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Abstract

We perform an analysis of cardiac data using multiscale entropy as proposed in Costa et al. [Multiscale entropy analysis

of complex physiological time series, Phys. Rev. Lett. 89 (2002) 068102]. We reproduce the signatures of the multiscale

entropy for the three cases of young healthy hearts, atrial fibrillation and congestive heart failure. We show that one has to

be cautious how to interpret these signatures in terms of the underlying dynamics. In particular, we show that different

dynamical systems can exhibit the same signatures depending on the sampling time, and that similar systems may have

different signatures depending on the time scales involved. Besides the total amount of data we identify the sampling time,

the correlation time and the period of possible nonlinear oscillations as important time scales which have to be involved in

a detailed analysis of the signatures of multiscale entropies. We illustrate our ideas with the Lorenz equation as a simple

deterministic chaotic system.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past years, interest has risen in applying methods and concepts from nonlinear dynamics to
problems in physiology. This is evidenced by several focus issues on cardiology and nonlinear dynamics [1–5].
It has been proposed that the normal heartbeat is associated with complex nonlinear dynamics and chaos
[6–8]. This has opened new avenues to use methods from nonlinear dynamics as diagnostic tools for the
analysis of physiological data for certain heart trouble [9–11]. Moreover, physicists and mathematicians have
been inspired by the wealth of interesting physiological problems to develop new tools and methods.

One such problem in cardiology is to extract information from a given set of heart rate data about the
health status of a given patient. This is obviously of great clinical importance for diagnostics. One aim is to
find early signs of cardiac arrhythmias. These are often precursors for fatal malfunctions such as ventricular
fibrillation. Cardiovascular disease is the main cause of death in the industrialized world, and ventricular
fibrillation is the most common route to death for patients with cardiac conditions. Early detection of these
possibly fatal heart conditions allows for preventive drug management, application of radio-frequency
ablation, or the use of an implantable defibrillators.
e front matter r 2005 Elsevier B.V. All rights reserved.
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It is widely believed that a healthy heart is characterized by chaotic heart rate time series
whereas the intermittent appearance of periodicities in heart data is associated with the onset of congestive
heart failure [12]. The naive picture behind this is that a chaotic heart which generically involves a multitude of
spatial and temporal scales is more adaptive and can react better to external changes of its input. The
occurrence of regularity in heart data as observed with certain heart trouble is often associated
with the emergence of re-entrant spiral waves whose rotation frequency dominates the inter-beat intervals.
This is a consequence of the heart being an excitable medium (see Ref. [13] for an overview on cardiac
arrhythmias).

There have been several approaches coming from nonlinear dynamics to identify signatures in heart data
(see for example, Ref. [14] for an overview). The inevitable presence of noise forbids to use traditional
measures of chaoticity such as Lyapunov exponents (see Ref. [15] for an overview on nonlinear time series
methods). Amongst the ones used to measure complexity in physiological data are entropy methods which are
mostly based on symbolic dynamics [16–20], methods based on recurrence plots [21] and methods analyzing
the multiscale powerlaws of the length distribution of low-variability periods in heartbeat dynamics [22]. In a
recent paper [1], a new entropy based measure of complexity, the multiple scale entropy (MSE), was
introduced. The authors applied their new complexity measure to distinguish between young healthy hearts
and congestive heart failure. Moreover, they were able to distinguish atrial fibrillation from healthy hearts.
The former is associated with erratic fluctuations similar to uncorrelated noise [23,24]; the latter with
fluctuations stemming from an underlying chaotic deterministic dynamics. They key to their method lies in a
multiscale approach. We explain their method in the next section and reproduce their results for real clinical
heart data in Section 3. However, we will show in Section 4, that care has to be taken when interpreting the
signatures of their complexity measure and drawing conclusions about possible deterministic dynamics. We
show that the signatures depend on the ratio of the sample time ts of the time series, the correlation time tc and
the period of possible nonlinear oscillations tp.
2. Multiscale entropy

The concept of entropy has been widely used to quantify complexity. Traditional entropy definitions such as
the Shannon-entropy or the Kolmogorov–Sinai entropy characterize the gain of information and measure
disorder and uncertainty. The Kolmogorov–Sinai entropy hKS measures the exponential rate at which
information is obtained. In principle, Pesin’s identity [25] which states that the sum of all positive Lyapunov
exponents forms an upper bound for hKS makes this entropy attractive to characterize complexity. However,
its definition requires an infinite data series with infinitely accurate precision and resolution [26]. This is never
the case in experimental data. Entropy-based complexity measure designed to deal with short and noisy time
series were recently introduced. Based on the so-called approximate entropy introduced in Ref. [27], and its
modification, the sample entropy [28], a multiscale entropy has been introduced and successfully applied to
physiological data [1]. We note that the term ‘multiscale entropy’ is also used in a different context in image
processing [29].

The multiscale entropy is based on the application of approximate entropy [27] or sample entropy [28]. We
will therefore briefly review both of these entropies. For a good review on the connection between these
measures of entropy and their historic connection see Ref. [30]. Given a time series fX ig ¼ fx1; x2; . . . ;xNg of
length N, one can define m-dimensional sequence vectors yðmÞðiÞ ¼ fxi;xiþ1; . . . ;xiþm�1g. Two vectors yðmÞðiÞ

and yðmÞðjÞ are called similar if their distance dði; jÞ ¼ maxfjxði þ kÞ � xðj þ kÞj : 0pkpm� 1g is smaller than
a specified tolerance level d. For each of the N �mþ 1 vectors yðmÞðiÞ the number of similar vectors yðmÞðjÞ is
determined by measuring their respective distances. Let n

ðmÞ
i be the number of vectors similar to yðmÞðiÞ.

The relative frequency to find a vector yðmÞðjÞ which is similar to yðmÞðiÞ within a tolerance level d is
given by

C
ðmÞ
i ðdÞ ¼

n
ðmÞ
i

N �mþ 1
. (2.1)
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To define an entropy-like quantity we look at the relative frequency of the logarithm of C
ðmÞ
i ðdÞ. Under the

hypothesis of stationarity we obtain

H
ðmÞ
N ðdÞ ¼

1

N �mþ 1

XN�mþ1

i¼1

logC
ðmÞ
i ðdÞ. (2.2)

The mean rate of creation of information can now be defined as

happroxðd;mÞ ¼ lim
N!1
½H
ðmÞ
N ðdÞ �H

ðmþ1Þ
N ðdÞ�, (2.3)

or equivalently using ergodicity

happroxðd;mÞ ¼ lim
N!1

1

m
H
ðmÞ
N ðdÞ. (2.4)

In the evaluation of happroxðd;mÞ the vectors yðmÞðiÞ are allowed to selfmatch. This results in a biased statistics.
Therefore, the sample entropy hsampleðd;mÞ was introduced [28] which avoids self matching in the above
described procedure.

As in the Kolmogorov–Sinai entropy, both sample and approximate entropy, provide a measure for the
information increase over one step from m! mþ 1. To be able to resolve complexity on scales larger than
this smallest scale, multiscale entropy was introduced [1]. Here the entropy is calculated not directly by
comparing yðmÞðiÞ, but instead new coarse grained vectors nðmÞði; tÞ which are sequence vectors constructed
from a coarse grained averaged time series fnjðtÞg

njðtÞ ¼
1

t

Xjt

i¼ðj�1Þtþ1

xi; 1pjpN=t,

where t ¼ 1; 2; 3; . . . . Note that njð1Þ ¼ xj. For nonzero t the original time series fX ig is segmented in N=t
coarse grained sequences with each segment being of length t. For each segment the mean value njðtÞ is
calculated which now constitute the coarse grained time series fnjðtÞg. From this time series now the m-
dimensional sequence vectors yðmÞði; tÞ are built as before.

The coarse graining introduces smoothing and decorrelation of the vectors. Now, the multiscale entropy can
be defined as the sample (or approximate) entropy for the new vectors defined by using njðtÞ instead of xi.

Both, sample entropy and approximate entropy involve two free parameters, the sequence length m and the
tolerance level d. Their output measures the likelihood that two sequences of length m stay close to each other
at the next step within a tolerance level d. If the output is zero, then consecutive sequences are identical.
Obviously, as d decreases the two entropies increase as it will be harder to find consecutive sequences which are
close within the prescribed d-tolerance level. The proposed measures are therefore no absolute measures.

In our analysis we used m ¼ 2 and d ¼ 0:15s where s is the standard deviation of the original time series.
For a discussion on optimal choices for m and d, see Ref. [33].

In Ref. [31], it was noted that by introducing the scale parameter t and the associated process of averaging,
the variation of the data decreases with increasing t. However, the tolerance level d is assumed to be fixed for
all scales t and is not adjusted to the standard deviation of the coarse-grained data at each scale, which implies
that the standard deviation of a given data set decreases with increasing scale t. When d is fixed for all scales,
one is also measuring the standard deviation and not just entropy. However, as pointed out in Ref. [32] the
t-independent tolerance level d which is determined as a percentage of the standard deviation of the original
time series, exactly avoids that the differences in entropy are caused by differences in standard deviations.
Moreover, there does not exist a universal relationship between entropy and standard deviation. The
relationship between the two depends on the correlation properties. For example, differences in standard
deviation cannot be used to clearly distinguish between young healthy and patients with congestive heart
failure [32]. In Ref. [32] a simple example is given whereby a periodic signal with variance sp and a random
signal with variance sr are considered. The entropy of the periodic signal is always smaller than that of the
random signal even if spbsr. In Section 4, we show that this statement depends on the relationship between
the correlation time of the random signal, the period of the periodic signal and the sample time.
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3. Analysis of cardiac data using multiscale entropy

In this section, we reproduce the analysis of Ref. [1]. We use data provided in Ref. [34] which consist of
consecutive heartbeat intervals (R–R intervals) derived from young healthy patients, patients with congestive
heart failure and patients with atrial fibrillation. The results are depicted in Fig. 1 and show distinctive
signatures for all three different cases. The signatures were obtained by using MSE and subsequent averaging
over all patients. For the averaging of the healthy heart signals and the congestive heart failure data we used
15 data sets each. For the atrial fibrillation we had only one case. The time series were filtered to remove
spurious outliers.

The differences in the MSE signature are striking. However, we note that we also found cases of congestive
heart failure with a signature of a young healthy heart. Moreover, although the differences between the three
groups is striking for their averages, we found that MSE is not a reliable diagnostic tool for individual
patients. The MSE-signatures of individual patients are very hard to associate with the signatures of their
averages. However, we note that the authors of Ref. [1] stress in Ref. [36] that MSE is rather a detector of
complexity than a diagnostic tool. The question of whether MSE can be used as a diagnostic tool to
discriminate between healthy and pathological patients had been discussed in Refs. [35,36].

In Ref. [35], it is argued that the (averaged) signature of multiscale entropy for elderly healthy patients is
similar to the (averaged) signature of patients with congestive heart failure, and hence multiscale entropy is not
a good diagnostic tool for cardiac conditions. In a rebuttal [36], the authors argue that the purpose of
multiscale entropy is rather to quantify complexity than to provide a diagnostic tool. Fluctuations of aging
and of pathological systems show a lesser degree of complexity when compared with healthy systems. The
underlying hypothesis is—as mentioned in the introduction—that a healthy physiological system needs to
exhibit processes which run on several different time scales to be able to adapt to an ever changing
environment. It is in this sense that complexity is a sign of health. Multiscale analysis is able to quantify the
degree of complexity as argued in Ref. [36]; in Ref. [30] multiscale analysis is applied to binary DNA sequences
and synthetic computer codes to quantify complexity. In Ref. [36], it is stressed that complexity rather than
irregularity is investigated using multiscale entropy. This allows to discriminate between atrial fibrillation and
congestive heart failure. In Ref. [36] it is argued that increased irregularity is not necessarily associated with
increased complexity. In the next section, we extend this point and show that one has to be careful with
drawing any conclusions from multiscale entropy on any dynamical properties such as irregularity or
regularity, and certain a priori knowledge on the dynamical time-scales involved is needed to draw
conclusions. In the spirit of Ref. [36], we see multiscale analysis as a general tool to study complexity. The next
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Fig. 1. Plot of the multiscale signature for young healthy hearts (stars), atrial fibrillation (circles) and congestive heart failure (crosses).
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section looks at general aspects of multiscale entropy analysis and pitfalls in the interpretation of signatures
and conclusions about complexity.
4. Validity of the multiscale entropy method for the interpretation of physiological data

In this section, we investigate the interpretation of the signatures of the multiscale entropy of heart data
given in Ref. [1]. It was suggested that the signature for atrial fibrillation is associated with white noise data
and an underlying stochastic dynamics. In contrast, the signature of young healthy hearts was associated with
underlying chaotic dynamics. The signature of congestive heart failure was believed to originate from the
occurrence of regularity in the dynamics.

We show that such one-to-one correspondence between signatures and the underlying dynamics producing
such signatures cannot be made, and care has to be taken when interpreting signatures of multiscale entropy.
To interpret signatures, it is necessary to have a clear idea about the following three different time scales
involved: the sample time ts of the time series, the correlation time tc of the data, and the period of possible
nonlinear oscillations tp.

To illustrate our argument we use data from numerical simulations of the Lorenz system

_x ¼ sðy� xÞ,

_y ¼ rx� y� xz,

_z ¼ xy� bz. (4.1)

To assure that the dynamics has settled down to their respective regular or chaotic attractors, we always allow
for a transient before sampling a data set. We can measure the correlation length tc by computing the
autocorrelation function of a data set, and the period tp by detecting peaks in the Fourier spectrum of a time
series. Note that tp ¼ 1 if no such peaks are present.

We first concentrate on systems without any regularity. By that we mean either purely random data or
chaotic dynamics without any prevalent nonlinear frequencies. In Fig. 2a, we show the result for a purely
random data set. The time series consists of white noise data. The resemblance with the signature for atrial
fibrillation is evident (compare with Fig. 1). The monotonic decrease of entropy as a function of the scale
factor t is due to the averaging involved in the calculation of the multiscale entropy. The larger the t, the more
consecutive data points are averaged. As the average is constant (zero in our case) the entropy will decrease
due to the law of large numbers.

However, a similar picture can be obtained by analyzing a data set which originates from the Lorenz system
with parameters resulting in chaotic dynamics. A finite correlation time tc is typical for such chaotic dynamics.
If the sampling time ts is chosen such that tsbtc, measurements or samplings cannot resolve the deterministic
chaoticity exhibiting a finite correlation length. Instead the resulting time series appears to be uncorrelated and
yields a signature similar to the d-correlated white-noise data as can be seen in Fig. 2b.

If, however, the sampling is done at a rate with ts5tc, the time series can resolve the finite correlation and
we see indeed the signature of a young healthy heart as in Fig. 1. In Fig. 3, we show the result for the same
parameters as in Fig. 2b but now for a smaller sampling rate. The initial increase in entropy with increasing
scale factor t can be explained by noting that increasing the scale factor, i.e., averaging consecutive t data
points, is an effective decorrelation of a data set with a finite correlation time tc. This results in an increase of
disorder and entropy. For larger scale factors the entropy has to decrease inevitably as discussed above for the
purely random case.

We now look at chaotic dynamics which involve prevalent nonlinear frequencies with finite periods tp.
These frequencies can be detected in a Fourier spectrum. We show examples of such Fourier spectra in Fig. 4.

The local signature of the multiscale entropy for a time series of a chaotic system with prevalent frequencies
depends crucially on the ratio of the scale associated with the regular periodic part, tp, and the time scale
associated with the chaotic dynamics, tc. In Fig. 5, we show a sketch of the two extreme cases, tpbtc and
tp5tc. Note that the autocorrelation time tc of a signal depends on its sample time ts.
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Fig. 2. (a) Plot of the multiscale entropy for a purely random data set. The time series consists of data drawn from a white-noise

distribution with a variance of 1, (b) plot of the multiscale entropy for the Lorenz system with r ¼ 28, s ¼ 10 and b ¼ 8
3
. A time series of

4:5� 103 data points has been used with a total time length of 4:5 t:u. The time scales are tc ¼ 0:3 t:u: and ts ¼ 3:0 t:u.
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The signature of regular dynamics is a dip of the multiscale entropy for certain values of the scale factor t,
whereas the ‘local’ signature of chaotic dynamic is an increase of the multiscale entropy. The difference of the
two cases depicted in Fig. 5 in MSE becomes clear if we recollect that the coarse graining factor t smoothes the
signal by averaging. In the case tpbtc this averaging simply results in smoothing over the ‘fast’ finite
correlation part of the dynamics resulting in a smoother more regular signal. In this case, we expect a dip in
MSE with initial increasing t. However, in the case tp5tc, the only effect of increasing t is to decorrelate the
finite tc signal, and no initial dip can be observed. The occurrence or nonoccurrence of the initial dip in MSE is
linked to the two competing effects of increasing the coarse graining factor t; namely the effect of
decorrelation, leading to an increase of MSE, and the effect of smoothing leading to a decrease in MSE if tc is
small enough.

In the case tpbtc we obtain indeed a signature resembling the signature of congestive heart failure (compare
with Fig. 1). In Fig. 6, we show results for the Lorenz system with r ¼ 213, s ¼ 10 and b ¼ 8

3
which yield the

Fourier spectrum in Fig. 4. For these parameters we have tp ¼ 0:5 t:u: and tc ¼ 0:08 t:u:
The influence of the sample time ts on the signature of the multiscale entropy can be understood by looking

at the sketch in Fig. 5a. Increasing ts will decorrelate the chaotic component which is correlated on the fast
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time scale tc. However, increasing ts will not affect the regular slow time scale part of the regular component
(if ts is moderate).

We note that the characteristic decrease of the multiscale entropy for small t is strongly dependent
on the sampling time ts for noisefree data. The inclusion of d-correlated noise yields a more pronounced dip
(see Fig. 6).

5. Summary

The paper is an attempt to model and understand the MSE of cardiac data. This is carried out using electro
cardiogram data and the Lorenz model. We have revisited the analysis of physiological cardiac data by means
of multiscale entropy proposed in Ref. [1]. Signatures of the multiscale entropy for the three cases of young
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Fig. 5. Sketch of a time series which involves a finite frequency and a finite correlation length. The regular part is depicted in dashed lines,

the chaotic part in solid lines. The boxes are of length t and indicate the segmentation of the signal by smoothing over t: (a) the case where
tpbtc, (b) the case where tp5tc.
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Fig. 6. Plot of the multiscale entropy for the Lorenz system with r ¼ 213, s ¼ 10 and b ¼ 8
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tc ¼ 0:08 t:u: and ts ¼ 0:00402. Upper curve: Gaussian noise with variance 2:89 has been added as measurement noise to the data.
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healthy hearts, atrial fibrillation and congestive heart failure were identified. We discussed the interpretation of
these signatures.

By studying the Lorenz equation as a simple deterministic chaotic system, we showed that for a dynamical
system the MSE signature one obtains from a time series depends on the sampling time interval, the
correlation time and the period of oscillation, if any frequencies are present. For example, sampling rate can
cause decorrelation, suppress periodicities, thus effects the observed MSE signature.

This sounds a bell of caution to the reader to be wary of drawing definite conclusions about the nature of the
underlying dynamical system from the MSE signature of a sampled time series without detailed knowledge of the
different time scales involved. The degree of complexity depends crucially on the time scales under consideration.

Chaotic time series with and without nonlinear frequencies yield the same MSE signature as a purely white
noise signal if the sampling time is greater than the correlation time and the period of possible nonlinear
frequencies. In the case where the correlation time in the sampled data is much greater than the sampling time
(and periods of possible nonlinear frequencies are at least smaller than the correlation time) coarse graining
will cause the sample entropy to increase initially due to decorrelation before it begins to decrease according to
the law of averages. The MSE signature of the young healthy heart shows such a behaviour, suggesting the
presence of complex long time correlations. However, we note that in the case of cardiac data which is a time
series of the interbeat intervals, the sampling time interval obviously cannot be varied.

Whether periodicities in a chaotic signal result in the MSE signature of congestive heart failure depends
crucially on the relation between the correlation time tc and the period tp. Only if tc5tp we can find the dip in
multiscale entropy which was found to be an indication for loss of complexity and the appearance of regularity
in congestive heart failure [1]. However, the finite correlation does not necessarily have to come from a
deterministic chaotic system but could as well be some noise with finite correlation time.

In conclusion, similar to the fact that when a time series is constructed on the succession of the same Mahler
symphony, the resulting time series may look complex on short intervals whereas the actual signal is periodic
[37]. In the same way, we have to be careful when we draw conclusions from time series analysis about the
underlying dynamics.

In a recent paper [30], which had been published after our submission, the authors address similar issues to
ours. In Ref. [30] the influence of uncorrelated noise and sample frequency on multiscale entropy is
investigated. In addition to our work in Ref. [30] also the influence of outliers within a given data set on
multiscale entropy is investigated. However, we note that the definition of sample time in their work and in our
work is different. Whereas sample time in Ref. [30] is used to define the accuracy by which Holter monitor data
are collected to produce R–R interval data series, we use sample time to denote the sampling interval of the
data set which is being directly analyzed (note that there is no freedom in choosing different sampling times
according to our definition for R–R interval data). Whereas changes in the sampling time of the data series to
be analyzed and its ratio to the correlation time and possible present regular frequencies were found here to be
of great importance, changes in sample frequency as defined in Ref. [30] were not important.

The study on the influence of noise in Ref. [30] is limited to uncorrelated noise and does not address the
connection between the correlation time of the noise and the correlation time of the deterministic system or the
period of the embedded regular dynamics.
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