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Dynamics arising persistently in smooth dynamical systems ranges from regular dynamics

(periodic, quasiperiodic) to strongly chaotic dynamics (Anosov, uniformly hyperbolic,

nonuniformly hyperbolic modelled by Young towers). The latter include many classical examples

such as Lorenz and H�enon-like attractors and enjoy strong statistical properties. It is natural to

conjecture (or at least hope) that most dynamical systems fall into these two extreme situations.

We describe a numerical test for such a conjecture/hope and apply this to the logistic map

where the conjecture holds by a theorem of Lyubich, and to the 40-dimensional Lorenz-96 system

where there is no rigorous theory. The numerical outcome is almost identical for

both (except for the amount of data required) and provides evidence for the validity of the

conjecture. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868984]

A longstanding open problem in the theory of dynamical

systems, which continues to be the subject of much dis-

cussion by mathematicians and physicists, is the question

of what constitutes a typical dynamical system. An an-

swer would not only constitute an immense theoretical

advance within the theory of smooth dynamical systems,

but would have a profound practical impact on our

understanding and analysis of physical phenomena in the

real world. In this work, we formulate a conjecture on

the nature of typical dynamical systems stating that they

are either regular or chaotic in a way that assures good

statistical properties such as existence of Sinai-Ruelle-

Bowen (SRB) measures, exponential decay of correla-

tions, large deviation principles, as well as central limit

theorems. Since the current state of the theory does not

allow for a rigorous theoretical treatment of the conjec-

ture, we devise a numerical test, which we use to find cor-

roborating evidence for the conjecture.

I. INTRODUCTION

A central, but currently intractable, question in the

theory of smooth deterministic dynamical systems is to

understand the types of attractors for typical systems. A clas-

sification of attractors would range from very regular dynam-

ics to very chaotic dynamics, including periodic sinks at one

extreme and uniformly hyperbolic (Axiom A) attractors at

the other extreme. The uniformly hyperbolic attractors of

Smale41 generalise the Anosov diffeomorphisms and flows.

(Smale’s definition of uniformly hyperbolic includes the per-

iodic case, but we shall abuse terminology and reserve the

words “uniformly hyperbolic” for the nonperiodic case.)

Throughout this paper, we are interested in both discrete

time dynamical systems (noninvertible maps and

diffeomorphisms) and continuous time systems (flows).

Similar comments and results apply to both. However, our

notation and definitions will be confined to the discrete case,

where f : Rn ! Rn is a smooth map with compact attractor

K � Rn. Our focus is primarily on dissipative systems, but

the material goes over to Hamiltonian systems with the

obvious modifications.

An important property of uniformly hyperbolic attrac-

tors is the existence of a physical measure, or SRB measure
after Sinai, Ruelle, and Bowen, which has the property that

time averages converge to the space average for a set of ini-

tial conditions of positive volume (i.e., positive Lebesgue

measure). This is in contrast to the ergodic theorem for ordi-

nary ergodic measures where the convergence takes place

for a set that has full measure with respect to the ergodic

measure, which however is usually a set of zero volume

(since the ergodic measure is supported on the attractor K,

which is usually of zero volume).

Definition 1.1. An ergodic measure l supported on K is

an SRB measure if there is a set B of positive volume such

that

lim
n!1

1

n

Xn�1

j¼0

vðf jx0Þ ¼
ð

K
v dl;

for every continuous observable v : Rn ! R and for all x0

� B.

Uniformly hyperbolic attractors have numerous strong

statistical properties. In particular, they have exponential

decay of correlations up to a finite cycle.7,39,40

Definition 1.2. An attractor K with ergodic measure l
has exponential decay of correlations if there exists a con-

stant c � (0, 1) such that for all smooth v;w : Rn ! R there

is a C> 0 such that

����
ð

K
v w� f n dl�

ð
K
v dl

ð
K

w dl

���� � Ccn:a)Electronic mail: georg.gottwald@sydney.edu.au
b)Electronic mail: I.Melbourne@warwick.ac.uk
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More generally, the attractor has exponential decay of corre-
lations (up to a finite cycle) if there exists k� 1 and disjoint

compact sets K1,…, Kk such that for all i¼ 1,…, k, it is the

case that f(Ki)¼Kiþ1 (with kþ 1¼ 1) and f k : Ki ! Ki has

exponential decay of correlations.

From now on, we omit the words “up to a finite cycle”

and speak simply of exponential decay of correlations. The

SRB measure l on a uniformly hyperbolic attractor enjoys this

property and it suffices that v and w are Lipschitz (or even

H€older in which case the constant c depends on the H€older

class). There are numerous other statistical properties such as

central limit theorems that hold for uniformly hyperbolic

attractors. These are described in a more general setting below.

Remark 1.3. Decay of correlations for uniformly hyper-

bolic (even Anosov) flows is rather less well understood.

Only partial results exist;10–12,24 however, statistical limit

laws such as central limit theorems and invariance principles

remain valid for uniformly hyperbolic flows.9,32,37

Smale conjectured (see, for example, Sec. 2.5 in Ref.

35) that for typical dynamical systems (typical in the sense

of Cr open and dense, r� 1) periodic sinks and uniformly

hyperbolic attractors comprise the full range of possibilities.

This conjecture turned out to be false; and moreover, the

notion of typicality turned out to be inadequate even in situa-

tions where the conjecture holds (see, for example, items

(i)–(iii) below). Over the last 40–50 years, numerous exam-

ples have arisen that make it necessary to enlarge the notions

of being very regular or very chaotic.

(i) KAM tori with quasiperiodic dynamics are nonrobust

in a topological sense (they are destroyed by Cr small

perturbations,) but they are unavoidable in a probabilis-

tic sense (the set of parameters that give rise to KAM

tori has large measure). For dissipative systems, a simi-

lar phenomenon arises in Naimark-Sacker bifurcation

from a periodic solution.

(ii) The logistic map (see Sec. III for more details) is a

one-parameter family of one-dimensional maps. For

each value of the parameter, there is a unique attractor

that attracts almost every trajectory. For an open and

dense set of parameters, the attractor is a periodic sink.

However, Jakobson23 showed that the complementary

set of parameters has positive measure. More recently,

Lyubich28 proved that almost every parameter in this

complementary set satisfies the so-called Collet-

Eckmann condition8 and hence constitutes strongly

chaotic (though not uniformly hyperbolic) dynamics.

(iii) H�enon-like attractors22 arise near quadratic homo-

clinic tangencies5,33 and are strongly chaotic.6 These

are again unavoidable in a probabilistic sense.

(iv) Geometric Lorenz attractors are topologically robust

but nonuniformly hyperbolic examples of strongly

chaotic systems.1,21,43 Tucker42 showed that these

include the classical Lorenz attractor.26

The strongly chaotic attractors mentioned above—uni-

formly hyperbolic, Collet-Eckmann, H�enon-like, (geometric)

Lorenz—have the common property that they are modelled by

a Young tower with exponential tails as introduced by

Young.44 (For Lorenz attractors, it is the Poincar�e map that is

modelled by a Young tower.) Roughly stated, a dynamical sys-

tem f: K! K is modelled by a Young tower with exponential

tails if there exists a set Y � K with return time function s :
Y ! Zþ (not necessarily the first return time) and return map

F¼ f s: Y! Y such that (i) F is uniformly hyperbolic, and (ii)

the likelihood of a large return time s is exponentially small.

Numerous strong statistical properties have been proved

for such attractors modelled by Young towers: existence of

an SRB measure, exponential decay of correlations and cen-

tral limit theorems,44 large deviation principles,31,38 Berry-

Ess�een estimates and local limit theorems,19 and invariance

principles.20,30,32 There is also an enlarged class of attrac-

tors45 that possess polynomial decay of correlations; where

this decay is summable the above statistical properties apply.

In a sense that can be made precise, there is an equiva-

lence between the existence of a Young tower and strong sta-

tistical properties.2 This observation uses the work of Alves

et al.3 and Melbourne and Nicol.31

Since there are good reasons for hoping (if not believ-

ing) that most attractors are either highly regular or enjoy

strong statistical properties, and in the absence of convincing

counterexamples, one possibility is to define strongly regular

attractors to be the periodic and quasiperiodic ones, and

strongly chaotic attractors to be the ones modelled by a

Young tower with exponential tails. This leads naturally to

the following deliberately imprecise conjecture.

Conjecture 1.4. Typically (in a sense that we do not

make precise), the attractors for smooth dynamical systems

fall into one of the following two classes:

(a) Regular dynamics: K is a periodic or quasiperiodic sink.

(b) Chaotic dynamics: K is modelled by a Young tower

with exponential tails.

(In the case of flows, this statement is at the level of the

Poincar�e map.)

A precise conjecture would require a precise definition

of “typically,” probably leading to the failure, though not

necessarily the relevance, of the conjecture.

A test for Conjecture 1.4

Although it is hard to see how to test directly for

Conjecture 1.4, there are certain implications that can be tested

numerically. Suppose that K is an attractor for a map or diffeo-

morphism, f : Rn ! Rn and that l is an ergodic invariant

measure on K. Let v : Rn ! R be a smooth observable. Recall

that the power spectrum S : ½0; 2p� ! ½0;1Þ is given by

Sx ¼ lim
n!1

1

n
SxðnÞ; SxðnÞ ¼

ð
K

����
Xn�1

j¼0

eijxv� f j

����
2

dl:

Since S2p�x ¼ Sx, we restrict from now on to the interval [0, p].

The following dichotomy was established by Melbourne

and Gottwald.29

Theorem 1.5. Let K be a periodic or quasiperiodic sink,
or an attractor modelled by a Young tower with exponential
tails for a smooth map f : Rn ! Rn. Suppose that l is the
SRB measure on K. Let v : Rn ! R be a C1 observable.
Typically,
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(a) In the periodic/quasiperiodic case, Sx¼ 0 almost
everywhere. Moreover,

Kx ¼ lim
n!1

logSxðnÞ=log n ¼ 0

for all but finitely many x � [0, p].
(b) In the Young tower case, there is a constant s0> 0 such

that Sx� s0 for all but finitely many values of x. In
particular,

Kx ¼ lim
n!1

logSxðnÞ=log n ¼ 1

for all but finitely many x � [0, p].
Remark 1.6. Often in the physics literature, regular and

chaotic dynamics is distinguished in terms of the power spec-

trum.14 Broadband power spectrum (where there exists an

interval or at least a set of positive measure on which Sx is

positive) is seen as being the signature of chaotic dynamics.

The dichotomy in Theorem 1.5 is significantly stronger.

In case (a), we are requiring that Sx(n) grows slower than

any polynomial rate. In contrast, the requirement that Sx¼ 0

is compatible with values of Kx anywhere in [0, 1]. For

example, if Sx(n) grows like n=logn, then Sx¼ 0 but Kx¼ 1.

In case (b), the power spectrum is positive and bounded

away from zero for all but finitely many points, which is

rather more than claiming broadband spectrum.

Based on Theorem 1.5, our conjecture can be tested as

follows. Consider a parameterized family of smooth dynami-

cal systems, with parameter a 2 R. For each fixed value of

a, compute the family of limits Sx and check whether they

are almost all zero or almost all one. Such a test can be car-

ried out numerically by taking values of a and x that are rea-

sonably dense and estimating the growth rate of Sx(n).

Remark 1.7. A slightly weaker version of the conjecture

would be to include Young towers with polynomial tails

(rather than only those with exponential tails). Our test does

not distinguish between these situations. However, we do not

know of any persistent examples in smooth dynamics where

an attractor is modelled by a Young tower with subexponen-

tial tails, but not by a Young tower with exponential tails.

There are similarities and differences between the test

proposed above and the 0–1 test for chaos.15–18 The 0–1 test

is optimised to work with limited amounts of data. In partic-

ular, taking the median value of Kx for 100 randomly chosen

values of x greatly accelerates the convergence of the test.

The test described in this paper is a much more stringent ex-

amination of the dichotomy in Conjecture 1.4 but requires

much more data. Even for the logistic map, the refined test in

this paper requires enormous amounts of data that would be

impractical in the 0–1 test for chaos.

Our conjecture is related to the Palis conjecture and to

the Gallavotti-Cohen chaotic hypothesis.

Palis conjecture. As already mentioned, Smale’s conjec-

ture regarding the ubiquity of periodic sinks and uniformly

hyperbolic attractors turned out to be false. Hence it became

necessary to formulate a weakened statement. Over the years,

Palis gave a number of conjectures in this direction; we refer

to the original work by Palis34–36 for statements of these

conjectures (rather more precise than ours!) and progress

towards their verification.

The emphasis in the Palis conjectures is global, focus-

ing on (i) the finitude of attractors possessing SRB meas-

ures, with the property that the union of their basins

accounts for a set of initial conditions of full measure, and

(ii) the stability of these attractors under perturbations. Our

conjecture is more local since we have said nothing about

the finitude of attractors, nor their stability under perturba-

tions. However, for typical attractors taken on their own,

we make stronger statements about their statistical

properties.

Gallavotti-Cohen chaotic hypothesis. The chaotic hypothe-

sis13 proposes that chaotic systems should be considered as

Anosov systems for practical purposes. Since the property of

part (b) of Theorem 1.5 is certainly valid for Anosov sys-

tems, our numerical test can be viewed as a test also of the

chaotic hypothesis.

The remainder of the paper is organised as follows. In

Sec. II, we describe how to test parametrized families of dy-

namical systems for their conformity to Conjecture 1.4. In

Sec. III, we carry out this test for the logistic map. This pro-

vides a benchmark for our test since the conjecture is known

to be valid by Lyubich.28 In Sec. IV, we carry out the test for

the 40-dimensional Lorenz-96 system, which is regarded as

highly important in meteorological studies, and which is far

beyond the current understanding of rigorous dynamical sys-

tems theory. Nevertheless, the numerical results for Lorenz-

96 are similar to those for the logistic map except for the

amount of data required for convergence. We conclude with

a brief summary in Sec. V.

II. THE NUMERICAL TEST

Consider a smooth family of maps fa : Rn ! Rn where

a 2 R is a parameter. For convenience, we assume that all

trajectories are bounded.

Suppose that a 2 R and that K � Rn is an attractor for

fa. For values of x chosen randomly from [0, p], we compute

Kx as defined in Theorem 1.5. Then, according to

Conjecture 1.4 and Theorem 1.5, we anticipate that Kx takes

the constant value 0 or 1 independent of x (for all but finitely

many x).

To carry out this procedure numerically, we note that

computing Sx(n) directly is unfeasible since K (and l) are

not given. However, by the ergodic theorem, for l-almost

every x0 � K,

SxðnÞ ¼ lim
J!1

1

J

XJ�1

j¼0

jpxðjþ nÞ � pxðjÞj2; (2.1)

where

pxðnÞ ¼
Xn�1

‘¼0

ei‘xvðf ‘a x0Þ: (2.2)

Moreover, assuming the conjecture, typically l can be taken

to be an SRB measure and x0 can be chosen from a set of

positive Lebesgue measure.

024403-3 G. Gottwald and I. Melbourne Chaos 24, 024403 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  129.78.68.1

On: Thu, 20 Mar 2014 00:04:49



Equally, assuming the conjecture, typically x0 2 Rn lies

in the basin of an attractor K (depending on x0 and a) and

Sx(n) can be computed using (2.1) and (2.2). From this,

Kx ¼ limn!1 logSxðnÞ=logn can be computed. Again, if

Conjecture 1.4 is valid, then for typical fa and x0, it should be

the case that Kx takes the constant value either 0 or 1 inde-

pendent of x (for all but finitely many x).

There are some finite computation issues that need to be

addressed. The most crucial one is that the definition of Kx

involves a double limit, first as J ! 1 and then as n ! 1.

We will ignore this issue to begin with and return to it at the

end of the section.

To implement the test, we take as initial condition

x0¼ f1000x1 where x1 is chosen at random and fixed through-

out. (Neglecting this transient of 1000 iterates is not strictly

necessary but speeds up the calculations.) A finite but rea-

sonably dense set of parameters a is specified. For each value

of a, we compute Kx for 100 (say) randomly chosen values

of x � [0, p]. Given the finiteness of the data, it is necessary

to specify small open intervals I0 and I1 containing 0 and 1

respectively, such that Kx � Ir is viewed as an r for r¼ 0, 1.

Define

M0 ¼ #fx : Kx 2 I0g;
M1 ¼ #fx : Kx 2 I1g;
Mu ¼ #fx : Kx 62 I0 [ I1g;

with M0þM1þMu¼ 100. (Here, u stands for undecided.)

As Kx is computed with greater and greater precision, a con-

sequence of the conjecture is that either M0! 100 or M1!
100. An implication that is easier to test for is that

Mu ! 0 and minfM0;M1g ! 0:

The numerical test that we propose can now be stated

more precisely. We make three choices of intervals

(i) I0¼ (�0.1, 0.3), I1¼ (0.7, 1.1).

(ii) I0¼ (�0.1, 0.2), I1¼ (0.8, 1.1).

(iii) I0¼ (�0.1, 0.1), I1¼ (0.9, 1.1).

For each of these choices, we take A equally spaced values of

the parameter a and 100 values of x � [0, p] chosen at ran-

dom. (The value of A will depend on the length of the range

of interesting parameters for the dynamical system.) Then, we

analyse the convergence to zero of the following four quanti-

ties as the limit J!1 and n!1 is approached:

Qu ¼
X

a
Mu;

Q0u ¼ # a : Mu > 10f g;

and

Qmin ¼
X

a

minfM0;M1g;

Q0min ¼ #fa : minfM0;M1g > 10g:

The quantity Qu � {0, 1,…, 100A} denotes the total number

of values of x and parameter values a for which the value of

K is undecided (i.e., it lies outside I0 [ I1), whereas the quan-

tity Q0u 2 f0; 1;…;Ag denotes the number of parameter val-

ues for which Kx is undecided for more than 10% of the

choices of x. Similarly for Qmin and Q0min with the number

of undecideds replaced for each a by the minimum of the

number of 0s and the number of 1s.

Our choices for the intervals I0 and I1 around 0 and 1 are

somewhat arbitrary; if the conjecture is true than eventually

the four quantities Qu, Q0u; Qmin; Q0min will reach zero,

regardless. The amount of data to achieve this depends on

the choice of intervals, but this dependence is not relevant

for Conjecture 1.4. On the other hand, our numerical experi-

ments indicate that Kx very quickly lies between 0 and 1

(within a small error), and we have chosen the sharper lower

limit �0.1 for I0 and upper limit 1.1 for I1 with this in mind.

We note that the convergence to zero need not be monotone.

For example, suppose that a parameter value a yields a chaotic

attractor of class (b), so that eventually M0¼ 0 and M1¼ 100. If

the convergence is sufficiently slow, then it is possible that

M0¼ 95 and M1¼ 5 (say) for N too small. For moderate values

of N, the situation might improve to M0¼ 15, M1¼ 85. In this

case, the parameter a contributes adversely to Qmin0 for N moder-

ate but not for N small. An example of this is shown in Figure 2

where the number of outliers for Q0min increases from zero to one

as N increases within the range of our experiment.

A. The double limit

As promised, we discuss the issues regarding the double

limit in the formula

Kx ¼ lim
n!1

lim
J!1

log
1

J

XJ�1

j¼0

jpxðjþ nÞ � pxðjÞj2
0
@

1
A=logn:

Under certain conditions, it should be possible to prove that

for any s � (0, 1),

Kx ¼ lim
J!1

log
1

J

XJ�1

j¼0

jpxðjþ J sÞ � pxðjÞj2
0
@

1
A=logJ s: (2.3)

However, there is no way to tell how large J needs to be for

a given s to be effective, rendering formula (2.3) unsuitable

for a numerical test. We follow the simpler route of replacing

Js by dJ where d is a small constant (depending on the family

of dynamical systems). By inspection for a few randomly

chosen values of a and x, we check that d is sufficiently

small for the range of n used in the numerical test. In Secs.

III and IV, we verify that d¼ 0.01 suffices for the logistic

map and the Lorenz-96 system, respectively.

Suppose that N denotes the number of iterates available

for the numerics, so we have computed f j
ax0 for j¼ 0,…, N – 1.

Then, Sx(n) can be computed for n¼ 0, 1,…, dN and we can

use logSxðdNÞ=logdN as an estimate for Kx.

B. Speeding up the test

We have already mentioned that taking a short transient

(say 1000 iterates) speeds up the convergence in the test.
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There are further devices for speeding up the test that we

observed while developing the 0–1 test for chaos.

First, it is useful to define the modified mean square

displacement17,18

D0
xðnÞ ¼ SxðnÞ �

ð
K
v dl

� �2
1� cosnx
1� cosx

:

Note that
Ð
Kv dl ¼ limn!1

1
n

Pn�1
j¼0 vðf jx0Þ can be computed

using the ergodic theorem and that

Kx ¼ limn!1 logD0
xðnÞ=logn. For Young towers with expo-

nential tails that are mixing, it was proved that the conver-

gence as n ! 1 is now uniform in x.18 Even in the

nonmixing case, numerics18 show this to be a useful modifi-

cation. To avoid taking logarithms of negative numbers, we

set DxðnÞ ¼ D0
xðnÞ þ C where C ¼ maxk¼1;…;dNjD0

xðkÞj.
(Since C is a constant once the amount of data is specified,

the growth rate in n is unchanged.) Then, we replace Sx(n)

by Dx(n) in all the formulas.

Second, to make more efficient use of the data, we com-

pute Dx(n) for all n� dN and perform linear regression on

logDxðnÞ plotted against logn (cf. Gottwald and

Melbourne15,17).

III. LOGISTIC MAP

The logistic map, or quadratic family, fa(x)¼ ax(1 – x),

0� a� 4, is a convenient example to begin with since it is

very well understood. For each value of a, there is a unique

attractor K � ½0; 1�. For an open and dense set of parameters

a 2 P � ½0; 4�, the attractor K is a periodic sink. However,

Jakobson23 (see also Benedicks and Carleson4) proved that

Leb(P)< 4. By Lyubich28 for almost every a 2 ½0; 4�nP, the

Collet-Eckmann condition8 holds, and this implies the exis-

tence of a Young tower with exponential tails (see Theorem

7 in Young44). Hence, Conjecture 1.4 is valid for this family.

We confine our numerics to the parameter range

3.5� a� 4 since ½0; 3:5� � P and corresponds entirely to

periodic sinks of low period (at most period 4).

The first step is to determine a suitable value of d. To

achieve this, we chose various values of a � [3.5, 4] and x �
[0, 2p] at random and plotted logDxðnÞ against logn for vari-

ous ranges of n¼ 1,…, N. Theorem 1.5 implies that the graph

should be linear, but in practice given N iterates of the dynam-

ical system, the graph is linear only up to a certain point. A

typical example is shown in Figure 1. (The graphs for different

choices of N need not coincide for a given n since the averag-

ing in (2.1) is over a different range. The strange (and incon-

sistent) behaviour for large n confirms that there is insufficient

averaging once n is too large relative to N.) It is evident from

the graphs that d¼ 0.1 is too large, whereas d¼ 0.01 is com-

fortably within the linear range. Our experiments with various

choices of a and x confirm that d¼ 0.01 is a safe choice for

the entire range of values of a, x, and N in our numerical test.

From now on, we fix this value of d for the logistic map.

Our numerical results for the logistic map are shown in

Figure 2. The results are consistent with the theory, based on

Lyubich,28 which dictates that the four quantities Qu,

Qmin; Q0u; Q0min converge to zero as N!1. However, it is

also clear that there are a handful of cases that are converg-

ing very slowly, with little appreciable improvement from

N¼ 100 000 to N¼ 500 000. It is well-known that the onset

of chaos near a� 3.57 leads to very slow convergence in any

numerical method for distinguishing regular and chaotic dy-

namics. Nevertheless, by Ref. 28, we know that the conjec-

ture is true for this example, so the difficulty is not with the

conjecture itself, but with the numerical verification of the

conjecture. Understanding these limitations to this (or any)

numerical test is instructive when applying it to examples

where there is no proof of convergence.

To this end, it is useful to first contrast these results with

the 0–1 test for chaos, which uses the median value of K(x),

and hence converges very quickly for most values of the pa-

rameter a, see Figure 3. The problematic parameters are

indeed the ones near the onset of chaos a� 3.57 and also near

the first periodic window a� 3.63. It is noteworthy that the

onset of chaos after the large period 3 window near a� 3.83

does not cause a problem. (Of course, periodic windows are

dense but at this level of resolution, where a is increased in

increments of 0.01, there are only three periodic windows.)

It is easily verified that the eventually slow convergence

in Figure 2 is entirely connected with the rare problematic

parameters indicated in Figure 3. In particular, a relatively

small number of outliers persist for a very large number of

iterates. This is illustrated in Figure 4, where the number of

undecided values Mu is shown as a function of the parameter

a for a range of iterates N. It is shown that by the time we

reach N¼ 500 000 iterates, the nonconvergence of the four

quantities in Figure 2 is due almost entirely to two values of

the parameter, a¼ 3.58 and a¼ 3.59.

IV. LORENZ-96 MODEL

In this section, we consider the Lorenz-96 model

dxi

dt
¼ xi�1ðxiþ1 � xi�2Þ � xi þ a with i ¼ 1; 	 	 	 ;m;

(4.1)

FIG. 1. Graph of logDxðnÞ against logn for the logistic map with a¼ 3.6022

and x¼ 1.9418. We take n¼ 1,…,N with N¼ 50 000, N¼ 100 000,

N¼ 200 000, N¼ 400 000. The various ranges used for the linear regression

are marked by green diamonds for d¼ 0.01, blue circles for d¼ 0.02, and

red crosses for d¼ 0.1. The four graphs are spaced apart vertically so that

they can be seen separately, with N¼ 50 000 at the bottom, up to

N¼ 400 000 at the top.
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where x0¼ xm. This system of ordinary differential equations

was first introduced by Lorenz as an idealised model for mid-

latitude atmospheric dynamics.25,27 We consider the case

m¼ 40 with the parameter a varying in the interval [3,7] in

increments of 0.1. Throughout, we integrate the system using

a time step of 0.0005 and record, after an initial transient of

10 000 time steps, N data points after each 1000 time steps. As

an observable we take / ¼ x1, so /ðnÞ ¼ x1ðtÞ with t¼ 0.5n.

In Figure 5, we show that again a value of d¼ 0.01 is a

conservative choice for the determination of possible linear

behaviour of the mean-square displacement. Note that the

adequacy of d¼ 0.01 increases with the total number of iter-

ates N.

Our numerical results for the Lorenz-96 model are

shown in Figure 6. The results are consistent with

Conjecture 1.4 that the four quantities Qu, Qmin, Q0u; Q0min

converge to zero as N ! 1. Indeed, the results in Figure 6

are comparable to those in Figure 2 for which there was a

rigorous convergence proof. The main noticeable difference

FIG. 3. The median value of K(x) plotted against the parameter a for the

logistic map. Blue crosses: N¼ 10 000 iterates. Red circles: N¼ 100 000

iterates. Green diamonds: N¼ 500 000 iterates.

FIG. 4. Graph of the percentage Mu of undecided values of x plotted against

the parameter a for the logistic map, using the range (ii) I0¼ (�0.1, 0.2),

I1¼ (0.8, 1.1) throughout. Blue crosses: N¼ 10 000 iterates. Red circles:

N¼ 100 000 iterates. Green diamonds: N¼ 500 000 iterates.

FIG. 2. Graphs of Qu, Qmin, Q
0
u; Q

0
min against the number of iterates N for the logistic map. In each case, the results are shown for the three choices (i)

I0¼ (�0.1, 0.3), I1¼ (0.7, 1.1), red crosses; (ii) I0¼ (�0.1, 0.2), I1¼ (0.8, 1.1), blue circles; (iii) I0¼ (�0.1, 0.1), I1¼ (0.9, 1.1), magenta diamonds.
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is the speed of convergence since we have used 6 times the

amount of data, but that is not surprising given the increase

from one dimension to 40 dimensions and the passage from

discrete to continuous time.

Again, it is also clear that there are only a few parameter

values for which the convergence is slow. As with the logis-

tic map, this can be compared with the corresponding results

for the more quickly convergent 0–1 test for chaos, see

Figure 7, as well as the number of outliers in Figure 8.

V. SUMMARY

We have formulated a conjecture on the nature of attrac-

tors of typical dynamical systems. Our Conjecture 1.4 states

that typical dynamical systems are either regular, i.e., peri-

odic or quasi-periodic, or strongly chaotic in the sense that

they enjoy good statistical properties, such as existence of

FIG. 5. Graph of logDxðnÞ against logn for the Lorenz-96 system with

a¼ 6.2 and x¼ 0.6283. We take n¼ 1,…,N with N¼ 50 000, N¼ 100 000,

N¼ 200 000, N¼ 400 000. The various ranges used for the linear regression

are marked by green diamonds for d¼ 0.01, blue circles for d¼ 0.02, and

red crosses for d¼ 0.1. The four graphs are spaced apart vertically so that

they can be seen separately, with N¼ 50 000 at the bottom, up to

N¼ 400 000 at the top.

FIG. 6. Graphs of Qu, Qmin, Q
0

u; Q
0

min against the number of iterates N for the Lorenz-96 model. In each case, the results are shown for the three choices (i)

I0¼ (�0.1, 0.3), I1¼ (0.7, 1.1), red crosses; (ii) I0¼ (�0.1, 0.2), I1¼ (0.8, 1.1), blue circles; (iii) I0¼ (�0.1, 0.1), I1¼ (0.9, 1.1), magenta diamonds.

FIG. 7. The median value of K(x) plotted against the parameter a for the

Lorenz-96 model. Blue crosses: N¼ 1 000 000 iterates. Red circles:

N¼ 2 000 000 iterates. Green diamonds: N¼ 3 000 000 iterates.
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SRB measures, exponential decay of correlations, large devi-

ation principles, and central limit laws.

Certain implications of Conjecture 1.4 can be tested

numerically and we have devised a numerical test accord-

ingly. The logistic map (for which a rigorous theory exists28)

was used as a benchmark for discussing various practical

issues regarding the implementation of the test. We then pro-

ceeded to the 40-dimensional Lorenz-96 system (for which

no rigorous theory is available) and showed convincing evi-

dence that the conjecture is true also in such more complex

situations.

In our numerical experiments, we have opted to fix a

randomly chosen initial condition x1 and then varied the pa-

rameter a. The initial condition could also be varied, thereby

possibly enlarging the class of examples used for testing the

conjecture. However, for the logistic map, this would not

add anything new since it is known that there is a unique

attractor for each value of a. For the Lorenz-96 system, there

is no such uniqueness result, but since we are using the logis-

tic map as a benchmark, it makes sense to keep the two

implementations of the test as similar as possible. (As

explained in our discussion of the Palis conjecture in the

introduction, it is not our aim to explore issues such as the

number of coexisting attractors for a fixed parameter a,

rather we are exploring the nature of all attractors for typical

initial conditions, for typical dynamical systems.)

The main focus in this paper has been on discrete-time

dissipative systems, but the conjecture applies equally to

continuous time systems and to Hamiltonian systems. For

the latter, where the notion of attractor does not make sense,

the conjecture would explore instead the nature of the typical

asymptotic dynamics (x-limit sets) for typical initial

conditions.
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