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Spiral wave drift induced by stimulating wave trains
Georg Gottwald, Alain Pumir, and Valentin Krinsky
INLN, 1361, Route des Lucioles, F-06560, Valbonne, France

~Received 25 January 2001; accepted 25 June 2001; published 22 August 2001!

We investigate the drift of a spiral wave core in a homogeneous excitable medium under the
influence of a periodic stimulation by wave trains close to the core. Two important results were
found. First, as opposed to existing theories of spiral wave drift, we observe drift induced by wave
trains with periods larger than the period of the freely rotating spiral wave. Second, when
investigating the drift of meandering spirals we found that the property of meandering of spirals is
not robust against periodic stimulations. Simple phenomenological arguments are provided to
explain these observations. ©2001 American Institute of Physics.@DOI: 10.1063/1.1395624#
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Rotating vortices in cardiac muscle induce numerous car-
diac disturbances. The most severe, fibrillation, results in
chaotic contractions†see the Focus Issue ‘‘Fibrillation in
Normal Ventricular Myocardium’’ in Chaos„1998…‡. Ven-
tricular fibrillation induces clinical death in È1 min. Fi-
brillation can be arrested by a strong electric discharge
called defibrillation, which kills all propagating waves in
myocardium, albeit with undesirable side effects. An al-
ternative approach consists in forcing rotating vortices to
drift and to annihilate at the boundaries of the excitable
tissue. This can be done clinically with trains of electric
pulses. In this work, we investigate this process with the
help of a simplified mathematical model. Previous works
had found that the rotating wave cannot drift, unless
some restricting conditions are imposed on„ i … the fre-
quency of the stimulating fronts and on„ i i … the excitabil-
ity of the medium, imposing important clinical limita-
tions. We show here that these two conditions can be
„partially … relaxed. We give numerical evidence, and
develop a phenomenological model to support our
conclusions.

I. INTRODUCTION

Many chemical and biological systems exhibit excitab
ity. In two-dimensional systems excitable media typica
give rise to spiral waves.1–3 The study of spiral waves is
particularly important from a medical point of view as the
are believed to be responsible for pathological arrhythm
of the heart. A dangerous class of arrhythmias are the re
trant arrhythmias, in which the same wave of excitation
peatedly reinvades the same piece of tissue; these reen
arrhythmias are high frequency, as the period of the reent
wave is less than the normal period of the heartbeat,
underly atrial flutter and monomorphic ventricular tachyc
dia. If reentrant waves break down, due to their intrin
instability, or the effects of anisotropy and the geometry
the heart, spatio-temporal irregularity in the pattern of a
vation produces a dangerous stimulation, in which differ
parts of the same chamber of the heart are activated at
ferent times. Global coordination of the contraction of t
heart is lost, and, instead of pumping rhythmically a
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firmly, the heart writhes and quivers. The circulation is
longer maintained and death can result if the heart is
defibrillated. Immense research goes into studying defibri
tion, which is the medical treatment to stop lethal fibrill
tions of the heart. The most widely used method is to ap
a high-voltage transthoracic electric shock~usually about 5
kV, 20 A for a duration of 2–5 ms! to force the heart back to
its resting state so that the pacemaker, the sinoatrial n
may start again in a controlled fashion. Although success
this method is very damaging to the heart tissue, so there
need to look for different, less harmful methods. One pro
ising approach is an implantable device of a new type wh
detects arrhythmias similarly to a standard implanta
defibrillator, but instead of sending a strong electric shock
shoots fronts towards a spiral wave to move its center
rotation. The wave train may successively annihilate the s
ral wave arms, and penetrate to the core where the pulses
now directly interact with the spiral wave tip.

Spiral wave drift, induced by periodic wave trains, h
been observed in excitable media4 and has been theoreticall
described.4–6 The two existing theories for spiral wave dri
induced by periodic wave trains focus on two extreme ar
in the parameter space in terms of the density of the sp
The densityd of a spiral can be defined as the ratio of t
width of the spiral wave arm and the wavelength of the sp
wave. In other words, the density is a measure of the ratio
the space already occupied by the spiral to the space
would still be available for excitations. No theoretical ana
sis has been done for the intermediate range.

We briefly recall here the essential ideas put forward
these papers.

In the extremely sparse case it is assumed that after
ery collision of a stimulating pulse with the spiral wave ti
the hereby created broken end will immediately start curl
and the tip will move on a circle whose radius is the one
a freely rotating spiral wave. The resulting drift will be
cycloid consisting of the originally freely rotating spiral. Th
explicit formulas for the drift velocities in thex- and
y-components~cdx

and cdy
! of the total drift velocity

(cd) read

cdx
5

R„cos~vTc!21…

Tc
, cdy

5
R sin~vTc!

Tc
, ~1!
© 2001 American Institute of Physics
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wherev is the frequency of the spiral wave and the collisi
time Tc is implicitly given by

cf~Tc2Tf !5R sin~vTc!, ~2!

where Ts is the rotation period of a freely rotating spir
wave andTf is the stimulation period by which wave train
traveling with velocity cf are emitted towards the spira
Note that a spiral may actually drift towards the period
wave train, as can be seen from Eq.~1!.

In the extremely dense case it is assumed that the e
ability is so large that one may neglect curvature effec
Here one has to take into account recovery periods due to
inhibitor during which the broken end moves upwards w
the front velocitycf before it can curl again to meet the ne
planar pulse. This leads to

c5cf S 12
Tf

Ts
D . ~3!

Note that, contrary to Eq.~3! for dense spirals, which de
pends only onTs , Eq. ~1! requires the knowledge of on
more parameter, i.e., the radius of the coreR ~the velocity of
the spiral wave tipcs is given then as 2pR/Ts!.

Both theories state that drift is not possible for wa
trains with a stimulation periodTf larger than the period o
the spiral waveTs .

This result is based on the following general collisi
argument. Contrary to many other waves, waves in an ex
able medium annihilate each other when colliding. If t
periodTs of a spiral is smaller than the period of the wa
train Tf , the core will never be influenced by the stimulatio
when the location of the stimulation is far from the core. T
spiral wave arms shield the core. For periods smaller thanTs

the spiral wave arms and the wave train will annihilate ea
other until the wave train will have penetrated to the co
where it will induce drift.

The maximal stimulation periodTs was considered to be
a universal law and, from a clinical point of view, impos
limitations of this approach for an implantable device, sin
it requires damaging high frequencies.

In this work we demonstrate that, contrary to classi
belief, smaller stimulation frequencies may be used to ind
drift in an excitable medium. The reason for the differin
observation between the classical result and our result
pears to be twofold. First, we leave the extreme regions
the density parameter range and instead investigate mo
ately sparse spirals. Second, we look at stimulations clos
the core whereas, in previous theories, the stimulation so
is assumed to be located far from the core. For stimula
close to the core it was well known that a single stimulat
pulse may displace the spiral wave core. But constant n
zero drift velocities forTf /Ts.1 have never been invest
gated and observed before. The apparent contradiction
the collision argument can be explained by the fact that
spiral increasesits effective period by interacting with th
wave train, so the new periodTs

! satisfiesTf /Ts
!,1.

Interestingly, we also find that meandering of spirals
not robust against periodic stimulations and that meande
spirals exhibit drift in the same way as nonmeander
spirals.
ownloaded 26 May 2009 to 129.78.72.28. Redistribution subject to AIP lic
it-
.

he

it-

h
e

e

l
e

p-
in
er-
to
ce
n

n-

ith
e

s
g

g

Drift along a straight line was previously observed a
studied in an inhomogeneous medium,7,8 or under a periodic
modulation of the properties of the medium~see for example
Refs. 9–11!. In many cases drift along a straight line is n
generic, but instead only occurs for one value of a con
parameter which leads to a resonance of the forcing
quency and the spiral wave periodTs . This is very different
for stimulation with wave trains which we will discuss he
where the drift along a straight line is the generic case.

In Sec. II we introduce the model under investigati
and the numerical methods used. In Sec. III we present
result that nonzero drift velocities can actually be obtain
for larger stimulation periods. In Sec. IV we provide a ne
general approach to combine the two classical theories
Sec. V we investigate the seemingly paradoxical result
nonzero drift velocities, and a phenomenological formula
scribing drift will be given. In Sec. VI we will study the drif
of meandering spirals under the influence of a stimulat
close to the core. The results and their clinical implicatio
are discussed in Sec. VII.

II. MODEL AND NUMERICAL METHODS

We briefly present here the model studied, and the
merical methods used in this work.

A. Theoretical model

We investigate a two-component two-dimensional exc
able medium with an activatoru and a nondiffusive inhibitor
v of the following form:

ut5Du1u~12u!~u2~v2b!/a!,
~4!v t5e~u2v !,

introduced by Barkley.12 Here D represents the two
dimensional Laplacian, anda and b and e measure the ex-
citability and refractoriness. As a general rule, increasing
a and/or decreasing ofe will move the parameter range to
wards denser spirals. We analyze a homogeneous med
without defects to which a drifting spiral may pin13–15 and
unpin.16,17

We study the emission of planar wave trains onto a sp
wave as depicted in Fig. 1. Here we look at stimulatio
close to the core and measure the drift velocity as a func
of the stimulation periodTf .

B. Numerical method

For the integration scheme we used the method
scribed by Barkley.12 Most of the numerical simulations wer
performed in a box of lengthL530, grid-sizedx50.2, and
time steppingdt50.1.

The initial condition was constructed by combining
stationary traveling front, and a steadily rotating spiral wa
as seen in Fig. 1. One difficulty in preparing the initial co
dition is to avoid multiple broken ends, caused by the int
action of the wave trains with the inhibitor field,v. This
leads to very long transients and to a waste of compu
resources. This problem is very severe when the spira
dense; for this reason, we restricted ourselves to modera
sparse spirals. Also, we artificially set initially the inhibito
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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field of the spiral wave to zero where the stimulating front
about to run into the rotating wave. We have checked t
this somewhatad hocway of preparing the solution does n
affect the value of the drift velocity, by comparing the resu
obtained for different preparations of the initial condition
In the absence of external stimulation, the artificially tru
cated initial condition evolves into a freely rotating spir
with the same spiral wave core.

Due to the limited size of the computational domain, t
core of the spiral wave is very quickly pushed away from
numerical box, before a steady regime can be observed.
difficulty can be avoided by adding a drift term:2cdx

ux

2cdy
uy , 2cdx

vx2cdy
vy to the left-hand sides of Eqs.~4!.

This enables us to investigate the long-time behavior of
spiral wave drift. The drift velocitiescdx,y

were determined
during the numerical integration, by taking the ratio betwe
the observed displacement and the time it takes between
consecutive minima of thex-coordinate of the trajectory o
the tip.

In the problem we are considering, the frequency of
stimulation must be fixed in the laboratory frame. Becaus
moving frame is used for numerical purposes, one has
properly take the Doppler shift into account. This is done
practice by adjusting the stimulation period in the movi
reference frame,Tf ,num, so as to maintain the wavelength
the stimulating pulse constant. Note that the stimulat
wave comes from the lower side of the numerical box~see
Fig. 1!.

We checked that the result was very robust with resp
to the precise choice of the parameters.

We used Neumann no flux boundary conditions. It
well known that in this case the wave may exhibit drift d
to its interaction with its mirror image~see, for example, Ref
18 for resonant drift!. It has been checked by comparing t
numerical results for different initial positions of the spir
core that the drift is not due to this boundary effect.

FIG. 1. Dynamics of a spiral waveS induced by a wave trainW1,2. The
activatoru is shown. The time increases from left to right.~a! A planar front
W1 is sent towards a spiral wave armS. ~b! Shortly after the collision.~c!
Broken frontW1 is created.~d! Broken endW1 evolves into a new spiral
wave arm.~e! The next pulseW2 of the stimulating wave train is launched
The wave pattern is similar to~a!, but the spiral wave appears shifted.
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III. RESULTS

Figures 2~a!–2~c! shows the dependence of the drift v
locity on the nondimensionalized stimulation periodT8
5Tf /Ts . It is clearly seen that nonzero drift velocities exi
for T8>1, contrary to the existing theories. We give e

FIG. 2. Drift velocities.~a! total drift velocitycd , ~b! x-componentcdx
, ~c!

y-componentcdy
versusT85Tf /Ts . The two continuous lines show th

theoretical limits for sparse spirals, Eq.~1! ~here arbitrarily chosenR53!,
and dense spirals, Eq.~3!. The crosses, stars, and triangles are numer
simulations A, B, and C. The density of the spiral increases from A to C.
the right of the vertical line atT851 both theoretical limits predict that ther
is no drift at all. Our numerical results show a nonzero drift in this regio
Parameters areb50.005,D50.02,e50.02,L530, anda50.29 for case A,
a50.32 for case B, anda50.4 for case C. Case A is almost a sparse sp
behaving according to~1!, case B is a moderately sparse spiral, and
parameters of case C support a meandering spiral. The coincidence o
y-components of the drift velocity in~c! for cases B and C is accidental.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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amples for sparse nonmeandering spirals~case A!, moder-
ately sparse nonmeandering spirals~case B!, and moderately
sparse meandering spirals~case C!.

Our numerical results face us with a paradox: on the
hand, general collision arguments tell us that nonzero d
velocities cannot be observed forTf /Ts>1; on the other
hand, we clearly observe nonzero drift velocities forTf /Ts

>1. The core of our argument to resolve the paradox is
the trajectory of the spiral wave tip after the collision resu
in an effectively larger spiral wave periodTs

! . To understand
this we will look in the following paragraph into the actu
dynamics of the spiral wave trajectory after the collision.

As Fig. 3 shows, there are mainly four phases for m
erately sparse spirals, an initial collision phase~phase 1 in
Fig. 3!, a noncurling phase due to a strong ‘‘dense’’ intera
tion of the broken front with the refractory tail of the spir
~phase 2 in Fig. 3!, then a transitory curling phase~phase 3 in
Fig. 3! and a forth phase where the spiral wave tip eventu
has relaxed onto the core of a freely rotating spiral~phase 4
in Fig. 3!.

During the noncurling phase 2 the newly created brok
end and the next wave train are almost moving with
changing their distance due to the refractoriness and, he
the tip velocity iscf .

Despite the transitory nature of phase 3 where the sp
has not yet relaxed on the stationary core, the numerics s
that its velocity has already reached the stationary velo
cs . This is the two-dimensional analog of the observation
one dimension that arbitrary initial conditions very quick
assume the stationary velocity although their shape has
taken the stationary shape. This is due to the fact that
velocity is determined by diffusion and hence only the fo
most part of the front does matter. It is this transitory phas
which has been neglected so far and which allows for n
zero drift velocities forT8.1 ~in Ref. 5 only phase 4 ha
been considered, and in Ref. 4 only the noncurling phas
has been considered under the assumption of equal gro
and front velocities!. During phase 3 the tip moves on
quasi-circle with a radius larger than the radius of the fre
rotating spiral, as can be seen in Fig. 3. This effectiv
introduces a larger spiral wave periodTs

!.Ts to keep the
velocity cs constant. This explains the seemingly paradoxi

FIG. 3. Spiral wave tip movement during stationary drift~thick line!. Su-
perimposed is the core of a freely rotating spiral~thin line!. Parameters are
the same as in case B in Fig. 2.
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nonzero drift velocities forT85Tf /Ts>1 since the results in
Fig. 2 are depicted versus the spiral wave period of the fre
rotating spiralTs .

Studying the dependence of the drift velocity on the i
tial conditions in terms of position of the spiral wave tip o
the core of the freely rotating spiral, we found the plausib
result that the actual values of the drift velocities do n
depend on the initial conditions, but that the maximalT8
>1 exhibiting nonzero drift velocities does depend on t
initial conditions. This is not surprising because the init
position of the spiral wave tip relative to the position of th
wave train determines how well the spiral wave is shield
The longer it takes for the first collision the moreT8 tends to
the classical resultT851 with the important difference
though, that the drift velocity is nonzero.

We note that the numerical results for smallTf /Ts be-
come unreliable since the period of the wave trainTf is not
big compared to the minimal period for the existence
wave trainsT! and the excitability is not homogeneous alo
the front, but instead the fronts will be wiggly after th
interaction.

In Sec. V we will employ a more quantitative unde
standing of the drift velocities, but first we briefly review th
classical theory.

IV. CLASSICAL THEORY REVISED

The idea that spiral waves may drift as a result of
interaction with a wave train has been first proposed in t
seminal papers.4,5 The two limiting cases of very dens
spirals4 and very sparse spirals5 were studied in detail.

In the following we will present a simple but gener
view on the mechanism of drift which includes the extreme
sparse case5 as well as the extremely dense case.4 Suppose a
spiral and a planar front meet atT50 ~see Fig. 4! to form a
broken endW1 @as in Fig. 1~d!#. The wave train far from the
tip will continue its movement with the velocitycf , whereas
the tip will have its own individual path with typically a
velocity smaller thancf . At a later point in timeTc the wave
front W1 will have traveledl f5cfTc and the spiral wave tip
will have traveled lS5*0

Tcvy dt, where vy is the
y-component of the tip velocity during its drift. The tw
wavesW1 andW2 have the constant distanceDl5cfTf . If
we takeTc as the time of collision after which the spiral ti
of W1 andW2 meet to form another broken end, we obta
Dl5l f2lS ~see Fig. 4! and, therefore,

FIG. 4. Sketch of a broken frontW1 at T50. It evolves into a spiralW1

at T5Tc . W2 is the next wave train which collides with the spira
at T5Tc .
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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cfTf5cfTc2E
0

Tc
vy dt, ~5!

and for the drift velocities

cdx
5

*0
Tcvx dt

Tc
, cdy

5
lS

Tc
5cf S 12

Tf

Tc
D . ~6!

Generally it is hard to determinevx,y and to obtain analytica
evaluations of these formulas. But for extremely sparse
extremely dense spirals one can make assumptions abou
form of vx,y and the collision timeTc and obtain the previous
results~1!, ~2!, or ~3!, respectively.

It is readily seen that Eqs.~5! and ~6! imply the ex-
tremely sparse case~1! and ~2! if one assumes that the pa
of the tip will be the one of a freely rotating spiral, i.e
assumingvx52cf sin(vT), vy5cf cos(vT) and requiring for
the velocity of the spiral wavecs5cf .

In the extremely sparse case the underlying assumpt
are that the refractoriness of both spiral and wave train
be neglected. In particular, there is no interaction of the fr
and the spiral wave arm with the refractory tails of ea
other, implying that the period of the wave trainTf as well as
the spiral wave periodTs are big compared to the minima
period of a wave trainTmin . Also interaction of the pulse
with the spiral wave core is neglected and, furthermore,
core radiusR of the spiral wave is assumed to be sufficien
large so that curvature effects can be neglected, or, in o
words, the velocity of the spiral at the corecs52pR/Ts is
equal to the velocity of a planar wavecf .

The general approach~5! and ~6! allows us as well to
recover Eq.~3! for extremely dense spiral waves. For den
spirals we assumeTc5Ts and neglect the drift in the
x-direction. This essentially means that the drift caused
the refractoriness of dense spirals is dominating over
curling and that the excitability is so high that the velocity
the spiral iscf .

Equations~5! and ~6! are general equations and imp
the simple cases of extremely sparse and dense spirals
as soon as the dynamics involves a more complicated s
ture, it is hard to find an analytical expression forvx andvy ,
based on some simple assumptions. Therefore, we emp
different phenomenological approach in the next section
explain the nonzero drift velocities we observe for mod
ately sparse spirals.

V. PHENOMENOLOGICAL MODEL

We introduce here a phenomenological ansatz for
drift velocities for moderately sparse spirals. In Fig. 5~a! we
sketch the basic idea. We replace the actual trajectory of
tip ~continuous line! with an equivalent motion~dashed line!
with the same initial and final coordinates A and C. T
reduced motion consists of a linear movement AB and
motion on the circle BC. Here,q determines the initial po-
sition of the tip on the core andTc

! the final position. The
dimensional ‘‘angle’’w determines the position of the spir
wave at the time of collision relative to the incident wa
ownloaded 26 May 2009 to 129.78.72.28. Redistribution subject to AIP lic
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train, i.e.,w5Tc
!2q. The displacement of the circles is de

termined byl. The total displacement during the time b
tween two collisions is given by@Fig. 5~a!#

Dx5R„cos~vw!2cos~vq!…1l sin~vw!, ~7!

Dy5R„sin~vw!2sin~vq!…2l cos~vw!. ~8!

The time between two collisionsTC consists of the time of
the movement along the circle BC and along the straight
AB. Since the tip displacement along AB is due to the stim
lating front ~phase 2! which propagate in they-direction we
may write for the total collision time

TC5Tc
!2

l

cf
cos~vw!. ~9!

Therefore, the drift velocities are given bycdx
5Dx /TC and

cdy
5Dy /TC , which reads as

FIG. 5. ~a! Illustration of the phenomenological model.~b! Close-up of the
tip motion on the circle CB.S is a spiral wave arm moving along the cor
with radiusR. W is a stimulating wave train.S0 is the spiral wave at the
start of its travel time along the core.Sc is the same spiral wave arm at th
time of collision.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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cdx
5

R„cos~vw!2cos~vq!)1l sin~vw!

Tc
!2 ~l/cf !cos~vw!

,

~10!

cdy
5

R„sin~vw!2sin~vq!…2l cos~vw!

Tc
!2 ~l/cf ! cos~vw!

.

The extremely sparse limit~1! is obtained forl5q50.
Figure 6 shows a comparison of the numerically o

tained drift velocities and our formula~10!. For largeT8 the
phenomenological model fits the numerical data very w
As already mentioned in Sec. III, we observe for smallT8 a

FIG. 6. Comparison of numerical results~points! and the phenomenologica
model ~10! ~lines!. In ~a!–~c! cases A–C from Fig. 1 are shown, respe
tively. Parameters for the phenomenological model arel50.0 and q
540.0 for case A,l57.4 andq583.0 for case B, andl53.7 andq
557.0 for case C.
ownloaded 26 May 2009 to 129.78.72.28. Redistribution subject to AIP lic
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different drift behavior due to the interaction of the stimula
ing wave fronts themselves. There we do not expect
model ~10! to be valid. Moreover, from a clinical point o
view the focus is on largeT8.

In the remainder we motivate the reduction of the
movement and the resulting formulas~9! and ~10!.

The reduced trajectory on the circle BC is motivated
the observation that during phase 3, as mentioned earlier
tip moves with the velocitycs . Therefore, the free paramete
u allows us to map the real motion during phases 3 an
onto the circle. We denote the travel time of the spiral tip
this circle from B to C byTc

! . As can be seen from Fig. 5~b!,
Tc

! is implicitly given by

cf~Tc
!2Tf !5R sin„v~Tc

!2q!…2R sin~vq!. ~11!

Note that the extremely sparse limit~2! is recovered forq
50 @see Eq.~1!#.

The displacement of the circle, i.e., the motion along
straight line AB, is modeled by the second free parametel.
The movement along the straight line AB corresponds to
noncurling phase 2. During this noncurling phase the tip
locity in the y-direction iscf , as mentioned earlier. The dis
placement AB depends on the initial phase 1 and the n
curling phase 2. We will lump these phases together int
main drift. We assume that the movement of the tip after
collision will, as a lowest-order approximation, follow th
initial line of the inhibitor since, as a general rule, a wave
will move into a region where it can do so. We assume t
the direction of the mean drift is given by the direction of t
inhibitor at the time of collision. Considering moderate
dense spirals, this direction is tangential to the core. Fr
Fig. 5~a! it follows that thex-displacement during the mea
drift is l sin(vw) and they-displacement is2l cos(vw).

VI. DRIFT OF MEANDERING SPIRALS

Meandering naturally occurs if the density of a spir
wave is increased. The core then does not move along
circle with a well-defined radius, but instead moves alo
petals whose centers are lined up on a large circle with ra
RL . With the petals one can associate a smaller radiusRS , as
shown in Fig. 7~a!. When increasing the density, first inward
petals are observed and, with further increase of excitabi
outward petals. The onset of meandering has been studie
Refs. 19 and 20.

Our main result is that a meandering spiral drifts like
nonmeandering spiral, when periodically stimulated. N
merical calculations demonstrated that meandering sp
are exposed to the same drift mechanisms as nonmeand
spirals. A meandering spiral, as shown in Fig. 7~a!, drifts
under influence of periodic stimulation rectilinearly@Fig.
7~b!#. Movement of a freely meandering spiral along
straight line is well known and has been observed. But th
the larger radiusRL is only infinite for one special value o
the control parameter. In fact, this value of the control p
rameter separates the phases of inward and outward gro
petals. The drift we observe here is different from this s
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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nario and is robust in the sense that it does not depend on
particular values of the control parameters, but is instea
generic situation.

For meandering spirals, again we are faced with nonz
drift velocities for stimulation periods larger thanTs @see
Figs. 2~a!–2~c!, case C#. If Ts is taken to be the time betwee
two consecutive points of equal phases of the freely me
dering spiral, i.e.,Ts is associated with the smaller radiu
RS , and R is taken to be the smaller of the two radiiR
5RS , formulas~9! and~10! are in good agreement with th
numerical simulation~Fig. 6!.

Free meandering itself is a strongly nonstationary p
cess where the spiral wave tip moves periodically into
own refractory tail. On the smaller circle the excitability
high and the spiral curls. It will meet its own refractory ta
and moves into an area with low excitability where it co
tinues to move on a large circle withRL until an inhibitor-
free hole opens and the wave tip can freely curl again with
growing velocity. Hence, meandering is basically due to
fact that the spiral wave periodically changes the excitabi
of the medium it moves through by its own inhibitor. Pe
odic stimulations such as the emission of wave trains dra
cally change the excitability of the active medium and d

FIG. 7. Trajectories of the tip of a meandering spiral.~a! Freely meandering
spiral with two clear defined radii.~b! Same under the influence of a stimu
lating periodic wave train coming from the lower boundary. Parameters
those of case C in Fig. 2.
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turb this inherent periodicity of the spiral wave and impo
their own periodicity. This suppresses and transforms
meandering and a steady drift will be established. Barkle20

has identified the Euclidean symmetry group as being es
tial for the onset of meandering. The invariance under
action of the Euclidean group, rotation, reflection, and tra
lation leads to a reduction of the original system to a se
five ordinary differential equations. In this system, the on
of meandering is described by a Hopf bifurcation. The pe
odic stimulation by wave trains does break the symmetry
destroys the meandering.

VII. DISCUSSION

We have investigated drift of spiral waves induced by
periodic wave train which is launched close to the core. T
surprising result of nonzero drift velocities for stimulatin
periods larger than the period of the freely rotating spiral h
been observed. We note that for stimulations far from
core the spiral wave arms shield the core and will preven
drift of the core, but once a drift has been induced by
stimulation close to the core, this drift will be stationary. Th
seems to contradict the conclusions of former work.4,5 We
found that a transitory phase caused by an interaction of
wave train with the refractory tail of the spiral wave is r
sponsible for this new phenomenon. Essentially this tran
tory phase introduces a larger spiral wave period and he
allows for stimulating periods larger than the original spi
wave periodTs . A phenomenological model was establish
which quantitatively describes the drift velocities for mode
ately sparse spirals. Initially meandering spirals were a
stimulated and we observed a steady drift along a stra
line as in the nonmeandering cases. The stimulation by w
trains does dominate the inherent periodic nature of me
dering spirals. We could again describe the drift with o
phenomenological formula.

The new result of nonzero drift for stimulation period
larger thanTs was mainly due to two separate factors: (i ),
we leave the parameter region of extreme densities and (i i ),
we stimulate close to the core. In the remainder we comm
on these two issues and put them into a perspective fro
clinical point of view.

Considering stimulations close to the core is relev
from a cardiological point of view. Here typical wave veloc
ties are of the order 10 cm/s and typical time scale is of
order of 0.2 s, which implies a typical wavelength of 2 cm
which is not too small if compared with the heart size. In th
case obvious general collision arguments, as employed in
aforementioned classical theories, do not apply. Never
less, we saw that for the case of extremely sparse sp
there is no drift forTf.Ts also in the case where the sour
of stimulation is close to the core@case A in Figs. 2~a!–2~c!#.
After one initial collision and the resulting displacement
the core, the spiral wave arm develops and starts shield
the core. For moderately sparse spirals, though, we do
serve nonzero steady drift velocities forTf.Ts . This brings
us to the problem of the density of spirals.

The densityd of a spiral can be defined as the ratio
the width of the spiral wave arm and the wavelength of

re
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spiral wave. In other words, the density is a measure of
ratio of the space already occupied by the spiral to the sp
that would still be available for excitations. The density
particularly important for defibrillation. It determines the e
citable gap, i.e., the probability of intersections of the stim
lating front with the spiral wave at the moment of stimul
tion. Hence it determines the number of newly crea
broken fronts which eventually may evolve into new spi
wave arms. As a consequence, the mechanism is
whereby spirals drift strongly depends on density. In fa
excitation by wave trains may worsen the situation by
annihilating the existing spiral~or moving its core into non-
excitable tissue! but by creating even more spiral waves.
the Appendix we derive an expression for the success ra
defibrillation depending on the density.

APPENDIX: DENSITY DEPENDENCE OF SUCCESS
RATE

In this appendix we employ an argument based on
conservation of the topological chargeN to find an expres-
sion for the success ratePs(d) of defibrillation induced by
stimulating wave trains. As shown in Fig. 8, we assu
stimulation with a planar front. The intersection of th
boundary of the excitable medium with the stimulating fro
can lay either on fresh medium or on a spiral wave arm or
refractory zone. This determines the number of broken e
created by the stimulating front, and hence the overall to
logical charge. We define the topological chargeN to be11
for counter-clockwise rotating spirals,21 for clockwise ro-

FIG. 8. Spiral wave and a stimulating front~black filled!. The shaded area
depicts the space occupied by the spiral and its refractory tail. At the in
section of the planar front and the spiral wave the topological charge o
resulting broken end is denoted. The dashed box shows a possible bou
of the medium.
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tating spirals, and 0 if no broken end at all is present. To
logical charges add up, so two counter-rotating spirals w
N51 and N521, respectively, result inN50, which ex-
presses the fact that they are very likely to annihilate e
other ~only for the case of equal rotation frequencies th
may coexist!. If only one spiral wave is present with a
initial chargeN511 as depicted in Fig. 8, the sum of topo
logical charges may be either 0,11, or 2 depending on the
four possibilities for the location of the boundaries. IfN
50, complete annihilation is observed. IfN511, we are
able to induce spiral wave drift with stimulating wave trai
as discussed in this article and force the spiral wave w
N511 out of the boundary. IfN512, the stimulation has
actually created an additional spiral wave with the sa
sense of rotation, so fibrillation is enhanced.

The probabilityPr for one boundary being located on
spiral wave arm or its refractory zone isPr5l/(L1l)
5d. Pf512d is then the probability for an intersection o
the boundary with fresh medium.

The success ratePs is naturally defined as the sum of th
probability for complete annihilationN50 and of the prob-
ability for possible induced driftN511. Simple counting of
topological charges for all four possibilities for the locatio
of the boundaries leads to

Ps5~12d!21d. ~A1!

In particular, this implies thatPs.0.75 for alld and that for
spiral waves withd50.5 the success rate is the worst.
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