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We present a universal view on diffusive behavior in chaotic spatially
extended systems for anisotropic and isotropic media. For anisotropic
systems, strong chaos leads to diffusive behavior (Brownian motion
with drift) and weak chaos leads to superdiffusive behavior (Lévy
processes with drift). For isotropic systems, the drift term vanishes
and strong chaos again leads to Brownian motion. We establish
the existence of a nonlinear Huygens principle for weakly chaotic
systems in isotropic media whereby the dynamics behaves diffusively
in even space dimension and exhibits superdiffusive behavior in odd
space dimensions.

dynamical systems | pattern formation | lattice models | symmetry

In this article, we study the dynamics of spatially extended systems
with symmetry. In particular, we consider anisotropic systems

that are invariant under translations but not rotations, and iso-
tropic systems that are invariant under translations and rotations.
Examples of anisotropic systems are those with a preferred spatial
direction, such as fluid systems advected by a directed mean flow
or reaction–advection diffusion systems; examples of isotropic
systems are those without any preferred direction, e.g., reaction–
diffusion systems. This paper is concerned with the following
general question: Given a certain type of dynamics (regular or
chaotic), can we say anything about the diffusive behavior of
the solution?
The answer to this question is different for isotropic and

nonisotropic systems and is summarized in Table 1. As we ex-
plain below, many of these results exist in some form in the lit-
erature, and our main contribution here is to bring them together
in a unified way. Furthermore, we establish a dichotomy for
weakly chaotic dynamics in isotropic systems whereby generically
there is diffusion in even dimensions but superdiffusion in odd
dimensions, which does not seem to have been noticed previously.
In the remainder of this section, we describe the results sum-

marized in Table 1. Throughout, we let d denote the number of
space dimensions. In anisotropic systems in which there is trans-
lation symmetry but no rotation symmetry, the simplest kind of
solution is a traveling wave propagating with linear speed c∈Rd.
By regular dynamics, we mean traveling waves and periodic mod-
ulations of traveling waves; such solutions are bounded in a frame
of reference moving with constant speed. Coullet and Emilsson (1)
considered a family of modified Ginzburg–Landau equations on
the line (d= 1) and observed that chaotically modulated traveling
waves exhibit Brownian motion-like diffusive behavior in a frame
of reference moving with constant wave speed. The situation may
be generalized to arbitrary dimensions and is made rigorous in ref.
2 for strongly chaotic systems. The term “strong chaos” is defined
below and includes many classical examples of chaotic systems.
For example, systems satisfying the Gallavotti–Cohen chaotic hy-
pothesis are strongly chaotic, as is the classical Lorenz attractor.
Recently, interest has grown in so-called weakly chaotic dynamics,
exemplified by Pomeau–Manneville intermittency (3). In the an-
isotropic case, this leads to superdiffusive behavior (4–6).
The isotropic case, in which the dynamical system is invariant

under the Euclidean group of rotations and translations of
d-dimensional space, d≥ 2, exhibits a richer variety of possible
behaviors. The additional invariance with respect to rotations
may lead to cancellations of the linear drift present in the

anisotropic cases. For regular dynamics, a dichotomy exists be-
tween even and odd spatial dimensions. Analogous to the Huygens
principle stating that one can hear only in an ambient odd di-
mensional space, here a nonlinear Huygens principle is operat-
ing: in even dimensions the solutions are bounded, whereas in odd
dimensions solutions propagate linearly. A manifestation of this is
the behavior of spiral waves in 2D excitable media (7, 8); the spiral
tip moves around in circles or flower-petal meanders. In the
strongly chaotic case, the dichotomy disappears and the behavior is
like a Brownian motion without drift. [In the situation of spiral
waves, such behavior is called “hypermeander” (7, 9–11). Al-
though there now is good theoretical understanding (12–15),
a conclusive demonstration of the existence of hypermeander
in physical or numerical investigations of spiral wave dynamics
remains an open problem.] The weakly chaotic case in the
isotropic case was not studied previously. Again, there is no
linear drift. We establish here another instance of a nonlinear
Huygens principle: generically superdiffusive behavior prevails in
odd dimensions, but the superdiffusion is suppressed in even
dimensions and replaced by Brownian motion.

Spatially Extended Systems with Symmetry
Here, we adopt the standard perspective of decomposing the dy-
namics into the dynamics on the symmetry group and the dynamics
orthogonal to it. Systems with symmetry, or “equivariant dynamical
systems,” thus are cast into a so-called skew product of the form

x= f ðxÞ;      _g= gξðxÞ; [1]

on X ×G, where the dynamics on the symmetry group G is driven
by the shape dynamics on a cross-section X transverse to the group
directions. Here, gξðxÞ denotes the action of the group element
g∈G on ξðxÞ∈TeG (the Lie algebra of G). Substituting the so-
lution xðtÞ for the shape dynamics into the _g equation yields the
nonautonomous equation _g= gξðxðtÞÞ to be solved for the group
dynamics. The simplest example is the case of a traveling wave in
a 1D system with translation symmetry, where the shape dynamics
is an equilibrium solution xðtÞ≡ x0 in the frame of reference mov-
ing with constant wave speed, and the dynamics on the translation
group orbit describes the linear drift of the reference frame in
physical space. A more interesting example is provided by spiral
waves in excitable media in which periodic shape dynamics
leads to “meandering” of the spiral tip (16). Here, the shape
dynamics xðtÞ is periodic and the group dynamics gðtÞ evolves
quasiperiodically.
The skew product formulation has proved successful in describing

both local bifurcations and global dynamics in pattern formation
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(8, 10, 11, 17–19), in constructing efficient numerical methods
for equivariant systems (20–22), and in studying Hamiltonian
systems, for example to explain dynamics of periodic orbits rel-
evant to planetary dynamics (23) and observed spectra of CO2
molecules (24).
Adopting the decomposition Eq. 1, we can rephrase our

main question: Given a certain shape dynamics for _x= f ðxÞ
(regular, strongly chaotic or weakly chaotic), can we say anything
about the growth rate of solutions gðtÞ on the group? More spe-
cifically, what is the expected diffusive behavior of gðtÞ? In the
following, we first recall results for the anisotropic case and
then treat isotropic systems.

Anisotropic Case. In the anisotropic case, the symmetry group is
the group of translations G=Rd of d-dimensional space. The skew
product 1 reduces to

_x= f ðxÞ [2]

_p=ϕðxÞ; [3]

where ϕ takes values in Rd and p∈Rd represents the translation
variable. Without loss of generality, we assume initial conditions
xð0Þ= x0 and pð0Þ= 0. Eq. 3 may be integrated to yield

pðtÞ=
Z t

0

ϕðxðsÞÞ ds: [4]

If the shape dynamics Eq. 2 consists of an equilibrium xðtÞ≡ x0,
we obtain pðtÞ= ct with c=ϕðx0Þ. This includes the case of a trav-
eling wave moving with constant speed c mentioned above.
For a periodic solution xðt+TÞ= xðtÞ, we obtain pðtÞ= ct+
Oð1Þ with c=

R T
0 ϕðxðsÞÞ ds.

Next, suppose there is a chaotic attractor Λ⊂X for the shape
dynamics with ergodic invariant measure μ. Using Eq. 4, it fol-
lows from the Birkhoff ergodic theorem that for typical initial
conditions x0,

1
t
pðtÞ= 1

t

Z t

0

ϕðxðsÞÞ ds→ c;

where c=
R
Λϕ  dμ is the time-average of ϕ. Typically c≠ 0, in

which case there is linear drift as for the regular case. For
strongly chaotic shape dynamics, it follows from refs. 2, 25, and
26 that there exists λ> 0 such that for typical initial conditions x0,

pðtÞ= ct+W ðtÞ+O
�
t
1
2−λ

�
  a:e:; [5]

where W is a d-dimensional Brownian motion with covariance
matrix Σ. This implies the central limit theorem: μðx0 : ðpðtÞ− ctÞ=ffiffi
t

p
∈ IÞ→PrðY ∈ IÞ for each rectangle I ⊂Rd, where Y ∼Nð0;ΣÞ

is a normally distributed d-dimensional random variable with

mean 0 and covariance matrix Σ. Another consequence is that
the sequence ðpðntÞ− cntÞ= ffiffiffi

n
p

converges weakly toW in the space
of continuous sample paths. [This is called weak convergence of
pðtÞ− ct to Brownian motion, whereas Eq. 5 is strong conver-
gence.] For d= 1, this describes the case of chaotically modulated
traveling waves as observed in ref. 1.
Weakly chaotic dynamical systems are characterized by “sticky”

equilibria, periodic solutions, and so on, in which the dynamics
exhibits laminar behavior interspersed with intermittent chaotic
bursts (3). It is well-known (4) that for such intermittent sys-
tems, the usual central limit theorem may break down, leading
to fluctuations of the Lévy type rather than of the Gaussian
type. In those situations, it was established (5) that solutions
propagate superdiffusively as tγ for some γ ∈

�
1
2; 1

�
. More pre-

cisely, t−γðpðtÞ− ctÞ converges in distribution to an α-stable law
where α= 1=γ. Let Wα denote the corresponding Lévy process
(possessing increments that are independent, stationary, and
with distributions proportional to this stable law). Then, pðtÞ− ct
converges weakly to WαðtÞ by ref. 6. This concludes the discus-
sion of the anisotropic case in Table 1.

Isotropic Case. In the isotropic case, the symmetry group is the
Euclidean group EðdÞ=SOðdÞ⋉Rd consisting of rotations and
translations of d-dimensional space, and the skew product equa-
tions are given by

_x= f ðxÞ;      _A=AhðxÞ;      _p=AvðxÞ; [6]

where A∈SOðdÞ represents the rotation variables and p∈Rd

represents the translation variables. Without loss of generality,
we choose as initial conditions xð0Þ= x0, Að0Þ= I, and pð0Þ= 0.
Note that SOðdÞ consists of d× d orthogonal matrices with
determinant 1, and that h, being an element of the Lie algebra
of SOðdÞ, is a skew-symmetric matrix. (We suppose throughout
that d≥ 2, because otherwise we would be in the anisotropic
situation.)
If the shape dynamics consists of an equilibrium xðtÞ≡ x0, then

the dynamics on the rotation group may be integrated to yield
AðtÞ= expðthðx0ÞÞ. We choose coordinates so that the skew-
symmetric matrix hðx0Þ is diagonal with entries on the imaginary
axis. In even dimensions d= 2q, the diagonal entries are given by
± iω1; . . . ; ± iωq and typically are nonzero. Using the identifica-
tion Rd ≅Cq, we obtain _pj = eitωj vjðx0Þ and hence

pjðtÞ=
�
1=iωj

�
eitωj vjðx0Þ;     j= 1; . . . ; q: [7]

It follows that pðtÞ is bounded.
In odd dimensions d= 2q+ 1, one of the diagonal entries of

hðx0Þ, without loss of generality the first entry, is forced to vanish
and with the identificationRd ≅R×Cq, we have _p1 = v1ðx0Þ. Hence,

pðtÞ= ct+Oð1Þ;     c= ðv1ðx0Þ; 0; . . . ; 0Þ; [8]

and there typically is a linear drift. For periodic solutions,
analogous calculations (27) lead similarly to bounded motion
for d even and unbounded linear growth for d odd. This con-
stitutes the nonlinear Huygens principle for regular dynamics
in isotropic media. This dichotomy may be visualized by look-
ing at the effect of the rotations in even and odd dimensions.
In even dimensions, all components of v in Eq. 6 are rotated;
in odd dimensions, however, there is an axis of rotation and
the corresponding component of v is not subjected to the av-
eraging effect of the rotation. In Fig. 1, we show typical dy-
namics of the translation variables for Eð2Þ and Eð3Þ skew
products with underlying regular dynamics. We see clearly
bounded motion for d= 2 and a corkscrew motion along the
axis of rotation of SOð3Þ for d= 3.
For chaotic shape dynamics on X, it is convenient to split

off the compact group part of the dynamics and rewrite the

Table 1. Rates of propagation for given dynamics in a
d-dimensional anisotropic or isotropic medium

Dynamics

Anisotropic medium Isotropic medium

d ≥ 1 d≥ 3 odd d ≥2 even

Regular ct +bounded ct +bounded Bounded
Strongly chaotic ct +diffusive Diffusive Diffusive
Weakly chaotic ct + superdiffusive Superdiffusive Diffusive

c∈Rd denotes a general vector in Rd .
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system Eq. 6 in the same form as in the anisotropic case (Eqs.
2 and 3), namely

_y= fhðyÞ;      _p=ϕðyÞ;

where y= ðx;AÞ, fhðx;AÞ= ðf ðxÞ;AhðxÞÞ, and ϕðx;AÞ=AvðxÞ. Then,

pðtÞ=
Z t

0

ϕðyðsÞÞ  ds: [9]

As in the anisotropic case, let Λ⊂X be a chaotic attractor with
ergodic invariant probability measure μ. The natural invariant
probability measure for the y dynamics on Λ×SOðdÞ is the prod-
uct m= μ× μ′, where μ′ denotes the Haar measure on the rota-
tion group SOðdÞ. It follows from ref. 28 that m typically is
ergodic if the shape dynamics is strongly or weakly chaotic.
Because

R
SOðdÞA  dμ′= 0, the time average of ϕðx;AÞ=AvðxÞ is

zero:

Z

Λ×SOðdÞ

ϕ  dm=
Z

SOðdÞ

A  dμ′
Z

Λ

v  dμ= 0:

Hence, ergodicity of m implies that 1
t pðtÞ→ 0, and so there is no

linear drift in the isotropic case (11, 12).
Strong convergence to Brownian motion as in Eq. 5 has not

been proved in the isotropic case. However, for strongly chaotic
dynamics, weak convergence to d-dimensional Brownian motion
holds, and the central limit theorem follows. The covariance matrix
now is diagonal as a result of the rotation symmetry with Σ= σ2Id
and typically σ2 > 0. For rigorous results, we refer the interested
reader to refs. 12–15.
The main result of this paper concerns a nonlinear Huygens

principle for weakly chaotic systems in isotropic spatially extended
media. We establish that weakly chaotic isotropic systems with
odd spatial dimensions exhibit superdiffusion, whereas the super-
diffusion is suppressed in systems of even dimensions. This di-
chotomy may be motivated from our results on regular dynamics
in isotropic media as stated above. Recall that in the nonisotropic
case, the anomalous diffusion is caused by the combination of
laminar phases near sticky pockets of regular dynamics inter-
spersed with intermittent chaotic bursts. However, we have
seen that in even dimensions these laminar regular phases are
averaged out in the isotropic case because of the rotation
symmetry. Hence, the mechanism for anomalous diffusion
no longer is present. We deduce that for d even, weak chaos
leads to Brownian behavior just as for strong chaos; whereas
for d odd, the laminar regular phase survives the effect of
the rotation symmetry and we expect weak convergence to
a Lévy process.
Our predictions are supported both by the above theoretical

justification and by numerical investigations described below.
(A rigorous mathematical proof is the subject of ongoing work.)

The ingredients for the theoretical justification are summarized
in a separate paragraph below. The numerical experiments
also provide a useful visualization of these phenomena. Fig. 2
(Lower) presents results for an isotropic medium with d= 3
where our theory predicts anomalous diffusion. The computed
solution behaves as a combination of Brownian motion cor-
responding to the intermittent chaotic bursts (as in the strongly
chaotic case) and Lévy flights corresponding to the sticky pockets
of regular dynamics. In contrast, in Fig. 3 (Lower; isotropic me-
dium d= 2), the computed solution behaves like a Brownian
motion as before during the chaotic bursts, but the Lévy flights are
suppressed during the regular phases. The different behavior of
solutions during the regular phases—compare Eqs. 7 and 8 for
d even and d odd, respectively, is seen to be the explanation for
our nonlinear Huygens principle for anomalous diffusion.

Strong and Weak Chaos
As promised, in this section we provide the definition of strong
and weak chaos used throughout this paper. Strongly chaotic
systems include Anosov flows [Gallavotti–Cohen chaotic hy-
pothesis (29)] and uniformly hyperbolic (Axiom A) attractors.
A more general class of flows comprises those with a Poincaré
map modeled by a Young tower with exponential decay of
correlations (30). These include Hénon-like attractors, Lor-
enz-like attractors, and Lorentz gas models. Even more gen-
erally, we consider situations in which the Poincaré map is
modeled by a Young tower with subexponential decay of
correlations (31), distinguishing between the cases in which
the decay rate is summable and nonsummable. For us,
strongly chaotic flows are precisely those corresponding to the
summable case. (This terminology is not completely standard;
many authors refer to the entire subexponential case as being
weakly chaotic because Lyapunov exponents vanish. However,
as evidenced by the results described in this paper, in many
respects such systems behave identically to the exponential
case provided the decay is summable, and it is the boundary
between summable and nonsummable that is significant.)
Roughly speaking, weakly chaotic flows are those corresponding

to the nonsummable case, but there is an extra requirement that
decay rates be regularly varying functions.* This is not simply
a technical hypothesis; regular variation of tails is a necessary
condition for convergence to a stable law or Lévy process.
Note that the definition of strong/weak chaos makes assump-

tions on the decay of correlations for the Poincaré map, but not
for the attractor Λ itself. This is important because even Anosov
flows are not necessarily mixing and there are mixing uniformly
hyperbolic flows with arbitrarily slow decay of correlations (32,
33). In particular, mixing properties for the Poincaré map do not
necessarily pass to the flow. In contrast, convergence to a Brownian
motion or a Lévy process does pass to the flow (6, 14, 34).

Theoretical Justification
The individual ingredients comprising the theoretical justifica-
tion for the results in this paper are standard in various sub-
sections of the scientific community but may seem nonstandard
when taken collectively. Hence, it seems worth summarizing the
ingredients here:

� The underlying pattern-forming system (which, e.g., might be
a partial differential equation or the physical system itself) is
decomposed in the skew product form Eq. 1 (e.g., ref. 35).

� The assumed form of the shape dynamics xðtÞ leads to various
types of equation _gðtÞ= gξðxðtÞÞ for the group dynamics. There
is a well-established theory when the shape dynamics is steady or
periodic (27, 36, 37), and there are numerous results in the case
in which the shape dynamics is chaotic (12, 13, 15).
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Fig. 1. Typical behavior of the translation variables p for underlying regular
behavior for Eð2Þ (Left; bounded) and Eð3Þ (Right; corkscrew).

*A function ℓðxÞ is slowly varying if ℓðλxÞ=ℓðxÞ→1 as x→∞ for all λ> 0; examples are
functions that are asymptotically constant and powers and iterates of logarithms.
A function of the form ℓðxÞxq is regularly varying.
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� The “regular dynamics” entries in Table 1 are directly from
ref. 27. This already establishes the absence of Lévy flights
during regular phases in weakly chaotic systems for even-
dimensional isotropic media.

� Passing to a Poincaré cross-section reduces to the conceptually
and technically simpler situation of discrete time. Results of
ref. 14 guarantee that statistical limit laws for the Poincaré map
extend back to the continuous time setting.

� Young towers with exponential decay of correlations (30) have
been shown to include most of the classical examples of strongly
chaotic dynamical systems (e.g., Hénon, Lorenz) extending far
beyond the Anosov/Axiom A setting. A broader class is Young
towers with summable decay of correlations (31). The statistical
properties of such systems have been the subject of much recent
mathematical investigation, and the “strongly chaotic” entries
in Table 1 are special cases of these rigorous results (12–15).

� Even more recently, starting with ref. 5, the statistical proper-
ties of Young towers with nonsummable tails have come under
the spotlight. The prototypical example is provided by Pomeau–
Manneville intermittency maps. Here, anomalous diffusion is
anticipated, and convergence to a Lévy process is rigorously
proved in ref. 6. The bottom left entry in Table 1 is a conse-
quence of this.

� The remaining entries in the bottom row of Table 1 remain
conjectural from the point of view of rigorous mathematics,
but the theoretical justification is as follows. Intermittent dy-
namics is a mixture of regular phases and chaotic bursts.
Based on refs. 4–6, one is led to anticipate superdiffusive be-
havior with Lévy flights corresponding to the regular phases.
However, we already saw that regular dynamics in isotropic
media varies significantly in even and odd dimensions and
that the mechanism for Lévy flights exists only in odd dimen-
sions. Consequently, we predict that anomalous diffusion is
suppressed in even-dimensional isotropic media and exists
only in odd dimensions, and this prediction is supported by the
numerical experiments below. [A recent rigorous result of ref.
38 shows that anomalous diffusion indeed is suppressed in the
case of two dimensions under the assumption that the rota-
tion component h∈SOð2Þ is constant. The assumption on h

enables the use of Fourier analysis and simplifies matters sig-
nificantly. However, the heuristics behind our results do not
rely on this assumption.]

In general, there is no convenient way to explicitly determine
the skew-product Eq. 1 from the underlying pattern-forming system.
To circumvent this, it has become standard in the physics lit-
erature to consider lattice models for diffusion in which the
underlying system is posed in physical space Rd [e.g., to model
phase dynamics of Josephson junctions and charge-density waves
(39, 40) and advection–diffusion of passive tracers in fluid flows
(41)]. The Euclidean group is replaced by a discrete group G of
rotations and translations, and X is identified with a fundamental
domain for the action of G on Rd. In this setting, the transition
between the underlying equations and the skew-product system
is completely transparent and explicit. Our results hold equally
in this situation; see Supporting Information for further details
and numerical results.

Numerical Results
Intermittent dynamics often is modeled by the prototypical
family of Pomeau–Manneville intermittency maps xn+1 = f ðxnÞ
with f : ½0; 1�→ ½0; 1� given by

f ðxÞ=

8>><
>>:

xð1+ 2γxγÞ 0≤ x≤ 1
2

2x− 1 1
2≤ x≤ 1

; [10]

where γ is a parameter (3, 42). Pomeau–Manneville intermit-
tency maps are the prototype for the study of intermittency in
finite and infinite dimensional systems, in which they have been
used to model Poincaré maps (e.g., refs. 43 and 44). If γ ∈ ½0; 1Þ,
there exists a unique, absolutely continuous invariant probability
measure (Sinai–Ruelle–Bowen measure) μ. When γ = 0, this is
the doubling map with exponential decay of correlations. For
γ ∈ ð0; 1Þ, it is known (45) that the decay of correlations is
polynomial with rate 1=nð1=γÞ−1, which is summable for γ < 1

2
and nonsummable for γ ∈

�
1
2; 1

�
; according to our definition,

the Pomeau–Manneville map Eq. 10 is strongly chaotic for
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Fig. 2. Isotropic case in odd dimensions: translation variables p1 and p2 of
an Eð3Þ skew product driven by the Pomeau–Manneville map Eq. 10. (Upper
Left and Right) Strongly chaotic case with γ =0:2: Brownian motion. (Lower
Left and Right) Weakly chaotic case with γ =0:7: Lévy process.
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Fig. 3. Isotropic case in even dimensions: translation variables p= ðp1;p2Þ of
an Eð2Þ skew product driven by the Pomeau–Manneville map Eq. 10 exhib-
iting Brownian motion. (Upper Left and Right) Strongly chaotic case with
γ = 0:2. (Lower Left and Right) Weakly chaotic case with γ = 0:7. (Inset) Zoom
into smaller area illustrating the mechanism of suppression of anomalous
diffusion in even space dimensions.
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γ ∈
�
0; 12

�
and weakly chaotic for γ ∈

�
1
2; 1

�
. Note that for γ > 0, the

fixed point at 0 is indifferent [f ′ð0Þ= 1] and plays the role of the
sticky regular dynamics. For γ ≥ 1

2, the stickiness is strong enough
to support superdiffusive phenomena. [In the borderline case
γ = 1

2, there still is weak convergence to Brownian motion but with
anomalous diffusion rate

ffiffiffiffiffiffiffiffiffiffiffiffi
t  log  t

p
in the anisotropic case (5, 46)

and similarly for isotropic systems in odd dimensions.] We now
present numerical results for skew products representing the
anisotropic and isotropic cases (both even and odd dimensional)
in the strongly chaotic and weakly chaotic regimes. We make the
obvious modifications to the continuous time case described
earlier, so the skew product now is discrete in time.

Anisotropic Case. Here, G is the translation group Rd, and the
discrete time skew product for the Pomeau–Manneville map
Eq. 10 reads as ðx; pÞ↦ðf ðxÞ; p+ϕðxÞÞ so that

pðnÞ=
Xn−1
j= 0

ϕ
�
xj
�
: [11]

In Fig. 4, we take d= 1 and ϕðxÞ= 1+ x. The translation coordi-
nate pðnÞ exhibits linear drift cn, where c=

R
½0;1�ϕ  dμ, for both

strongly and weakly chaotic dynamics. Passing into the comoving
frame, the distinction between Gaussian and Lévy-type fluctua-
tions becomes apparent.
Because the fixed point at 0 is indifferent for γ > 0, an initial

condition x0 that starts close to 0 remains close to 0 for many
iterates, sayN0, so that ϕðxjÞ is roughly size ϕð0Þ for j= 0; 1; . . . ;N0.
Hence in the comoving frame, pðnÞ exhibits approximately linear
growth, pðnÞ≈ ðϕð0Þ− cÞn, for n≤N0. In particular, the small
jumps ϕð0Þ− c accumulate into a large jump. This is akin to a
particle’s ballistic motion with constant velocity ϕð0Þ− c, a com-
mon picture of anomalous diffusion (47).
In the strongly chaotic case γ ∈

�
0; 12

�
, these large jumps are too

rare to cause anomalous diffusion and, as explained above, it
follows from ref. 2 that

pðnÞ= cn+W ðnÞ+O
�
n

1
2−λ

�
  a:e:

(compare Eq. 5) so the dynamics in the comoving frame is Brownian-
like. However, in the weakly chaotic case γ ∈

�
1
2; 1

�
, Gouëzel (5)

demonstrated that the large jumps correspond to Lévy flights. Once
the trajectory xn moves away from 0, the values of ϕ fluctuate errat-
ically, yielding Brownian-like motion for pðnÞ. These two effects
combine (5, 6) to produce a Lévy process with diffusion rate tγ .

Isotropic Case. We illustrate the nonlinear Huygens principle by
which weakly chaotic dynamics causes anomalous diffusion in
isotropic media with odd space dimensions but normal diffusion

in even space dimensions. The Eð2Þ skew product with rotations
θ and translations p= ðp1; p2Þ may be represented as

ðx; θ; pðxÞÞ↦�
f ðxÞ; θ+ hðxÞ; p+ eiθvðxÞ�;

where h and v take values in R and C, respectively. Hence,

pðnÞ=
Xn−1
j= 0

eiθj v
�
xj
�

 θj =
Xj−1
k= 0

hðxkÞ: [12]

For the numerics, we choose vðxÞ= 1+ x and hðxÞ= c0 ≠ 0. In Fig.
3, we show plots of the translation variables in the ðp1; p2Þ-plane.
We also show the process p1ðnÞ as a function of time. The
diffusive behavior is seen to be normal in both the strongly
and weakly chaotic cases. The mechanism by which anomalous
diffusion is suppressed in even dimensions is illustrated nicely:
the long laminar phases that in the anisotropic case give rise
to large excursions now are bounded in both the strongly and
weakly chaotic cases. This is seen in the intermittent circular
motion in Fig. 3, Inset. When combined with the Brownian-
like behavior caused by the chaotic bursts, this leads to an overall
Brownian behavior. It is clear from Eq. 12 that if we were to
remove the rotation near the fixed point by setting hðxÞ≡ 0 for x
near zero, then the translation variables would exhibit the same
behavior as in the anisotropic case (compare Eq. 11). In particular,
this would yield a Lévy process in the weakly chaotic case.
The corresponding plots for the Eð3Þ skew product are shown

in Fig. 2. The anomalous Lévy-type behavior is clearly visible in
the weakly chaotic case. See Supporting Information for details
on the skew-product equations used for the numerics.

Summary and Discussion
We provided a universal view of the type of diffusive behavior
that may be expected in spatially extended systems with sym-
metry. In doing so, we proposed a definition of weak chaos as the
boundary between summable and nonsummable correlations. In
contrast to the previous view of the onset of weak chaos as the
demarcation line of exponential and subexponential decay of
correlations, our definition allows a distinction between normal
and anomalous behavior. Using this definition, we contributed
to the understanding of diffusive behavior in isotropic media,
establishing a nonlinear Huygens principle whereby superdiffusion
occurs naturally in odd dimensions but not in even dimensions.
The phenomenon of anomalous diffusion has attracted much

interest in the past decade, with applications ranging from the
motion of metal clusters and large molecules across crystalline
surfaces (48), conformational changes in proteins (49), migration
of epithelial cells (50), diffusion in plasma membranes of living
cells (51), and finance ratios (52) to the foraging strategy of animals
(53–55), to name but a few. The mechanisms for anomalous
diffusion in these papers are model dependent, specific to the
details of the geometry of the various situations. In contrast,
ours is a universal perspective (analogous to the classical Huy-
gens principle) driven only by the ambient symmetry and the
degree of chaoticity of the underlying dynamics. Our theory
sets out the general conditions under which anomalous diffu-
sion may be expected in spatially extended systems with sym-
metry and may be viewed as a prediction and interpretation of
superdiffusive behavior in future experiments.
It is of interest to consider diffusive and superdiffusive be-

havior in systems with different kinds of spatial symmetry. For
systems with rotation SOð2Þ symmetry—for example, rotating
convection in the plane or on a sphere—trajectories lift natu-
rally to the universal covering group R, and we obtain the same
results as for the anisotropic case with d= 1.
For systems with O(2) symmetry (rotations and reflections),

it is interesting to consider the effect of the reflection symmetry.
There are two entirely different scenarios: (i) There are two
disjoint attractors interchanged by reflections, and each behaves

0 250 500 750 1000
0

500

1000

1500

2000

0 2 4 6 8 10

x 10
6

−500

0

500

1000

0 250 500 750 1000
0

500

1000

1500

2000

0 2 4 6 8 10

x 10
6

−20000

−15000

−10000

−5000

0

5000

Fig. 4. Anisotropic case: translation variable p as a function of time for an R
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as in systems with SOð2Þ symmetry. (ii) The attractor is invariant
(setwise) under reflections and the linear drift vanishes; we predict
bounded trajectories for regular dynamics and Brownian motion
for strongly chaotic dynamics. However, in the case of weakly
chaotic dynamics, we expect diffusion or superdiffusion, depend-
ing on whether the sticky regular phase is invariant or not under
reflections. Further, in scenario ii, the Brownian motions and
Lévy processes are symmetric.
Finally, we mention an open problem about systems on a sphere

with SOð3Þ rotation symmetry (again, these might be reaction–
diffusion equations or convection problems). This time, there is no

elementary method for passing to a noncompact group in which it
makes sense to speak of unbounded growth of trajectories. Our
expectation is that locally the results are similar to those in the
unbounded plane [Eð2Þ symmetry], but it is unclear how to make
such a statement precise.
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SI Text 1
Lattice Models for Diffusion. As discussed in the main text, it is
standard in the physics literature to consider deterministic lattice
models for diffusion. We refer to refs. 1–4 and also to the survey
article (5). The advantage of this approach is that there is a
straightforward correspondence between the equations, and their
solutions, for the underlying models and the skew-product systems.
In particular (1–3), consider deterministic models for dif-

fusion and anomalous diffusion on the real line, by considering
1-periodic maps ~f : R→R. The periodicity defines cells of length 1;
the map ~f may map outside the cell, which causes diffusion into
other cells. Such systems have discrete translation symmetry Z.
We consider extensions of their models to higher dimensions
and carry out numerical simulations that confirm the predictions
in the main part of our paper. There also is a reflection symmetry
in the work of refs. 1–3 that plays no role here and is suppressed
throughout (although see the second to last paragraph in Summary
and Discussion in the main text).
The class of dynamical systems with Z symmetry on the line

is in one-to-one correspondence with the class of skew-product
systems on X ×Z where X = ½0; 1Þ. The identification X ×Z≅R
is given by ðx; kÞa x+ k. Similarly, we can write ~f ðyÞ∈R as
~f ðyÞ= f ðyÞ+ vðyÞ, where f ðyÞ∈X , vðyÞ∈Z.

In this way, we obtain the skew product on X ×Z given by
ðx; kÞa ð f ðxÞ; k+ vðxÞÞ, where f : X →X , v : X →Z are given by
f ðxÞ≡~f ðxÞmod 1 and vðxÞ=~f ðxÞ− f ðxÞ.
Note that passing from ~f to ðf ; vÞ introduces discontinuities

as does the reverse procedure. Whereas refs. 1–3 initially specify
~f and then derive ðf ; vÞ, we take the equivalent approach of spec-
ifying ðf ; vÞ from the outset (which then implies a choice of ~f ).
This means we can focus on the fundamental domain X for the
action of the symmetry group Z on R. From this point of view, a
convenient choice of map is to take f to be the Pomeau–Manneville
intermittency map from the main text (Eq. 10) and to take v to
be any integer-valued map that is continuous (hence constant)
and nonzero for x near the neutral fixed point at zero. This
corresponds exactly to the approach in ref. 3. The mechanism
for superdiffusion in the skew-product formulation is as fol-
lows: The dynamics spends a very long time near the neutral
fixed point for f, corresponding to ballistic propagation under
~f = f + v along the axis. This leads to a process on R that is
asymptotically a linear drift (typically nonzero) superimposed
with Brownian motion for γ < 1=2 and a stable Lévy process
for γ ∈ ð1=2; 1Þ.
Deterministic Model for Planar Diffusion. Proceeding to two dimen-
sions, we replace the Euclidean group of planar rotations and
translations by the discrete group G=Z4⋉Z2, where Z2 consists
of translations ðx1; x2Þa ðx1 + k1; x2 + k2Þ for k1; k2 ∈Z, and Z4
consists of rotations by angle 0; π=2; π; 3π=2 about the origin.
The action of Z4 on R2 is generated by ðy1; y2Þa ð−y2; y1Þ. A
fundamental domain for the action of G on R2 is given by
X =

�
0; 12

�
×
�
0; 12

�
, and the identification X ×G≅R2 is given by

ðx;A; kÞaAx+ k, where x∈X , A∈Z4, and k∈Z2.
Again, there is a one-to-one correspondence between

G-equivariant deterministic diffusion models on R2 and skew-
product maps on X ×G of the form ðx;A; kÞa ðf ðxÞ;AhðxÞ; k+
AvðxÞÞ, where f : X →X , h : X →Z4, v : X →Z2. To obtain
strongly/weakly chaotic dynamics on X, a simple choice is
to take

f ðx1; x2Þ=
�
f1ðx1Þ; 12 x2

�
; [S1]

with

f1ðx1Þ=

8>><
>>:

x1
�
1+ 4γxγ1

�
; 0≤ x1 < 1

4

2x1 − 1
2;

1
4≤ x1 < 1

2:
[S2]

This map has a neutral fixed point (a nonhyperbolic saddle) at
ð0; 0Þ, and the dynamics is strongly/weakly chaotic for γ ∈

�
0; 12

�
and γ ∈

�
1
2; 1

�
, respectively.

In the strongly chaotic case, we predict normal diffusion. In the
anisotropic case (so h≡I2), this will be superimposed on a linear
drift; in the isotropic case in which rotation symmetry is present,
typically the drift term will vanish.
In the weakly chaotic case, we predict superdiffusion super-

imposed on a linear drift in the anisotropic case. In the isotropic
case, again the linear drift vanishes but, moreover, we predict that
the anomalous diffusion is suppressed in favor of Brownian motion.
These predictions are borne out by the numerical experiments
described below.

Deterministic Model for 3D Diffusion.Next, we consider the 3D case,
replacing the Euclidean group of rotations and translations by
the discrete group G=O⋉Z3, where Z3 consists of translations
ðx1; x2; x3Þa ðx1 + k1; x2 + k2; x3 + k3Þ for k1; k2; k3 ∈Z, and O is
the 24-element group consisting of rotation symmetries of
the cube. The action of O on R3 is generated by ðx1; x2; x3Þa
ð−x2; x1; x3Þ and ðx1; x2; x3Þa ðx1;− x3; x2Þ. A fundamental do-
main for the action of G on R3 is given by X = fx∈ �

0; 12
�2
:

x2 ≤ x1; x3 ≤ x1g (we choose to be imprecise with regard to the
boundaries; this is unimportant because the dynamics sees the
boundary only for a set of initial conditions of measure zero),
and the identification X ×G≅R3 is given by ðx;A; kÞaAx+ k,
where x∈X , A∈O, k∈Z3.
Once again there is a one-to-one correspondence between

G-equivariant deterministic diffusion models on R3 and skew-
product maps on X ×G of the form ðx;A; kÞa ðf ðxÞ;AhðxÞ; k+
AvðxÞÞ, where f : X →X , h : X →O, v : X →Z3. An example of a
map that generates strongly/weakly chaotic dynamics is

f ðx1; x2; x3Þ=

0
BBBBBBB@

x1
�
1+ 4γ xγ1

�

1
2 x2

1
2 x3

1
CCCCCCCA

0≤ x1 < 1
4

0
BBBBBBBBB@

2x1 − 1
2

min
�
2x1 − 1

2;
1
2 x2

�

min
�
2x1 − 1

2;
1
2 x3

��

1
CCCCCCCCCA

1
4≤ x1 < 1

2:

 

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

In the strongly chaotic case γ ∈
�
0; 12

�
and in the anisotropic case,

our predictions are the same as in two dimensions. However, for
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weak chaos γ ∈
�
1
2; 1

�
in the isotropic case, we predict that the

anomalous diffusion persists despite the rotation symmetry and
that there is a stable Lévy process.

Numerical Experiment. We carry out a numerical verification of
our predictions in the case of weakly chaotic dynamics for 2D
systems. For the base dynamics f : X →X , we use the map de-
fined in Eqs. S1 and S2. In the numerics, we compute a dy-
namical orbit ðxn;An; knÞ in the skew product and plot the
sequence of points yn = Anxn + kn on the R2-plane. We do this
for both the anisotropic case (h≡ I2) and the isotropic case (in
which we choose h to be rotation by π=2 independent of x). In
both cases, we take v= ðv1; v2Þ with

v1ðxÞ=
�

1 0≤ x1 ≤ 0:15
−2 0:15< x1 ≤ 0:5

v2ðxÞ=
�
3 0≤ x1 ≤ 0:33
1 0:33< x1 ≤ 0:5:

The results for the anisotropic and isotropic cases are shown in
Figs. S1 and S2, respectively, confirming our theoretical results.
In the anisotropic case, the Lévy process is completely antisym-
metric for f, an intermittent map with a single neutral fixed point
[just as in the one-dimensional case (Fig. 4)]. Hence, the Lévy flights
are concentrated along a single direction in the plane.

SI Text 2
Skew-Product System for the E(3) Extension. In the case of Eð3Þ=
SOð3Þ⋉R3, it is convenient to make the identification SOð3Þ≅
SUð2Þ=f± I2g, where SUð2Þ is the special unitary group of 2× 2
complex matrices with determinant 1. Such matrices have the form

A=
�

α β
−β α

�
;

where α; β∈ℂ and jαj2 + jβj2 = 1. We also identify R3 with 2× 2
complex matrices

v=
�

ia b
−b −ia

�
;

where a∈R, b∈ℂ. The action of SOð3Þ on R3 is given by
A·v=AvA−1. The skew product takes the form

ðx;A; pÞa ðf ðxÞ;AhðxÞ; p+A·vðxÞÞ; [S3]

where A; hðxÞ∈SUð2Þ and p; v∈R3. Hence,

pðnÞ=
Xn−1
j= 0

Aj · v
�
xj
�
;     Aj = hðx0Þhðx1Þ⋯h

�
xj−1

�
: [S4]

Numerical Experiment. For the numerics, we choose

aðxÞ= 2+ x   and   bðxÞ= ð1+ iÞð2+ xÞ;

and we represent

h=
�

cosðc0Þexpðic1Þ sinðc0Þexpðic2Þ
−sinðc0Þexpð−ic2Þ cosðc0Þexpð−ic1Þ

�
;

where the functions ci are chosen to be piecewise constant on the
subintervals

�
0; 12

�
,
�
1
2;

3
4

�
,
�
3
4; 1

�
with values chosen from a uniform

distribution in the interval ðπ=5; 4π=5Þ (so nine different values
are chosen at random). In Fig. 2, we show plots of the translation
variables in the ðp1; p2Þ-plane and the process p1ðnÞ as a function
of time for strongly and weakly underlying dynamics. The
anomalous Lévy-type behavior is clearly visible in the weakly
chaotic case.
The anomalous diffusion linked to underlying weakly chaotic

dynamics of the Pomeau–Manneville map may be motivated by
inspecting the skew product Eq. 1 as follows: Let us decompose
vð0Þ= vk + v⊥, where vk denotes the component along the axis of
rotation of hð0Þ and v⊥ denotes the component perpendicular to
the axis of rotation. [In the notation of Eq. 8, 0 corresponds to x0
and v║ corresponds to v1ðx0Þ.] Then, within the laminar phase,
say with xj close to the indifferent fixed point for N0 iterates, the
translation variables p are augmented by approximately v║N0

(compare Fig. 1). Noting the expression for Aj in Eq. S4, in the
weakly chaotic case a requirement for the occurrence of anom-
alous diffusion is that vð0Þ must have a nonvanishing component
v║ along the axis of rotation of hð0Þ.
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Fig. S1. Anisotropic case: coordinate y1 as a function of time for a Z2 skew product driven by the Pomeau–Manneville map Eqs. S1 and S2 with γ = 0:7. Shown
are the full dynamics including the linear drift (Left) and with the linear drift eliminated by subtracting the mean from the data (Right).
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Fig. S2. Isotropic case: coordinates y1 (Left) and ðy1; y2Þ (Right) as functions of time for a Z4 ⋉Z2 skew product driven by the Pomeau–Manneville map Eqs. S1
and S2 with γ = 0:7.
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