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Linear response theory (LRT) constitutes a cornerstone of statistical
mechanics. Developed in the 1960s for thermostatted Hamiltonian
systems, applications now include modern areas of research such as
neurodynamics and climate science. If a system has linear response,
one can estimate the change of expectation values caused by a per-
turbation using only information of the unperturbed system. LRT
has been successfully applied for many dynamical systems in a
predictive mode to determine their response to prescribed perturba-
tions in the realistic case when the equilibrium density is not known.
LRT also found its way into science as a tool to design and calibrate
model reductions of high-dimensional complex systems. Almost
independently from these success stories in applying LRT to under-
standing and controlling the natural world, mathematicians studied
the dynamical ingredients necessary in a system to assure its linear
response behavior, and found that many simple dynamical systems
actually fail to obey LRT. Understanding, applying, and developing
LRT remains an exciting and important endeavor. This Focus Issue
brings together physicists and mathematicians from several areas to
provide a state-of-the-art perspective.

I. INTRODUCTION

Since its introduction in the 1960s, linear response theory
(LRT) has enjoyed a wide applicability across numerous disciplines
to quantify the change of the mean behavior of observables when
subjected to a perturbed environment.1–3 LRT relies on the invariant
measure being differentiable with respect to the perturbation. If this
is the case, it allows us to express the average of an observable when
subjected to small perturbations from an unperturbed state—the
system’s so-called response—entirely in terms of the invariant mea-
sure of the unperturbed system. Hence, the average behavior of a
perturbed system can be determined using only information of the
current unperturbed state of the system. In the context of climate

science, the average observable may be global mean temperature and
the perturbation may be an increase in greenhouse gas emission.

LRT has received increasing interest in the past decade. This
interest has been spawned by successful applications in new areas
such as neurophysiology and climate science,4–7 as well as by sur-
prising results in mathematics about the (non)validity of LRT in
simple systems.8–11 This Focus Issue compiles a gamut of reviews and
original contributions to highlight the wide applicability in under-
standing and controlling the natural world as well as in uncovering
fundamental mechanisms in the overall statistical behavior of com-
plex dynamical systems. The contributions of this Focus Issue point
toward numerous new avenues in which LRT can be used outside
the typical realm of equilibrium statistical physics and invite us to
engage with this powerful and remarkable theory.

II. SUMMARY OF CONTRIBUTIONS

Comprehensive reviews on how linear response theory con-
tributes to our understanding of the natural world are provided by
Sarracino and Vulpiani12 and by Cessac.13 Sarracino and Vulpiani12

show how fluctuation dissipation relations can be deduced for a
plethora of nonequilibrium systems including dissipative chaotic
systems, multiscale systems, driven granular media, active particles,
and systems exhibiting anomalous transport. The authors establish
that for nonequilibrium systems, the correlations between numer-
ous degrees of freedom may become important and that fluctuation
dissipation relations based on marginal distributions are typically
bound to fail for such systems.

Cessac13 reviews recent advances in how LRT can be used in
neurophysiology to understand the effect of external stimuli on
the dynamics of networks of neurons, in particular, on collective
behavior in the Amari–Wilson–Cowan model and in Integrate and
Fire models.13 Contrary to thermostatted Hamiltonian systems for
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which LRT was initially conceived, in neural dynamics, there is
no conserved energy and the equilibrium dynamics is not time-
reversible. Cessac shows that, nevertheless, a Gibbs distribution can
be defined, allowing us to study linear response of systems of neu-
rons. Interestingly, resonances of the susceptibility functions have
neurophysiological interpretations.

Linear response theory is now a tool, used in contexts out-
side of equilibrium statistical mechanics. In this Issue, Maes and
Netočný14 employ linear response theory to gain understanding of
how path-dependent nongradient forces may occur for a probe
when coupled to a nonequilibrium environment. They find that the
nonequilibrium environment generates a rotational force which by
using linear response theory can be expressed in terms of the entropy
flux and the frenesy of the nonequilibrium environment. Interest-
ingly, the authors find that rotational components of the induced
force appear if the frenesy has a nonvanishing projection orthogonal
to the entropy flux.

Zhang et al.15 use linear response theory and fluctuation dissi-
pation theory to devise a numerical method for a reliable estimation
of the drift and diffusion parameters obtained from time series
of systems that can be described by stochastic differential equa-
tions. The authors estimate these parameters by solving a dynamic-
constrained least-squares problem. The proposed method mini-
mizes the difference between the linear response operator obtained
from the time series and obtained from a stochastic differential
equation whose drift and diffusion terms are to be determined. By
judiciously designing a polynomial surrogate model for the cost
function and assuming the knowledge of the equilibrium density of
the system, the authors design a computationally cheap algorithm to
reliably estimate the parameters of the stochastic diffusion dynam-
ics. This may have interesting applications in molecular dynamics.

Abramov extends the notion of linear response formulas to
the situation of impact perturbations of finite amplitude in which
the state variables are perturbed at one instance of time by an
arbitrary large magnitude, and then after the impact perturbation
evolve again according to the unperturbed dynamics.16 Explicit for-
mulas are derived for the average response in several situations.
Both deterministic impact perturbations and perturbations in which
the magnitude and the time of impact are randomly drawn from
independent distributions are being considered. In the latter case,
the average linear response formula is an approximation, and it is
argued that its accuracy is good provided the times between sub-
sequent impacts are sufficiently small compared to the intrinsic
time of decay of correlation of the dynamical system. The response
formulas for such impact perturbations are nonlinear in the pertur-
bation, prohibiting the estimation of the applied perturbation from
an observed response.

Majda and Qi’s contribution17 also addresses the limitation of
classical linear response theory to small perturbations. They review
their results on how to employ linear and nonlinear response theory
for complex turbulent systems and illustrate them with numerical
simulations of several dynamical systems with varying complexity.
Examples are given where despite a near-Gaussian probability func-
tion, a quasi-Gaussian closure leads to good predictions of the linear
response of the mean but leads to wrong predictions of the linear
response for the variance. The authors design reduced stochastic
models, the parameters of which are calibrated to minimize an

information-theoretic metric measuring the distance between the
respective response operators of the imperfect model and the truth.
The reduced stochastic models are shown to describe the response of
the mean and of higher order moments well and are able to predict
extreme events. The authors further illustrate how linear response
theory can be used to determine the optimal control needed to drive
a system back to some specified equilibrium state.

The problem of driving a system back to a prescribed state
has particular relevance for climate change. Bódai et al. shed a
critical light on using linear response theory to determine and to
assess the effect of possible geoengineering strategies.18 Using a cli-
mate model of intermediate complexity, the authors present the
simulated response to a geoengineering scenario under an ideal-
ized greenhouse gas emission scenario and compare it with the
response obtained via LRT, where the geoengineering is determined
to achieve a desired constant global mean temperature. The results
suggest that issues such as the sensitivity of the estimated response
to the knowledge of the susceptibility function as well as possible
higher-order nonlinear responses may leave LRT as insufficient to
determine the required geoengineering and to assess geoengineer-
ing strategies. In particular, the authors give some indication that
the uncontrolled response under geoengineering is typically more
nonlinear for regional precipitation than for regional temperature
in the studied model.

Ever since the work of Baladi and co-workers, who showed that
simple dynamical systems such as the logistic map do not obey linear
response, mathematicians have tried to develop frameworks to study
if linear response exists for certain classes of dynamical systems.
Galatolo and Sedro19 develop such a framework based on transfer
operators. They introduce a suite of assumptions such that linear
and quadratic response can be guaranteed. The authors consider
both deterministic and random dynamical systems with additive
noise. In the latter case, they consider the so-called annealed case
where, in addition to the ensemble average, an average with respect
to the random parameters is taken. They find that in the additive
noise case, linear and quadratic response exists even for systems
without hyperbolicity. Two core assumptions are the existence of
some resolvent of the unperturbed transfer operator and that the
unperturbed dynamics is mixing (without restrictions on the mixing
rate).

Castro20 addresses LRT in the framework of transfer opera-
tors and the thermodynamic formalism for nonuniformly dynamics,
including intermittent maps. The challenge when using transfer
operators is to define Banach spaces, which allow for a spectral
gap. Employing anisotropic spaces, the author shows the existence
of statistical limit theorems, the statistical stability of the transfer
operator, and the differentiability of thermodynamic quantities for
nonuniformly expanding maps.

Wormell and Gottwald21 ask the question of how linear
response of macroscopic observables may be found in high-
dimensional deterministic systems made up of mean-field cou-
pled microscopic subunits, which individually may not obey linear
response theory. They provide a comprehensive analysis of
linear response behavior for both finite systems and for their
thermodynamic limit. They find that such high-dimensional sys-
tems satisfy linear response if the macroscopic dynamics exhibits
effective stochastic behavior via self-generated noise and if the
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distribution of the microscopic parameters is appropriately smooth.
Maybe surprisingly, they also provide an example of a high-
dimensional mean-field coupled system that violates LRT despite all
microscopic subsystems having linear response.
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