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Synchronisation of coupled oscillators is a ubiquitous phenomenon, occurring in topics ranging from biology

and physics, to social networks and technology. A fundamental and long-time goal in the study of synchronisation

has been to find low-order descriptions of complex oscillator networks and their collective dynamics. However,

for the Kuramoto model - the most widely used model of coupled oscillators - this goal has remained surprisingly

challenging, in particular for finite-size networks. Here, we propose a model reduction framework that effectively

captures synchronisation behaviour in complex network topologies. This framework generalises a collective

coordinates approach for all-to-all networks [Gottwald (2015) Chaos 25, 053111] by incorporating the graph

Laplacian matrix in the collective coordinates. We first derive low dimensional evolution equations for both

clustered and non-clustered oscillator networks. We then demonstrate in numerical simulations for Erdős-Rényi

(ER) networks that the collective coordinates capture the synchronisation behaviour in both finite-size networks

as well as in the thermodynamic limit, even in the presence of interacting clusters.

I. INTRODUCTION

The dynamics of interacting oscillators in complex net-

works is a ubiquitous model in many fields of science and en-

gineering with examples ranging from the activity of the brain

[3, 24] to the functioning of power grids [7]. A hallmark of

the observed dynamics is the emergence of collective synchro-

nised behaviour of these oscillators [1, 2, 6, 11, 17, 19, 23].

The prowess of a network to synchronise and the nature of the

transition to synchronisation depends strongly on the network

topology and on the distribution of the native frequencies. The

existence of a synchronised state suggests that it is possible to

reduce the complexity of these potentially high-dimensional

dynamical systems to just a few degrees of freedom describ-

ing the collective behaviour. Recent years have seen some

progress in this direction for the widely used Kuramoto model

[9, 10, 12, 13, 18, 20, 21]. Most methods, however, assume the

case of a network with infinitely many oscillators. Recently,

a model reduction based on collective coordinates was intro-

duced which does not rely on the thermodynamic limit [9]. It

has since been used to derive optimal synchronisation design

strategies and optimal synchrony network topologies [4, 22].

In a stochastic Kuramoto model it allowed for the quantitative

description of finite-size effects, in particular the collective

diffusion of the mean phase [10]. This collective coordinate

approach employs a judiciously chosen ansatz function which

approximates the phases of the oscillators as a function of their

native frequencies. The temporal evolution of these synchroni-

sation modes is given by the collective coordinates. However,

this reduction methodology has only been formulated for the

case of all-to-all coupling networks and to annealed complex

networks, where averages over network configurations were

performed.

In this paper, we propose a model reduction framework that

effectively captures synchronisation behaviour in complex net-

work topologies. To do so, we introduce two main advances.

First, by incorporating the network’s graph Laplacian in the

collective coordinate ansatz, we generalise the original ap-

proach to complex network topologies. Using the novel ansatz,

we derive low dimensional evolution equations for arbitrary

network topologies, both for networks with a single synchro-

nised cluster and for networks consisting of several interact-

ing partially synchronised clusters. Second, we present two

methods to identify those oscillators which do not participate

in the collective behaviour - an issue relevant for intermedi-

ate coupling strengths where partial synchronisation occurs.

Whereas, identifying those non-participating oscillators was

straight forward in the all-to-all coupling network where they

are the nodes associated with native frequencies of largest ab-

solute value, this simple rule cannot be extended to arbitrary

network topologies. Using the novel ansatz and oscillator

identification methods together, we are able to effectively ap-

proximate the collective behaviour of finite complex networks

with arbitrary topology.

The paper is organised as follows. Section II briefly intro-

duces the Kuramoto model. Section III presents the collective

coordinate framework for general network topologies. Sec-

tion IV presents numerical simulations for Erdős-Rényi net-

works. We conclude in Section V with a discussion of our

results and an outlook.

II. MODEL

A widely used model for the description of interacting os-

cillators is the Kuramoto model [1, 2, 6, 11, 17, 19, 23, 25].

The Kuramoto model governs the dynamics of the phases 'i
of N interacting phase oscillators with native frequencies !i
and is given by

'̇i = !i +
K

N

N∑

i=1

aij sin('j − 'i). (1)

Here K denotes the coupling strength and A = [aij] is the

adjacency matrix encoding the topology of the network. We

assume here that the network is not directed with a symmetric

unweighted adjacency matrix A with aij = aji = 1 if there

is an edge between oscillators i and j, and aij = 0 otherwise.
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The degree of a node di is then given by di =
∑
j aij . We

introduce for later the graph Laplacian

L = D − A, (2)

with degree matrix D = diag(d1, d2,⋯ , dN ). Note that

the graph Laplacian of a fully connected network has a

single zero-eigenvalue with eigenvector 1N . We assume

that the native frequencies are distributed according to some

distribution g(!) and have, without loss of generality, mean

zero, i.e. 1
T
N
! = 0 where ! = (!1,⋯ , !N)

T denotes the

vector of natural frequencies.

Typically, once the coupling strength is sufficiently strong

with K > Kc for some critical coupling strengthKc , synchro-

nisation occurs in the sense that the oscillators become locked

to their mutual mean frequency Ω̄ =
1

N

∑N

i=1 !i and their

phases become localised about their mean phase [11, 17, 25].

This type of synchronous behaviour is known as global syn-

chronisation and is characterised by a globally attracting man-

ifold on which the dynamics settles [5]. The level of synchro-

nisation is often characterised by the order parameter [11]

r(t) =
1

N

||
|

N∑

j=1

ei'j (t)
||
|
, (3)

with 0 ≤ r ≤ 1. In practice, the asymptotic limit of this order

parameter

r̄ = lim
T→∞

1

T ∫
T0+T

T0

r(t) dt, (4)

is estimated whereby T0 is chosen sufficiently large to elimi-

nate transient dynamics.

In the case of full synchronisation with 'i(t) = 'j(t) for

all pairs i, j and for all times t we obtain r̄ = r = 1. In the

case where all oscillators behave independently with random

initial conditions, r̄ = (1∕√N) indicates incoherent phase

dynamics; values in between indicate partial coherence.

III. COLLECTIVE COORDINATES

In this section, we generalise the collective coordinates

methodology introduced in [9]. We first present the collective

coordinate framework for the situation when there is a single

cluster of oscillators which tends to mutual synchronisation;

we then set out to present the collective coordinate framework

which takes into account the situation when several individ-

ually but not mutually synchronised clusters interact. In the

collective coordinate framework the phases of the N oscilla-

tors are expressed via an ansatz function

'i(t) = Φi(�1(t),⋯ , �n(t);!,A) (5)

for i = 1,⋯ , N and n ≪ N collective coordinates �j . The

temporal evolution of the N phase variables 'i is then de-

scribed by n collective coordinates �j . This reduces an N

dimensional system to an n dimensional one. For all-to-all

networks with aij = 1 for all i, j the ansatz 'i(t) = Φi(t) with

Φi(t) = �(t)!i (6)

was proposed in [9]. In the case of a bimodal frequency dis-

tribution, which allows for interacting partially synchronised

clusters, one has to introduce an additional collective coordi-

nate to capture this interaction. The ansatz (6) was numeri-

cally verified and can be motivated in the limit of large cou-

pling strength K ≫ 1. The Kuramoto model (1) can be cast

as !i = −Kr sin( − 'i) introducing the mean phase  [11].

Expanding 'i =  + arcsin(!i∕(rK)) in 1∕K for large cou-

pling strength yields up to first order'i =  +!i∕(rK). Since

the Kuramoto model is invariant under constant phase shifts

we may set  = 0 leading to ansatz (6) with  ≡ 0 [14].

The evolution equations for the collective coordinates can be

determined by minimising the error accrued by restricting the

solutions to be of the form (6); the reader is referred to [9] for

details.

A. A single synchronising cluster with complex topology

To devise an appropriate ansatz for general network topolo-

gies, we again focus on the strongly synchronised state for

largeK . In the asymptotic limitK → ∞ the globally synchro-

nised state 'i = 'j = const can be approximated (ignoring a

constant mean phase  ) via linearisation as

'∞ =
N

K
L+

!, (7)

where L+ denotes the pseudo-inverse of the graph Laplacian

(2) (see, for example, [8]). This suggests as an ansatz function

with collective coordinate �̄(t)

' = '∞ (1 + �̄(t)). (8)

Introducing � = 1 + �̄ and defining

!̄ =
N

K
L+

!, (9)

we propose the ansatz 'i = Φi with

Φi = �(t) !̄i (10)

for i = 1,⋯ , N . Note that L+
1N = 0 and 1

T
N
L+

! = 0 for

any native frequency vector !. We remark that for all-to-all

networks we have L = NIn − 1N1
T
N

and the ansatz (10)

reduces to the ansatz (6) with � being scaled with 1∕K [15].

Figure 1 provides a numerical illustration of the validity of the

collective coordinate ansatz (10) where we plot the actually

observed phases against the collective coordinate ansatz (10)

for a small-world network [26] and native frequencies drawn

from a normal distribution. The oscillators are clearly well

described by the collective coordinate ansatz. The agreement

of the phases with the collective coordinate ansatz becomes

better for increasing coupling strength. We remark that upon
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FIG. 1. Snapshot of the phases 'i obtained form simulating the full

Kuramoto model (1) against the collective coordinate ansatz Φi (10),

with � = 1.1 obtained from (11), for a small-world topology with

N = 200 oscillators, each with 2 neighbours and a rewiring prob-

ability p = 0.3, and native frequencies drawn from a normal distri-

bution  (0, 0.1). The corresponding value of the order parameter

is r̄ = 0.77. The continuous line indicates perfect correspondence

between the ansatz and the observed phases.

decreasing the coupling strength, not all oscillators are able to

synchronise and only a subset of the N oscillators will satisfy

the ansatz (10).

We now follow [9] to determine the temporal evolution

equations for the collective coordinate �. Inserting the ansatz

(10) into the Kuramoto model we obtain the error made by the

collective coordinates (10)

i = �̇!̄i − !i −
K

N

∑

j=1
j≠i

aij sin(�(!̄j − !̄i)).

We wish to minimise this error, i.e. to maximise the degree

to which our collective coordinates are capable of capturing

the dynamics of the full Kuramoto model. This is achieved by

assuring that the the error is orthogonal to the tangent space of

the solution manifold, which is spanned by
)'

)�
=

N

K
L+

! = !̄.

Setting
∑
i i!̄i = 0, we obtain an evolution equation for the

collective coordinates

�̇ =
K

N

!̄
TL !̄

!̄T !̄
+

1

!̄T !̄

K

N

∑

i,j

!̄iaij sin(�(!̄j − !̄i)). (11)

Upon rescaling time such that t = Ts� with

Ts =
N

K

!̄
T
!̄

!̄TL !̄
,

the evolution equation (11) for the collective coordinate � sim-

plifies to

�̇ = 1 +
1

!̄TL!̄

∑

i,j

!̄iaij sin(�(!̄j − !̄i)). (12)

Equilibrium solutions �⋆ with �̇⋆ = 0 correspond to the

synchronised state and the transition to synchronisation

appears at K = Kc which is the smallest K such that (12)

supports equilibrium solutions.

Particular choices of frequency distributions or the presence

of topological communities within the network, however, may

not allow for the global synchronisation of all N oscillators

at a given coupling strength N . Instead one observes one or

several partially or locally synchronised clusters, with possi-

ble complex interactions. One example, already discussed in

[9], are Kuramoto models with a unimodal frequency distribu-

tion, where the transition to synchronisation is a second-order

phase transition [11, 17], and not all oscillators participate in

the collective synchronised state. As the coupling strength is

increased from zero, at some critical strengthK = Kl a few os-

cillators perform collective behaviour and mutually synchro-

nise. Increasing the coupling strength then allows increasingly

more oscillators to become entrained to the synchronised state

until global synchronisation sets in at K = Kc . Hence for

coupling strength Kl ≤ K < Kc which allows for local syn-

chronisation we cannot expect to find an equilibrium solution

of (12). To capture this local synchronisation for a given cou-

pling strength K within the collective coordinate framework,

we assume that all those oscillators that can mutually synchro-

nise will do so. This suggests the ansatz (10) 'i = �(t) !̄i for

i ∈  where we denote by  the largest set of nodes which can

synchronise. The minimisation of the error then involves only

nodes in  and reads
∑
i∈ i!̄i = 0, leading to

�̇ = 1 +
1

!̄(l)TLl !̄
(l)

∑

i∈
∑

j∈
!̄iaij sin(�(!̄j − !̄i)) (13)

where we now define

!̄
(l) =

N

K
L+
l
!
(l), (14)

where !(l) denotes the native frequencies of nodes in the set 
and Ll is the graph Laplacian of the network consisting only

of nodes in the cluster set . The set  is now determined such

that its cardinalityNl is determined as the largest possible size

such that (13) admits an equilibrium solution �̇⋆ = 0. In the

case of an all-to-all coupling network, this is readily achieved

by excluding successively those nodes with native frequencies

with the largest absolute frequencies (see [9]). In the case of

arbitrary connected complex networks we are not aware of any

computationally efficient way to test for the largest set of nodes

allowing for stationary equilibrium solutions �⋆. We propose

here two dynamical criteria to identify those non-entrained

nodes by linearising the Kuramoto model (1) about an equi-

librium solution �⋆ and studying the linearised matrix

Llin =

{
−aij cos(�

⋆(!̄j − !̄i)), i ≠ j
∑
k aik cos(�

⋆(!̄j − !̄i)), i = j
. (15)

For a stable system, Llin has one zero eigenvalue and N − 1
positive eigenvalues. The system becomes unstable when an

eigenvalue of Llin becomes negative. For the first criterion,
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we assume that the synchronised cluster is comprised of the

maximal number of nodes which are able to synchronise in

the sense that equilibrium solutions �⋆ of (13) exist. For suf-

ficiently large values of the coupling strength K equilibrium

solutions can be found corresponding to global synchronisa-

tion with Nl = N (note that in this case (13) and (12) are

identical). Decreasing the coupling strength K in small in-

crements �K while keeping the number of oscillators fixed

for each step, we reach a coupling strength K ′ such that no

equilibrium solution exists. Llin is evaluated around the last

equilibrium solution �⋆ at K = K ′ + �K . The eigenvector

v̂ of Llin corresponding to the smallest non-zero eigenvalue

is then selected to determine the set of nodes to be excluded

from the collective coordinate description. In particular, the

elements of the eigenvector v̂ are ordered and the largest dif-

ference or gap between neighbouring elements is determined.

The network is then partitioned between those nodes above

and below the largest gap, where the group with less elements

is discarded. We remark that if this procedure excludes nodes

such that the remaining network is disconnected, we choose

the largest connected network within this set of nodes. For the

second criterion, we identify all nodes which are linearly un-

stable at a given coupling strengthK . As for the first criterion,

we use the eigenvector v̂ of the linearisation matrix Llin cor-

responding to the smallest non-zero eigenvalue to determine

the set of nodes to be excluded from the collective coordinate

description.

In the simulations presented below we simultaneously use

both methods of identifying the non-entrained oscillators,

which do not partake in the collective behaviour captured

by the collective coordinate ansatz. Using the first method,

which tests for existence of stationary solutions, provides sim-

ilar results (not shown). However, we found that including

the second method, based on finding the unstable nodes, pro-

vides slightly better results, particularly for identifying non-

entrained oscillators close to the onset of global synchronisa-

tion.

In the following we present the collective coordinate frame-

work when there are more than one locally synchronised clus-

ter.

B. Interacting locally synchronised clusters with complex

topology

We now set out to formulate the collective coordinate ansatz

allowing for the interaction between several locally synchro-

nised clusters. Let us consider that there are one or several sets

of nodes m withm = 1,⋯ ,M , each of sizeNm which exhibit

localised collective behaviour within their respective sets. We

reformulate the Kuramoto model (1) for the phases of nodes in

the mth cluster, '(m) ∈ ℝ
Nm , with native frequencies !

(m)
i

as

'̇
(m)
i

= !
(m)
i

+
K

N

M∑

k=1

∑

j∈k
aij sin('

(k)
j

− '
(m)
i

), (16)

for i ∈ m. To capture the collective behaviour within each set,

the collective coordinate approach is then restricted to each set

individually. We introduce collective coordinates �m(t) to de-

scribe the collective behaviour within a cluster m and collec-

tive mean phase coordinates fm(t) to account for the interac-

tion between connected clusters m [16]. Analogously to the

expansion around the limit K → ∞ in Section III A and the

corresponding ansatz for the entire network (10), we propose

the ansatz '(m) = Φ(m) for each cluster m = 1,⋯ ,M with

Φ(m) = !̄
(m) + �̄m(t) !̄

(m)
c

+ fm(t)1Nm
. (17)

Here !̄
(m) is made up of the elements of !̄ in m, and so

represents the entire network’s asymptotic state. Indeed, for

global synchronisation with a single synchronised set of nodes

M = 1 we have �̄1 = 0 and f1 = 0, and the ansatz (17) re-

duces to the ansatz (7). We define the asymptotic state of the

mth cluster as if it were treated as a single unit disconnected

from the rest of the network

!̄
(m)
c

=
N

K
L+
m
!
(m), (18)

where Lm = Dm − Am denotes the Laplacian matrix for the

mth cluster with the cluster’s adjacency matrix Am = [aij]
restricted to i, j ∈ m and associated degree matrix Dm.

Introducing again � = 1 + �̄ and defining

!̄
(m)

c2c
= !̄

(m) − !̄
(m)
c

(19)

we rewrite the ansatz (17) as

Φ(m) = !̄
(m)

c2c
+ �m(t) !̄

(m)
c

+ fm(t)1Nm
. (20)

The collective coordinates �m(t) describe the internal dynam-

ics of each cluster whereas the collective coordinate fm(t)
describe the interaction between the clusters.

Figure 2 shows a snapshot of the phases for an ER network

consisting of two clusters with small inter cluster degree. We

show the actual phases obtained from a numerical simulation

of the full Kuramoto model (1) and the collective coordinate

ansatz (20) for the two clusters. The two clusters are readily

identified and the phases are well captured by the collective

coordinate ansatz.

Inserting the collective coordinate ansatz (20) into the Ku-

ramoto model (16), we obtain the error for i ∈ m
 (m)
i

=�̇m!̄
(m)
i

+ ḟm − !
(m)
i

−
K

N

M∑

k=1

∑

j∈k
aij sin(Φ

(k)
j

− Φ
(m)
i

). (21)

Again we require the error to be orthogonal to the tangent

space of the solution manifold, which is now spanned by
)'(m)

)�m
= !̄

(m)
c and

)'(m)

)fm
= 1Nm

. Setting
∑
i∈m  (m)

i
!̄
(m)
ci

= 0

and
∑
i∈m  (m)

i
= 0 for all m = 1,⋯ ,M , this yields the evo-

lution equations for the intracluster collective variable �m with

�̇m =
K

N

!̄
(m)T

c Lm!̄
(m)
c

!̄
(m)T

c !̄
(m)
c

+
1

!̄
(m)T

c !̄
(m)
c

K

N

M∑

k=1

∑

j∈k

∑

i∈m
!̄(m)
ci
aij sin(Φ

(k)
j

− Φ
(m)
i

) (22)
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FIG. 2. Snapshot of the phases 'i obtained form simulating the full

Kuramoto model (1) against the collective coordinate ansatz Φ
(1,2)

i

(20), with �1 = 1.003, �2 = 1.006, f1 = −0.095 obtained from (22)

and (23). The network is an ER network withN = 500which consists

of two topological clusters. The network is constructed by generating

two ER networks, both with a connection probability between two

nodes of p = 0.05, one with N1 = 270 (triangles) and one with

N2 = 230 nodes (open circles), which are then connected via 10
randomly chosen edges. The native frequencies are drawn from a

normal distribution  (0, 0.02). The snapshot is taken at K = 160

and the corresponding value of the order parameter is r̄ = 0.83. The

continuous line indicates perfect correspondence between the ansatz

and the observed phases.

and for the intercluster variable fm with

̇fm = Ω(m)
c

+
1

Nm

K

N

M∑

k=1
k≠m

∑

j∈k

∑

i∈m
aij sin(Φ

(k)
j

− Φ
(m)
i

), (23)

where Ω
(m)
c =

∑
i∈m !

(m)
i

∕Nm is the mean of the native fre-

quencies in themth cluster. Note that the intercluster collective

coordinates satisfy
∑M

m=1Nmfm = 0. We remark that for a sin-

gle cluster M = 1 the evolution equations (22)–(23) reduce to

(13) with m = l and !̄c = !̄.

IV. NUMERICAL RESULTS

In the following section we test the methodology on un-

weighted Erdős-Rényi networks. In an Erdős-Rényi network

nodes are connected independently with probability p and

where degrees dj are Poisson-distributed with mean degree

d = pN . We choose here p = 0.05 throughout. We present re-

sults for randomly distributed native frequencies, drawn from

a distribution g(!). In particular, we consider here uniformly

distributed native frequencies on the interval [−1, 1] with dis-

tribution

g(!) = 0.5, (24)

and normally distributed native frequencies with

g(!) =
1

√
2��2

!

exp

(

−
!2

2�2
!

)

, (25)

with �2
!
= 0.1.

We begin studying an ER network with uniformly dis-

tributed native frequencies. We show in Figure 3 the order

parameter r̄ as a function of the coupling strength K for two

networks with sizes N = 2000 and N = 500, respectively.

The figure shows a comparison of the order parameter as cal-

culated from a long simulation of the full Kuramoto model (1)

and as estimated by the collective coordinate ansatz (10) where

� is determined as the stationary solution of (12). To solve

the collective coordinate evolution equation (12) for station-

ary solutions � = �⋆, we discarded any nodes corresponding

to unstable eigenvectors of the linearisation matrix Llin as de-

scribed in Section III A. Let us denote by l the set of nodes

for which a linearly stable equilibrium solution �⋆ of the col-

lective coordinate can be found. We then calculate the order

parameter r̄ of the collective coordinate using

rcc(t) =
1

N

|
||

∑

j∈l
ei�

⋆!̄j +
∑

j∉l
ei!j t

|
||
. (26)

It is seen in Figure 3 that the collective coordinate approach

works very well for the larger network with N = 2000 and

resolves the explosive transition to synchronisation near Kc =
26. The collective coordinate approach identifies the nature of

the bifurcation as a saddle-node bifurcation. This is illustrated

in Figure 4 where we plot the right-hand-side of the evolution

equation (13)

 (�) = 1 +
1

!̄(l)TLl !̄
(l)

∑

i∈
∑

j∈
!̄iaij sin(�(!̄j − !̄i)) (27)

as a function of � for coupling strengthK below and above the

critical coupling strengthKc = 27 as well as close toK = Kc .

Equilibrium solutions are given by  (�⋆) = 0. It is seen that

there are no solutions for K < Kc and at K = Kc a pair of

equilibrium solutions emerges, one being stable (the smaller

one) and one being unstable.

For the smaller network with N = 500 nodes, the collective

coordinate approach captures the collective synchronisation

behaviour very well for large coupling strengthK . For smaller

coupling strengths withK < 27 the match of the order param-

eters is reasonable; it is seen that the qualitative behaviour is

well captured but the functional form, including the concave

functional behaviour near K = 24, is shifted by ΔK ≈ 2.

The delayed synchronisation of the actual Kuramoto model

(1), we conjecture, is due to our method not correctly identify-

ing nodes which do not partake in the collective synchronised

behaviour captured by the ansatz. This might be due to higher

order effects modifying the value ofΦi = �⋆!̄i at whichLlin is

evaluated. Furthermore, we remark that for values of the cou-

pling strength near the onset of synchronisation the interaction

between the set of partially synchronised oscillators and the
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non-entrained oscillators, which may themselves form small

partially synchronised clusters, is not captured by the ansatz

(10).

In Figure 5 we present results for normally distributed

frequencies. In this case, the order parameter r̄ becomes

non-zero at some coupling strength Kl ≈ 9 and a few oscil-

lators with native frequencies close to the mean frequency 0
locally synchronise; increasing the coupling strength allows

increasingly more oscillators to synchronise, implying a con-

tinuous change of the order parameter as supposed to the hard

transition in the case of uniformly distributed native frequen-

cies seen in Figure 3. At some coupling strength Kc ≈ 16,

global synchronisation sets in affecting all oscillators. The

normalised domain length Ldomain, as calculated from the

collective coordinate approach, is depicted in Fig 6 and shows

a smooth transition from Ldomain = 0 to Ldomain = 1 for the

larger network, corresponding to the larger and larger number

of oscillators joining the single synchronised cluster.

As for the cases of the uniformly distributed native frequen-

cies, the larger network’s dynamics is very well described by

the collective coordinate ansatz (10) capturing both, the lo-

cal and the global synchronisation. The smaller network with

N = 500 nodes has a larger error describing the synchroni-

sation behaviour accurately near the onset at K = Kl. This

is due to, we conjecture, the presence of interacting clusters

which form upon decreasing the coupling strength. In each

of these smaller clusters, nodes locally synchronise and then

interact. This is not described by the ansatz (10).

In Figure 6 we show the normalised domain length

Ldomain =
Nl

N
, (28)

where Nl is the size of the network after discarding the

unstable nodes, i.e. the size of l, based on the linearisation

matrix Llin as described in Section III A. One sees clearly the

gradual increase of the size of the synchronised cluster with

increasing coupling strength describing the local synchroni-

sation behaviour. We show results for the larger network with

N = 2000; the plot for the smaller network looks similar (not

shown).

In the remainder we show that the collective coordinate

ansatz (20), is able to capture the interacting dynamics of lo-

calised clusters. In order to do so we consider an artificial

ER network which is prepared to allow for two well-specified

topological clusters. We show here that, once clusters are iden-

tified, the collective coordinate framework is able to describe

their dynamics and their interaction. We consider an ER net-

work with N = 500 nodes. The network is constructed by

generating two ER networks, both with a connection probabil-

ity between two nodes of p = 0.05, one withN1 = 270 and one

with N2 = 230 nodes. The two clusters are then linked by 10
randomly chosen edges. In this case the clusters can be identi-

fied by the smallest non-zero (positive) eigenvalue and corre-

sponding eigenvector ofLlin in (15). We remark, however, that

in general the identification of clusters is a nontrivial task that

is not the focus of this work. We consider again native frequen-
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FIG. 3. Order parameter r̄ as a function of the coupling strength K

for an ER network with uniformly distributed native frequencies. De-

picted are results from a direct numerical integration of the Kuramoto

model (1) (continuous line, online blue) and from the collective co-

ordinate approach (10) using (26) (crosses, online red). Top: ER net-

work with N = 2000 nodes. Bottom: ER network with N = 500
nodes.

cies drawn from a normal distribution (0, 0.02) allowing for

local synchronisation within each cluster of oscillators with

small absolute native frequencies. Figure 7 shows the order

parameter r̄ as calculated from a long simulation of the full Ku-

ramoto model (1) and for the collective coordinate approach.

The full simulation reveals the following synchronisation be-

haviour of this particular clustered network: AtK ≈ 9 the two

topological clusters individually begin to locally synchronise

(cf. Figure 5). Between 50 < K ≤ 142, both clusters are syn-

chronised and the coupling is not strong enough to allow the

two clusters to interact. In this range the order parameter is

well approximated by

r̄ =
Δ!

2� ∫
Δ!

2�

0

|
|
|

∑

j∈1
ei'j +

∑

j∈s
ei'j

|
|
|
dt

≈
Δ!

2� ∫
Δ!

2�

0

1

N

√
N2

1
+N2

2
+ 2N1N2 cos(Δ!t) dt

≈ 0.64,

whereΔ! = 0.023 is the difference in the mean frequencies of

the two respective clusters. Increasing the coupling strength

past K = 142 the clusters are interacting and increasing K
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FIG. 4. Right-hand-side  (�) of the evolution equation (13) for

several values of K for the N = 500 ER network with uniformly

distributed native frequencies with a subcritical coupling strength

K = 20 < Kc , critical coupling strengthK = 28 ≈ Kc and supercrit-

ical coupling strength K = 35 > Kc . Parameters as in Figure 3.

eventually leads to global synchronisation.

This path to synchronisation involving interacting clusters is

remarkably well described by the collective coordinate ansatz.

Starting at large values of the coupling strength the ansatz for

two interacting clusters (20) with �1,2 and f determined by

solving (22)–(23) captures the interaction between the clusters

remarkably well. At K ≈ 142 the collective coordinate solu-

tion becomes linearly unstable; the eigenvector v̂ of the lineari-

sation matrix Llin corresponding to this instability consists of

two separated parts identifying accurately the two topological

clusters of the network. For K ≤ 142 the two clusters can

be described each by the single-cluster ansatz (10), each with

their own independent collective coordinate �. The stationary

solutions of the evolution equation (13) for the respective col-

lective coordinates and the associated order parameter repro-

duces very well the collective behaviour of the full finite-size

Kuramoto model.

V. DISCUSSION AND OUTLOOK

We derived a collective coordinate approach for interacting

Kuramoto oscillators on arbitrary networks. Our approach

allows for the description of finite size networks away from the

thermodynamic limit and is capable of describing the interac-

tion of partially synchronised interacting clusters. We remark

that when approaching the onset of synchronisation from

large coupling strength in the case of normally distributed

frequencies, for which we observe local synchronisation, the

number of partially synchronised clusters typically will grow

and near onset of synchronisation the collective coordinate

approach might be computationally as costly as simulating

the full system.

Here we identified clusters for a very clear clustering

example. This is, of course, in general not the case. It is a

highly non-trivial and, to our knowledge, an unsolved task to
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FIG. 5. Order parameter r̄ as a function of the coupling strength K

for an ER network with normally distributed native frequencies. De-

picted are results from a direct numerical integration of the Kuramoto

model (1) (continuous line, online blue) and from the collective co-

ordinate approach (10) using (26) (crosses, online red). Top: ER net-

work with N = 2000 nodes. Bottom: ER network with N = 500
nodes.

identify clusters for fixed coupling strength K . Clusters are

formed in an intricate interplay between the network topology

and the distribution of the native frequencies. In our study of

two interacting clusters we found that the linearisation matrix

Llin (which incorporates information about the network

topology and the native frequencies) was able to identify the

coupling strength for which clusters start to interact. Whether

the linearisation matrix is able to identify clusters in more

complex cases will be studied in further research.
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FIG. 6. Normalised domain length Ldomain as a function of the cou-

pling strength K for the ER networks depicted in Figure 5 with

N = 2000 nodes and normally distributed native frequencies.

0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 7. Order parameter r̄ as a function of the coupling strength K

for an ER network consisting of two coupled topological clusters with

normally distributed native frequencies. The network is the same as

that used for Figure 2. Depicted are results from a direct numerical

integration of the Kuramoto model (1) (continuous line, online blue)

and from the collective coordinate approach (10) using (26) (crosses,

online red).
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