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The breeding method is a computationally cheap procedure to generate initial
conditions for ensemble forecasting which project onto relevant synoptic growing
modes. Ensembles of bred vectors, however, often lack diversity and align with the
leading Lyapunov vector, which severely impacts their statistical reliability. In previous
work we developed stochastically perturbed bred vectors (SPBVs) and random draw
bred vectors (RDBVs) in the context of multi-scale systems. Here we explore when
this method can be extended to systems without scale separation, and examine the
performance of the stochastically modified bred vectors in the single scale Lorenz 96
model. In particular, we show that the performance of SPBVs crucially depends on
the degree of localisation of the bred vectors. It is found that, contrary to the case of
multi-scale systems, localisation is detrimental for applications of SPBVs in systems
without scale-separation when initialised from assimilated data. In the case of weakly
localised bred vectors, however, ensembles of SPBVs constitute a reliable ensemble with
improved ensemble forecasting skills compared to classical bred vectors, while still
preserving the low computational cost of the breeding method. RDBVs are shown to
have superior forecast skill and form a reliable ensemble in weakly localised situations,
but in situations when they are strongly localised they do not constitute a reliable
ensemble and are over-dispersive.
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1. Introduction10

The chaotic nature of the atmosphere and the climate system, and its sensitivity to small uncertainties in the initial conditions may11

render single forecasts meaningless. Probabilistic forecasts, which instead are derived from an ensemble of forecasts, have become12

standard in numerical weather forecasting, providing a Monte-Carlo estimate of the probability density function (Epstein 1969; Leith13

1974; Leutbecher and Palmer 2008). Such ensemble forecasts issue the most probable forecast alongside measures of its uncertainty.14

A key question is how to initialise the ensemble members. There exist several methods to generate such ensembles, using singular15

vectors (Lorenz 1965; Palmer 1993), bred vectors (Toth and Kalnay 1993, 1997), analysis ensembles from ensemble Kalman filters16

(Evensen 1994; Houtekamer and Mitchell 1998; Wang and Bishop 2003; Buizza et al. 2005), and more recently model generated17

analogs (Atencia and Zawadzki 2017). In this work we consider bred vectors and the so called ”breeding method” which constitutes18

a computationally very attractive method to produce an ensemble of initial conditions introduced by Toth and Kalnay (1993, 1997).19

In this method initial conditions are generated from finite perturbations, the bred vectors (BVs), which encapsulate information about20

fast growing modes. Such fast growing initial conditions are then likely to be pre-images of states of high probability. Bred vectors21

have been successfully implemented for more than a decade since 1992 by the National Centre for Environmental Prediction (NCEP)22

for their operational 1-15 day ensemble forecasts. Applications range from ENSO prediction (Cai et al. 2003; Cheng et al. 2010),23

seasonal-to-interannual forecasting in coupled general circulation models (CGCMs) (Yang et al. 2009) to forecasting weather and24

climate on Mars (Newman et al. 2004; Greybush et al. 2013).25

26

In the breeding method a control trajectory alongside an ensemble of nearby trajectories is generated. The ensemble members27

are initialised from perturbed initial conditions with finite perturbation size δ from the initial condition of the control trajectory.28

Different as for Lyapunov vectors, all ensemble members are propagated with the full nonlinear model. The perturbed trajectories29

are periodically rescaled to a specified finite-size distance δ away from the control trajectory, to avoid saturation of instabilities. Bred30

vectors are defined as the difference at the time of rescaling of the perturbed trajectories and the control trajectory. The perturbation31

size is often thought of as a a filter of small scale instabilities, in the sense that BVs are insensitive to very fast growing instabilities32
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which typically are associated with small scale processes and which nonlinearly saturate at an amplitude smaller than δ. Choosing33

δ appropriately allows the forecast to be tuned to specific instabilities of interest. For perturbation sizes of the order of 1− 10% of34

the natural variability in the atmosphere, BVs were found to significantly project onto baroclinic instabilities (Toth and Kalnay 1997;35

Corazza et al. 2003). Moreover, bred vectors allow for the prediction of regime changes for perturbation sizes in a certain range (Peña36

and Kalnay 2004; Evans et al. 2004; Norwood et al. 2013)).37

38

Ideally bred vectors constitute a sufficiently diverse ensemble mediated by the provided stochasticity of saturated sub-synoptic39

processes (Toth and Kalnay 1997). Bred vector ensembles, however, may lack diversity in certain situations and most of the ensemble40

forecast variability may be captured by a single BV (Wang and Bishop 2003). Indeed, for a range of small perturbation sizes δ bred41

vectors align with the leading Lyapunov vector and the ensemble collapses to a single member. When this occurs, this reduction in42

ensemble diversity is hugely detrimental for the ability of a bred vector ensemble to reliably sample the forecast probability density43

function. To preserve the attractive features of BVs such as their low computational cost, several methods were proposed to increase the44

ensemble spread in BVs. In particular by orthogonalizing bred vectors (Annan 2004; Keller et al. 2010), by introducing stochasticity45

either via small random perturbations at each rescaling period (Greybush et al. 2013) or via stochastic backscattering (O’Kane and46

Frederiksen 2008), by rescaling using the geometric rather than the Euclidean norm (Primo et al. 2008; Pazó et al. 2011, 2013) or by47

changing the rescaling procedure based on the largest BV (Balci et al. 2012).48

49

In recent work, Giggins and Gottwald (2019) proposed a method of stochastically perturbing BVs in the context of ensemble50

forecasts of the slow dynamics in multi-scale systems to alleviate the problem of small ensemble diversity, introducing stochastically51

perturbed bred vectors (SPBV). SPBVs were constructed, it was argued, to sample the conditional probability function of the system52

conditioned on the slow variables by multiplicatively randomising the fast BV components. The localised character of the fast BV53

components ensures that the perturbed initial conditions relax after a short transient to initial conditions which are close to those54

of their parent BV, with slow components being close in phase space to those of the original BV and with fast components being55

dynamically conditioned on the slow components. Hence, these stochastically perturbed BVs generate initial conditions which56

sample the probability density function conditioned on the slow synoptic state. SPBVs exhibit a markedly increased ensemble57

dimension, in particular for small but finite perturbation sizes. It was shown that the subsynoptic variability associated with SPBVs58

generated synoptic variability of the same order as suggested by the analysis fields. The increased diversity of SPBVs lead to an59

improved forecasting skill when compared to standard BVs. Important for probabilistic forecasts, SPBV ensembles were shown to60

be reliable in the sense that each ensemble member is equally likely to be closest to the truth. Furthermore, SPBVs were shown61

to be dynamically consistent and recover characteristic features of the temporal evolution of errors in chaotic dynamical systems.62

Additionally, random draw bred vectors (RDBVs), which are designed to sample from the marginal equilibrium density of the fast63

variables (and hence are not conditioned on the slow variables), were introduced. While RDBVs are not dynamically consistent and64

are typically over-dispersive, they were found to still have improved forecast skill over standard BVs.65

66

In this work we explore if, and under which conditions, the ideas proposed in Giggins and Gottwald (2019) for multi-scale67

dynamics can be applied to the situation of general dynamical systems without time-scale separation. Single-scaled models such as68

the quasi-geostrophic equations are often used to study the slow large-scale dynamics of the atmosphere-ocean system. Filtering out69

fast small-scale processes has the computational advantage of avoiding the numerical difficulties associated with multi-scale systems.70

We study here in what way stochastically modifying classical BVs may help in using the attractive features of BVs, such as their low71

computational coast and their dynamic adaptivity in the sense that they resemble realistic error growth. In the realistic situation when72

the state of the atmosphere is given by the analysis output from a data assimilation procedure, a good forecast ensemble has to satisfy73

two constraints: It has to evolve into likely future states, and it has to account for the uncertainty of the analysis used to generate74

the ensemble. In the case of multi-scale dynamics these issues were resolved by generating the necessary small synoptic uncertainty75

required by the analysis covariance via stochastically perturbing the fast variables, which subsequently quickly relaxed onto the76

attractor. The situation in single-scale dynamics is more complicated. Whereas localisation of the bred vectors was beneficial in the77

multi-scale case and allowed for the conditioning of the SPBVs on the slow synoptic dynamical state, localisation of BVs prohibits in78

the single-scale scenario perturbations outside the localised region. Hence, although the resulting perturbation will be close in phase79

space to the original BV and appropriately sample the probability density function around it, the resulting initial conditions may not80

contain sufficient variability in the regions of significant uncertainty of the analysis.81

82

To investigate the performance of stochastically modified bred vectors in a single-scale system we consider the Lorenz 96 model83

(Lorenz 1996) in two settings, which support strongly localised and weakly localised BVs. Our numerical simulations demonstrate84

that in both cases SPBVs and RDBVs exhibit significantly increased diversity and ensemble dimension, and that in both cases they85

provide superior forecast skill and reliability measures when compared to classical BVs. Their forecast skill and reliability, diagnosed86

by means of error-spread relationships and reliability diagrams, however, crucially depends on the degree of localisation, when the87

ensemble is centred around an analysed field. In the weakly localised case SPBVs and RDBVs constitute reliable forecast ensembles88

with forecast skills comparable to a reference ensemble obtained from an ensemble transform Kalman filter (ETKF). In the case of89

strongly localised bred vectors, however, their reliability is severely impeded. Localisation prevents SPBVs to constitute a reliable90

ensemble as they are not consistent with the analysis error which may be non-negligible outside the region of significant activity of the91

SPBV. For the weakly localised case we will show that the strength of the multiplicative noise used for generating SPBV ensembles92

can be judiciously chosen as a trade-off between providing the most ensemble diversity while preserving dynamic adaptivity in93

the sense that they resemble realistic error growth comparable to those of Lyapunov vectors. This dynamical consistency is probed94

by projecting onto the subspace spanned by the dominant covariant Lyapunov vectors. RDBVs will be shown to be dynamically95

inconsistent but to nevertheless feature improved forecast skill over SPBVs.96

97

The paper is organised as follows. In Section 2 we introduce the Lorenz 96 model (Lorenz 1996). In Section 3 we briefly review98

the breeding method. Section 4 introduces our stochastically modified bred vector ensemble methods, namely SPBVs and RDBVs,99
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and shows how they relate to covariant Lyapunov modes as a measure of their dynamic adaptivity. Section 5 introduces the diagnostics100

used to evaluate the performance and the efficiency of stochastically modified bred vectors. In Section 6 the forecast skill and the101

reliability of each ensemble type is analysed for ensembles generated from an analysed field, obtained form incorporating imperfect102

observations in a data assimilation procedure. We conclude in Section 7 with a discussion and an outlook.103

104

2. The Lorenz 96 system105

The Lorenz 96 (L96) system (Lorenz 1996)

d

dt
Xk = −Xk−1(Xk−2 −Xk+1)−Xk + F (1)

with cyclic boundary conditions Xk+K = Xk for k = 1, . . . ,K, was introduced as a caricature for the midlatitude atmosphere and106

has been used as a test bed for numerous studies in atmospheric sciences. The dynamics of the Lorenz 96 system is characterized by107

energy conserving nonlinear transport, linear damping and forcing. Despite its simplicity the L96 model exhibits many dynamical108

scenarios also observed in actual geophysical fluid flows such as regimes and transitions between them (Lorenz 2006). The variables109

Xk can be interpreted as large scale atmospheric fields arranged in the midlatitudes on a latitudinal circle of 30, 000km, such as110

synoptic weather systems. The classical choice K = 40 corresponds to a spacing between adjacent variables of roughly the Rossby111

radius of deformation of 750 km. We shall also consider K = 128 which implies a spacing between adjacent sites of 234 km. In both112

cases we use as forcing amplitude F = 8 which implies chaotic dynamics (Lorenz and Emanuel 1998). The setting with K = 40113

reproduces dynamical patterns with a realistic number of Rossby-like waves and is frequently used in the context of data assimilation.114

On the other hand, the choice K = 128 is used to study intrinsic properties of spatially extended dynamical systems (Pazó et al. 2013).115

For F = 8 the climatic variance is estimated as σ2 = 13.25 and the decorrelation (e-folding) time is τ = 0.41, for both K = 40 and116

K = 128. The maximal Lyapunov exponent is measured as λmax = 1.69 for K = 40 and as λmax = 1.775 for K = 128. The L96117

system is extensive (Karimi and Paul 2010), in the sense that many relevant quantities (such as surface width, attractor dimension,118

entropy) scale linearly with the size K and the Lyapunov exponents converge to a continuous function in the limit K →∞. This is119

illustrated in Figure 1, where we show the Lyapunov spectrum for K = 40 and K = 128. For K = 40 there are 13 distinct positive120

Lyapunov exponents, while for K = 128 there are 42 ≈ 128
40 × 13 distinct positive Lyapunov exponents.121

122

To numerically simulate the L96 system we employ a fourth-order Runge-Kutta method with a fixed time step dt = 0.005. In our123

simulations an initial transient time of 5000 time units is discarded to assure that the dynamics has settled on the attractor.124

Figure 1. Lyapunov exponent spectrum for the L96 model (1) with F = 8 for K = 40 and K = 128.

3. Bred vectors and the breeding method125

We briefly review the classical breeding method introduced by Toth and Kalnay (1993, 1997). We closely follow the exposition from our
previous work (Giggins and Gottwald 2019). BVs are finite-size, periodically rescaled perturbations generated using the full non-linear
dynamics of the system. Centred around a control trajectory zc(ti) at some time ti, perturbed initial conditions of size δ,

zp(ti) = zc(ti) + δ
p

‖p‖ ,

are defined where p is an initial arbitrary random perturbation. The control and the perturbed initial conditions are simultaneously
evolved using the full non-linear dynamics for an integration time T until time ti+1 = ti + T . At the end of the integration window the
difference between the control and the perturbed trajectories

∆z(ti+1) = zp(ti+1)− zc(ti+1)
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is determined, and the bred vector is defined as the difference rescaled to size δ with

b(ti+1) = δ
∆z(ti+1)

‖∆z(ti+1)‖ .

The perturbation b(ti+1) then determines the initial condition of the perturbed trajectory zp(ti+1) = zc(ti+1) + b(ti+1) at the start126

of the next breeding cycle. This process of breeding is repeated for several cycles until the perturbation maintains a sufficiently large127

growth rate and until the perturbations converge in the sense that at time tn an ensemble of BVs spans the same subspace as BVs128

obtained in a breeding cycle which had been initialised further in the past. The characteristic time scales of the instabilities of interest129

and length of the breeding cycles determine how many breeding cycles are required to achieve convergence (Toth and Kalnay 1993).130

For the L96 system a breeding cycle length of T = 0.05 time units is employed for all simulations, and we employ a spin-up time for131

the BVs of 500 time units (which amounts to 10000 breeding cycles). An ensemble of N BVs is created by N independent breeding132

cycles initialised from independent initial perturbations p. The resulting converged BV ensemble at time ti is then employed as initial133

conditions for ensemble forecasts. The breeding method is conceptually similar to the method for generating Lyapunov vectors.134

They differ though in that Lyapunov vectors are generated using the linearised dynamics and an infinitesimal perturbation δ, whereas135

BVs are generated using the full nonlinear model and finite perturbation sizes. In contrast to covariant Lyapunov vectors which are136

mapped by the linear tangent dynamics onto each other, the dynamics of finite-size BVs is not given by a linear mapping and as such137

they technically do not form a vector space. Despite the similarities between BVs and Lyapunov vectors, we adopt here the point of138

view outlined in Giggins and Gottwald (2019) that for probabilistic ensemble forecasts the object of interest are the perturbed states139

zp = zc + ∆z, which constitute the sample points for the Monte-Carlo approximation of the probability density function, rather than140

the differences ∆z.141

142

The bred vectors of the L96 system for system sizes K = 40 and K = 128 have markedly different spatial structures. This is
illustrated in Figure 2 where snapshots of a typical BV are shown for K = 40 and for K = 128 for δ = 0.1 ≈ 0.275σclim. For the
larger K = 128 system BVs are strongly localised with only a well-defined group of sites having significant entries, whereas for
K = 40 the localisation is less well defined and the size of the active sites with significant entries almost spans the whole domain.
Note that the number of ”active” sites with increased absolute value of the BVs are roughly the same in both cases, reflecting that
BVs capture the same instability, which exhibits the same spatial organization in both cases, but with a better resolution in the larger
domain. As we will see, the degree of localisation plays a crucial role for the performance of stochastically perturbed bred vectors. To
measure the spatial organisation of BVs we consider the K ×K covariance matrix

C =
b(t)

[
b(t)

]T
‖b(t)‖2‖b(t)‖2

, (2)

and determine its average C̄ = 〈C〉, where the average is taken over realisations of independent BVs generated at different points in143

time. Since all components for the L96 system are statistically equivalent the k-th and (k + l)-th rows of C̄ are identical up to a shift of144

l components. Figure 3 shows the row-averaged C̄k,· of the matrix C̄ for K = 40 for some arbitrary component k for the BV depicted145

in Figure 2 (for K = 128 the correlation structure is identical).146

147

In probabilistic forecasting the aim is to approximate the density ρ(X, τ) at lead time τ given an initial density ρ(X, t = 0), describing148

the current estimate of the system. Adopting our point of view that BVs are designed to represent a good Monte Carlo estimate of149

ρ(X, t = 0), the property of BVs to capture fast growing dynamically relevant instabilities is translated into the initial conditions150

associated with BVs which are then likely to be observed at later times τ representative of the density ρ(X, τ). The capability of BVs151

to form an ensemble of independent initial conditions suited for a reliable probabilistic ensemble forecast, depends crucially on the152

perturbation size δ. For too large perturbation sizes δ, the initial conditions resemble random draws from the attractor (after a typically153

rapid transition towards it) and the forecast skill deteriorates. Contrary, for too small values of the perturbation size, BVs align with the154

leading Lyapunov vector (LLV) exhibiting ensemble collapse to a single ensemble member. An ensemble ofN = 20 BVs with δ = 0.1,155

which were initialised with different random perturbations, collapses and the ensemble members are indistinguishable by eye from the156

ones depicted in Figure 2 for both K = 40 and K = 128. Such a lack of diversity of an ensemble of bred vectors presents a major draw157

back of bred vectors in ensemble forecasting. In the language of probabilistic forecasts the alignment of BVs with the LLV implies that158

only a single draw from ρ(X, t = 0) is considered. In the next section we present a method how to overcome this drawback while still159

preserving the desirable features of BVs such as their low computational cost and their dynamical consistency (Pazó et al. 2010).160

4. Stochastically perturbed bred vectors161

We review here the method proposed in Giggins and Gottwald (2019) to increase the diversity of BV ensembles for multi-scale systems
and apply it to systems without scale separation. To generate a diverse ensemble of initial conditions conditioned on the current state of
the system, BVs are generated from a parent BV by applying a multiplicative stochastic perturbation to it. The key idea to generating
additional draws from the initial density function ρ(X, t = 0) is to exploit the fact that in spatially extended dynamical systems, BVs
are often localised (as shown in Figure 2 for K = 128) or exhibit some non-trivial spatial structure (as shown in Figure 3 for K = 40),
corresponding to some degree of spatial organisation of error growth. Stochastically perturbed bred vectors (SPBVs) are designed to
preserve the spatial structure of BVs, which is paramount to conditioning the initial density ρ(X, t = 0) on the current state X. SPBVs
are defined as

bsp = δ
(I + Ξ)b

‖(I + Ξ)b‖ , (3)
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Stochastically perturbed bred vectors 5

Figure 2. Bred vectors of the L96 system with perturbation size δ = 0.1 for different system size K. Top: K = 40. Bottom: K = 128.

Figure 3. Row-averaged C̄k,· of the covariance matrix (2) for the BV of the L96 system with perturbation size δ = 0.1 displayed in Figure 2 for K = 40. For K = 128
the plot is indistinguishable by eye.

where I is the K ×K identity matrix. The diagonal K ×K matrix Ξ with entries ξjj ∼ N (0, σ2) for j = 1, . . . ,K with variance162

parameter σ2 represents the stochastic perturbation. The stochastic perturbation is performed only once as a post-processing step163

from a given parent BV when generating initial conditions for a forecast ensemble, and therefore does not significantly add to the164

computational cost. In Figure 4 we show a realisation of an SPBV, overlaid with their parent BV, for a perturbation size of δ = 0.1165

with noise strength σ = 1.25, for K = 40 and for K = 128. It is clearly seen that the spatial structure of the perturbation is preserved.166

167

The stochastic perturbations generate initial conditions that are nearby the attractor and after a typically rapid relaxation towards the168

attractor along the stable manifold, approach the attractor close in phase space to the initial condition associated with the parent BV,169

which we know is capturing fast error growth. The stochasticity hence allows to sample the phase space on the attractor in the fastest170

growing region.171

172

© 2020 Royal Meteorological Society

Prepared using qjrms4.cls



Stochastically perturbed bred vectors 6

The noise strength σ obviously plays a central role. When σ → 0 SPBVs essentially reproduce the parent BVs they were generated173

from, and the spatial structure is exactly preserved but no diversity is gained. In the other extreme case σ →∞, the behaviour depends174

on the degree of localisation. For the strongly localised case K = 128 with many vanishing BV components (cf. Figure 4 (bottom)),175

the degree of localisation remains preserved since SPBVs are rescaled to size δ, and the diversity is greatly enhanced. This is the case176

discussed in the multi-scale setting in Giggins and Gottwald (2019). The weakly localised case when there are no significant regions177

with vanishing components of the BV (cf. Figure 4 (top)) is more complex. For sufficiently large magnitudes of the noise strength178

σ, SPBVs become spatially uncorrelated random perturbations of size δ. This allows for (almost) maximal diversity of the ensemble179

which, however, comes at the cost of destroying the inherent spatial structure of the dynamically relevant fast growing perturbations.180

The destruction of the spatial structure implies that we typically do not sample the phase space region locally but instead generate181

initial conditions as random draws from the attractor, which are not conditioned on the current state. In Figure 6 we illustrate the loss182

of spatial structure by showing the average of rows C̄k,· of the covariance matrix (2) for SPBVs for increasing values of the noise183

strength σ. It is seen that for σ = 1.0 and for σ = 1.25 the nontrivial correlations between adjacent sites are preserved albeit reduced184

in magnitude, whereas for σ = 5 the spatial structure is entirely lost and adjacent sites are uncorrelated.185

186

We also consider the so called random draw bred vectors (RDBVs) introduced in Giggins and Gottwald (2019). An ensemble of187

RDBVs is generated by randomly selecting classical BVs which were generated from independent initial conditions randomly drawn188

from the attractor. To avoid storing a huge library of independent BVs, an ensemble of RDBVs is generated on the fly by evolving N189

independent control trajectories started from independent initial conditions, each generating a single BV. Whereas SPBVs are designed190

to sample the phase space locally, RDBVs are dynamically inconsistent in the sense that they may, after a quick relaxation towards191

the attractor, evolve into states which are not close in phase space to the current state of the control. Example RDBVs for K = 40 and192

K = 128 are shown in Figure 5. We remark that, contrary to SPBVs, RDBVs form an (almost) orthogonal ensemble.193

194

Figure 4. SPBV and its associated parent BV for the L96 model for perturbation size δ = 0.1. Top: K = 40. Bottom: K = 128.

4.1. Dynamic properties of bred vectors: Backward and covariant Lyapunov vectors195

We now probe how bred vectors and their stochastic modifications relate to dynamically relevant modes such as Lyapunov vectors196

which capture the asymptotic growth of infinitesimal perturbations, and thereby in how far they are dynamically adapted. The dynamic197

adaptivity of classical BVs was established in Pazó et al. (2010). We now show that SPBVs inherit this property from their parent198

BVs. In particular, we consider the relationship between bred vectors and backward Lyapunov vectors and covariant Lyapunov vectors.199

Backward Lyapunov vectors are initialised in the asymptotically distant past and are generated by solving the linear tangent model200

of the dynamical system under a Gram-Schmidt orthogonalisation procedure. The orthogonal backward Lyapunov vectors are not201

covariant under the linear tangent dynamics and all of them typically evolve under the dynamics into the leading Lyapunov vector202
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Figure 5. RDBV and BV for the L96 model for perturbation size δ = 0.1. The BVs are as in Figure 2. Top: K = 40. Bottom: K = 128.

Figure 6. Row-averaged C̄k,· from the covariance matrix (2) for SPBVs of the L96 system with various noise strengths σ = 1.0, σ = 1.25 and σ = 5.0 for K = 40.
The covariance of BVs is depicted as a reference. For K = 128 the plot is indistinguishable by eye.

(LLV). Covariant Lyapunov vectors, on the contrary, form a typically non-orthogonal basis of the tangent space and are mapped onto203

each other by the linearised tangent dynamics. The associated asymptotic growth rates of backward and covariant Lyapunov vectors,204

the Lyapunov exponents, are shown in Figure 1 for the L96 system. As BVs, the first few leading covariant Lyapunov vectors exhibit a205

localised spatial structure in the L96 system (not shown), with strong localisation for K = 128 and weak localisation for K = 40.206

We quantify the relationship between the respective BV ensembles and Lyapunov vectors by measuring the average projection of
BV ensembles onto backward and onto covariant Lyapunov vectors, and consider the following measure for the degree of projection

πni (t) =

∣∣∣∣ bn(t)

‖bn(t)‖ ·
li(t)

‖li(t)‖

∣∣∣∣ , (4)

where bn(t) denotes the nth bred vector ensemble member at time t and li(t) denotes the Lyapunov vector corresponding to the ith207

largest Lyapunov exponent at time t. We report here on the average degree of projection π̄i where we average πni (t) over time and over208
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Figure 7. Average projection π̄i of backward Lyapunov vectors for K = 40. Results are shown on a logarithmic scale. Top: BVs. Bottom: SPBVs with σ = 1.25.

the ensemble members. Note that π̄i = 1 corresponds to perfect alignment and π̄i = 0 corresponds to (on average) no alignment.209

210

There exist several efficient numerical algorithms to calculate the covariant Lyapunov vectors (Wolfe and Samelson 2007; Ginelli211

et al. 2007). We use here the algorithm by Ginelli et al. (2007) as described in Kuptsov and Parlitz (2012) to numerically calculate212

covariant Lyapunov vectors. We use a spin-up time of 2, 500 time units to converge to the set of backward Lyapunov vectors evolving213

forward in time, and a further 2, 500 time units to ensure convergence to the set of expansion coefficients of the covariant Lyapunov214

vectors that express the covariant Lyapunov vectors in the basis of forward and backward Lyapunov vectors respectively, evolving215

backward in time. Orthonormalisation of the backward Lyapunov vectors is performed at every time step.216

217

Figures 7 and 8 display π̄i for all i = 1, . . . ,K backward Lyapunov vectors for K = 40 and K = 128 respectively, for classical BVs218

(top) and SPBVs (bottom). It is clearly seen that both, classical BVs and SPBVs, project almost completely onto the first backward219

Lyapunov vector (the LLV) for small δ < 0.1 and are orthogonal to all other directions for both dimension sizes. When the perturbation220

size lies between 0.1 . δ . 8 for K = 40 and between 0.1 . δ . 5 for K = 128, BVs also project onto the next few backwards221

Lyapunov vectors. We shall see in Section 6, that for these perturbation sizes, BV ensembles have collapsed to a single member and222

have an ensemble dimension (to be defined below in (5)) strictly equal to 1 (cf. Figure 12). For δ > 1 the non-vanishing projections223

of BVs onto the next Lyapunov vectors stem from increasing fluctuations of the BV ensemble around the LLV. We observe that πni (t)224

may strongly fluctuate in time and individual members of a BV/SPBV ensemble may exhibit, locally in time, strong projections on225

higher Lyapunov vectors. In such cases when BVs/SPBVs do not fully align with the LLV, they lie typically in the subspace spanned226

by the first few Lyapunov vectors (not shown). For even larger values of the perturbation size, BVs do not significantly project onto the227

linear Lyapunov vectors as they evolved into truly nonlinear objects.228

Projections of BVs and SPBVs onto covariant Lyapunov vectors exhibit similar signatures as for backward Lyapunov vectors.229

Contrary to backward Lyapunov vectors, covariant Lyapunov vectors do not form an orthogonal basis. Furthermore, successive230

covariant Lyapunov vectors are likely to be localised in similar spatial regions to each other whereas this is not the case for backward231

Lyapunov vectors due to non-dynamical orthogonality constraint (Herrera et al. 2011). Hence fluctuations of BVs cause them to232

project onto several of the covariant Lyapunov vectors. In particular, we see strong projections of classical BVs onto covariant233

Lyapunov vectors with index i ≤ 7 for K = 40, and onto those with index i ≤ 12 for K = 128. As for backward Lyapunov exponents,234

the projection onto dynamically relevant low-index Lyapunov vectors drops off when BVs gain diversity at δ ≈ 8 for K = 40 and at235

δ ≈ 5 for K = 128. SPBVs feature weaker projections onto the higher-index covariant Lyapunov vectors with significant projections236

in the smaller range i ≤ 3 and i ≤ 6 for K = 40 and K = 128, respectively. This overall stronger projection of SPBVs to the low-index237

covariant Lyapunov vectors is caused by the ensemble averaging (SPBVs are generated from a single collapsed BV). As for backward238

Lyapunov vectors, the lower dimensional subspaces onto which BVs and SPBVs project onto can fluctuate over time, in particular for239
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Figure 8. Average projection π̄i of backward Lyapunov vectors for K = 128. Results are shown on a logarithmic scale. Top: BVs. Bottom: SPBVs with σ = 1.25.

larger values of the perturbation size δ (not shown). It is pertinent to notice that the projection of SPBVs onto the Lyapunov vectors240

weakens as σ is increased and saturates for sufficiently large σ, in particular in the weakly localised case K = 40 (not shown). We241

shall see below that there is a trade-off between providing the most ensemble diversity while preserving dynamic adaptivity for SPBVs.242

243

We conclude that BVs and SPBVs share similar localisation structure to that of the first few covariant Lyapunov vectors, and244

that for sufficiently small noise strength σ SPBVs inherit from BVs the desirable property of dynamical adaptivity. RDBVs, on the245

other hand, do not exhibit any significant average projections onto any of the backward or covariant Lyapunov vectors as they are246

unrelated to the local dynamics (not shown). RDBVs are hence dynamically not adapted. We mention that ETKF ensembles are also247

dynamically adapted. Contrary to BVs and SPBVs which project dominantly onto the first few Lyapunov vectors, ETKF ensembles248

project homogeneously onto the whole unstable subspace (not shown; see also (Ng et al. 2011)).249

5. Diagnostics250

To illustrate how SPBVs can be used as a reliable diverse ensemble with improved forecast skill we now introduce several diagnostics.251

In particular, we consider the ensemble dimension to measure the diversity of an ensemble, the root-mean-square error to quantify the252

forecast skill and several reliability measures to probe the probabilistic properties of an ensemble. This set of diagnostics has previously253

been used to study the performance of SPBVs and RDBVs (Giggins and Gottwald 2019).254

5.1. Ensemble dimension255

We quantify the diversity of an ensemble using the ”ensemble dimension” (Bretherton et al. 1999; Oczkowski et al. 2005), also known
as the ”bred vector dimension” (Patil et al. 2001). The ensemble dimension is a measure for the dimension of the subspace spanned by
a set of vectors. For an ensemble of N BVs {b(n)(t)}n=1,...,N at a given time t, the ensemble dimension is defined as

Dens(t) =

(∑N
n=1
√
µn

)2

∑N
n=1 µn

, (5)

where the µn are the eigenvalues of the N ×N covariance matrix C (cf. (2)). The ensemble dimension takes values between Dens = 1256

and Dens = min(N,D), where D is the total dimension of the dynamical system, depending on whether the ensemble members are257

all aligned or are orthogonal to each other. We consider in our numerical experiments the temporal average D̄ens to characterise the258

diversity of an ensemble.259
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Figure 9. Averaged absolute value projection π̄i of covariant Lyapunov vectors for K = 40. Results are shown on a logarithmic scale. Top: BVs. Bottom: SPBVs with
σ = 1.25.

5.2. Ensemble forecast skill260

To measure the forecast skill of an ensemble with N members X(n)
k , n = 1, . . . , N , we evaluate the root-mean-square-error (RMS

error) between the truth and the ensemble average. Denoting the ensemble average with angular brackets, we introduce the ensemble
mean

〈Xk〉 =
1

N

N∑
n=1

X
(n)
k (6)

and the site-averaged root-mean-square error between the truth Xtr
k and the ensemble average over M realizations as a function of the

lead time τ ,

E(τ) =

√√√√ 1

M

M∑
m=1

1

K

K∑
k=1

‖Xtr
k,m(τ)− 〈Xk,m〉(τ)‖2, (7)

where the index m = 1, . . . ,M labels the realisation. Similarly, to quantify the dispersion of the ensemble, we consider the site-
averaged root-mean-square spread (RMS spread)

S(τ) =

√√√√ 1

M

M∑
m=1

1

K

K∑
k=1

〈‖X(n)
k,m(τ)− 〈Xk,m〉(τ)‖2〉. (8)

5.3. Reliability261

The RMS error is not always the appropriate measure to quantify the performance of an ensemble in probabilistic forecasting. For262

example, if the probability density function has disjoint support, the ensemble average may not have a physical meaning and can result263

in a poor forecast. For probabilistic forecasts the reliability of an ensemble is more relevant. An ensemble is called perfectly reliable264

if the truth along with each ensemble member are independent draws from the same probability density function ρ(X). In perfect265

ensembles the ratio between the RMS error and the RMS spread approaches 1 as the ensemble size increases (Wilks 2006; Leutbecher266

and Palmer 2008). Under-dispersive ensembles, on the other hand, feature a ratio smaller than 1, whereas over-dispersive ensembles267
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Figure 10. Averaged absolute value projection π̄i of covariant Lyapunov vectors for K = 128. Results are shown on a logarithmic scale. Top: BVs. Bottom: SPBVs with
σ = 1.25.

feature ratios larger than 1. Furthermore, in reliable ensembles the truth is statistically indistinguishable from any given ensemble268

member, and each ensemble member has equal probability to be closest to the truth. This property can be probed in Talagrand or Rank269

histograms (Anderson 1996; Hamill and Colucci 1997; Talagrand 1999). For a given lead time, a Talagrand histogram is created by270

sorting the N ensemble members in increasing order of their forecast value to form a set of N + 1 bins. A histogram of probabilities271

of the truth falling into a bin i at the given lead time is then produced by counting the frequency that the truth falls into the bin i. A272

reliable ensemble implies a flat histogram as the truth should have equal probability of falling into any given bin. Under-dispersive/over-273

dispersive ensembles, on the other hand, result in histograms which are convex/concave in shape (Wilks 2006).274

6. Numerical results275

We now present numerical results demonstrating that SPBVs can be used as a reliable diverse ensemble with improved forecast skill276

in single-scale systems provided that BVs are not strongly localised. We shall present results for the strongly localised case with277

K = 128 and for the weakly localised case with K = 40 separately. We examine the ensemble diversity, forecast skill metrics such as278

the RMS error and RMS spread, as well as the reliability quantified by the error-spread relationship and the Talagrand diagram.279

280

The setup for the numerical simulations is as follows. We employ an Ensemble Transform Kalman Filter to perform the data281

assimilation and construct the analysis (Tippett et al. 2003; Wang et al. 2004). The analysis is constructed from a forecast with a perfect282

model and noisy observations with variance 0.01 (corresponding to observational noise with 2.75% of the climatological standard283

deviation), following Bowler (2006); Pazó et al. (2013). To focus on the performance of the bred vector ensemble rather than on the284

data assimilation, we use a large ensemble for the ETKF with K + 1 members to produce the analysis, preventing filter divergence and285

avoiding the need for localisation and inflation. The ETKF ensemble is spun-up for 500 time units before commencing the breeding286

cycles. The average analysis error for the K = 40 and K = 128 systems is 0.10 and 0.18, respectively, over 2, 500 forecasts. Ideally,287

the value of δ that results in a local minima of the RMS forecast error E matches the size of the analysis error. In practice, however, the288

perturbation size often needs to be larger to achieve acceptable forecast skill (Toth and Kalnay 1997; Magnusson et al. 2008; Giggins289

and Gottwald 2019).290

We employ a breeding cycle length of T = 0.05 time units. As is common practice in operational ensemble forecasting, pairs of291

positive/negative BVs are generated to ensure that the BV forecast ensemble represents the analysis mean at the initial forecast time.292

We consider BV ensembles consisting of N BV perturbations of size δ. For K = 40 we use N = 10 and for K = 128 we use N = 20293

ensemble members, which implies 5 and 10 independent breeding cycles for K = 40 and K = 128, respectively. Each ensemble294

member is then evolved freely under the L96 dynamics for some lead time τ . Forecasts are run for a total of 5 time units and we report295
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Figure 11. The bred vector from Figure 2 and the analysis error at its time of generation. Top: K = 40. Bottom: K = 128.

the results for lead times τ = 2.0 and τ = 4.0 time units for the forecast metrics presented in Section 5. A new forecast is created each296

1.0 time units. SPBVs have been generated using a noise strength of σ = 1.25. All metrics are averaged over M = 2, 500 forecasts.297

Seeding BV forecast ensembles from the analysis fields poses problems, as a good forecast ensemble not only should evolve into298

likely future states but also has to account for the uncertainty of the analysis. This is particularly a problem in the case of strongly299

localised BVs (and SPBVs) for K = 128, as the localisation inhibits sampling the uncertainty of the analysis which typically extends300

outside of the region of localisation and is distributed across the whole domain. Figure 11 shows snapshots of BVs and the analysis301

error (scaled to have norm equal to 0.1 to facilitate comparison) for the weakly localised case K = 40 and the strongly localised case302

K = 128. We remark that by construction, the spatial structure of SPBVs is similar to that of BVs. In the strongly localised case, it303

is clearly seen that there are large regions of significant uncertainty of the analysis which are not perturbed by the BV. In the weakly304

localised case K = 40 on the other hand, BVs are more evenly distributed over the whole domain, and thus more likely to capture the305

errors in the analysis.306

The lack of activity in sites remote of the region of their spatial localisation is likely to severely inhibit the BV/SPBV ensemble to307

evolve into states which contain the truth. We shall find below, that the property of localisation is detrimental for the dynamically308

adapted SPBVs in the L96 system (1) without scale separation, whereas it was essential in the multi-scale case in Giggins and309

Gottwald (2019). In particular we show that for K = 128 strong localisation implies poor reliability of SPBV ensembles. RDBVs,310

however, despite not being dynamically adapted, exhibit improved reliability and forecast skill compared to classical BVs. In the311

weakly localised case K = 40, SPBVs and RDBVs both constitute a reliable forecast ensemble with superior forecast skill compared312

to classical BV ensembles.313

6.1. Ensemble Dimension314

Figure 12 shows the average ensemble dimension D̄ens (5) as a function of δ for classical BVs, SPBVs with σ = 1.25, and RDBVs. For315

classical BVs the average ensemble dimension is D̄ens = 1 for δ . 8 and for δ . 5, for K = 40 and K = 128 respectively, indicating316

the collapse of BV ensembles. For these perturbation sizes, a BV ensemble typically collapses onto the LLV but can also for δ > 1,317

when the dynamics of the perturbation begins to feel the nonlinearity of the dynamics, align in a different direction, spanned by the318

first few leading Lyapunov vectors (cf. Figures 7-8). For even larger perturbation sizes δ > 8 for K = 40 and δ > 5 for K = 128, the319

nonlinear dynamics becomes dominant and the ensemble dimension increases rapidly. Perturbation sizes corresponding to D̄ens > 1,320

however, are unrealistic in the sense that they are much larger than typical analysis errors for the L96 model as reported in Bowler321

(2006), Ng et al. (2011) and Pazó et al. (2013). This implies that classical BVs in our setting lack sufficient diversity. We remark that322

the qualitative behaviour of D̄ens does not change with the number of independent ensemble members N .323

324
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Figure 12. Average ensemble dimension D̄ens as a function of δ for each ensemble generation method for the L96 system (1). The SPBV ensemble was generated using
σ = 1.25. Top: K = 40. Bottom: K = 128.

SPBVs and RDBVs exhibit a significant increase in the ensemble dimension. Both methods produce ensembles with a much larger325

ensemble dimension than the original BVs for all values of δ. SPBVs maintain a consistent ensemble dimension of D̄ens = 3.9 for326

K = 40 and D̄ens = 6.6 for K = 128, before increasing in conjunction with the BVs when δ is large. RDBVs support the highest327

ensemble dimension as they are independent from each other. They do not attain the maximum ensemble dimension D̄ens = N328

since they are not strictly orthogonal. The averaged ensemble dimension of SPBVs is closer to the maximum ensemble dimension of329

Dens = 5 for K = 40 than toDens = 10 for K = 128, reflecting the differing degree of localisation in the two cases; the multiplicative330

stochastic perturbation can generate a larger ensemble subspace the smaller the degree of localisation.331

332

The ensemble dimension of SPBVs increases for increasing values of the noise strength σ as shown in Figure 13 for SPBVs with333

δ = 0.1. The ensemble dimension approaches a limiting value of D̄ens = 4.3 for K = 40 and of D̄ens = 7.7 for K = 128. The limiting334

ensemble dimension is smaller than N for both K = 40 and K = 128. The difference is larger for the strongly localised case K = 128335

for the same reason as discussed above. The observed increase of the ensemble dimension with increasing noise strength may suggest336

that one should use sufficiently large noise strengths σ and moreover that the performance is insensitive to changes in σ past some337

threshold value. We will see that this is correct for the forecast skill and the reliability. However, as we have seen in Section 4.1338

dynamic adaptivity is lost for too large values of the noise strength σ.339

6.2. Ensemble Forecast Skill340

Figure 14 shows the RMS error E for BVs, SPBVs and RDBVs as a function of the perturbation size δ for lead times τ = 2.0 and341

τ = 4.0, both for the strongly localised case K = 128 and the weakly localised case K = 40. We also show as reference the climatic342

error Eclim = σclim ≈ 3.64 as well as the RMS error of an ETKF ensemble with a larger ensemble size of N = K + 1 = 41 and343

N = K + 1 = 129, respectively, to provide an upper bound for the forecast skill.344

Classical BVs exhibit the largest RMS error for both cases and both lead times and for all values of δ. The RMS error exhibits a345

local minimum for a designated perturbation size δmin. For K = 40 we find δmin = 0.05 for BVs for both lead times τ = 2.0 and346

τ = 4.0. For K = 128 we find for BVs δmin = 0.08 and δmin = 0.12 for lead times τ = 2.0 and τ = 4.0, respectively. Hence BV347

ensembles exhibit their minimal RMS error at perturbation sizes which are not consistent with the average analysis error of 0.10 and348

0.18 for K = 40 and K = 128, respectively. For perturbation sizes around δmin, BVs are collapsed to a single member with ensemble349

dimension D̄ens = 1 at both lead times. The RMS error assumes unacceptable high values for perturbation sizes which allow for a350

non-collapsed BV ensemble with D̄ens > 1 for δ & 8 (δ & 5 for K = 128).351

352
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Figure 13. Average ensemble dimension D̄ens of an SPBV ensemble with perturbation size δ = 0.1 as a function of σ for the L96 system (1) for K = 40 (with N = 5
ensemble members) and for K = 128 (with N = 10 ensemble members).

SPBV and RDBV ensembles exhibit a significant increase in forecast skill and consistently have smaller RMS error for all values353

of the perturbation size δ and lead times. For the smaller lead time τ = 2 we observe that all ensembles incur the same RMS error for354

sufficiently small values of the perturbation size δ. This is because for perturbation sizes δ which are significantly smaller than the355

analysis error, all ensembles are highly under-dispersive and the forecast error is dominated by the analysis error. SPBV and RDBV356

ensembles perform almost identically in the weakly localised case K = 40, due to their similar spatial structures, and both ensembles357

perturb significantly across the whole domain capturing the regions of non-trivial analysis error. Both the SPBV and RDBV ensembles358

feature an RMS error minimum at approximately δ = 0.1 for all lead times, which matches the size of the average analysis error,359

almost attaining the forecast skill of an ETKF ensemble with a much larger ensemble size of N = 41. We have checked that the360

minimal RMS error approaches the reference value provided by the ETKF for increasing ensemble sizes of SPBVs and RDBVs. This361

indicates that the ensembles are well-adapted to capturing the analysis error uncertainties in addition to capturing the dynamic error362

growth. In the strongly localised case K = 128, RDBVs consistently exhibit smaller forecast RMS errors compared to SPBVs. In the363

strongly localised case, the optimal perturbation size associated with the smallest RMS error depends on the lead time τ for SPBVs364

and RDBVs. For lead times τ = 2.0 we find δmin = 0.18 for SPBVs and δmin = 0.22 for RDBVs, consistent with the average analysis365

error of 0.18. The RMS error of RDBVs approaches the reference value provided by the ETKF ensemble for τ = 2.0. For τ = 4.0 we366

find δmin = 0.39 for SPBVs and δmin = 0.46 for RDBVs, which are both inconsistent with the average analysis error. Hence, in the367

strongly localised case the optimal perturbation size δmin of SPBVs and RDBVs does not match the average analysis for all lead times.368

This suggests that we may not be efficiently capturing the uncertainties of the analysis. The difference between the ETKF reference369

ensemble and the BV ensembles for K = 128 is larger than that for K = 40 due to the aforementioned strongly localised nature of the370

BV ensemble perturbations.371

372

We now discuss how the RMS error for SPBVs changes as the noise strength σ is varied. We recall that when σ → 0 SPBVs373

essentially reproduce the original BVs they were generated from, while once σ is sufficiently large, the ensemble dimension saturates374

at some fixed value due to the rescaling back to size δ (cf. Figure 13). The RMS error of SPBVs deviates rapidly from the value375

attained by BVs for increasing values of σ, and then asymptotes to a constant value for large σ (not shown). For the weakly localised376

case K = 40 the asymptotic value of the RMS error of SPBV is close to the one of RDBVs - the spatial structure of both ensembles is377

not related to the current state and their associated initial conditions evolve into random draws from the attractor, so both ensembles378

have the same statistical properties. For the strongly localised case K = 128, on the other hand, the asymptotic RMS error of SPBVs379

is larger than the one of RDBVs. In the localised case, SPBV ensembles have markedly different statistical properties to RDBVs as380

they sample locally with all ensemble members exhibiting non-vanishing entries in the same spatial region. We found that increasing381

σ past σ = 1.25 does not increase the forecast skill in terms of RMS error for the lead times considered here.382

383

The ensemble RMS spread S (8) for BVs, SPBVs and RDBVs as a function of the perturbation size δ is shown in Figure 15. For384

reference we also depict the corresponding RMS spread of an ETKF ensemble. The results are consistent with those of the ensemble385

dimension and of the RMS error E shown above. It is clearly seen that classical BVs are deficient in RMS spread. Classical BV386

ensembles exhibit a non-vanishing spread for small values of δ despite their ensemble dimension being only D̄ens = 1. This is entirely387

due to the chosen set-up of using pairs of positive and negative BVs, and is not indicative of any non-trivial diversity of the ensemble.388

Once D̄ens > 1 (cf. Figure 12) the RMS spread of BVs increases significantly. SPBVs and RDBVs exhibit significantly larger RMS389

spread compared to BVs. As for the RMS error, the differences between the RMS spread of RDBVs and SPBVs is more pronounced in390

the strongly localised case K = 128, reflecting the reduced ensemble space of SPBVs which are generated from a collapsed strongly391

localised BV by multiplicative perturbations, preserving the localisation. In the weakly localised case K = 40 the smaller RMS spread392

of SPBVs compared to RDBVs implies that SPBVs achieve the same forecast skill with less ensemble spread. In the strongly localised393

case K = 128 the increased ensemble spread of RDBVs positively impacts on their forecast skill and their RMS error.394

6.3. Reliability395

We now use the error-spread ratio and the Talagrand histogram to evaluate if the additional spread acquired by the stochastic396

modifications of BVs is beneficial in the sense that it leads to a reliable ensemble or whether it causes the ensemble to be simply397
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Figure 14. RMS error E as a function of δ for each ensemble generation method for fixed lead times τ = 2.0 and τ = 4.0. The dashed reference lines denote the climatic
error Eclim and the RMS error of an ETKF ensemble with K + 1 ensemble members at the respective lead times. Top: K = 40. Bottom: K = 128.

over-dispersive. The error-spread ratio, parameterised by lead time τ , is shown in Figure 16. The markers indicate the lead times398

of τ = 2.0, τ = 3.0 and τ = 4.0. The reference ETKF ensembles show a reliable one-to-one ratio. For the bred vectors and their399

stochastic modifications, each curve was obtained using a different value of the perturbation size δ, which corresponds to the optimal400

perturbation size producing the smallest RMS error at lead time τ = 4.0 (cf. Figure 14). For the weakly localised case K = 40 both401

SPBVs and RDBVs are close to the ideal error-spread ratio of 1, suggesting a reliable ensemble. Since the ensemble size N = 10 is402

relatively small, the error-spread curves lie just above the one-to-one ratio due to finite-size sampling error effects. On the other hand,403

for the strongly localised case K = 128 SPBV ensembles are over-dispersive for small lead times τ ≤ 2.0, becoming under-dispersive404

for lead times τ > 2.0. RDBV ensembles are seen to be over-dispersive for all lead times τ ≤ 4.0.405

406

Talagrand histograms are shown for each of the three forecast ensembles, averaged over all sites, in Figure 17, for lead times τ = 2.0407

and τ = 4.0. Each histogram was again obtained using the perturbation size δ corresponding to the respective minimal RMS error (cf.408

Figure 14). Consistent with the results on the error-spread ratio above, the Talagrand diagrams show that SPBV and RDBV ensembles409

are reliable with a flat histogram in the weakly localised case K = 40. The reliability of the stochastically modified BV ensembles is410

linked to the fact that they generate non-trivial variance in regions of non-vanishing analysis error. Consistent with the observed perfect411

one-to-one error-spread ratio, ETKF ensembles exhibit a flat Talagrand diagram (not shown).412

On the other hand, in the strongly localised case K = 128, when there is a strong discrepancy between the spatial structure of413

the analysis error and all of the SPBV ensemble members, SPBV ensembles do not lead to a flat Talagrand histogram, indicating414

an unreliable under-dispersive ensemble. We observe a high probability for the true state to lie outside the ensemble for both lead415

times. Remarkably, the interior bins of the histogram are relatively evenly populated and we do not observe the “U” shape typically416

associated with under-dispersive ensembles. The unusual shape of the Talagrand histogram in the strongly localised case with a flat417

region embedded between two peaks can be understood as follows. Consider an arbitrary component k of an SPBV away from the418

localised region of the parent BV, which is not significantly perturbed. If D̄ens = 1, then none of the members of the SPBV ensemble419

will be able to perturb this site. The initial conditions associated with these SPBVs at site k are therefore approximately equal to the420

analysis mean at that site. However, typically the true state is much further away in phase space from the analysis mean. After evolving421

the SPBV ensemble forward in time, for reasonable lead times the ensemble has likely not developed sufficient spread to enclose422

the truth within its support. Hence, in the corresponding Talagrand diagram the truth falls into one of the exterior bins. This explains423

the peaks at the edge of the Talagrand histogram of SPBVs observed in Figure 17. On the other hand, the non-trivial components of424

an SPBV corresponding to the localised region have comparable magnitude to that of the analysis errors. This ensures that there are425
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Figure 15. RMS spread S for forecast ensembles as a function of δ for each ensemble generation method for fixed lead times τ = 2.0 and τ = 4.0. The dashed reference
lines denote the climatic error Eclim and the RMS error of an ETKF ensemble with K + 1 ensemble members at the respective lead times. Top: K = 40. Bottom:
K = 128.

several components of the L96 model for which the true state is contained within the ensemble, contributing to the evenly distributed426

tally marks in the middle of the Talagrand histogram.427

RDBV ensembles display an unusual shape of the rank histogram for τ = 2.0 with two distinct modes in the strongly localised case428

K = 128. This is again linked to the mismatch between the spatial structure of localised BVs and the analysis error. Individual RDBV429

ensemble members do not efficiently sample the analysis error since each individual RDBV is localised. On the other hand it is likely430

that each site will be significantly perturbed by at least one of the RDBV members, implying that the true state will rarely be an outlier431

in the context of a Talagrand histogram. This combination of under- and over-dispersiveness leads to the bimodal structure observed in432

Figure 17 for RDBVs.433

We remark that in the strongly localised case K = 128, increasing the perturbation size δ does not mitigate the issue of unreliability.434

We found that the values of δ needed to generate a flat Talagrand histogram feature significantly larger forecast errors (not shown).435

Likewise, improving the accuracy of the observations does not allow for SPBVs and RDBVs to be reliable, but the associated smaller436

analysis error only causes the poor reliability to occur for an associated smaller optimal perturbation size δ.437

438

Naively we may expect that increasing σ will lead to more reliable SPBV ensembles. As for the RMS forecast error, we find that439

reliability measures are insensitive to changes of σ > 1.25. The reliability of SPBV ensembles saturates for σ ≥ 1.25 and is more440

under-dispersive for σ < 1.25 for both dimension sizes K (not shown).441

442

We remark that the property of an ensemble to be dynamically adaptive, i.e. their relationship with covariant Lyapunov vectors and443

that they are conditioned on the current state, does not seem to be necessarily promoting improved forecast skill and reliability. In444

fact, the dynamically non-adapted RDBVs perform better than the dynamically adapted SPBVs with regards to forecast skills for both445

K = 40 and K = 128, and in the weakly localised case K = 40 they are also slightly more reliable.446

7. Discussion and outlook447

We have explored the framework of stochastically modified bred vectors, developed originally for multi-scale systems in Giggins448

and Gottwald (2019), for systems without scale separation. We considered two stochastic modifications, SPBVs which preserve any449

eventual localisation of the their parent BVs and their spatial correlation structure, and RDBVs which do not do so. SPBVs were450

constructed to sample the probability density function conditioned on the current state whereas RDBVs are not conditioned on the451

current state but may evolve into future states which do not reliably estimate the probability density function at a given lead time.452
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Figure 16. RMS error vs RMS spread, parameterised by increasing lead times from τ = 0 to τ = 5.0. Each bred vector ensemble was generated using a perturbation sizes
δmin corresponding to minimal RMS error for each ensemble type at lead time τ = 4.0 (cf. Figure 14). The markers indicate the specific lead times τ = 2.0, τ = 3.0 and
τ = 4.0. The grey dot-dashed line indicates a one-to-one ratio of RMS error and RMS spread, corresponding to a reliable ensemble. Top: K = 40. Bottom: K = 128.

Figure 17. Talagrand diagrams for forecast ensembles for lead times τ = 2.0 and τ = 4.0. Each ensemble was generated using a perturbation sizes δmin corresponding
to minimal RMS error for each ensemble type and lead time (cf. Figure 14). Top: K = 40. Bottom: K = 128.
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The difference in construction renders SPBVs dynamically adapted in the sense that they project onto dynamically relevant covariant453

Lyapunov vectors whereas RDBVs are not dynamically adapted. Using numerical simulations of the single scale Lorenz 96 model we454

have shown that SPBVs and RDBVs successfully mitigate the collapse to a single ensemble member of classical BVs with significantly455

increased ensemble dimension for perturbation sizes δ in the range of typical analysis errors. Related to this, the forecast skill - as456

measured by the RMS error – and the ensemble reliability – probed by the error-spread ratio and the Talagrand diagram – are markedly457

improved by the stochastic modifications.458

We identified the property of localisation of fast growing perturbations which is often observed in spatially extended systems to459

be a crucial aspect for the performance of stochastically modified BVs. Whereas localisation is advantageous to condition on the460

current state, it is detrimental in allowing the ensemble to perturb spatial regions of non-vanishing analysis error which are outside461

the localised region. This causes SPBVs to be under-dispersive (independent of the noise strength). RDBVs exhibit the better forecast462

skill, despite not being dynamically adapted. In the weakly localised case, RDVs and SPBVs perform equally well, and behave463

(per construction) statistically similarly, and both ensembles significantly improve the forecast skill and reliability of classical BV464

ensembles. Our results suggest that the applicability of SPBVs to single-scale systems is limited to situations with small degree of465

localisation.466

467

To counteract the detrimental effect of localisation in SPBVs one could apply additive noise at all sites outside the active localised468

region, similar to the method proposed in Greybush et al. (2013). We tried this in the L96 model but did not find that it overcame the469

problem. The level of noise required to account for the analysis error was found to be such that the noise to BV-signal ratio was too470

large and the perturbation would be close to a Gaussian random perturbation. This may be though an artefact of the L96 model and the471

addition of spatially homogenous noise on SPBVs may still mitigate against the problem of localisation in more complex models.472

473

We increased the diversity by introducing stochasticity directly to the bred vectors. Diversity may also be introduced stochastically474

by adding noise to the evolution equations generating the bred vectors. This can be done in a dynamically consistent way in the475

context of multi-scale dynamics (see for example Gottwald et al. (2017) and references therein). For multi-scale dynamics exhibiting476

rapid regime transitions it was moreover shown in Mitchell and Gottwald (2012); Gottwald and Harlim (2013) that stochastically477

parametrised forecast models for the slow variables significantly improve the analysis of an ETKF as well as the ensemble’s reliability.478

It would be interesting to see if such stochastically perturbed dynamical models can also be used to improve the diversity of bred479

vector ensembles.480

481

We would like to stress that our work only considers bred vectors here as a method for probabilistic forecasting and is concerned482

with improving the breeding method. We do not attempt to compare different methods such as ensemble Kalman filter ensembles,483

singular vectors and other methods, and to determine their individual merits. We used here as a reference ETKF ensembles with much484

larger ensemble dimension than the bred vector ensembles. The ETKF ensembles perform very well in the L96 model, providing485

superior forecast skill and reliability while also being dynamically adaptive. However, which ensemble method performs optimally as486

a forecast ensemble is in fact situation dependent, as pointed out, for example, recently by O’Kane et al. (2019). The authors found487

that in a coupled atmosphere ocean model forecast ensembles initialised using bred vectors with perturbation sizes tuned to capture488

the tropical Pacific thermocline variability, are best suited for ENSO forecasting, compared to ensembles initialised from ETKFs.489

490

We caution the reader that one cannot simply extrapolate the performance of BVs and their stochastic modifications, SPBV and491

RDBV, observed in the setting of the L96 toy model to an operational setting. Realistic geophysical fluid models involve the intricate492

interplay of various processes running on numerous moderately separated time-scales with varying degrees of localisation of error493

growth, and may exhibit regime transitions between meta-stable states. In realistic operational forecasting scenarios, uncertainty in494

saturated sub-synoptic processes such as convective events often generate sufficient variability in the synoptic scales, and thereby495

prevent BVs from collapsing onto a single BV (Toth and Kalnay 1997). On the other hand, regime transitions often occur on fast time496

scales with rapid error growth, potentially exacerbating the ensemble collapse of classical BVs to a single ensemble member. Our work497

shows how to mitigate against potential under-dispersive BV ensembles (Palmer 2019) without significant additional computational498

cost. In particular, our work here on single-scale dynamics and our previous work on multi-scale dynamics (Giggins and Gottwald499

2019) have identified the degree of time-scale separation and the degree of localisation as key to the performance of the proposed500

stochastic modifications; whereas localisation of error growth is crucial for the good performance of SPBVs in multi-scale dynamics,501

caution needs to be taken in the case of strongly localised error growth in situations without strong scale separation. The respective502

performance of SPBVs and RDBVs in an operational setting or in other realistic geophysical fluid flow applications will depend on the503

situation-dependent interplay of (moderate) time-scale separation and localisation.504
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