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Steady, nonpropagating, fronts in reaction diffusion systems usually exist only for special sets of
control parameters. When varying one control parameter, the front velocity may become zero only
at isolated values~where the Maxwell condition is satisfied, for potential systems!. The
experimental observation of fronts with a zero velocity over afinite intervalof parameters, e.g., in
catalytic experiments@Barelko et al., Chem. Eng. Sci.,33, 805 ~1978!#, therefore, seems
paradoxical. We show that the velocity dependence on the control parameter may be such that
velocity is very small over a finite interval, and much larger outside. This happens in a class of
reaction diffusion systems with two components, with the extra assumptions that~i! the two
diffusion coefficients are very different, and that~ii ! the slowly diffusing variables has two stable
states over a control parameter range. The ratio of the two velocity scales vanishes when the
smallest diffusion coefficient goes to zero. A complete study of the effect is carried out in a model
of catalytic reaction. ©2000 American Institute of Physics.@S1054-1500~00!01903-0#
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Front propagation plays a crucial role in the dynamics of
extended systems. They separate various phases of th
systems, and their motion depends on the relative stabil-
ity of these phases, which depends on some external co
trol parameter. Zero velocity „motionless… fronts are rare
solutions in the sense that they typically appear at most
once when varying one control parameter. This is what is
expected from general considerations in variational sys-
tems „notion of Maxwell point…. The experimental obser-
vation in catalytic reactions of ˆ˜it intervals ‰ of control
parameters where the front velocity is zero is in this con-
text very surprising. In this article we analyze this prob-
lem theoretically. Namely, we show that the phenomenon
of persistent zero velocity can be understood when the
system is described by at least two reaction diffusion
equations, with two assumptions about the special form
of the equations„existence of two very different diffusion
coefficients, and bistability of the slowly diffusive vari-
able over a range of control parameters…, compatible
with the existing models of catalytic activity over a plati-
num wire.

I. INTRODUCTION

Reaction diffusion waves are observed in a wide ran
of contexts, including combustion, chemical waves in hom
geneous systems, in the presence of a catalytic element
in a number of biological systems.1–4 In the case where sev
eral equilibrium states coexist, front solutions may descr
how a region in the more stable phase grows at the exp

a!Electronic mail: krinsky@inln.cnrs.fr
7311054-1500/2000/10(3)/731/7/$17.00
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of a less stable state.5 Control parameters, such as tempe
ture, modify the nature of the equilibrium states. In gene
for a special value of the external parameter, the two inv
tigated phases have the same stability. In a thermodyna
context, this occurs at the Maxwell point, where the fr
energies of the two states are equal. In this situation,
front solutions separating the two states have a zero velo
This is however a rather special case, corresponding
restricted set of values of the external parameters~a set of
codimension 1!.

Mathematically, reaction diffusion systems are govern
by partial differential equations of the type

] tu5 f m~u!1D]x
2u, ~1!

wherem is the control parameter. Whenu is a scalar func-
tion, that is, when there is only one reacting species, the fr
separating the two locally stable statesu2 andu1 has a zero
velocity when the following~Maxwell! condition:

E
u2

u1

f m~u!du50, ~2!

is satisfied. Equation~2! is a relation between the contro
parameters. As a consequence, if one varies only one co
parameter, steady front solutions exist only at isolated val
of the control parameter, and not on a whole interval.

Even for a reaction diffusion system with an arbitra
number of variables, zero velocity fronts may be observ
only for a subset of codimension one of control paramete6

This results from very general geometric considerations. S
tionary front solutions of reaction diffusion systems withn
components obey the ordinary differential equation

D]x2u1fm~u!50, ~3!
© 2000 American Institute of Physics
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whereu5(u1 , . . . ,un) andD is an invertible, positive defi-
nite matrix. Equation~3! defines a 2n-dimensional dynami-
cal system which is reversible~invariant underx→2x).
Front solutions correspond to heteroclinic trajectories, le
ing u2 when x→2` and approachingu1 when x→1`.
Because of the reversibility, the unstable manifold ofu2 ,
Wu(u2), defined as the set of solutions such thatu→u2

whenx→2`, and the stable manifold ofu1 , Ws(u1), the
set of solutions such thatu→u1 whenx→1`, are both of
dimensionn. A heteroclinic trajectory can be found when th
two manifolds intersect along a line,~a one-dimensiona
manifold!, in the phase space of dimension 2n.

Geometric arguments show that this does not hap
unless an extra condition is imposed on the set of exte
parameter. As follows from the transversality theory~see, for
example, Ref. 7! the dimension of the intersection of tw
manifolds,A andB, in N-dimensional space is generically

dim~AùB!5dim~A!1dim~B!2N. ~4!

In our case,N52n and dimWu(u2)5dimWs(u1)5n, so
the dimension of the intersection of the two manifolds
zero. To make it equal to one, as required for existence of
heteroclinic trajectory, an extra condition should be impos
to the set of control parameters, that forces the dynamic
be restricted to a lower dimension space.7

This proves the result stated above: Stationary front
lutions of the partial differential Eq.~3! with the proper
boundary condition exist only for a subset of external para
eters, of codimension one.6

In many experiments, zero velocity fronts are observ
at one special value of the control parameter, in full agr
ment with the general considerations above. In contrast,
experimental observation that zero velocity fronts may e
over a wholeinterval of external parameters seems parado
cal. This phenomenon has been observed in waves of c
lytic oxidation of ammonium over catalytic wires,8 as well as
in transition from nucleate to film boiling over a heat gen
ating element, a situation that may be described phenom
logically by reaction diffusion systems.9 An explanation in-
volves the multivalued~hysteretic! character of the function
f m in Eq. ~1!. The hysteresis is heuristically described w
the help of an extra discrete variable, specifying wh
branch of the function governs the dynamics of the system10

In this work, we show that fronts with avery small velocity
may exist over a finite range of parameters, and with a m
larger velocity outside, in a class of coupled reaction dif
sion equations for two variablesu1 andu2 with the following
features:H1 the two diffusion coefficients are extremely di
ferent, sayD1@D2, andH2 the variable with the small dif-
fusion coefficient has two stable steady states over a rang
control parameters.

Because of the hypothesisH1, the width of the region
where the variableu2 changes significantly is very narrow
AssumptionH2 implies that the reaction term of the variab
with the largest diffusion coefficient,u1, has several
branches, and in this sense, is multivalued. Byvery small
velocity, we mean that the velocity is controlled by the sma
est diffusion coefficientv;AD2. This is possible when a
ownloaded 26 May 2009 to 129.78.72.28. Redistribution subject to AIP lic
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Maxwell condition, Eq.~2! for the variableu1 is satisfied.
When this condition cannot be fulfilled, fronts propagate a
much larger velocity,v;AD1.

Physically, the fact that the velocity may be very sm
over a finite range of control parameters, and much lar
outside this range provides an explanation for the phen
enon reported in Refs. 8 and 9. In experimental systems,
ratio D2 /D1 can be as small as;1026, therefore, making
the small velocity (v;AD2) 3 orders of magnitude smalle
than the fast velocity (v;AD1).

The conditionsH1 andH2 are met in activator-inhibitor
systems, with a long range inhibition (u1 plays the role of
the inhibitor, andu2 of the activator!.11 As such, these as
sumptions are very plausible in a number of contexts.

We focus here on the problem of chemical reaction o
a catalytic element, which we study with the help of an e
plicit, although somewhat approximate model of catalytic
action, described in Sec. II.

A number of analytic tools have been developed to
vestigate excitable systems with long range inhibition.
particular, much effort has been devoted to the appearanc
localized structures in these systems~such as the ‘‘hot
spots’’12 observed in catalytic reaction!, see among
others.11,13–16Using similar analytic techniques, we invest
gate the existence and the structure of slow fronts in
model of catalytic reaction. The analytic results are co
firmed by our numerical study, see Sec. III.

Finally, we investigate the transition from slow to fa
waves, when the Maxwell condition cannot be satisfied.

II. THE MODEL

In this section, we introduce the model to describe ca
lytic reactions over a platinum wire immersed in a g
stream at temperatureT0. The dynamics of reactive system
involves, in general, many variable. The model we use
only two variables~the others may be considered adiaba
cally eliminated!: T, the temperature, andn, interpreted as
‘‘active center’’ density. This variable, introduced original
by analogy with chain branched reactions, is supposed
reflect structural changes at the surface of the catalyst
observed very clearly in a number of recent experiment17

Other theoretical descriptions of this phenomenon were p
posed in Refs. 18 and 19. We will simply use the fact th
(T,n) obey a set of coupled reaction diffusion equations, a
that the two diffusion coefficients,DT andDn ~respectively,
for temperature and for active centers!, have very different
orders of magnitude

Dn!DT . ~5!

Physically this comes from the fact that a catalytic wire ha
very good thermal conductivity, whereas changes in surf
conformation propagate very slowly along the wire.

The model considered explicitly in the present work i

] tT5DT]x
2T1F~T,n!, ~6!

] tn5
Dn

a
]x

2n1a f~T,n!, ~7!

with
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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F~T,n!5n~11tanh~g~T2T* !!!2d~T2T0!, ~8!

f ~T,n!5k1~T!n2~12n!2k2~T!n1k3~T!. ~9!

The scaling factora is introduced for later purpose. It will be
set equal to 1 unless stated otherwise. The first term in
equation forF, Eq. ~8!, is the production term. It is propor
tional to n, expressing the fact that the reaction can proc
only in the presence of active centers. The assumed temp
ture dependence is an approximation, which reproduces
main qualitative features of a more realistic dependence:
reaction does not proceed at temperatures appreciably b
T* , and the reaction rate saturates at high temperature
the second term, effectively a loss term, the temperatureT0

of the gas stream is taken as our control parameter.
dynamics of active centers is controlled by the reaction te
Eq. ~9!, which can be justified experimentally.20 The terms
ki(T) were effectively shown to be Boltzmann factor
ki(T)5ki

0(T)exp(2Ei /RT). We have simplified these fac
tors, and takenk1(T)5aT, k2(T)51 and k3(T)5bT,
which provides a qualitatively correct description of the a
tive center dynamics.

At a given value ofT, the reaction termf (T,n) is a cubic
polynomial inn, which possesses either three real roots: O
stable, typically close to 1, and two close to 0~one stable
and one unstable!, or just one stable real root, close to 1
large temperature, and close to 0 at small temperature,
Fig. 1~a!. The disappearance of the branches nearn'0 re-
sults from the creation term,k3(T) in Eq. ~9!. Because of
these features, the front solutions we are looking for m
exist only in an interval of temperature. They do not ex
above the temperatureTu where the lower branches ofn
disappear, and belowTl where the higher branch disappea
Figure 1~a! shows that the assumptionH2, stated in the pre-
vious section, is satisfied in the model we are considerin

Since the variablen is essentially bistable over a rang
of temperature, the functionF(T,n) has two branches, cor
responding to each value ofn: F6(T)[F(T,n6(T)). One
may approximate the upper branchF1(T), for T*Tl and for
large enoughT0 andg, by

F1~T!'22d3~T2T0!, ~10!

and the lower branchF2(T) for T<Tu by

F2~T!'2d3~T2T0!, ~11!

see Fig. 1~b!. We mention that for sufficiently largeg, mod-
els ~6!–~9! has three~and even four! stable states coexistin
in a limited range of values ofT0. This leads to unusua
regimes of propagation, studied, for example, in Ref. 21.
will not consider these phenomena.

Our analytic study of the reaction diffusion system Eq
~6!–~9! was complemented by a numerical study. The re
tion diffusion system was discretized by using finite diffe
ences and integrated in time by a Crank–Nicholson met
in a finite domain, with zero flux boundary conditions.
order to look for front solutions, steadily propagating with
finite velocity v, we replaced in Eqs.~6! and ~7! ] t by ] t

2v]x ~which amounts to use a frame moving at a const
velocity!, and adjustedv so as to reach a steady state. Re
lution in this problem is a serious concern, since, as sho
ownloaded 26 May 2009 to 129.78.72.28. Redistribution subject to AIP lic
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later, the front inn is very sharp. We insisted that the regio
where n varies fromn'0.2 andn'0.8 contained at leas
five grid points. Too low a resolution resulted in unphysic
oscillations in then profile. We estimate our numerical erro
to be at worse of the order of 1%.

III. SLOW FRONTS

We look for front solutions corresponding to a hot, r
active region (n'1), propagating into a colder, inactive re
gion (n'0). The mathematical treatment presented in t
section is similar to the one used in Ref. 13 to analyze
existence of localized structures in a system with an activa
and a long-range inhibitor.

In all cases, when solutions exist, the jump inn occurs
over a very narrow domain, much thinner than the reg
over which temperature jumps. This is a consequence of

FIG. 1. Bistability in the catalytic model.~a! The roots off (n,T)50 in the
(T,n) plane@Eqs.~6! and~7!#. Three branches of solutions are observed
Tl<T<Tu , the highestn1(T) and the lowestn2(T) are stable.~b! The
functionF6(T)[F(T,n6(T)). As T0 increases, the two branches move u
The parameters in Eqs.~8! and ~9! are a52.5, b50.002, g51.8, T*
52.4, d50.4, T053.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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~5! ~our hypothesisH1). One of the main ideas consists
looking for solutions of then equation by simply treatingT
as a constant, equal toTj . We first consider the case whe
the polynomial inn, f (n,Tj ), has three roots,n2 , n1 and
ni , with n1.ni.n2 ; n1'1 andn2'0. Steadily propa-
gating front solutions can be readily found by replacing] t by
2v]j ; j5x2vt, in Eq. ~7!

n~j!5
n11n2

2
2

n12n2

2
tanhmj, ~12!

m5
n12n2

2 S aTj

2Dn
D 1/2

, ~13!

v5S DnaTj

2 D 1/2

~n11n222ni !uT5Tj
. ~14!

This solution describes a front propagating at a velocityv
;(DnaTj /2)1/2, the variablen changing fromn'0 to n
'1 over a distance;(Dn /Tj )

1/2. This velocity is propor-
tional to ADn and hence quite small.

So far, we have not determined the temperatureTj ,
which remains a free parameter in Eqs.~12! and ~14!. In
order to obtain a consistent solution, one has to solve sim
taneously theT-equation, Eq.~7!, with the condition thatn
jumps fromn2'0 to n1'1 at T5Tj . The equation forT
can be solved by assuming thatn is discontinuous whenT
5Tj , which is justified since the region wheren jumps is
much narrower than any other distance in the problem. T
allows to replace the original equation~7! by

2v]jT5F6~T!1DT]j
2T. ~15!

We consider the case where the velocity is positive, so
system is in the low~respectively high! temperature state
whenj→1` ~respectively,j→2`). Imposing that the lo-
cation of the front for then variable isj50, the branchF2

~respectively,F1) must be chosen forj>0 ~respectively,
j<0). The problem can be solved analytically whenF6 is
replaced by its approximate form, Eqs.~10! and ~11!. By
solving in each subdomain, and imposing continuity of t
function and its derivative at the boundary, one obtains

T~j!5T01~Tj2T0!exp~a2j! for j>0 ~16!

and

T~j!5T11~Tj2T1!exp~a1j! for j<0, ~17!

where

v5S DTd

2
D 1/2 ~T11T022Tj !

A~T12Tj !~Tj2T0!
,

~18!
a6[~v/DT!~21/26A1/41DTd/v2!,

andT15T012/d.
In principle, compatibility of Eqs.~14! and~18! fixes the

value ofTj . Since according to Eq.~18!, the front velocity is
proportional toADT, which isa priori much larger than the
velocity given by Eq. ~14!, one obtains (T11T022Tj )
5O(ADn /DT). In the limit Dn /DT→0, and in the range
where Eqs.~10! and ~11! apply, one hasTj5(T01T1)/2.
This coincides with the Maxwell condition
ownloaded 26 May 2009 to 129.78.72.28. Redistribution subject to AIP lic
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T1

F~T,n~T!!dT50. ~19!

Quite generally one expects in the limitDn /DT→0 the ve-
locity to be given from Eq.~14! with Tj determined from the
Maxwell condition ~19! with F5F2 (F5F1) for T,Tj

(T.Tj ).
Importantly, because the branchesn1 andn2 exist only

in a finite interval of temperature, the Maxwell constructio
is possible only in a finite interval of values ofT0. The
disappearance of then1 branch atT5Tl and then2 branch
at T5Tu implies that the Maxwell construction, Eq.~19!, is
possible only ifTl<T01T1)/2<Tu , or equivalently,

Tl21/d<T0<Tu21/d. ~20!

In our model the lower limit is only slightly below the zer
of the ~slow! velocity.

The existence of slowly propagating fronts has be
thoroughly checked numerically. An example of such a
lution is shown in Fig. 2: Figure 2~a! shows then-front, and
Fig. 2~b! shows theT-front. These figures clearly demon
strate the widely different scale of variations for theT and
the n-profiles.

The dependence of the velocityv on T is shown in Fig.
3. It is seen that the slow fronts are observed in an interva
control parameter values where the Maxwell construction
possible. In this range, slow waves are observed: The
merically observed values of the velocity are well describ
by Eq. ~14!. The dependence of the velocity onADn has
been explicitly checked, see Fig. 3~b!.

In the limit Dn /DT→0, the temperatureTj is deter-
mined by imposing the Maxwell condition, Eq.~19!, and the
velocity of the front is small, of orderADn. Although the
calculation has been carried out completely for a particu
model, the conclusion can be generalized for a wide clas
functions. This provides a justification of the ideas put fo
ward in order to explain a number of experimental facts8,9

and of the work of Petchatnikov and Barelko.10

When the condition for existence of slow fronts, E
~19!, is not satisfied, slow solutions cannot exist.

IV. FAST FRONTS

Our numerical results show that steadily propagat
front solutions still exist, even when the Maxwell conditio
Eq. ~19! cannot be satisfied. Figure 3 shows that the veloc
increases sharply whenT0.Tu21/d, indicating that these
fronts have a much larger velocity@see Eqs.~10, ~11!, and
~20!#. The aim of this section is to characterize these f
fronts. We choose to focus here on the disappearance of
fronts aboveT0.Tu21/d. The fast fronts observed on th
low-temperature side could be described in a similar way,
to inessential technicalities.

Figure 4 shows an example of front solutions whenT0

.Tu21/d. Because of the fact thatDn /DT!1, the region
wheren jumps is found to be very narrow compared to t
length over whichT varies, and therefore the temperature
essentially constant (5Tj ) in the region of the jump. The
structure of fast fronts is in this sense comparable to
structure of slow fronts. However, the gradients observed
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp



d

an

n
o

e

d

,
on-
-
the

y
n
ity
-
es

-

ua-
rm

f

ip

t

d
he

735Chaos, Vol. 10, No. 3, 2000 Zero velocity fronts

D

the fast front case are even larger than the ones observe
slow fronts, compare Figs. 2~a! and 4~a!. In addition, one
notices a clear lack of symmetry between the upper part
the lower part of then front: the value ofn reachesn2 rather
slowly, compared to the sharpness of the front between
'0.3 andn50.9. The contrast between the spatial extent
the foot and the high gradient region increases witha @see
Eq. ~7!#. Numerically, the value ofTj is in the intervalTu

<Tj<T011/d.
The fact that the jump inn may occur at a temperatur

higher thanTu seems at first sight paradoxical, since then2

branch disappears aboveTu , hence, the solution is expecte
to jump to the other stable branch,n1'1 aboveTu . The
explanation for the high values of the temperatureTj is that
although the branches of solutions disappear aboveTu , the
function f, see Eq.~7!, remains small nearn'0 for T
>Tu , hence, the jump inn doesnot coincide with the dis-
appearance of then2 branch. The temperatureTj on the

FIG. 2. Structure of a slow front.~a! The n profile, blown up in the front
region.~b! The T profile, over the entire domain. Thex range in~a! is 100
times smaller than in~b!; the temperature is essentially constant in then
front. The parameters are as in Fig. 1,Dn51026 andDT51023.
ownloaded 26 May 2009 to 129.78.72.28. Redistribution subject to AIP lic
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other hand depends on the strength of the nonlinear termf.
To analyze the problem, we make use of the dimensi

less parametera introduced in Eq.~7! to enhance the nonlin
earity. In the temperature range where slow waves exist,
front velocity is independent ofa. However, the width of the
front in n becomes smaller whena increases, as predicted b
Eq. ~12! and ~13!. The situation changes dramatically whe
slow fronts no longer exist. Figure 3 shows the front veloc
for several values ofa, for an otherwise fixed set of param
eters. Asa increases the width of the front again becom
smaller, the jump occurs nearer toTu , and the front velocity
increases. In the limita→` the velocity tends to that ob
tained from Eq.~18! with Tj5Tu . It is evident, and we also
checked numerically, that the diffusive term in Eq.~7! be-
comes very small, compared to the other terms in the eq
tion, whena increases. This suggests that the diffusive te
may be dropped when considering large but finitea.

Since the jump inn occurs over a very narrow region o
space, at a fixedTj , the approximate solution Eqs.~16! and
~17! for T should still be valid, as well as the relationsh
between the velocityv and Tj , Eq. ~18!. Indeed we have
checked that Eq.~18! numerically works very well, and tha

FIG. 3. Velocity of the front as a function of control parameterT0. ~a! The
slow fronts are observed in an interval (0.4,T0,5.6). Parametera is in-
troduced in Eq. 7.~b! Influence of the diffusion coefficients. The dashe
lines show the fit by Eq.~14!. Same parameters as in Figs. 1 and 2. T
upper curve corresponds toDn51026 andDT51023, while the lower curve
corresponds toDn51027 andDT5531024.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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the temperature profile is made of two exponentials, as
dicted. To completely determine the solution, one has
compute the value ofTj . Thus the increase of the velocityv
when a increases is related to the fact that theTj to be in-
serted in Eq.~18! becomes closer toTu . The structure of the
front may be completely determined in the largea limit, as
we now explain.

The disappearance of then2 branch forT.Tu means
that the functionf can be parametrized forT.Tu by

f ~n,T!5aTu~n12n!~~n2n* !21h~T2Tu!!, ~21!

where to leading ordern1 , n* , andh are taken atT5Tu .
In addition, we use the numerically verified fact that t

temperature profile is essentially linear betweenTu and the
region where the variablen jumps. The fact that fora→`
one knows the temperature dependence onj from Eqs.~16!
and ~17!

T~j!.Tu2uj, ~22!

FIG. 4. Structure of a fast front.~a! and~b! are the same as in Fig. 2. A clea
lack of symmetry between the upper and the lower parts of then front is
seen in~a!. The parameters are as in Fig. 1,T055.9, a532, DT51023 and
Dn51.631025.
ownloaded 26 May 2009 to 129.78.72.28. Redistribution subject to AIP lic
e-
o

with u5(Tu2T0)a25(Tu2T1)a1 , leads, after substitu
tion in Eq.~7!, and neglecting the diffusion term in the larg
a limit, to

2v]jn5aaTu~n12n!~~n2n* !22lj!, ~23!

wherel5uh.
In order to solve Eq.~23!, we impose as a boundar

condition thatn(j) is, for large, positive values ofj, equal to
n2(j), the lower branch of solution. With this boundary co
dition, one may decompose space into~i! a regions where
n!n1 , so the equation reduces to the Riccati equati
2vdn/dj5aaTun1((n2n* )22lj), and ~ii ! a region
wheren is large.

In region ~i!, the parametera can be scaled away from
the Riccati equation

2
dn̄

dj̄
5~ n̄22 j̄ !, ~24!

by introducing n5n* 1en̄, j5 f j̄; e5(v/a)1/3(l/
aTun1)1/3 and f 5(v/a)2/3(1/aTun1)2/3l21/3. The solution
of this equation, with the boundary conditionn̄850 at j̄

50 has a finite-time singularity,n̄;1/(j̄2 j̄0) at j̄0

'21.99. For other boundary condition the value ofj̄0 is
changed.

In region~ii ! wheren is larger, the (n12n) term cannot
be approximated by a constant any longer. Using the num
cal results, we expect that the front is very steep, soj in the
right-hand-side~rhs! of the Riccati equation may be replace
by a constant. Scaling distances in the front region byj
5j(v/aaTu), one readily finds in the front region

2
dn

dj
5n2~n12n!, ~25!

which can be integrated by quadrature. Importantly, the
lution of Eq. ~25! and the singular solution of Eq.~24! have
a common domain of validity, allowing a formal matching

The result of this analysis is that the front is located a
distance;(v/a)2/3 from the location where then2 branch
disappears. Using again the fact that temperature is linea
the region considered, Eq.~22!, and the dependence ofv on
Tj , Eq. ~18!, our analysis predicts that the front veloci
behaves, for large values ofa, as

v~a!5v~a5`!2const.a22/3. ~26!

In addition, our analysis predicts that the front is very sha
~size of orderv/a!, with a very wide precursor ahead, of siz
(v/a)2/3.

This is in full agreement with our numerical results. F
a set of parameters, we have varied the parametera in the
range 1<a<128. The width of the front defined as the di
ference between the points wheren50.2 andn50.8 is found
to scale asv/a, and the distance between the point whe
T5Tu and the location of the jump behaves as (v/a)2/3.
Figure 5 shows the velocityv as a function ofa22/3, dem-
onstrating that the numerical results are consistent with
analysis presented above. In fact, the analytic estimate o
prefactor is in fair agreement with the numerical one.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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V. CONCLUSIONS

This work was motivated by the observation of tw
seemingly contradictory facts. On one hand, the velocity
wave fronts in reaction diffusion systems is zero only fo
special subset, of codimension 1, of the set of all the con
parameters. This implies that when one parameter is va
the front velocity should be zero at isolated values, andnot
over a whole interval. On the other hand, in some exp
mental systems, describable by reaction diffusion syste
the velocity of fronts is found to be zero over some inter
of control parameters.

This led us to consider a particular class of reaction d
fusion systems, with two variables, and with the two prop
tiesH1 andH2, spelled out in the introduction. In effect, th
problem is very similar to the problem of excitable syste
with long range inhibition.11

Our work shows that it is possible, under these circu
stances, to find a whole interval of parameters over which
front velocity is very small, of orderAD2. We have shown
that the variableu2 can be effectively eliminated to yield
multivalued function ofu1. The system chooses, whenev
possible, to satisfy a Maxwell condition, Eq.~2!. When the
Maxwell condition is no longer possible, typically because
branch of solution disappears, faster fronts of velocity}AD1

are observed. The transition between the two regimes
been investigated in our specific model.

FIG. 5. The velocity of the front as a function ofa22/3. The numerical
values are indicated by1 signs, and the limiting value whena→` (a22/3

50) by a cross. The dashed line shows the fitting by a functionv5v(a
5`)1A2a22/31A3a21; with A2'20.148 andA3'0.204. In this sense
the numerical results support the analytic prediction, see Eq.~26!.
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Mathematically, the limitD2 /D1→0 is a very singular
one. From a dynamical system point of view, settingD2

50 amounts to reducing the phase space dimension. In
sense, the limitD2 /D1→0 calls for the boundary layer trea
ment provided here. A better geometric understanding of
problem whenD2 /D150 is currently being developed.22

The conditionsH1 andH2, necessary to get the conclu
sions reached in this article, should also apply in other s
ations, so it should be possible to observe fronts with a v
small velocity over some finite range of parameters in ot
systems as well.
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