specific application: autonomous

prediction of a multivariate chaotic time series, the well-known Lorenz63 system27. Prediction

of the Lorenz63 system has been previously demonstrated with several different RC and related

approaches28–33. To the best of our knowledge, this study is the first to demonstrate autonomous

prediction of the Lorenz63 attractor with neuromorphic RC. Understanding and predicting the

behaviour of complex nonlinear dynamical systems is crucial for many scientific disciplines, in-

cluding physics, climatology, neuroscience and biology, and for real–world applications such as

financial markets and social networks34–36. Chaotic dynamical systems, in particular, are noto-

riously difficult to forecast due to their high sensitivity to initial conditions and highly nonlinear

nature, resulting in aperiodic and categorically unpredictable dynamics. As such, the task of fore-

casting chaotic dynamics provides a challenging testing ground for exploring the limits of the

capabilities of neuromorphic networks, and for testing the hypothesis that neuromorphic physical

reservoirs can predict dynamical systems using the inherent physics of the neuromorphic system

itself.

This study primarily aims to gain deeper insights into the inner workings of memristive

nanowire networks for learning via neuromorphic RC. No attempt is made to achieve state-of-the-

art prediction results, such as those already achieved with random feature models33, Long-Short

Term Memory (LSTM) networks37 or algorithmic RC models38. Rather our study provides the

first proof of concept that analog devices consisting of a physical neuromorphic network is ca-

pable of performing learning tasks, through controlling the network via only the external input

parameters. The forecast skill we obtain in our study for a network with 2,000 nodes is far below

those achieved by digital reservoir computers of the same size. However, as we will see perfor-

mance increases with network size, and physical neuromorphic networks can easily be scaled up

to millions of nodes8,39; such network sizes are out of reach for digital reservoir computers. Also

considering optimisations of the computational framework and the network itself (which is beyond

the scope of this study), physical neuromorphic devices have great potential to outperform digital

computers, with significantly faster and more energy efficient performance.
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The remainder of this article is organised as follows. Sect. II describes the methods used in the

simulation study, including the RC setup and memristive network model. The results in Sec. III

start with analysis of the chaotic time series prediction task (in Sec. III A), then presents and

discusses all sources of nonlinear dynamical features, on the global network level in Sec. III B, then

local memristive edge level and their interactions in Sec. III C and Sec. III D. This study concludes

with Sec. IV, which shines light on the future works needed to fully optimise this neuromorphic

network for modelling dynamical systems.

II. METHODS

A neuromorphic reservoir was constructed using a physically–motivated model of a complex

electrical circuit comprised of nonlinear resistive switching memory circuit elements known as

memristors1,19,20,40,41. Given some input signal u(t) ∈ RNu , the neuromorphic network is used to

autonomously predict a dynamical time series y(t)∈RNy , by computing the estimate ŷ(t)∈RNy of

the teacher signal y(t). This is performed using a reservoir computing (RC) framework in which

reservoir input values rin(t) are coupled to the input signal u(t) via a linear input layer with weight

matrix Win ∈ RNin×Nu and an input bias vector bin ∈ RNin , such that

rin(t) =Win u(t)+bin. (1)

with Win and bin entries uniformly randomly sampled on intervals [−w,w] and [−b,−b/2] ∪

[b/2,b], respectively (the choice of the bias sampling is explained in Sec. III D). We choose w=α ,

b = 5α with α = 0.2V. The α variable effectively serves as the input voltage scaling parameter

which converts the input signals into appropriate voltages.

A graph representation of the neuromorphic network N consisting of N nodes is abstracted

as the reservoir (see Fig. 1), a high dimensional dynamical system which nonlinearly transforms

a temporal signal rin(t) ∈ RNin into readout values rout(t) ∈ RNout , with Nout ≥ Nin. Only a subset

Nin < N of all available nodes are used as input nodes, and Nout < N is the number of voltage

readout nodes. In a machine learning context, these readouts rout(t) serve as high-dimensional

dynamical feature embeddings that can be used to learn the nonlinear dynamics of the input data.

The neuromorphic network model is described further in Sec. II A.

The dynamical features rout(t) generated by N are linearly coupled to an external output layer

with a weight matrix Wout ∈ RNy×Nout that is trained to learn the dynamics of u(t) by optimising
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FIG. 1. Schematic of the dynamic neuromorphic reservoir computer. A signal vector u(t), weighted by

a fixed random Win and scaled by a constant voltage α , is input into the neuromorphic reservoir N via

selected input nodes. Voltage signals rin(t) (which also include random bias values bin) are mapped into

a higher-dimensional dynamical feature space which is sampled from other nodes rout(t). Only the output

weight matrix Wout is trained to learn estimates ŷ(t).

output estimates ŷ(t) according to

ŷ(t) =Wout rout(t)+u(t), (2)

which includes components u(t) that serve a similar role to skip connections in residual networks42.

During training, the input signal is u(t) = y(t −∆t), and Wout is trained using ridge regression,

given by

Wout = argmin
Wout

(
||Woutrout(t)−∆y(t)||2F + γ||Wout||2F

)
, (3)

where ∆y(t) = y(t)−y(t −∆t), with a Tikhonov regularisation parameter value of γ = 10−6, and

|| · ||F denotes the Frobenius norm.

To perform dynamical system forecasting, the current estimate ŷ(t) at one time step ahead is

predicted using the previous estimate ŷ(t −∆t) as input (i.e. u(t) = ŷ(t −∆t)). Substituting into

Eq. (2), it can be seen that during prediction

dŷ
dt

≈ ŷ(t)− ŷ(t −∆t)
∆t

=
1
∆t

Wout rout(t). (4)
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Hence, with skip connections, the neuromorphic reservoir learns an Euler discretisation with fixed

sample time ∆t of the dynamical equation.

Here we use the neuromorphic RC framework to perform autonomous prediction of the

Lorenz63 system27, given by

dỹ1

dt
= ρ1(ỹ2 − ỹ1) ,

dỹ2

dt
= ỹ1(ρ2 − ỹ3)− ỹ2 ,

dỹ3

dt
= ỹ1ỹ2 −ρ3ỹ3 . (5)

The constants were set to the standard values of ρ1 = 10, ρ2 = 28 and ρ3 = 8/3 that generate

chaotic dynamics. The normalised Lorenz values is recorded at equidistant sampling times ∆t =

0.005, and a training length of 135 Lyapunov times was chosen to ensure a low training error (less

than 0.01 normalised root mean squared error). The sampling time ∆t is used as the discretisation

time step of our network simulations. All three discretised variables of the Lorenz63 system in

Eq. (5) were provided as input after being normalised to a mean of 0 and standard deviation of 1,

i.e. the ith element of y(t) is

yi(t) =
ỹi(t)−⟨ỹi(t)⟩

σỹi

, (6)

where ⟨·⟩ denotes the time average, and σỹi is the standard deviation (across all training time) of

the ith component of the Lorenz system.

For quantifying prediction accuracy, the forecast time t f was determined as the longest time

such that the relative forecast error E f (t f ) is less than a threshold θ :

t f = max
t

(λmaxt|E f (t)≤ θ) with E f (t) =
||y(t)− ŷ(t)||2

⟨||y−⟨y⟩||2⟩
, (7)

where || · || denotes the Euclidean norm. A threshold of θ = 0.4 was chosen to compare results

with related studies28,29. The forecast time t f is measured in units of the Lyapunov time λ−1
max,

where the largest Lyapunov exponent of the Lorenz63 system is λmax = 0.91.

A. Neuromorphic Network Model

The neuromorphic network N is comprised of a complex memristive circuit as a model

of self–organised nanowire networks, which exhibit neuro–synaptic dynamics under electrical

stimulation1. Due to its unique network topology, the neuromorphic networks were generated by

modelling the bottom-up self-assembly process of the physical nanowire network; see Ref.43 for

detailed network generation and network topology analysis.
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FIG. 2. Graph representations of simulated neuromorphic networks used in this study: (a) network with

2,000 nodes and 47,946 edges; (b) network with 500-nodes and 9,905 edges.

The neuromorphic network N is abstracted as a graph representation, with nodes representing

nanowires and edges representing memristors. A network of 2,000 nodes and 47,946 edges,

alongside another network of 500 nodes and 9,905 edges were used, with 5% of all nodes serving

as inputs and up to 90% of all other nodes serving as readout nodes. Their graph representations

are illustrated in Fig. 2.

FIG. 3. Memristive edge normalised conductance (g(x)/maxx[g(x)]) as a function of the internal state

parameter x, for both the tunnelling memristor model (black) and the binary model (dotted red). The low,

medium and high conductance states are indicated.
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The graph Laplacian of N is used to define the linear system of equations corresponding to

Kirchhoff’s and Ohm’s laws for electrical circuits. For an arbitrary, non–trivial network with

N nanowires and Nin contact electrodes, for every specified time-step, the node voltages r and

electrode currents iin are calculated by solving the following system of equations in response to

the external input signals rin

L

 r

iin

=

 0

rin

 , (8)

where L in its block matrix representation is

L =

 L CT

C 0Nin

 . (9)

Here, L = D−W is the graph Laplacian of size N ×N, W is the weighted adjacency matrix of

the network with each of its element given by Wi j = gi jAi j, where A is the adjacency matrix of

the network, and gi j is the conductance of the edge (junction) connecting the ith and jth nodes

(nanowires), which evolve dynamically with respect to past voltage values (described formally in

Sec. II B). The N×N matrix D is the weighted degree matrix given by D = diag(di), di =∑
N
l=1Wil .

C is a Nin ×N matrix, with Ci j = 1 for electrodes with index i that are assigned on the node with

index j, and Ci j = 0 otherwise. 0Nin is a zero matrix of size Nin ×Nin, and 0 is a 1×N zero vector.

r is a 1×N vector encoding the voltage of all N nanowire nodes.

The voltage vi j across the edge connecting the ith and jth node is vi j = ri − r j, where ri and

r j are the node voltages at the ith and jth index, respectively. Once the node voltages are solved,

an internal state parameter xi j is updated for each junction with a memristor model. The model

is then used to calculate the conductance gi j at each memristive junction, which can be used to

update L for the next timestep.

B. Memristor Model

We use a threshold memristor model19, given by the following expression for a single memris-

tive junction with voltage v(t) (indices omitted for clarity),

dx
dt

=



η(|v(t)|−Vset) sgn(v(t)) |v(t)|>Vset

0 Vreset ≤ |v(t)| ≤Vset

ηq(|v(t)|−Vreset) sgn(x(t)) Vreset > |v(t)|

0 |x| ≥ 1

(10)
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The dimensionless state variable x(t) describes the physico–chemical processes responsible for

memristive switching, including electro–chemical metallisation and electron tunnelling. Here q

controls the decay of memory of the memristor, and η controls the time scale of the memristor

relative to the input signal.

The memristive junction conductance g(x) only depends on x(t) and is expressed as

g(x) =
1

Rt(x)+Ron +
R2

on
Roff−Ron

+
1

Roff
, (11)

where the tunnelling conductance Gt(x) = Rt(x)−1 assumes the low voltage Simmon’s formula44:

Gt(x) =
ζ0

s
exp(ζ1s), (12)

with

s = max
[
(xcrit −|x|)smax

xcrit
,0
]
. (13)

All parameter values not explicitly stated here are listed in Appendix A.

We further consider a simpler binary memristor model where the junction conductance g is

either R−1
on or R−1

off , which is effectively equivalent to the above memristor model without electron

tunnelling transport:

g(x) =

 R−1
on |x|> xcrit,

R−1
off |x| ≤ xcrit.

(14)

The conductance profiles of both memristor models are illustrated in Fig. 3.

We remark that the nontrivial temporal evolution of the internal state variable in Eq. (10) is the

only nonlinearity explicitly introduced in the neuromorphic network. If the state variables do not

evolve (i.e. ẋi j = 0 for all memristive junctions), the neuromorphic network reduces effectively to

a network of linear resistors.

Further details of the neuromorphic network and memristor models can be found in Refs.19–21.

C. Network Dynamics

Due to the memristive dynamics described above, the neuromorphic network exhibits coupled

node–edge dynamics. An example of a network’s dynamical behaviour is presented in Fig. 4,

which shows snapshots of conductance changes for different times as a voltage bias is applied to

one node. As voltage is distributed to nodes according to their connectivity, edge conductances
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FIG. 4. Graph visualisations of a simulated 200-node, 1,213-edge neuromorphic network showing dynamic

connectivity in response to a constant DC voltage bias of 2V. Snapshots are shown at times (a) 0.2 s, (b)

0.5 s and (c) 1.0 s, with the normalised conductance on edges, g(x)/maxx[g(x)], indicated by the right

colourbar and the thickness of the respective edges, the node voltages rout indicated by the colourbar on the

left; (d) corresponding percentage of the network that is active with edge voltage vi j ≥Vset.

begin to evolve forming localised branches (Fig. 4(a)) that drive further node voltage redistribu-

tion, with the formation of the first high conductance path (Fig. 4(b), yellow) between the input

and the ground node in the electrical circuit. As the input voltage persists, more parallel conduc-

tance paths form (Fig. 4(c)). These paths reset under reverse voltage polarity and/or via stochastic

thermodynamic fluctuations (not modelled here to preserve interpretability of results).

For arbitrary input voltage signals, the network is only dynamically active in certain parts at

different times due to its connectivity. As shown in Fig. 4(d), network activity (defined by edge

conductance changes when voltage difference are above a threshold set value Vset) gradually in-

creases, reaching a maximum of around 90% before decreasing towards 50%. After 0.5 s, con-

ductance changes slow down in tandem with reduced voltage differences between nodes. With

multiple input nodes and more varied, bipolar input signals, the network’s behaviour follows simi-

lar dynamic patterns, but with richer complexity in its response. Recurrent edge–node interactions

enable more nonlinear coupling between inputs and readouts, which may be advantageous for

tasks involving multivariate time series with complex dynamics, such as the Lorenz system.
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D. Dynamic Reservoir Computing

Due to the presence of memristive edge dynamics which induces complex network dynamics

(cf. Fig. 4), the neuromorphic network behaves very differently when compared with classical

reservoirs used in standard RC approaches. In conventional RC, edges are random and fixed, and

dynamics are introduced solely on the nodes with a prescribed nonlinear activation function σ

(such as tanh or ReLU) according to

r(t +∆t) = σ (Wr(t)+Winu(t)) , (15)

where W is the static reservoir network weight matrix. In contrast, for neuromorphic reservoirs

Eq. (15) is replaced by

r(t +∆t) = MWinu(t), (16)

where M(t;r(t),r(t −∆t), ...r(0);u(t),u(t −∆t), ...,u(0)) is a submatrix of L−1, where L is the

block matrix in Eq. (9). M has size N ×Nin, such that its elements Mi j = L−1
ik , where k = j+N

for i ∈ [1,N], j ∈ [1,Nin]. M is updated at every timestep from the previous M(t −∆t) and current

input u(t). Hence, M is dependent on all previous input signals and internal voltage values and

encodes all conductance weight changes, via network connectivity and Kirchhoff’s laws.

In conventional reservoirs, all reservoir nodes are linearly combined to generate the output

signal. In neuromorphic reservoirs, however, due to the limited number of electrodes used in a

physical device, only a subset of all reservoir node voltages, the so called readout nodes, is used

to generate the output signal. Another key difference when compared to conventional RCs is the

presence of adaptive weights. Although the dynamically evolving conductance values on edges

cannot be interpreted as neural network weights, since the neuromorphic network circuitry induces

coupled edge–node dynamics instead of a matrix multiplication used in abstract neural networks,

they serve a similar role as network weights. Indeed, the most important distinction is the different

sources of nonlinearity: nonlinear effects in a conventional reservoir stem from the activation

function imposed on its nodes, whereas neuromorphic network nonlinear effects derive from its

internal physical dynamics (i.e. electro–ionic transport across memristive edges) and, as we show

below, its connectivity.
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FIG. 5. Input–output mapping of a neuromorphic network with 2,000 nodes and 47,946 edges. (a) Input

signals rin(t) (blue) constructed from a linear combination of the Lorenz system (cf. Eq. (1)) and delivered

to 80 randomly selected nodes; (b) readout signals rout(t) (red) from 1,919 randomly selected nodes (distinct

from the input nodes). Time duration is the last 10 Lyapunov times of training.

III. RESULTS & DISCUSSION

The results presented below aim to demonstrate how a neuromorphic network works as a physi-

cal reservoir and how it is implemented for dynamic RC, using the specific example of autonomous

prediction of the Lorenz63 attractor. Both short–term and long–term predictions are presented

and analysed, and the influence of external global parameters (input voltage scaling and bias) on

forecasting performance is investigated using input–output mappings and a dynamics measure.

Nonlinear dynamical features produced by the neuromorphic network are closely examined to de-

termine which features are learned by the auto–regressor used for prediction. How the desirable

nonlinear features can be promoted by the set-up of the neuromorphic reservoir is investigated by

studying electrode node connectivity and the nanoscale transport dynamics within the memristive

edges.

A. Lorenz System Prediction

Fig. 5 shows the input–output mapping of a 2,000–node, 47,946–edge neuromorphic network

used as a reservoir for dynamic RC for Lorenz63 forecasting. Input and output signals are respec-

tively delivered to and read out from 80 and 1,919 randomly selected nodes. This network and

setup was used to autonomously forecast the Lorenz63 signal, with the best example shown in

Fig. 6. The forecast time is t f = 9.0 Lyapunov times, after which the predicted signal deviates but
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FIG. 6. Example autonomous prediction of the Lorenz system (5) using a neuromorphic network. (a),

(b) and (c) respectively show the individual ŷ1(t), ŷ2(t) and ŷ3(t) values for the predicted signals (orange

dashes) and the normalised true Lorenz signals (grey curves). The vertical grey dashed lines indicate the

short-term prediction length, defined by Eq. (7), as around 9.0 Lyapunov times. Data extracted from the

same simulation as in Fig. 5.

still follows the overall dynamics of the Lorenz attractor. An average forecast time of 2.9± 1.2

Lyapunov times was found over 1,250 trials, shown in Fig. 7, indicating the network’s general

performance in predicting the short-term dynamics of the Lorenz63 system.

With a positive Lyapunov exponent, the difference between the predicted and actual trajec-

tory will always diverge as an unavoidable consequence of chaotic dynamics. Besides forecasting

individual trajectories it is desirable to also reproduce the statistical long–term behaviour of the

dynamical system. The simulation from Fig. 6 was extended to 100 Lyapunov times to produce

the chaotic attractor in Fig. 8; over this long–term timescale, the prediction appears to qualitatively

replicate the Lorenz attractor dynamics, and in particular remains stable. For a quantitative assess-

ment of long–term forecasting, the normalised power spectral density (PSD) of the y3-variable of

the Lorenz system is compared in Fig. 9, where a high degree of concordance between the PSDs

of the predicted and true Lorenz signals is evident across the majority of the frequency spectrum.

This study utilised a network of 2,000 nodes, which is relatively large compared with other

RC studies28,29. However, physical neuromorphic reservoirs typically have network sizes an order

13
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FIG. 7. Histogram of forecast times t f , defined by Eq. (7), in units of Lyapunov time for a total of 1,250 trials

using the 2,000 node neuromorphic network. An average of 2.93 Lyapunov times is achieved (indicated by

the dotted red line), with a standard deviation of 1.21 Lyapunov times.

FIG. 8. Predicted (orange) and true (grey) Lorenz attractor trajectory over a forecast length of 50 Lyapunov

times. Data extracted from the same simulation as in Fig. 5.
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FIG. 9. Normalised smoothed power spectral density (PSD) of the predicted (red) and true signal (black)

of the y3 component of the Lorenz system, and the corresponding absolute residual (blue), over a forecast

length of 100 Lyapunov times. Data extracted from the same simulation as in and Fig. 6, during the predic-

tion stage, and smoothed via a Gaussian filter (with a standard deviation of 2).

of magnitude larger, up to millions of physical nodes7–9,19,45,46, and they are vastly more energy

efficient than their software simulator counterparts. Due to the network size and the necessity to

model each dynamical interaction within N , the simulations can be more compute intensive when

compared with standard RC methods. However, when viewed as a simulation of a physical sys-

tem, the results are valuable for optimising the design of physical neuromorphic RC systems for

complex tasks such as multivariate time series forecasting. For example, a meta–learning scheme

can be implemented for meta–parameter optimisation (e.g. Win, bin) using methods such as simu-

lated annealing46. Note that in real world applications, all nonlinear information processing would

be completed implicitly by the physics of the neuromorphic device itself; the only computation

necessary would be linear regression on the single output layer.

B. Induced Nonlinear Dynamics

From Sec. II D and Eq. (16), it is evident that the neuromorphic network’s nonlinearity and thus

functionality stems from its memristive edge dynamics; hence, network performance is expected

to be influenced by dynamical activity.
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FIG. 10. Influence of input scaling parameter α on forecasting performance and reservoir dynamics.

(a) Mean forecast times (black) and mean training NRMSE (pink) as a function of α; (b) corresponding

dynamics measure (as defined in Eq. (18)). As the low-to-high conductance state changes are one order of

magnitude more frequent, the corresponding dynamics measure (green) is shown on a different scale. The

dotted line at α = 0.2 V indicates the default α used in previous figures. Simulations were performed using

a neuromorphic network with 500 nodes and 9,905 edges. Each data point in (a) was obtained from 1,500

trials, and 100 trials for (b).

From Eqs. (10) and (11), conductance evolution is driven by the voltage difference across mem-

ristive edges. On a network level, this implies that nonlinear dynamics can be directly controlled

(and hence optimised) by the external voltage amplitude α of the input signal. Fig. 10(a) shows

the mean of the forecast times, E[t f ], as a function of α . The mean forecast time exhibits a clear

peak at α ≈ 0.2V. In Fig. 10(b) it is seen that the training error achieves its minimal Normalised

Root Mean Square Error (NRMSE) at the same value of α ≈ 0.2V. This supports our choice for

the default value α = 0.2V used in the simulations.
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FIG. 11. Representative behaviour of readout signals with high (red) and low (magenta) ω values (Wout

weightings), and its corresponding predicted attractor (orange) with respect to input scaling parameters α ,

at values of (a) 0.016V, (b) 0.2V, (c) 0.4V and (d) 2.0V. The forecast times are t f = 1.30, t f = 1.64 and

t f = 1.69 Lyapunov times, respectively. The corresponding attractors evolve for 10 Lyapunov times.

As shown in Sec. II D, nonlinearity within this system is a consequence of the memristive

edge dynamics. To quantify this, a dynamics measure is introduced, based on changes in the

conductance states of each memristive edge over a dynamical timescale of one Lyapunov time;

high, medium and low conductance state changes were counted over time (cf. Fig. 3). Formally,

we define the dynamics measure δ
i, j
a,b for counting the number of transitions between conductance

states Xa and Xb across the memristive edge between node i and j as

δ
i, j
a,b =

1
T ∑

ℓ

(
[|xi j(tℓ)| ∈ Xa][|xi j(tℓ+1)| ∈ Xb]+ [|xi j(tℓ)| ∈ Xb][|xi j(tℓ+1)| ∈ Xa]

)
, (17)

across all time tℓ during training through increments of Lyapunov times (i.e. tℓ+1 − tℓ = λ−1
max),

normalised by the total number of training timesteps T . Here [·] denote Iverson brackets, where [P]

is defined as 1 if statement P is true, and 0 otherwise. The three conductance states are determined

by their corresponding x values, with intervals Xlow = [0,0.55), Xmed = [0.55,2/3] and Xhigh =

(2/3,1] for the low, medium and high conductance states, respectively. Averaging across all K
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edges in the network, the overall network dynamic measure δ̄a,b is thus

δ̄a,b =
1
K ∑

i, j
δ

i, j
a,b. (18)

The network dynamics measure is shown in Fig. 10(b). The low–med and med–high conduc-

tance changes represented by δ̄low,med and δ̄med,high capture dynamic activity between intermediate

states, and are maximal at around α = 10−2 V (with med–high state changes also persistent at

α ≈ 1V). This is in fact near the onset of nonlinear dynamics, as memristive edges only evolve at

a voltage greater than Vset = 10−2 V. The low–high conductance changes represented by δ̄low,high

capture persistent network–scale dynamic states, corresponding to continuous formation and de-

cay of high conductance pathways; its maximal value at α ≈ 0.2V also corresponds to the highest

mean forecast time shown in Fig. 10(a). This suggests that optimal task performance corresponds

to large dynamical network activity that sweeps across many internal edge states. Next, we con-

sider what this means on a practical level for performing dynamic RC.

The output layer weights Wout learn nonlinear dynamical features that are most useful for pre-

dicting the Lorenz system. Each ith column of Wout includes the output weighting attributed to the

features produced by readout node i. Denoting the absolute sum over the ith column of Wout as

ωi, where ωi = ∑
Nout
j=1 |W

j,i
out|, a high ωi implies node i produces more useful features, while low ωi

means that the ith feature is suppressed. Fig. 11 shows examples of readout voltages during the

last 10 Lyapunov times of training for three different values of α , with readout signals extracted

from nodes i with the highest ten ωi values shown in the top panel (red), and readout signals from

the smallest (near zero) ten ωi values below (magenta), with their corresponding autonomously

predicted Lorenz attractor (orange) pictured on the right. It is clear that all cases in Fig. 11 sup-

press readout signals with high frequency fluctuations, suggesting that such nonlinear features are

not useful for learning the Lorenz63 system.

The nonlinear features across different α also show qualitative differences. In Fig. 11(a), the

value of α was chosen to match the onset of nonlinearity, at the maxima of the low–med dy-

namics measure with α = 0.016V; this is also the case with the largest amount of high frequency

fluctuations overall. These fluctuations are not as evident in the two cases (Fig. 11(b) and (c)),

with α = 0.2V chosen to match the optimal forecasting time, and with a high value of α = 2.0V

which exhibits relatively smoother readouts. These are produced from the persistent dynamics in

the formation and decay of conductance paths within the network, shifting the weights within the

M matrix gradually at every timestep. The memristive edges evolve across all available conduc-
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FIG. 12. Representative readout signals with high (red) and low (magenta) ω weightings, for two memris-

tive models: (a) tunnelling (corresponding to the same plot for α = 0.2V in Fig. 11) and (b) binary. Forecast

times are t f = 1.64 and t f = 1.66 Lyapunov times, respectively. The corresponding attractors (right) evolve

for 50 Lyapunov times.

tance states (low through medium to high conductance state, and back), thereby maximising the

use of available internal degrees of freedom. This favourable nonlinearity is conducive for good

network performance, whereas the high frequency fluctuations represent less useful nonlinearity

that is suppressed by Wout. The corresponding predicted attractor in each case shows that the most

useful nonlinear dynamical features are produced away from very low and very high values of α ,

where the predicted attractor becomes unstable.

C. Memristor Transport Dynamics

The memristor model, Eq. (11), utilised for this study includes electron tunnelling transport in

addition to ballistic transport. As shown in Fig. 3, tunnelling introduces intermediate conductance

states that do not exist in the simpler binary model. Knowing that the high frequency fluctuations

arise from low to medium conductance state changes (as previously seen in Fig. 11(a)), it is rea-

sonable to question whether they are caused by tunnelling, that is, if the neuromorphic network’s

capabilities are limited by the inherent physics of the system.

Fig. 12 reveals, however, that the high frequency fluctuations are even more pronounced in the

binary model. The shown examples of both models (simulated with the same parameters) share

similar below–average forecast times of t f ≈ 1.6 Lyapunov times, and their predicted attractors
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FIG. 13. Examples of (top) memristive edge voltages with and without dynamic activity (ẋ ̸= 0 and ẋ = 0,

respectively) and (bottom) their corresponding node voltage readouts, showing that high-frequency nonlin-

ear features may be present even in nodes connected to edges that are not evolving (orange), as compared

to a typical nonlinear voltage signal (blue). All simulation parameters are the same as in Fig. 11 with

α = 0.2V.

exhibit similar long–term dynamics (up to to 50 Lyapunov times); both successfully reproduce the

Lorenz dynamics, only deviating in regions with relatively little training data (at the edges of the

attractor). Thus, the high-frequency nonlinear features do not originate from tunnelling dynamics

per se, but rather appear to arise as a result of rapid switching of conductance states, fluctuating

around the voltage threshold Vset for the onset of memristive dynamics. Moreover, the observation

that the rapid fluctuations are more prominent in the binary model suggests that the tunnelling

model is able to naturally suppress these features, and this may be attributed to the many more

degrees of freedom afforded by the intermediate states of tunnelling dynamics (see Fig. A.3 in

Appendix). Nevertheless, both models still yield similar average short–term prediction accuracy

(see Fig. A.6 in Appendix) due to the suppression of these features via ridge regression in the

output layer. See Appendix B for further details on how these high-frequency fluctuations arise

from memristive edges in both models.

The intermediate conductance state changes (low–med, med–high) do not alone explain all

fluctuating dynamics in the network; by studying dynamics at the individual memristive edge

level, these high frequency fluctuations can also be observed in nodes connected to edges which

have no dynamical activity. This is shown in Fig. 13, where high frequency fluctuations can

also be observed in edges without any dynamics (i.e. ẋi j = 0 at edge between node i and node
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j). For a more detailed analysis, see Appendix B. In summary, these high frequency dynamical

features are caused in part by the network connectivity distributing nonlinear dynamics amongst

all connected parts, effectively acting as a multiplier of nonlinearity, hence allowing network nodes

to exhibit nonlinear dynamics even when corresponding edges have no internal dynamical activity

themselves.

Overall, nonlinear dynamical features are induced by the complex interactions between mem-

ristive edge evolution and network connectivity, resulting in the formation and destruction of

conductance paths and feedback loops which cannot be easily inferred unless fully numerically

simulated (since a closed-form solution does not exist). From these results, it is expected that

proximity of non-active network components to dynamically active components should affect how

dynamical features are generated and distributed throughout the network; this is explored next.

D. Node Interactions

Local node interactions are influenced by the input electrode node placements. This section

investigates how proximity of readouts to input electrodes affects nonlinear dynamics, and how it

may be possible to infer input node allocations that promote good forecasting performance.

To aid analysis and visualisation of node interactions, a homogeneous square 2D lattice network

was constructed. This network consists of 25× 25 = 625 nodes, with each node connected to 4

other nodes (implying 1,250 edges), with doubly periodic boundary conditions.

We introduce a nonlinearity measure, mi, j
nonlin, defined as the mean squared difference between

the node readouts ri, j
out of the nonlinear model and the readouts rL;i, j

out of the closest linear model,

normalised by the mean squared readout signals,

mi, j
nonlin =

〈∣∣∣ri, j
out − rL;i, j

out

∣∣∣2〉
⟨||rout||2⟩

. (19)

On the overall network level, this nonlinearity measure m̄nonlin would be

m̄nonlin =

〈
||rout − rL

out||2
〉

⟨||rout||2⟩
. (20)

The readout rL
out is obtained from a linear model for which the internal state variables are static with

ẋ = 0 for all memristive junctions, effectively rendering them linear resistors. Consequentially

for very small values of α < 0.001V, m̄nonlin = 0 as voltage signals is too small to form any
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FIG. 14. Heat map of selected time-averaged measures on a 2D 25×25 doubly periodic lattice network for

different input electrode node placements: (a) uniformly equidistant inputs, (b) randomly selected inputs,

and (c) localised inputs. The first column shows the readout voltages rout averaged over time. The second

column shows the dynamics measures δlow,high for conductance state transitions between low and high

conductance states, the third column shows dynamics measures δlow,med + δmed,high for low-med and mid-

high conductance states changes (defined in Eq. (17)), the fourth column shows the nonlinearity measure

mnonlin (defined in Eq. (19)), and the fifth column shows the corresponding ω weights. Indices omitted in

all labels for clarity.

conductance paths (i.e. ẋ = 0). Likewise for large values of α > 10V, the corresponding m̄nonlin

are also approximately zero, as all memristive edges are oversaturated with voltage, effectively

also resulting in a near linear network with ẋ ≈ 0 (see Fig. A.4 in Appendix).

Fig. 14 shows heat maps of the time–averaged readout voltages (column 1), along with the

low–high dynamics measure (column 2), the sum of the low-med and med-high dynamics mea-

sures (column 3), the nonlinearity measure defined in Eq. (19) (column 4), and weight matrix ω

values (column 5), with each pixel value representing a node that respects its relative location
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FIG. 15. Representative readout signals with high (red) and low (magenta) ω weightings, and their corre-

sponding attractors (orange), for different input node placements, for the experiments on the doubly periodic

lattice shown in Fig. 14. (a) uniformly spaced inputs, (b) randomly selected inputs and (c) localised inputs.

The respective forecast times are t f = 3.41, t f = 1.68 and t f = 1.58 Lyapunov times. The corresponding

attractors evolve for 10 Lyapunov times.

on the lattice network. Fig. 14(a) uses uniformly distributed, equidistant input electrode nodes,

while Fig. 14(b) and (c) use randomly placed and localised input nodes, respectively. Comparison

of these heat maps suggests that the nonlinearity measure is largely correlated with the dynamics

measures (especially the low-med and med-high dynamics), and that nonlinearity is anti-correlated

with ωi. This anti-correlation implies suppression of highly nonlinear and certain highly dynami-

cal readout nodes by the output layer, which means on a local level some highly nonlinear regions

are not useful for the prediction task.

Fig. 14 reveals that nonlinear regions appear mostly in regions which are far away from input

electrode nodes. This is more obvious in Fig. 14(c), where by clustering all input nodes together

in one region, it becomes clear that the nonlinear parts are the areas away from input nodes. The

anti-correlation between ωi and dynamics measures is also clear in this example, where the highest

ωi weights are mostly in areas near the input nodes. Every input electrode node has its own area

of influence, and although this can be affected by other input nodes, on average the further away a
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readout node is to this input, the less influence this input has on the readout. These far-away nodes

dynamically behave in a manner increasingly more different from those of the input electrode

nodes.

Note, however, that this anti-correlation is not exact, nor is the correlation between the nonlin-

earity and dynamics. This is due to the aforementioned network connectivity effects; it is most

obvious in the localised input example, where there exists regions with relatively little dynamics

but high nonlinearity, and these regions do appear smooth and connected, tending to distribute

amongst close neighbouring network components.

The suppressed highly nonlinear nodes also exhibit high frequency fluctuations in their readout

signals, which is the unfavourable nonlinearity encountered previously in Fig. 11. Fig. 15 shows

the corresponding readout signals of the above three examples in Fig. 14, with the readout signals

corresponding with the largest (red) and smallest (magenta) ten ωi weights both emphasised. As

seen previously in Fig. 11, high frequency fluctuations can be observed in Fig. 15 in signals with

small ωi values. As expected, these suppressed nonlinear features are also much more prominent in

Fig. 15(c) with the clustered inputs. This implies the unwanted nonlinear readouts arise from nodes

distant from the inputs, restricting them to only evolve between the low and medium conductance

states as indicated by the low-med dynamic measure, which correlates with the appearance of

nonlinear signal that exhibit high frequency fluctuations.

Due to lower presence of unwanted nonlinear features, the examples with random and equidis-

tant inputs both perform better than the clustered input example, as seen from the Lorenz attractor

predictions in Fig. 15. This impact of input node placement remains true for the heterogeneous

neuromorphic network (see Fig. A.5 in Appendix). Note that with a high network density, ran-

domly selecting nodes leads to an input electrode node placement in which nodes are on average

separated by the same number of edges. Even in the sparse lattice network structure there are only

minor differences between equidistant and the randomly selected input nodes (cf. Fig. 14(a) and

Fig. 14(b)).

To maximise the area of influence of each readout node over time, and hence minimising the

occurrence of less useful nonlinear features, the input voltage should remain sufficiently large on

average. This can be achieved with the input bias voltages. Instead of sampling values in bin

uniformly from [−b,b], sampling from [−b,−b/2]∪ [b/2,b] ensures that no input node will have

low voltages. On average this does have a noticeable effect in the Lorenz prediction task, where

for the 500 node network an average forecast time of 2.12 Lyapunov times can be observed with
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the new bias sampling, as opposed to 1.95 when the bias is sampled form the whole range [−b,b]

(cf. Fig. A.7 in Appendix).

In summary, proper input electrode node number and placement allows maximal usage of the

given network, by ensuring all readouts are within the area of influence of the inputs such that

less useful nonlinear features are minimised. Practically, in a sufficiently dense network, random

allocation of input electrode nodes is very similar to evenly distributed input nodes. This motivates

our choice to choose the number of input nodes as around 5% of all available nodes - with roughly

evenly spaced input nodes, 5% is sufficient to activate and continuously sustain network dynamics.

IV. CONCLUSIONS

These results validate the hypothesis that the internal and network dynamics of memristive

networks can be used in a reservoir computing approach to learn complex chaotic dynamics. It

was found that the network dynamics can be optimised for predicting the Lorenz attractor by

appropriate scaling of the external input voltage to values that are not too low or too high. Optimal

intermediate values of input voltage scaling were found to drive internal memristive states that

traversed the entire dynamical range, from low to high conductance states, thereby maximising

use of available internal degrees of freedom. Interestingly, this study also revealed that some

nonlinear dynamical features, such as high frequency fluctuations, were effectively filtered out

by ridge regression in the external output layer. This suggests that physical reservoir computing

may be robust against noise and variations due to the specific internal dynamics of the memristive

material system. On the other hand, our results also indicate that it is possible to suppress such

features by ensuring electrodes provide sufficient coverage of network nodes to sustain dynamic

activity across the memristive edges.

Overall, this study revealed how the nonlinear dynamics of memristive neuromorphic networks

can be controlled and optimised for reservoir computing solely via adjusting the external input

layer parameters. This is promising for practical implementations of physical reservoir computing

with memristive networks, which have orders of magnitude more physical nodes and memristive

edges8,39. Ongoing work is also exploring the optimal network structure26, output layer and com-

putational frameworks beyond standard reservoir computing, to be eventually applied to real world

applications on noisy, unstructured data, thereby unlocking the full potential of neuromorphic net-

works for modelling dynamical systems via the dynamics of the physical network.
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Appendix A: Parameters for the Memristor Model

The parameters ζ0 and ζ1 in Eq. (12) are given by

ζ0 = A
3(2m∗)

1/2e5/2(φ/e)1/2

2h2 , (A1)

ζ1 =−4π(2m∗e)1/2

h

(
φ

e

)1/2

, (A2)

and are comprised entirely of physical parameters of the nanowires as described in Ref.19. The

largest and smallest resistances of the memristors are respectively assigned the values of Roff =

12.9×106 Ω, and Ron = 12.9×103 Ω. The memristor voltage needed to start the evolution of x is

Vset = 0.01V, and the voltage to reset the memristor state is Vreset = 0.005V. The largest flux is

ξmax = 0.015Vs, the normalised critical flux value is xcrit = 2/3. The thickness of the electrically

insulating, but ionically conducting polymer layer between nanowires is smax = 5nm. The boost

parameter in Eq. (10) is q = 10, and the global ẋ scaling parameter η = η0/ξmax is determined

with η0 = 10.

Appendix B: Nonlinear Responses in Memristive Edges

From Eq. (10) it is evident that x will only increase in amplitude when the voltage amplitude

at the corresponding memristive edge crosses Vset, and decrease in amplitude when it crosses

Vreset. This will occur in two scenarios: if the maximum edge voltage signal (across time) of the
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FIG. A.1. (a) Total dynamics measure (i.e. δ
i, j
low,med + δ

i, j
med,high + δ

i, j
low,high) and (b) nonlinearity measure

mi, j
nonlin with respect to the maximum and minimum of each corresponding memristive edge voltage signal

across time. The shaded regions are where edge voltage signal amplitudes can cross Vset and Vreset, i.e.

where ẋi j may be nonzero. All data points are obtained from the same experiment for α = 0.2V in Fig. 11.

Edges connected to the input nodes are omitted, and the figures are zoomed in for clarity.

edge between node i and node j satisfies maxt(vi j(t)) > Vset, while the minimum edge voltage

satisfies mint(vi j(t)) < Vreset, or maxt(vi j(t)) > −Vreset and mint(vi j(t)) < −Vset. This results in

two overlapping regions where dynamical activity can be observed. Indeed as seen in Fig. A.1(a),

the dynamic measure is only nonzero within this specified (shaded) region, and it is clear that larger

ranges (i.e. larger maxt(vi j(t)) and smaller mint(vi j(t))) of edge voltages which centre near 0 tend

to produce higher dynamics, while those near the boundary of dynamic activity (i.e. boundary of

the shaded region) produce less.

However note that in Fig. A.1(b), although nonlinearity is maximal and most frequent within

the specified region, there exists numerous highly nonlinear edges outside this region. The fact that

nonlinearity can exist in edges which do not dynamically evolve implies the network connectivity

has a significant effect on the overall nonlinear dynamics, and memristive edge dynamics is only

a fraction of the cause and perpetuation of nonlinear effects. In fact, the network has the largest

nonlinearity measure near α values with the most network induced nonlinearity (see Fig. A.4).

Since only a small portion of memristive edges are evolving actively in Fig. A.1, the network ap-

pears to be underutilised; future studies (beyond simply changing the input layer) should optimise

parameters which maximise the number of edges within this dynamically active region.

It has been identified that both network and memristive dynamics causes nonlinearity. To in-
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FIG. A.2. By artificially inducing a highly nonlinear (top, red) x signal into the edge between node 2 and 1

of this simple 3-node toy model, unwanted nonlinear features (bottom, red) can be observed in the readouts

of node 1, which are vastly different from the original (orange) signal. This also affect the x (top, blue)

signals of the edge between node 1 and 0. These memristive edges uses the tunnelling model.

FIG. A.3. By artificially inducing a highly nonlinear (top, red) x signal into the edge between node 2 and 1

of this simple 3-node toy model, unwanted nonlinear features (bottom, red) can be observed in the readouts

of node 1, which are vastly different from the original (orange) signal. This also affect the x (top, blue)

signals of the edge between node 1 and 0. Unlike Fig. A.2, these memristive edges uses the binary model.

vestigate its exact origin, a simple 3-node toy model was constructed, with node 0 serving as the

drain (ground) node, node 1 as readout and node 2 as the input electrode node (see schematic in

Fig. A.2), which takes in a sine wave (shifted away from zero) as input. A highly nonlinear x

signal (extracted from the edge with the highest nonlinearity measure from Fig. A.1) is artificially
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injected into the 1− 2 edge. Both the modified and original x1,2 values can be seen in Fig. A.2,

where the modified x1,2 display the classic behaviour of a memristive with high low-med dynam-

ics measure as it never reaches the high conductance state. High frequency fluctuations can only

be observed in the readouts with the modified x instance, confirming these nonlinear features are

directly caused by these types of memristive edge dynamics.

Performing the same analysis on the 3-node network with a binary memristor model yields

vastly different results. As seen in Fig. A.3, despite having the same modified x1,2 signal as

Fig. A.2, the high frequency fluctuations in the readouts are much more frequent, suggesting that

the more physically realistic tunnelling memristor model may be more robust, and produce fewer

high-frequency fluctuations when compared with the simpler binary model.

Interestingly, the observed fluctuations are bounded between two values: the original sine wave

readout and a constant zero signal (from the drain node). This is due to conductance paths (specifi-

cally g0,1 and g1,2) rapidly switching in amplitude across time, favouring one signal over the other

at different times; in the actual network the high frequency fluctuations would be bounded by

numerous other readouts in close proximity, as opposed to just two signals in this simple exam-

ple. The gap at 34.5 Lyapunov times in Fig. A.3 reveals how these fluctuations disappear when

|x1,2| > xcrit, which explains the absence of high frequency fluctuations with large low-high dy-

namics measures. Both Fig. A.2 and A.3 shows examples of how nonlinear responses in x1,2 can

cause similar behaviours in the neighbouring x0,1 values, illustrating the spread of similar mem-

ristive dynamics within the network which has potential to cause observed nonlinear effects in the

readouts.

Appendix C: Supporting Figures

Figs. A.4–A.7 are referred to in the main text.
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FIG. A.4. The average nonlinearity measure m̄nonlin (defined in Eq. (20)) as a function of the scaling

parameter α . The simulations were performed on a neuromorphic network with 500 nodes and 9,905

edges. The dotted line at α = 0.2 volts indicate the default α used. Each data point was obtained from 100

trials of the neuromorphic network simulation.

FIG. A.5. Effect of node-node distances for input node selection on forecast times. Displayed are histograms

of forecast times, with clustered inputs (each is within 2 distance of each other), and randomly selected

inputs. Simulation performed on a neuromorphic network with 500 nodes and 9905 edges.
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FIG. A.6. Effect of memristor model on forecast times. Displayed are histograms of forecast times, with

the (default) tunnelling, binary, and linear (i.e. resistor) models. Simulation performed on a neuromorphic

network with 500 nodes and 9905 edges, with 3,000 data points per histogram.

FIG. A.7. Effect of selected techniques (or lack thereof) used in this study on forecast times, displayed as

histograms. “Modified bias” corresponds to the same parameters outlined in methods, with bias sampled

from the interval [−b,−b/2]∪ [b/2,b] . “Uniform bias” has its values sampled from [−b,b] (i.e. a uniform

distribution U(−b,b)). “No bias” is equivalent to bin = 0. The skip connection is the additional u(t) term

in Eq. (2). Simulation performed on a neuromorphic network with 500 nodes and 9,905 edges, with 3,000

data points per histogram.
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