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ABSTRACT

It is shown that the interaction of long, weakly nonlinear, quasigeostrophic baroclinic waves can be described
by a pair of linearly coupled Korteweg–de Vries equations. Baroclinic energy conversion is investigated as the
interaction of interacting upper- and lower-layer structures, which are represented by solitary waves. This system
exhibits a rich dynamics that is suggestive of atmospheric blocking features, such as stable stationary solutions,
transient quasi-steady-state solutions, multiple equilibria, and baroclinic instability. This system is investigated
both analytically, using techniques from asymptotic perturbation theory, and through numerical simulations.

1. Introduction

Atmospheric blocking is the formation and devel-
opment of quasi-stationary, highly persistent, and co-
herent high pressure fields in the midlatitude lower at-
mosphere. Present studies of blocking are concerned
with the causes of their creation, maintenance, and de-
cay. It is an important field of research because these
atmospheric events are connected with anomalous
weather situations and can have profound impact on
midlatitude weather and climatic conditions, not only
over the region in which they occur but over upstream
and downstream areas as well. The duration of these
events is also such that the timescale reaches the lower
end of climatic timescales, leading to problems of long-
range weather forecast and interannual variability.

The wealth of observational data and their diagnoses
show that blocking involves both synoptic-scale and
planetary-scale processes and their mutual interaction,
that is, the interaction of baroclinic eddies with ultralong
waves (Lupo and Smith 1995). The main mechanisms
for the forcing and sustaining of a blocking high pres-
sure system are still an open question and active field
of research. There are mainly two competing points of
view. One deals with resonant forcing by orography and
addresses the question of multiple equilibria as stated
for the first time by Charney and DeVore (1979). The
other views blocking as a regional phenomenon forced
by cyclones and baroclinic energy conversion (Hansen
and Chen 1982). Simulations by Lindzen (1986) and
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Kalnay and Mo (1986) suggest that orography is not
necessary for the formation and maintenance of a block-
ing system, but Egger et al. (1986) concede that, without
any noneddy forcing, blocking systems would not have
the observed amplitudes when friction is included, and,
hence, we should take into account forcing by topog-
raphy. In other words topography is not necessary to
obtain blocking systems but does support its develop-
ment. We will address this question and investigate the
case of topographic forcing in a separate study.

As a starting point for investigating the problem of
blocking systems, the quasigeostrophic potential vortic-
ity equation is widely used. There are two main ap-
proaches. One deals with the full quasigeostrophic sys-
tem and its numerical simulation, the other tries to sim-
plify the system further into low-dimensional models.
Numerical models integrating the barotropic potential
vorticity equation are able to simulate anticyclonic
blocking systems. These numerical experiments and
also laboratory experiments (Linden et al. 1995) suggest
that small-scale turbulent processes may be involved in
the formation of blocking systems, although it should
be noted that the experiments of Linden et al. (1995)
were not performed in a meteorological context. To
elaborate the physics of the turbulent nature of blocking,
consider a nonrotating shallow fluid that is forced by
sources and sinks. These sources and sinks can be
viewed as representing sea surface temperature anom-
alies, mountains, etc., in an atmospheric model. It is
well known that this approximately two-dimensional
system exhibits an inverse energy cascade that will
evolve into large-scale eddies. If rotation is added to
the system, the two-dimensional character is reinforced
according to the Taylor–Proudman theorem, but rotation
can also introduce baroclinic instability. The latter is a
three-dimensional feature and thus supports a direct en-
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ergy cascade toward small scales. Hence, the dynamics
is determined by competing two-dimensional and three-
dimensional processes (Metais et al. 1996; Bartello
1995; Bartello et al. 1996; Naulin 1995; Naulin et al.
1995). This picture fits into the work of Hansen and
Sutera (1984), who compared the spectral transfer of
energy and enstrophy during blocking and nonblocking
situations and found a striking difference in the enstro-
phy transfer revealing a quasi-two-dimensional situation
for the blocking case and a three-dimensional situation
for the nonblocking case. A possible reason that we
mainly observe anticyclones to be formed is due to the
Čerenkov condition, which allows cyclones to decay
through the radiation of linear Rossby waves if one takes
into account divergent effects associated with the free
surface (Nezlin 1994; Valcke and Verron 1996).

Whereas this picture represents an insightful and aus-
tere physical view into the general nature of anticyclonic
blocking, it fails to provide analytical expressions and
the infinite-dimensional character of a turbulent system
has so far prevented a detailed analysis of more partic-
ular issues. One exception is the studies of modons,
which are highly nonlinear solutions of the steady qua-
sigeostrophic equations (Haines and Marshall 1987). In
modon theory, potential vorticity is not a smooth func-
tion of the streamfunction but is multivalued corre-
sponding to the interior and exterior regions. There is
observational evidence (Ek and Swaters 1994) that this
is the case for real blocking events. Nevertheless, this
is a drawback for analytical progress. Therefore, interest
has grown in low-dimensional models, although a rig-
orous proof of existence of a low-dimensional attractor
in even quasigeostrophic systems is still an unsolved
problem. The concept of a low-dimensional attractor
was first introduced in meteorology by Lorenz (1980).
Strictly speaking, one can only define a ‘‘slowest in-
variant manifold’’ (Bokhove and Shepherd 1996), since
the small-scale events, that is, the high-frequency and
high-wavenumber processes, enlarge the Hausdorff di-
mension for the attractor without any convergence
(Yano and Mukougawa 1992). Thus the invariant set is
often referred to as a ‘‘fuzzy manifold’’ (Warn and Men-
ard 1986). This invariant set is of great importance for
numerical weather prediction, because a projection of
observed initial data on such a slowest, fuzzy manifold
would allow data assimilation that eliminates high-fre-
quency oscillations associated with free gravity waves
triggered by insufficient initial data.

Numerical evidence of low-dimensional models ex-
hibiting blocking systems was given by Legras and Ghil
(1985). These low-dimensional models can be viewed
as wave–wave interaction models. For an analytical
treatment most work has utilized Galerkin approxima-
tions on the barotropic potential vorticity equation, that
is, decomposing the pressure field into a Fourier series
and truncating that series (Christensen and Wiin-Nielsen
1996). Nevertheless, low-order models have their draw-
backs and have been critically reviewed, for example,

in Tung and Rosenthal (1985) and Cehelsky and Tung
(1985). It is argued there that multiple equilibria in low-
order models might be an artifact of the truncation. A
theoretical explanation was given by Yano and Mukou-
gawa (1992) and addresses the nonexistence of a qua-
sigeostrophic attractor, as mentioned above.

In order to bypass these drawbacks, to understand
better the particular mechanisms involved in the for-
mation of anticyclonic blocking, and to focus on the
importance and impact of each, it is useful to look for
a different simplification of the basic quasigeostrophic
equations and study the derived model evolution equa-
tions. We will follow this latter track and perform a
weakly nonlinear asymptotic analysis of the basic qua-
sigeostrophic equations. Since blocking involves large-
scale coherent structures, supposedly generated by bar-
oclinic instability (Mullen 1987) and interacting with
topography, we will introduce a model that supports
coherent, localized solutions, namely, solitary waves, in
an environment that can also support baroclinic insta-
bility and allows wave–wave interaction. We do not
claim to be able to apply our asymptotic model directly
to real blocking situations. Instead, our objective is to
develop a self-consistent model that incorporates the
main aspects of baroclinic instability relevant to block-
ing phenomena, in particular, the formation of coherent
structures. Such models can provide insight into inter-
preting observations and numerical simulations.

To outline our weakly nonlinear approach we will
briefly discuss the linear theory, on which most research
concerning blocking systems has been based. The ori-
gins of the linear theory go back to the pioneering work
of Charney (1947) and Eady (1949), who identified the
fundamental physical process for baroclinic instability
as the mutual intensification of two interacting Rossby
waves. These waves propagate along waveguides con-
sisting of high potential vorticity gradients. In modeling
the atmosphere, we may relate these waveguides to the
tropopause and surface, respectively, where gradients of
potential vorticity are concentrated. Also, such specific
properties as the upshear tilt with height of baroclinic
unstable eddies can be explained within the framework
of linear theory. The similarity between the fastest grow-
ing mode obtained by numerical simulation and the ob-
served data is striking (Frederiksen 1992; Frederiksen
and Bell 1990). In spite of these efforts, linear theory
still fails to model baroclinic instability and blocking
systems adequately in two important ways. First, there
are the inherent disadvantages of linearization in gen-
eral, such as unsaturated exponential growth, and the
nonlocal structure of the solutions. Second, linear theory
cannot explain features of blocking such as the observed
decreased typical horizontal length scale and increased
phase speed, when compared with linear simulations.
The analysis of Dole (1982) of observations suggests
an amplitude-dependent phase speed and, moreover, that
the spatial scale of a blocking system is considerably
larger and its propagation speed considerably smaller
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FIG. 1. Quasigeostrophic two-layer model.

than for typical baroclinic disturbances (Dole 1986). In
particular, it is this latter point that leads us to believe
that blocking can be modeled in the framework of sol-
itary-wave dynamics.

Our approach is based on the pioneering work of
Warn and Brasnett (1983), Patoine and Warn (1982),
and Mitsudera (1994), who have extracted equations of
the Korteweg–de Vries (KdV) type using a multiple-
scale analysis. Whereas Warn and Brasnett (1983) and
Patoine and Warn (1982) derived a single forced KdV
equation for a wave in resonance with topography, Mit-
sudera (1994) investigated wave–wave interactions and
hence derived a coupled system of two KdV equations.
For completeness we shall also mention the works of
Haines and Malanotte-Rizzoli (1991) and Malguzzi and
Malanotte-Rizzoli (1984, 1985) who derived an un-
forced time-independent KdV equation and, hence, are
not able to explain why blocks are observed to fluctuate
in intensity during their life cycles and, even more, how
they develop into a block. The question of a steady-
state theory was also addressed by Helfrich and Ped-
losky (1993, 1995) who derived a single Boussinesq
equation. Their asymptotic analysis focuses on slightly
subcritical zonal flows and neglects wave–wave inter-
actions and, in comparison to our work, is therefore
restricted to a smaller parameter range. We note that
their single-wave equation can be derived from the cou-
pled KdV equations in the asymptotic limit of slightly
baroclinic unstable flows as was shown by Mitsudera
(1994).

Our work stays close to that of Mitsudera (1994) and
his time-dependent coupled KdV equations. His starting
point is the continuous quasigeostrophic equation but
he only took into account the first baroclinic mode. We
will use a two-layer model bearing in mind that an
N-layer model can only resolve the first N modes of a
continuous model, for example, in the case of a two-
layer model, the barotropic mode, and the first baroclinic
mode. Mitsudera was interested in cyclogenesis, in par-
ticular, in cyclogenesis of type B where a large upper-
level disturbance propagates into a low-level baroclinic
zone and couples with a weak low-level anomaly. There-
fore, he focused on the baroclinic unstable case and
considered nonequilibrium solitary waves. To study
blocking events we are more interested in coherent,
quasistationary structures and therefore will mainly con-
centrate on equilibrium solutions of the coupled KdV
equations. In this paper we will focus on the case when
there is no topography. In a sequel we will examine the
case of topographic forcing.

2. Quasigeostrophic two-layer model

Our principal aim here is to study baroclinic insta-
bility initiated by mode coupling in the weakly nonlin-
ear, long-wave regime. For this purpose we choose the
simplest model that can illustrate this process. Thus, we
introduce a two-layer quasigeostrophic model on a b

plane (Fig. 1). The upper layer is bounded above by a
passive fluid with constant density r0. This model can
be used to represent either the atmosphere or the ocean.
In the atmosphere the two layers model the troposphere
and the stratosphere, respectively. In the ocean the den-
sity of the passive layer is set to zero. We also include
frictional effects due to the presence of an Ekman layer
at the lower boundary and a forcing effect due to to-
pography, which is believed to be a crucial mechanism
for the development of anticyclonic blocking systems,
although a detailed discussion of the effect of topog-
raphy is left for a sequel to this study.

We shall use a nondimensional coordinate system,
based on a typical horizontal length scale L0, typical
vertical scales for each layer D1, D2 with H0 5 D1 1
D2, and typical Coriolis parameter f 0. A typical velocity
U is taken to be the maximum of the mean current
velocity and the timescale is given by U/L0. If we sep-
arate the mean flow U1 and U2 from the perturbation
pressure fields p1 and p2, we obtain the following equa-
tions (Pedlosky 1987) for the nondimensional pertur-
bation pressure fields:

0] ] 1 U q 1 c Q 1 J(c , q ) 5 1/2n n nx ny n n E1 2 V]t ]x 2 Dc , 22e
(2.1)

where n 5 1, 2, respectively, and

2q 5 ¹ c 1 F (c 2 s c ),1 1 1 2 1 1

2q 5 ¹ c 2 F (c 2 s c ) 1 h , (2.2)2 2 2 2 2 1 B

Q 5 b 2 U 2 F (U 2 s U ),1y 1yy 1 2 1 1

Q 5 b 2 U 1 F (U 2 s U ), (2.3)2y 2yy 2 2 2 1

with the Jacobian defined by J(a, b) 5 axby 2 aybx.
The boundary conditions are c1,2 5 const at y 5 2L,
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FIG. 2. Plots of phase speed c as a function of a system parameter
D. (left) The case corresponding to the decoupled situation, i.e., Fn

5 b 5 0; (right) corresponds to a perturbation on F1, F2, and b in
the unstable case.

0. Note that we adopt the usual convention that the
frictional term in (2.1) acts only on the perturbation
field; that is, an appropriate forcing term is added to the
right-hand side of (2.1) to maintain the mean current.

Here the pressure fields are scaled by r1,2 f 0U0L0 and,
in this quasigeostrophic approximation, also serve as
streamfunctions for the velocity fields in each layer. The
subscripts 1 and 2 are associated with the upper and
lower layers, respectively. We have introduced the non-
dimensional meridional gradient of planetary vorticity
b; the Rossby number e 5 U/ f 0L0 (e K 1 in the qua-
sigeostrophic approximation); the vertical Ekman num-
ber EV, which is O(e2); s1 5 r1(r2 2 r0)/r2(r1 2 r0);
s2 5 r1/r2; hB 5 eD2hB, which is the nondimensional
topography in the lower layer; and the Froude-numbers
Fn 5 (L0/Ri)2, where Ri is the internal Rossby radius
of deformation for each layer, that is, Ri 5 gDn(r2

21f Ï0

2 r1)/r2. Note that s1 . 1 . s2 and usually we can
use the Boussinesq approximation s1 ø s2 ø 1.

a. Linear model

Before we consider the weakly nonlinear, long-wave
approximation, it is useful to discuss some properties
of the linearized version of Eq. (2.1) in terms of a normal
mode analysis (Pedlosky 1987). Here we shall restrict
ourselves to the nondissipative and unforced case. Lin-
earization of Eq. (2.1) yields

] ] ]c ]Qn n1 U q 1 5 0. (2.4)n n1 2]t ]x ]x ]y

In terms of cn 5 R{Fn(y) exp[ik(x 2 ct)]} one obtains
the necessary condition for baroclinic instability con-
cerning the product of the meridional gradients of po-
tential vorticity:

0 0

dy Q dy Q , 0. (2.5)E 1y E 2y1 21 2
2L 2L

It is this unstable region of exponentially growing
modes for which a nonlinear model is primarily needed.

For the weakly nonlinear analysis to follow it is per-
tinent to note that when F1, F2 → 0 (and also b → 0),
Eq. (2.4) decouples and has the linearly independent
solutions Fn 5 AnUn with coincident phase speed c 5
0 at k2 5 0. Then a small perturbation in F1, F2, and
b will generically open a gap in the linear spectrum in
the stable case, or an unstable band in the unstable case
(Craik 1985). The situation is sketched schematically in
Fig. 2 where the phase speed c is plotted as a function
of some generic system parameter D. Importantly, the
nondegeneracy of the plots for c, and the linear inde-
pendence of the two modes at the coalescence point, is
the key reason why we eventually obtain two coupled
equations when the system is perturbed. Since baroclinic
instability in an inviscid context can only occur provided
that there is such a mode resonance of two distinct

waves, it follows that in the long-wave limit we are
apparently required to adopt this rather restrictive scal-
ing of small Fi and b. In other words, the scaling is
determined by the physical process under investigation.
Note also that the coincident phase speed c 5 0 also
allows the system to be resonantly forced by topogra-
phy. We state here again the difference of our work from
that of Helfrich and Pedlosky (1993, 1995). They are
elaborating their asymptotic expansion around the point
of marginal instability of one branch in Fig. 2 and thus
neglecting the gap, whereas we are also taking into ac-
count the interaction with the other mode and hence
gain a much bigger parameter region for D. However,
an advantage of their work is that there is no scaling of
the equation parameters Fi and b involved.

b. Weakly nonlinear model

In the remainder of this section, we shall study weakly
nonlinear long waves. We introduce the following
scales:

3 2 (0) 4 (1)X 5 dx, T 5 d t, c 5 d c 1 d c 1 · · · ,i i i

(0) 2 (1)U 5 U 1 d U 1 · · · ,i i i

where d is a small parameter, the inverse of which mea-
sures the horizontal scale of the disturbance. Next, we
rescale the parameters

2 2 4F → d F , b → d b, h → d hi i B B,

1/2E V 3→ d E. (2.6)
2e

The scaling of the Froude numbers was implied in sec-
tion 2a. It follows that our model is valid for situations
where the internal Rossby radius of deformation is of
the order of the long horizontal scale. Further, the scal-
ing of b implies that Qiy ø 2Uiyy at the lowest order.
Since at this lowest order we require the linear decou-
pled system described in section 2a, we scale the bottom
friction and the topography such that they contribute at
the first nontrivial order. This scaling of the bottom fric-
tion means that the timescale for frictional damping is
measured by the slow time T. Of course, from the point
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of view of applications, if topography is present, then
we are assuming it is in sympathy with these scales.

Substituting this scaling into Eq. (2.1), we obtain to
the lowest order, O(d3),

2 5 0,(0) (0) (0) (0)U c U ci iXyy iyy iX

from which we conclude that

(X, T, y) 5 Ai(X, T) (y).(0) (0)c Ui i (2.7)

Hence, the meridional structure of ci is entirely deter-
mined by the mean currents at the leading order.

The O(d5) terms give us two evolution equations for
the amplitudes Ai for each layer. We reiterate that the
reason for the occurrence of two coupled equations is
the scaling of the Froude numbers [(2.6)], which implies
the existence of two independent modes at leading order.
We obtain

1 Gi 5 0,(0) (1) (0) (1)U c 2 U ci iXyy iyy iX (2.8)

where

(0) (0) (0)G 5 A U 1 U A U1 1T 1yy 1 1XXX 1

(0) (0) (0) (1) (0)1 F U (U A 2 s U A ) 1 U A U1 1 2 2X 1 1 1X 1 1X 1yy

(0) (1) (0) (0)1 A U [b 2 U 2 F (U 2 s U )]1X 1 1yy 1 2 1 1

(0) (0) (0) (0)1 A A (U U 2 U U ),1 1X 1 1yyy 1y 1yy (2.9)

(0) (0) (0)G 5 A U 1 U A U2 2T 2yy 2 2XXX 2

(0) (0) (0) (1) (0)2 F U (U A 2 s U A ) 1 U A U2 2 2 2X 2 1 1X 2 2X 2yy

(0) (1) (0) (0)1 A U [b 2 U 1 F (U 2 s U )]2X 2 2yy 2 2 2 1

(0) (0) (0) (0) (0)1 A A (U U 2 U U ) 1 gU h2 2X 2 2yyy 2y 2yy 2 BX

(0)1 EA U .2 2yy (2.10)

The solvability conditions are obtained by integrating
(2.8) with respect to y so that, on using the boundary
conditions, we get

0

G dy 5 0. (2.11)E i

2L

On substituting Eqs. (2.9) and (2.10) for Gi we obtain
the amplitude equations for Ai:

A 1 D A 2 m A A 2 l A 2 k A 5 0, (2.12)1T 1 1X 1 1 1X 1 1XXX 1 2X

A 1 D A 2 m A A 2 l A 2 k A 5 D 2 EA ,2T 2 2X 2 2 2X 2 2XXX 2 1X X 2

(2.13)

where

(0) 0I 5 2[U ] ,n ny 2L

0
2(0)I l 5 U dy,n n E n

2L

2(0) 0I m 5 2[U ] ,n n ny 2L

0

(0) (0) (1) (0) 0I D 5 2 (b 2 F U )U dy 2 [U U ] ,1 1 E 1 2 1 1 1y 2L

2L

0

(0) (0) (1) (0) 0I D 5 2 (b 2 s F U )U dy 2 [U U ] ,2 2 E 2 2 1 2 2 2y 2L

2L

0

(0) (0)I k 5 F U U dy,1 1 1 E 1 2

2L

0

(0) (0)I k 5 s F U U dy,2 2 2 2 E 1 2

2L

0

(0)I D 5 h U dy. (2.14)2 B E 2

2L

Equations (2.12) and (2.13) have the form of two cou-
pled KdV equations and, as expected, are similar to
those derived by Mitsudera (1994). Note that for me-
ridional symmetric and antisymmetric flows, or more
generally just for 5 0 at the boundaries, the non-(0)U iy

linear term vanishes. The coefficients m i determine the
polarity of the solitary waves.

Before proceeding further, we shall rescale Eqs.
(2.12) and (2.13) for convenience. We put

T 6l2T → , X → (signl )X, A → A ,2 n n|l | m2 2

D → l D , k → l k , F → |l |F,n 2 n n 2 n 2

D → l D,2

and

m l1 1m 5 , l 5 ,
m l2 2

in order to get

A 1 D A 2 6mA A 2 lA 2 k A 5 0,1T 1 1X 1 1X 1XXX 1 2X

A 1 D A 2 6A A 2 A 2 k A 5 D 2 EA .2T 2 2X 2 2X 2XXX 2 1X X 2

(2.15)

Next let us estimate the magnitude of the parameters
of the system of coupled KdV equations (2.15). Since
the parameters reflect the details of the mean flow struc-
tures, we need to use observational data, especially for
the meridional gradients in both layers. We will estimate
the order of the magnitude using a rough, but reasonable,
approximation. We put U1 5 gU2, where g 5 D2/D1,
so that each layer has the same mass flux. This rough
approximation yields



1 NOVEMBER 1999 3645G O T T W A L D A N D G R I M S H A W

m ø g, l ø g, k1 ø F1, k2 ø gs2F2.

If we choose D2 5 10 km as the height of the tropo-
sphere and D1 5 2.5 km as the height of the tropopause
with densities r1 5 0.45 kg m23 and r2 5 0.85 kg m23,
and recall the typical synoptic scales as L 5 1000 km,
U0 5 10 m s21 and f 0 5 1024 s21, we obtain m ø l
ø 4, k1 ø 0.22, and k2 ø 0.46. Thus, realistic flow
structures imply a weak coupling situation, which we
will use later in a perturbation theory. Since the pressure
fields ci scale as rfU0L and observed pressure fluctu-
ations in synoptic systems are about 3 3 103 Pa, we
find the amplitude Ai to be of the order of unity. In order
to obtain numerical values for l2 and m2 needed for the
scaling of the amplitudes we have used a mean flow
structure, which is obtained by a trigonometrical least
squares fit of the averaged, observed zonal flows at fixed
seasonal times and at the 200-mbar surface (Oort and
Rasmusson 1971; Gierling 1994), and again we have
made the approximation of the same mass fluxes to
obtain U2. Since blocking systems are likely to occur
during wintertime, the winter period was used only. The
meridional mean flow gradients were evaluated in the
midlatitudes at 458.

c. Stability considerations

Before considering the full nonlinear problem, we
will consider a linear stability analysis for Eq. (2.15).
Thus, for the linearized, unforced equations, we put Ai

5 Ai0 exp[ik(X 2 cT)] to obtain a quadratic equation
for the phase velocity c, with the solutions

1 1
2 1/2c 5 (c 1 c ) 6 (n 1 4k k ) , (2.16)1,2 U L 1 22 2

where

1
2 2c 5 D 1 lk , c 5 D 1 k 2 i E,U 1 L 2 k

n 5 c 2 c .U L

For |D2 2 D1| → `, that is, n2 1 4k1k2 ø n2, we end
up with two distinct modes cU and cL representing the
decoupled phase velocities.

In the nondissipative case (E 5 0) the criterion for
instability is

(D2 2 D1 1 (1 2 l)k2)2 , 24k1k2, (2.17)

which in the long-wave limit becomes

|D1 2 D2| , 2 2k1k2.Ï (2.18)

The resulting necessary condition for instability

k1k2 , 0 (2.19)

can be rewritten in terms of the mean flow gradients by
using the definitions for k1 and k2 [(2.14)] as I1I2 , 0.
This is exactly a reduction of the condition for baroclinic
instability [(2.5)] derived by linearizing the original qua-

sigeostrophic two-layer system, for the present case
when the shear flow is dominant compared to the b
effect and there is weak coupling. According to (2.14)
this implies l , 0 since Iili . 0. Equation (2.18) puts
a constraint on the velocity difference of the decoupled
system in order that there be an instability.

The condition (2.19) can also be derived from the
fully nonlinear system (with the omission of the forcing
and dissipative terms) directly by multiplying the first
equation of (2.15) with A1 and the second equation with
A2 and integrating over the whole domain. After inte-
gration by parts, we obtain

1` 1`1 d
2A dX 5 k A A dXE 1 1 E 1 2X2 dt

2` 2`

1` 1`1 d
2A dX 5 2k A A dX, (2.20)E 2 2 E 1 2X2 dt

2` 2`

and so

1` 1`d
2 2k A dX 1 k A dX 5 0, (2.21)2 E 1 1 E 21 2dt

2` 2`

which immediately gives Eq. (2.19) as a necessary con-
dition for baroclinic instability. Note that Eq. (2.17)
could indicate linear stability in the long-wave limit (k
5 0), but shorter waves may be linearly unstable. The
dissipative case E ± 0, which may involve a mode
exchange, is discussed in appendix A.

d. Solitary waves

The KdV structure of Eq. (2.15) suggests that, in the
absence of forcing and dissipation, there may be soli-
tary-wave solutions. Since this system is not known to
be integrable, we are not aware of any analytical tech-
niques to construct such solutions. However, one ex-
plicit solution can be found of the following form:

Ai 5 ai sech2[w(X 2 cT)]. (2.22)

Substitution of this ansatz into (2.15) gives us the fol-
lowing relations for the parameters

m l
c 5 D 2 2ma 2 k 5 D 2 2a 2 k (2.23)1 1 1 2 2 2l m

and

l
2 2a 5 2 w , a 5 2w , (2.24)1 2m

so that a2/a1 5 m/l. Then elimination of the speed c
gives the following necessary condition for the exis-
tence of this solitary wave:

l m
2D 2 D 2 4(1 2 l)w 5 k 2 k . (2.25)2 1 2 1m l

Note that Eq. (2.25) determines the allowed values for
the coupling parameters k i and the linear phase veloc-
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ities Di needed to keep w2 positive. Also given the sys-
tem parameters (i.e., Dn, kn, m, and l) (2.25) determines
a unique value of w and, hence, unique amplitudes an

and speed c. Thus this solitary wave is apparently an
isolated solution. Whether or not this is actually the case
requires numerical simulations. We also note that Eq.
(2.23) for the phase speed can be rewritten in the form

c2 2 c(G1 1 G2) 1 G1G2 5 k1k2, (2.26)

where

G1 5 D1 2 2ma1 and G2 5 D2 2 2a2. (2.27)

Further, the condition (2.25) for the equilibrium satis-
fying (2.24) can be rewritten in the form

l m
G 2 G 5 k 2 k . (2.28)2 1 2 1m l

Here, Gi are the speeds of a solitary wave in each de-
coupled KdV equation. Solutions of (2.26) for c yields
exactly Eq. (2.16) for the linear phase velocity (with no
dissipation, that is E 5 0) provided that we replace the
linear velocities Di with the nonlinear velocities Gi. It
follows that in the stable case (k1k2 . 0 and l . 0)
solitary waves of the form (2.22) can exist for all values
of G1, G2 satisfying (2.28), while in the unstable case
(k1k2 , 0 and l , 0) the solitary waves exist only
when |G2 2 G1| . 2 2k1k2, that is, when the speedÏ
difference between the intrinsic solitary waves falls out-
side the linear instability band [cf. (2.18)]. We note that
inhomogeneities of the mean flow can change the sta-
bility of the background since weak time dependencies
enter only the coefficients D i [see (2.14)]. Note that the
equilibrium solution (2.28) is trivially outside of the
range of baroclinic instability. Interestingly, it follows
in both cases that these solitary waves can coexist with
linear waves, in contrast to the general expectation that
solitary waves occur only with speeds in the range of
gaps in the linear spectrum.

We also note that the explicit analytical solution
(2.22) is not necessarily the only one. Indeed, in section
3 we will construct approximate solutions by asymptotic
methods.

Finally, we note here that Grimshaw and Malomed
(1994) and Malomed et al. (1994) showed that for a
linearly coupled KdV system such as (2.15) there is also
another type of solitary wave, called gap solitons, which
owe their existence to a gap in the frequency spectrum.
We will not discuss this type of envelope solitary wave
since one can easily show that they cannot exist in the
parameter region defined by (2.14).

3. Asymptotic approximation

a. Introduction

For the analysis of the system of two coupled KdV
equations (2.15) we will use both direct numerical sim-
ulations and an asymptotic approximation. In this ap-

proximation, the solitary-wave solutions of the KdV
kernels of our system are used and it is assumed that
the impact of small perturbations, that is, weak coupling,
friction and topographic forcing, is essentially to modify
the parameters of the unperturbed solitary waves on a
slow timescale. Thus, we will model the full dynamics
of the infinite-dimensional system by ordinary differ-
ential equations describing the evolution of the ampli-
tudes and phases of each solitary wave. For a single
KdV equation this method was first introduced by John-
son (1973) using a multiscale perturbation expansion,
and later on using the inverse scattering technique by
Karpman and Maslov (1978) and by Kaup and Newell
(1978). An extension to this work was made by Grim-
shaw and Mitsudera (1993) using a multiscale pertur-
bation expansion to take into account higher-order
terms. We will follow this approach and will use the
resulting amplitude and phase equations to extract in-
formation about solutions of the system of coupled KdV
equations (2.15). In particular, we will rederive the
steady-state conditions (2.23) and (2.25) and then, fur-
thermore, discuss the stability properties of these steady
states.

b. Asymptotic analysis

For our asymptotic analysis we introduce a small pa-
rameter e K 1 and assume that the perturbations k1, k2,
E, and D are O(e). As discussed above, the influence
of these perturbations is to modify the amplitude and
phase of the unperturbed KdV solitary waves (2.22) on
a slow timescale of O(e21). A detailed description of
the asymptotic development is given in appendix B.
Here, we outline the main results. Thus, for the system
of coupled KdV equations (2.15), we obtain at the lead-
ing order

2u 5 a (t) sech [w (t)(x 2 F (t))]0 1 1 1

2y 5 a (t) sech [w (t)(x 2 F (t))] (3.1)0 2 2 2

provided that

l
2 2a 5 2 w and a 5 2w . (3.2)1 1 2 2m

The time evolution of the amplitudes ai and phases Fi

are determined by the following set of four ordinary
differential equations:

da1 5 F (a , a , F , F ),1 1 2 1 2dt

da2 5 F (a , a , F , F ),2 1 2 1 2dt

dF1 (1)5 D 2 2ma 1 c ,1 1 1dt

dF2 (1)5 D 2 2a 1 c , (3.3)2 2 2dt

where the interaction integrals are given by
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` w w2 22 2F 5 22k a w sech (c) sech c 2 w DF tanh c 2 w DF dc,1 1 2 2 E 2 21 2 1 2w w1 12`

` w w 41 12 2F 5 22k a w sech (c) sech c 1 w DF tanh c 1 w DF dc 2 Ea2 2 1 1 E 1 1 21 2 1 2w w 32 22`

`

21 w sech (w c)D (c 1 F ) dc, (3.4)2 E 2 c 2

2`

and the first-order speed corrections by

`3 2m w w w2 2(1) 2 2 2c 5 2k {tanh(c) 1 c sech (c) 2 sgn(l) tsanh (c)} sech c 2 w DF tanh c 2 w DF dc,1 1 E 2 23 1 2 1 2l w w w1 1 12`

`3 1l w w w1 1(1) 2 2 2c 5 2k {tanh(c) 1 c sech (c) 2 tanh (c)} sech c 1 w DF tanh c 1 w DF dc2 2 E 1 13 1 2 1 2m w w w2 2 22`

`1 E
2 21 {tanh(w c) 1 w c sech (w c) 2 tanh (w c)}D (c 1 F ) dc 2 . (3.5)E 2 2 2 2 c 22a 3w2 22`

The first-order speed corrections have contributions re-
sulting from radiative tails, but they are only dynami-
cally important for small amplitudes, as can be seen
from (3.3). It is pertinent to mention that in the non-
topographic, nondissipative case, neglecting these first-
order speed corrections, Eq. (3.3) can be completely
studied in the phase plane of DF 5 F2 2 F1 and DA
5 2ma1 2 2a2.

Next, we note that from the system of coupled KdV
equations (2.15) one can derive an energy equation,
which was discussed in section 1c [see (2.21)] and is
repeated here for convenience:

`d
2 2k A 1 k A dxE 1 2 2 1dt

2`

` `

25 22E A dx 1 2 A D dx. (3.6)E 2 E 2 x

2` 2`

For the unforced (D 5 0), nondissipative case (E 5 0)
the energy

`

2 2E 5 k A 1 k A dxE 1 2 2 1

2`

is conserved. Using the asymptotic expansion (3.1), we
obtain at the lowest order that E 5 E0 1 O(e), where

216 l
3 3E 5 k w 1 k w . (3.7)0 2 1 1 221 23 m

Indeed, it is readily verified that in the unforced, non-
dissipative case E0 is conserved by the amplitude equa-

tions (3.3) and, more generally, the full energy equation
(3.6) is replicated in the amplitude equations (3.3). Thus
topographic forcing can supply energy to the solitary
waves. We also note that the frictional term can cause
energy growth if E , 0 (i.e., either or both of k1, k2

, 0), and thus instability may occur even when absent
in the frictionless case.

For the nondissipative case there exists a conserved
Hamiltonian for the full system of coupled KdV equa-
tions (2.15). Indeed, they can then be written as a non-
canonical Hamiltonian system,

1 dH 1 dH
A 5 2] and A 5 2] ,1t x 2 t x1 2 1 2k dA k dA2 1 1 2

where d denotes the functional derivative and H is the
Hamiltonian density, which is found to be

1 l
2 3 2H 5 k D A 2 mA 1 A2 1 1 1 1x1 22 2

1 1
2 3 21 k D A 2 A 1 A 2 DA 2 k k A A .1 2 2 2 2x 2 1 2 1 21 22 2

Due to the skew-symmetric operator ]x, the Hamiltonian
H 5 H dx is conserved.`#2`

If we now insert our ansatz (3.1) for A1 and A2 in the
Hamiltonian H and calculate the leading-order term, we
obtain the reduced Hamiltonian Hred:
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`2 3 2 32 a 4 a 2 a 4 a 1 w1 1 2 2 22 2H 5 k D 2 m 1 k D 2 2 k k a a sech (z) sech z 2 w DF dzred 2 1 1 2 1 2 1 2 E 25 6 5 6 1 23 w 5 w 3 w 5 w w w1 1 2 2 1 12`

`

22 k a sech [w (z 2 F )]D(z) dz. (3.8)1 2 E 2 2

2`

After some lengthy algebra we can verify that Hred is
conserved under the flow defined by the reduced system
(3.3) provided that the nonadiabatic contribution of the
radiative tails to the first-order speed corrections is omit-
ted. It is pertinent to mention that only the reduced
system including the first-order speed corrections, but
omitting the radiative tail terms, is Hamiltonian and
integrable.

c. Steady-state solutions

From this point on, we shall set the topographic forc-
ing term D 5 0. The important case when D ± 0 will
be discussed in a sequel to this paper. Further, since
there are then only trivial equilibrium solutions if E ±
0, we confine attention here to the nondissipative case
E 5 0. In this case there is then a nontrivial steady-
state solution a1 5 , a2 5 , F1 5 F2 5 ct with w1a* a*1 2

5 w2 5 w*. Note that then DF 5 0, and the asymptotic
system (3.3) is satisfied if

m l
c 5 D 2 2ma* 2 k 5 D 2 2a* 2 k . (3.9)1 1 1 2 2 2l m

This is exactly the condition (2.23) found previously
for the existence of an exact solitary wave solution of
the full coupled KdV system (2.15). There may also be
steady solutions of (3.3) with w1 ± w2 but these cannot
be exact solutions of the full coupled KdV system
(2.15). These extraneous solutions can be analyzed us-
ing asymptotic methods or variational techniques (Gott-
wald 1998), but we shall not discuss them here any
further.

We perform a linear stability analysis by linearization
about this steady-state solution; that is, we write F i 5
ct 1 dwi and ai 5 1 dai. After some algebra wea*i
obtain

8
2dȧ 5 k a* dDw1 1 215

8 m
2dȧ 5 2 k a* dDw2 2 115 l

22 p m 1
dẇ 5 22m 1 1 k da1 1 11 2[ ]3 45 l a*1

22 p 1 8 m
2 1 k da* 2 sgn(l)k w*dDw1 2 11 23 45 a* 15 l1

22 p l 1
dẇ 5 22 1 1 k da2 2 21 2[ ]3 45 m a*2

22 p 1 8 l
2 1 k da 1 k w*dDw,2 1 21 23 45 a* 15 m2 (3.10)

where the dot denotes the time derivative. We set da1,
5 exp(gt), da2 5 exp(gt), etc., and obtain,(0) (0)da da1 2

omitting the superscripts, a system of linear equations:

0 2g 0 2j j da     1

 0  0 2g 2r r   da 25 , (3.11)     
0 a b 2s 2 g s dw1     
0 e h 2u u 2 g dw     2

where the matrix elements are defined by (3.10). The
solvability condition reads as

g2[g2 1 (s 2 u)g 1 j(a 2 e) 1 r(b 2 h)] 5 0.
(3.12)

Two solutions are g 5 0, 0 and so the effective phase
space is just two-dimensional. These trivial solutions g
5 0 correspond to the fact that, with D 5 E 5 0, the
nonlinear system can be reduced to three equations for
a1, a2, and DF, and also then possesses the energy
integral (3.7). To analyze the remaining roots of (3.12)
we discuss some further simplifications.

It is pertinent to mention that we will talk here about
instability not in the nonlinear sense of baroclinic in-
stability as derived in Eq. (2.19) but in the sense of the
solitary wave being a saddle point, which does not imply
indefinite growth of the amplitudes as can be seen from
(3.3). The reason for this is that the derived asymptotic
equations (3.3) contain, besides equations for the am-
plitudes, also equations for the phase, that is, the lo-
cation of the solitary wave. In the nonlinear criterion
for instability we have integrated over the spatial scale
and thus cannot obtain this kind of instability. The im-
pact of the phase and position of the solitary wave on
the stability will now be discussed.

1) NO FIRST-ORDER SPEED CORRECTIONS, NO

RADIATION

In this simplest case we can easily see that of all the
parameters in (3.12) only a, h, j, and r are nonzero,
so we obtain
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2g 5 hr 2 aj

64 l
4 25 w k 1 k m11 215 m

16 k 12 2 25 k m a* 1 a* . (3.13)1 1 21 215 k l1

Hence, the fixed point can either be a saddle point, that
is, g2 . 0, or a stable center, that is, g2 , 0. In this
situation, the system, although not Hamiltonian, is time
reversible and energy conserving. Recalling that the
sign of l is equal to the sign of k1k2 we find that the
stability is entirely determined by the sign of k1m. In
particular, the solitary wave is stable if k1m , 0 and
unstable otherwise.

The physical significance of the sign of k1m can be
understood as follows. Let us assume, without loss of
generality, an equilibrium state with . 0 (i.e., l/ma*1,2

. 0). If the solitary wave of the upper layer is displaced
to the right, there will be a consequent change in am-
plitude and speed due to the forcing term k1A2x asso-
ciated with the lower-layer solitary wave. Since A2x 5
22a2w sech2[w(x 2 ct)] tanh[w(x 2 ct)] the sign of
this forcing term is 2sgn(k1) at the crest of the upper-
layer solitary wave if displaced to the right and, hence,
induces an amplitude change da1 whose sign is that of
2sgn(k1) and whose consequent speed change dc has
the opposite sign, namely, sgn(k1m), as can be easily
seen from Eq. (3.9). But, in order for the equilibrium
to be stable, the speed change dc should be negative so
that the solitary wave can be restored to its equilibrium
position. Thus stability requires k1m , 0. The same
conclusion follows for a displacement to the left.

Note here that the Charney–Stern condition [(2.19)]
for stability of the background state is not sufficient to
ensure linear stability of this solitary-wave steady state.
The reason for this is, as discussed above, that the cri-
terion k1m , 0 is needed to ensure that the upper- and
lower-layer solitary waves remain locked together and
do not separate when subjected to small perturbations.
We also note that the explosive instability found in the
context of a Boussinesq equation by Helfrich and Ped-
losky (1993) is already saturated in the coupled KdV
system, which is equivalent to the Boussinesq equation
in the limiting case of marginal stability as shown by
Mitsudera (1994). In Helfrich and Pedlosky (1995) the
authors show that the instability gets saturated in the
full quasigeostrophic system.

2) FIRST-ORDER SPEED CORRECTION, BUT NO

RADIATION

If we include the first-order speed correction, we get
two additional nonzero parameters, namely, e and b, so
that then

2g 5 (h 2 b)r 2 (a 2 e)j

16 k 12 2 25 k m a* 1 a*1 1 21 215 k l1

22 2216 2 p m l
22 1 w* k 1 k . (3.14)1 21 2 1 2 1 2[ ]15 3 45 l m

Since the second term is always negative, the contri-
bution from the second-order speed correction is sta-
bilizing. Equation (3.14) shows that this is enhanced,
as discussed above, in the case of small amplitudes.

3) RADIATION

In this general situation we obtain

2s 2 u (s 2 u)
2g 5 2 6 1 g , (3.15)nonrad!2 4

where gnonrad is determined either by (3.13) or by (3.14),
depending on whether we exclude or include the first-
order speed correction. Thus, since

8 1 k l2s 2 u 5 2 wk m 1 , (3.16)1 21 215 |l| k m1

that is, sgn(s 2 u) 5 2sgn(k1m), a stable center (k1m
, 0) is converted by radiation into a stable focus and
a saddle point (k1m . 0) remains a saddle point but
with enhanced growth rates.

4) EFFECT OF FRICTION

If we make the convenient assumption that the friction
term is somehow balanced at the leading order, that is,
we assume the existence of a nontrivial steady-state so-
lution even in the presence of friction, the linearized
system becomes

8
2dȧ 5 k a* dDw1 1 215

8 m 4
2dȧ 5 2 k a* dDw 2 Eda2 2 1 215 l 3

˙dDw 5 22da 1 2mda , (3.17)2 1

where we have ignored the radiation and the first-order
speed-correction terms. The equation for the growth rate
g is now

4 16 k23 2 2 2g 1 Eg 2 k m a* 1 a* g1 2 11 23 15 k l1

64
22 k ma* E 5 0. (3.18)1 245

Hence, for small friction a stable center is converted
into a stable focus and a saddle point gains a third stable
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FIG. 3. Typical mean flow configurations. (a) (stable background,
saddle point) k1 . 0, k2 . 0, m . 0, l . 0; (b) (stable background,
center) k1 . 0, k2 . 0, m , 0, l . 0; (c) (stable background, saddle
point) k1 , 0, k2 . 0, m , 0, l , 0; (d) as in (a).

manifold. However, this does not reflect the possible
destabilizing effect of friction in a background envi-
ronment where k1k2 , 0.

One can examine the solutions of (3.3) in general,
looking in particular at the behavior of the amplitudes
a1,2 as t → 6` on the orbits emanating from the saddle
points. It is clear from (3.3) that if DF → 6` in this
limit, then the amplitudes a1,2 approach well-defined sta-
tionary values, say, . If the first-order speed-correc-6a1,2

tion terms are included in the system (3.3) but the ra-
diative terms are omitted so that the system conserves
the Hamiltonian Hred of (3.8), then the system is inte-
grable as it is third order (i.e., has only three effective
variables a1, a2, and DF) and possesses two invariants,
namely, «0 of (3.7) and Hred of (3.8). In this case the
asymptotic values can, in principle, be determined6a1,2

explicitly in terms of . This is achieved by equatinga*1,2

the invariants E0 and Hred as DF → 6` with the cor-
responding values at DF 5 0. However, these algebraic
relations are still quite complicated and can be evaluated
only numerically. To achieve further detailed under-
standing one can consider the system (3.3) when further
simplified by the omission of the first-order speed-cor-
rection terms altogether. But in this limit, the system is
no longer Hamiltonian, and one must now resort to ap-
proximate methods to obtain expressions for (Gott-6a1,2

wald 1998).

4. Numerical simulations of the coupled KdV
system

In this section we will examine the dynamics of the
system of the full coupled KdV equations (2.15) nu-
merically, where here the topographic forcing term D
5 0. Also, unless otherwise specified, the frictional term
E 5 0. To integrate this system a semi-implicit pseu-
dospectral code is used, in which the linear terms are
treated using a Crank–Nicholson scheme and the non-
linear terms using an explicit leapfrog scheme. Periodic
boundary conditions are imposed in the x direction. To
avoid self-interaction of the fields due to radiation tun-
neling through the periodic boundaries we introduce an
artificial viscosity acting only near the boundaries.

In the following, we will simulate the behavior of the
coupled KdV system with different parameter values
and investigate the stability properties of the background
and of possible coherent structures, that is, the steady-
state solutions. First, however, we consider some typical
mean flow structures [i.e., U1,2(y)] that produce various
parameter combinations. We recall that (2.14) deter-
mines the parameters while (2.17) and (3.13) determine
the stability properties of the background and solitary-
wave solution, respectively. To get an idea of typical
mean flow structures resembling these parameter sets
we have depicted some simple cases in Fig. 3. Note that
Fig. 3c in particular is a mean flow configuration, which
may be associated with blocking situations. It is perti-
nent to note that changing the sign of U1 or U2 changes

the signs of k2, m, and l, and thus changes the stability
property of the corresponding steady-state solution, and
of the background. If we wish to change the stability
properties of the solitary wave without changing the
background for a given mean flow configuration, we
can simply switch the sign of m by changing the sign
of y in one layer without changing the signs of the other
parameters [see (2.14)].

Although Eqs. (2.17) and (3.13) suggest the existence
of an unstable solitary wave on an unstable background,
it is important to mention that this scenario is not com-
patible with the underlying quasigeostrophic system, as
readily seen from (2.25) and the implications of (2.14).

This section is organized to illustrate the several dif-
ferent scenarios of the rich dynamics of the coupled
KdV system (2.15). First, we investigate the propagation
of an upper-layer solitary-wave disturbance over a low-
er-layer background that is initially undisturbed. Sec-
ond, we investigate the steady-state solutions found by
the asymptotic theory. Third, we discuss solitary-wave
interactions. As we will see the essential mechanism in
each case is the interplay between the layers through
the coupling terms, and the velocities of the solitary
waves.

a. Basic solitary wave dynamics

The impact of an upper-layer solitary-wave distur-
bance on an undisturbed lower layer in a stable envi-
ronment is to give birth to a secondary wave. Thus we
suppose at t 5 0, A2 5 0 but A1 has the typical KdV
solitary-wave structure, that is, for instance, A1 5 a1
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FIG. 4. Initial dipole in the lower layer triggered by an upper-layer
solitary wave, where k1 5 0.3, k2 5 0.1, m 5 21, l 5 21, D1 5
21, D2 5 1, and a1 5 0.05.

FIG. 5. Case of weak interaction; parameters as in Fig. 4 but for t
5 50. The dashed line represents the upper-layer wave.

FIG. 6. Case of strong interaction; parameters as in Fig. 4 except
D1 5 20.1, D2 5 0.1. The dashed line represents the lower-layer
wave.

sech2(w1x), with a1 5 2l/m . Then at t . 0 it follows2w1

from (2.15) that A2 ø k2A1xt, which is the structure of
the secondary wave at the time of creation. As shown
in Fig. 4, initially this secondary wave has a dipole
structure. Note that for k2 , 0 we would obtain the
mirror image of Fig. 4. The further evolution of this
dipole depends strongly on the difference between the
phase velocity of the upper layer y 1 5 D1 2 2ma1 and
the phase velocity of the lower layer y 2 ø D2. If this
difference is sufficiently high, the depression (or the
elevation, depending on the direction of propagation of
the upper-layer solitary wave) separates from the ele-
vation (depression), escaping quickly enough to avoid
interacting with the solitary wave, whereas the elevation
(depression) will be captured by the upper-layer solitary
wave and follow its motion. The escaping small-am-
plitude secondary wave being embedded in a stable
background environment does not itself affect the dy-
namics of the upper-layer solitary wave and may decay
after some time due to radiation (see Fig. 5). If, on the
other hand, the difference of the phase velocities is
small, the depression (elevation) cannot escape, and in-
teracts with the solitary wave, generically leading to the
formation of a locked state consisting of a generated
secondary elevation (depression) in the upper layer and
a depression (elevation) in the lower layer broadened
by radiation. These locked states appear to be solitary-
wave steady-state solutions that do not satisfy w1 5 w2,
as mentioned in section 3c. As in the previous case the
elevation (depression) follows the motion of the upper-
layer solitary wave, as can be seen in Fig. 6.

The slaved state of the secondary wave in the lower
layer can be described by A1 5 A1(x 2 y 1t) and A2 5
A2(x 2 y 1t), where y 1 5 D1 2 2ma1, a1 being the am-
plitude of A1. If we neglect the nonlinear and the dis-
persive terms, the equation for the lower layer can be
integrated to obtain an estimate for the ratio of the am-
plitudes. We find

k2A 5 A . (4.1)2 1D 2 D 1 2ma2 1 1

For the parameter values of Fig. 5 we calculate a ratio
of 1:19 for the amplitudes, which fits with the numer-
ically observed value up to an accuracy of 1.7%. We
note that, although (4.1) implies w1 5 w2, we expect
that nonlinear and dispersive effects will lead to solu-
tions with w1 ± w2, as mentioned in section 3c.

The effect of friction is to dampen the dynamics. This
causes the initially generated dipole to stay attached to
the upper-layer disturbance. The dynamics of the lower
layer is suppressed and therefore at each time only the
forcing of the upper-layer solitary wave determines the
dynamics of the lower layer leading to a slaved lower-
layer dipole, which decreases in amplitude due to fric-
tion.

In the case of an unstable background environment
the dynamics becomes more complex as can be seen in
Fig. 7. The dominant dynamics can be filtered out if we
look at the frictional case. The upper-layer disturbance
grows due to the instability and emits a wave train mov-
ing upshear, which starts to grow baroclinically itself
and, hence, interacts also significantly with the lower
layer. It also generates a dispersive secondary wave train
downshear in the lower layer by the mechanism dis-
cussed above. The higher the friction, the more the sec-
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FIG. 7. Upper-layer solitary-wave disturbance on an unstable background with D1 5 0, D2 5 0, m 5 21, l 5 21, k1 5
0.3, k2 5 20.1, and a1 5 0.05. The left two plots refer to the nonfrictional situation; whereas for the right plots, friction
is added with E 5 0.1; the upper (lower) plots refer to the upper (lower) layer.

ondary wave stays phase locked to the upper-layer mo-
tion, and the less it disperses radiatively generated sec-
ondary wave trains. It is pertinent to mention that, al-
though friction smoothes out the fields, it also may
trigger instability on its own and thus gives rise to an
increase of the upper-layer amplitudes and, hence, also
of the lower-layer amplitudes [see (4.1) for instance].
This frictional instability has its origin in the possibility
of negative energy and was discussed earlier in section
3b in our linear stability analysis.

b. Steady-state solutions

In a second set of simulations we will now investigate
the properties of steady-state solutions, namely, the pre-
dictions of the asymptotic theory concerning the sta-
bility properties, which could be interpreted within that
theory as saddle points or centers. The numerical sim-
ulation of the mean flow configuration, Fig. 3b, with
the particular parameter values D1 5 20.1, D2 5 0.1,
m 5 21.0, l 5 1.0, k1 5 0.3, k2 5 0.1 and with the
equilibrium solitary-wave amplitudes a1 5 20.6 and a2

5 0.6 (slightly disturbed), reveals the oscillatory nature
of the center and reproduces the theoretical period T 5
16.03 calculated using (3.13) with an accuracy of 0.5%.
(The plots, not shown here, are qualitatively, similar to
those of Fig. 15). If friction is added, the lower-layer
solitary wave gets damped and the lower-layer dynamics
is after some time completely determined by the forcing
of the slowly decreasing upper-layer solitary wave and
stays phase locked to it.

In an environment with k1k2 , 0, one can still obtain
baroclinically stable solutions with appropriately chosen
D1,2 according to (2.18) and again verify the predictions
of the asymptotic theory. But in the frictional situation
we may again observe frictional instability. The baro-
clinic instability induced by friction can be understood
if we recall that a change in amplitude may put the
solitary waves out of the stable band, as discussed in
section 2d.

To study the dynamics of a saddle point we choose
parameters referring to Fig. 3a or 3c, with k1k2 . 0.
The existence of an unstable manifold amplifies nu-
merical errors and, hence, the steady-state solution
breaks up and the amplitudes approach the saturation
value as t → ` according to (3.3). The two perturbed
waves interact in such a way, that they arrange to form
a configuration revealing the upshear tilt with height,
as shown in Fig. 8. In the frictional case the fields behave
as discussed previously in the first set of numerical ex-
periments for a stable environment; that is, they tend to
form a phase-locked state with a forced dipole in the
lower layer. It is important to emphasize that friction
has the tendency to destroy the formation of an upshear-
tilt-with-height configuration. This is apparent for this
parameter values since k2 . 0 forces the field in the
lower layer to look like the dipole depicted in Fig. 4.

c. Solitary wave interaction

In the next and last set of numerical simulations we
look at solitary-wave interactions. We study the behav-
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FIG. 8. Perturbed saddle point in a stable environment at time t 5
30 with D1 5 0.1, D2 5 20.1, m 5 l 5 1, k1 5 0.3, and k2 5 0.1.
The continuous line refers to the upper layer; the dashed line to the
lower layer.

FIG. 9. Phase portrait of a saddle point with three generic scenar-
ios.

FIG. 10. Case 1: D1 5 22.25, D2 5 2.25, m 5 l 5 21, k1 5
20.2, k2 5 0.3, and a1 5 a2 5 0.5.

ior of centers and saddle points in a stable environment.
The possible scenarios for a saddle point can be studied
in the da1–dDF plane of Fig. 9, which is qualitatively
obtained from Eqs. (3.3) and (3.11). Here da1 and dDF
represent the deviations from the steady-state values.
There are three distinct scenarios depending on the ini-
tial conditions, namely, the regime of passage (case 1),
the regime of quasi-locked states (case 2), and the re-
gime of repulsion (case 3). Note that in the vicinity of
the stable–unstable manifolds the system might switch
from the locked regime to the repulsion, or vice versa
due to slight perturbations. That means that the system
under consideration allows the possibility of multiple
states as discussed in Charney and DeVore (1979) even
without topographical forcing but only through wave–
wave interaction. In Figs. 10–12 numerical simulations
corresponding to all three scenarios are shown.

The dynamics of the different regimes can be under-
stood by means of the mutual generation of secondary
waves. If the solitary waves run toward each other, each
solitary wave will meet the secondary wave generated
by the other layer and, hence, will increase (decrease)
in amplitude. The manner and degree in which this in-
crease (decrease) of the amplitudes affects the difference
of the phase velocities y 1 [ D1 2 2ma1 and y 2 [ D2

2 2a2 determine the regime. If the impact is only mar-
ginal, the waves will propagate nearly undisturbed and
maintain their direction of propagation. This corre-
sponds to the passage regime as shown in Fig. 10. The
interaction causes only emission of radiation in the di-
rection of motion of each wave and generates a small
wave extracted out of the main wave by the other wave.
If the increase in amplitude is so large that y 1 and y 2

change their signs, we observe repulsion as in Fig. 11.
If the interaction brings both velocities close to zero but
does not alter the sign, we are faced with a quasi-locked
state as in Fig. 12. In the context of blocking we would
refer to this quasi-locked case 2 as a transient blocking
system. According to the basic dynamics of the coupling
as discussed earlier it is readily seen that the only pa-

rameter combination that allows the amplitudes of both
layers to grow during interaction and hence support a
sufficiently strong blocking system is sgn(l) 5 sgn(m)
5 sgn(k1) 5 21 and sgn(k2) 5 11.

Let us now examine the impact of friction. In general,
friction suppresses the generation of a secondary wave
in the upper layer [see (4.1)] and of the small waves
mentioned above and thus inhibits direct influence of
the lower layer on the upper layer. In the passage regime
and the repulsion regime the lower-layer wave decays
and the dynamics of the lower layer is again, for suf-
ficiently high friction, determined by the forcing of the
upper layer. The frictional unstable situation, k1k2 , 0,



3654 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 11. Case 3: parameters as in Fig. 10 but a1 5 a2 5 1.0. FIG. 13. Parameters as in Fig. 12 but with friction E 5 0.1.

FIG. 14. Phase portrait of a stable center with two generic scenar-
ios.FIG. 12. Case 2: Parameters as in Fig. 10 but a1 5 a2 5 0.74.

provides, as discussed above, the energy to increase the
amplitudes. More drastically, the frictional instability
can be observed in the locked state, where the two waves
interact strongly. In Fig. 13 we show a numerical sim-
ulation at the same parameter values as in Fig. 12 but

with E 5 0.1. At smaller values of the friction an in-
termediate state is observed, where the wave splits into
two parts: one is the slowly decaying original solitary
wave keeping the direction of motion, the other is slaved
by the upper layer. Thus, friction shuffles the energy
from the original solitary wave into the slaved second-
ary wave. In the following evolution of these two sol-
itary waves baroclinic instability is triggered. Thus, fric-
tion may provide a mechanism for the decay of a block-
ing system via triggering baroclinic instability.

To study the dynamics of two interacting stable cen-
ters we look at a corresponding generic phase portrait
shown in Fig. 14. We find two regimes, namely, the
regime of trapping inside the separatrix (case 1) and the
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FIG. 15. Trapped regime for a stable center with D1 5 21.7, D2

5 1.8, m 5 l 5 21, k1 5 0.3, and k2 5 20.2, where the amplitudes
of the solitary waves are a1 5 0.95 and a2 5 0.9.

FIG. 16. Passage regime for a stable center for the same parameter
values as in Fig. 15, where the solitary waves with a1 5 a2 5 1 are
dislocated initially by 10 spatial units.

FIG. 17. Interacting stable centers with the parameter values D1 5
2.25, D2 5 22.25, m 5 21, l 5 21, k1 5 0.2, k2 5 20.3, and a1

5 a2 5 21.

regime of passage outside the separatrix (case 2). It turns
out that the trapping regimes are hard to realize and are
very sensitive to small disturbances revealing the local
character of the asymptotic theory. Dislocations seem
to destroy the regime more effectively than perturba-
tions in the amplitudes. This is due to the strong inter-
action in the case of dislocations leading to secondary
elevations and, hence, destroying the asymptotic regime.
We will examine stable centers moving in a mean flow
configuration such as Fig. 3a or 3c with a reversed up-
per-layer flow. Figure 15 shows mutually trapped sol-
itary waves. The period of the oscillations in the am-
plitudes agrees with (3.13). This picture is obtained by
a slight perturbation of the amplitudes. If we dislocate
the initial solitary waves we force the solitons to change
into the passage regime (see Fig. 16). The frictional case
for these parameter values was already discussed above
in the context of steady-state solutions revealing the
fictional instability for k1k2 , 0. Again we observe the
impact of friction as discussed above, such as slaving,
suppression of direct interactions as the generation of
secondary elevations, and frictional instability. Also, for
stable centers, friction may provide a mechanism for the
decay of coherent structures through baroclinic insta-
bility.

Strong interaction leading to the emission of disper-
sive wave trains can destroy the simple structure of the
phase plane (Fig. 14). An example for such an inter-
action is shown in Fig. 17, where the initial waves are
depressions. Although a direct theoretical explanation



3656 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 18. Steady-state solution representing a center after T 5 100.
The continuous line refers to the upper layer, the dotted line to the
lower layer.

using a phase plane is no longer possible, we try to
explain this explosive scenario on a phenomenological
base. Without loss of generality we restrict ourselves to
the upper layer, recognizing the lower layer to be the
mirror image of the upper layer. The elevations gen-
erated immediately by the lower layer tend to travel to
the right since D1 is bigger than zero. But the depression
wave broadens into a background with negative ampli-
tude, on which a solitary wave train then evolves. If we
look at the equation for one of these solitary waves with
amplitude a1 traveling on a negative background d pro-
vided by the broadened center

a1T 1 (D1 2 6md)a1X 2 6ma1a1X 2 la1XXX

2 k1A2 X 5 0,

we readily conclude, that the impact of this background
is to change the velocity. This explains the initial
‘‘wrong’’ direction of propagation for the elevations.
The broader the depression becomes, that is, the smaller
d gets, the less its influence becomes, and at later stages
the elevations move according to the sign of D1. The
impact of friction on this process is to suppress the
wave–wave interaction within each layer, and the gen-
eration of secondary wave trains by the the other layer
on the upshear side.

5. Discussion and summary

Our purpose has been to present a theoretical basis
for the formation and evolution of blocking systems in
the atmosphere (or ocean). We have developed a weakly
nonlinear long-wave theory describing the interaction
of two long waves, as a reduction from a two-layer
quasigeostrophic system. The dynamics of these waves
was found to be described by a pair of coupled KdV
equations. We believe that the solitary waves described
here may be regarded as prototypes for coherent struc-
tures that can be observed in the atmosphere or ocean.

Investigating the validity and relevance of these sol-
itary waves for the description of blocking systems and
coherent structures has to be twofold. First, it has to be
shown that the Korteweg–de Vries system (2.15) de-
rived here is indeed a valid weakly nonlinear, long-wave
approximation of the full quasigeostrophic two-layer
system (2.1). We do so by numerically integrating the
system (2.1) with the initial conditions being solutions
of the coupled KdV equations (2.15), and testing how
these solutions survive in the full quasigeostrophic sys-
tem. Second, we have to examine whether the dynamics
and predictions of the asymptotic theory are consistent
with observations of real blocking events.

Here we give a preliminary account of some numer-
ical simulations of the system (2.1). We used a finite-
difference scheme, developed by Holland (1978). Here
the problem is split into two parts; first we solve the
Poisson equations for the barotropic mode F 5 ] t(F2c1

1 F1c2) and the baroclinic mode C 5 ]t(c2 2 c1)

where the inhomogeneous terms coming from the Ja-
cobians are evaluated using the Arakawa scheme (Ar-
akawa 1966). Then, in a second step, a second-order
leapfrog scheme is used to determine the fields cn where
we take care of the time splitting by performing a for-
ward time step after 75 time steps. Special attention has
to be taken for the boundary conditions. On the walls
of the channel we have ]cn/]x 5 0. As discussed in
Helfrich and Pedlosky (1995) this condition is empty
for x-independent parts of cn. With physical reasoning
the condition can be modified to cn 5 0 at the channel
walls for a localized pulse since we do not expect the
perturbation field to be present in the far field. For pe-
riodic boundary conditions integrating (2.1) using the
circulation theorem yields

C dx dy 5 0,E
which is equivalent to imposing ]2cn/]t]x 5 0 on the
channel walls where the overbar denotes an x average.
In the case of localized pulses we also implemented
open boundaries using radiation conditions to avoid ac-
cumulation of Rossby waves at the eastern boundaries.
We used an explicit Orlanski method (see, for instance,
Han et al. 1983; Tang and Grimshaw 1996). Neverthe-
less, for some simulations it seemed to be more accurate
to calculate the wave speeds exactly using the speeds
of the fastest barotropic and baroclinic mode, rather than
numerically using the Orlanski method.

For the mean flow, a profile of the form Ui 5 Ui0(y
2 li)2 sin[p/L(y 2 ymax)] has been widely used where
L is the channel width and Ui0, li are free parameters.
The basic dynamics described in section 4a are beau-
tifully reproduced in the numerical simulations of the
full quasigeostrophic two-layer system, such as the for-
mation of a dipole according to A2 ø k2A1xt. Moreover,
the simulations can reproduce the results of our as-
ymptotic perturbation theory. As an example we show
in Fig. 18 a case where the first-order speed corrections
stabilize according to (3.14) although k1m . 0. For the
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FIG. 19. Amplitudes of a quasi-locked state during the time of
interaction. Parameters are D1 5 21.5, D2 5 1.5, m 5 21.0, l 5
21.0, k1 5 21.0, and k2 5 1.0. The continuous line refers to the
upper layer, the dotted line to the lower layer.

mean flow we chose U10 5 0.039, U20 5 0.01, L 5 2,
ymax 5 1, l1 5 9.0, and l2 5 8.0, and we set b 5 0.1,
F1 5 4.0, F2 5 1.0, and d2 5 0.15, leading to 5a*1
0.15, 5 0.14, l 5 4.94, m 5 4.39, D1 5 4.20, D2a*2
5 5.13, k1 5 4.00, k2 5 4.93, and for the time stretching
according to the scaling to (2.6) t 5 84T. In the x di-
rection we used 350 grid points, in the y direction 10.
Simulations investigating solitary-wave interactions
will be presented in a sequel to this paper.

We will now briefly summarize and discuss the main
features of the dynamics of the coupled Korteweg–de
Vries equations (2.15) obtained by our asymptotic the-
ory. In this asymptotic theory approximative solutions
of the coupled KdV system could be found and stability
criteria could be established, both for the background
(a Charney–Stern condition for baroclinic instability)
and also for the solitary wave solutions. The solitary
waves could be interpreted as either centers or saddle
points in a simplified phase-plane model. With respect
to applications, centers may be identified with persistent
blocking systems and the quasi-locked regime of the
saddle points with transient blocking systems. The latter
case is also interesting with respect to the theory of
multiple equilibria since this quasi-locked state can be
switched into a repulsion or passage regime by pertur-
bation of the parameters involved (e.g., by changing the
mean flow parameters). This can provide a mechanism
for multiple states without the necessity for the inclusion
of topography. For a critical review of the theory of
multiple equilibria in low-order models, see Tung and
Rosenthal (1985), Cehelsky and Tung (1985), and Yano
and Mukougawa (1992).

We shall not attempt precise quantitative comparisons
between our asymptotic theory and observed blocking
events here, as our main purpose in this paper is to
identify the possible dynamical scenarios. Further, it is
more appropriate to consider detailed quantitative com-
parisons between observations and an appropriate set of
numerical simulations of a full quasigeostrophic system.
This aspect is currently under investigation and will be
reported in detail elsewhere. However, we can point out
here that the timescales and space scales of the dynam-
ical scenarios found in our asymptotic theory are con-
sistent with both observations (e.g., Dole 1983) and also
full numerical simulations (e.g., Frederiksen 1997).
Thus both observations and numerical simulations of
the formation and development of mature blocking
events show their lifetime to be around 10 days, and
their pressure fields can increase up to three times within
5 days, before they reach their maximal pressure. In Fig.
19 we have depicted the amplitudes of the lower- and
upper-layer solitary waves during an interaction of the
quasi-locked type as depicted in Fig. 12. We see that
the amplitudes increase during the course of interaction
by a factor of 2, consistent with observations. The am-
plification of the pressure field in a quasi-blocked state
from the premature block to a developed block can also
be estimated using asymptotic theory (Gottwald 1998)

and is also in good agreement with observations. The
timescale of a quasi-locked blocking event can be es-
timated using Fig. 19 if we assume a typical horizontal
length-scale 1000 km, a typical velocity of the meanflow
10 m s21, set the governing small parameter of the long-
wave theory d 5 0.5, and let |l2| be of O(1). We obtain
lifetimes for the quasi-locked blocking systems greater
than 10 days. The reason for the overestimation of
blocking times might be that in a long-wave approxi-
mation small-scale effects that tend to weaken the sys-
tem are filtered out.

For the decay of blocking systems, friction was iden-
tified as a possible mechanism for triggering baroclinic
instability in both the quasi-locked states and in the
stable steady-state solutions. Furthermore, inhomoge-
neities in the mean flow provide another mechanism in
our model to trigger baroclinic instability as discussed
in section 2d. The destruction of mature blocking sys-
tems through baroclinic instability has been found in
observations and has been discussed by Dole (1986)
and Lupo and Smith (1995).

To summarize, we see that our weakly nonlinear,
long-wave analysis of the quasigeostrophic two-layer
model, and the derived coupled Korteweg–de Vries
equations are highly suggestive of blocking systems. In
a sequel to this paper we will report further on the case
when topographic forcing is present, using asymptotic
methods analogous to those used here, and also on sol-
itary-wave interactions using numerical simulations of
the full quasigeostrophic two-layer system.
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FIG. A1. Loci of n on the upper Riemann surface as (D2 2 D1)
varies. Bold lines are branch cuts where n2 2 4k1k2 is real. TheÏ
dashed line indicates the passing from the upper Riemann surface
onto the lower one.

FIG. A2. Typical linear dispersion curves for k1k2 . 0.

FIG. A3. Typical linear dispersion curves for k1k2 , 0.

APPENDIX A

Linear Stability for E ± 0

To investigate the linear stability in the dissipative
case we will consider the long-wave limit (k → 0) and
examine the Riemann surface in the R(n)–I(n)-plane;
the R( n2 1 4k1k2) 5 0 branches are shown in Fig.Ï
A1. Note that the I(n) 5 0 branch cut is redundant
since it implies E 5 0. If we define the upper Riemann
surface by R( n2 1 4k1k2) . 0, there are typicallyÏ
two cases in the behavior of n as D2 2 D1 varies, as
shown in Fig. A1. Without loss of generality we put
R( n2 1 4k1k2) . 0 as D2 2 D1 → `; then, in caseÏ
1, n remains on the upper Riemann surface, whereas in
case 2 and case 3 it passes onto the lower Reimann
surface R( n2 1 4k1k2) , 0. Since R(n) is negativeÏ
(positive) as (D2 2 D1) → ` (2`), we obtain

2Ïn 1 4k k1 2

2n as D 2 D → `2 1

n (case 1); as D 2 D → 2`.2 155
2n (case 2, case 3).

Thus, in case 1 an exchange of the modes cU, cL occurs
in the vicinity of R(n) 5 0, while there is no such
exchange in cases 2 and 3. Note that R(n) 5 0 refers
to the equality of the phase speeds of the decoupled
system. The growth rate becomes in the vicinity of R(n)
5 0 for k1k2 . 0,

1
I(c) 5 2 E (case 1)

2k

1 1
25 2 E 6 ÏE 2 4k k (case 2), (A1)1 22k 2k

and for k1k2 , 0,

1 1
2I(c) 5 2 E 6 ÏE 2 4k k (case 3). (A2)1 22k 2k

Thus, for k1k2 . 0, I(c) is always negative in both
cases; but for k1k2 , 0 there is always an exponentially
amplifying part. Typical situations are depicted in Fig.
A2 and Fig. A3.

APPENDIX B

Detailed Asymptotic Analysis

We recall the system of coupled KdV equations
(2.15):

A 1 D A 2 6mA A 2 lA 2 ek A 5 0,1t 1 1x 1 1x 1xxx 1 2x

A 1 D A 2 6A A 2 A2 t 2 2x 2 2x 2xxx

1 e(2k A 2 D 1 EA ) 5 0, (B1)2 1x x 2

where, for convenience, we have introduced a small
parameter e K 1 and have assumed that k1, k2, E, and
D are O(e). We also introduce the slow timescale T 5
et, on which the amplitudes and phases are assumed to
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evolve. Later on, we will restore the original parameters
back into the final system of ordinary differential equa-
tions.

For our asymptotic analysis we seek an asymptotic
expansion of the form

2A 5 u 1 eu 1 e u 1 · · ·1 0 1 2

2A 5 y 1 ey 1 e y 1 · · ·2 0 1 2

2u 5 a (T ) sech {w (T )[x 2 F (T )]}0 1 1 1

2y 5 a (T ) sech {w (T )[x 2 F (T )]}0 2 2 2

T1
F 5 c (T9) dT9 i 5 1, 2i E ie 0

(0) (1)c 5 c 1 ec 1 · · · i 5 1, 2. (B2)i i i

Substitution of these expansions into the Eq. (B1) yields,
at the leading order,

(0)(D 2 c )u 2 6mu u 2 lu 5 01 1 0x 0 0x 0xxx

(0)(D 2 c )y 2 6y y 2 y 5 0, (B3)2 2 0x 0 0x 0xxx

which is solved by our ansatz (B2) for u0 and y 0, pro-
vided that

l
2 2a 5 2 w , a 5 2w and1 1 2 2m

(0) (0)c 5 D 2 2ma , c 5 D 2 2a . (B4)1 1 1 2 2 2

Of course, these are just the well-known solitary-wave
solutions of the KdV equations obtained by setting e 5
0 in (B1).

We introduce the following two linear operators:

(0)H 5 2l] 2 6mu 2 (c 2 D )1 xx 0 1 1

(0)H 5 2] 2 6y 2 (c 2 D ). (B5)2 xx 0 2 2

Note that H1,2 are self-adjoint and that, at the leading
order, Eq. (B3) becomes

H1u0x 5 0, H2y 0x 5 0. (B6)

At the next order, O(e), we obtain a linear equation for
u1 in the upper layer:

(D1 2 2 6m]x(u0u1) 2 lu1xxx
(0)c )u1 1x

5 1 k0y 0x 2 u0T.(1)c u1 0x (B7)

To obtain the solvability condition for this equation we
investigate the related adjoint homogeneous equation,
which is

H1wx 5 0.

Besides the trivial solution f 5 1, this has the linearly
independent solutions f 5 u0 and

2 1
2 2w 5 u sech (u ) tanh(u ) 1 cosh (u ) 1x 1 1 1 115 3

22 sech (u ), (B8)1

where u1 5 w1(x 2 F1). Since this solution is unbound-
ed as u1 → 6`, the solvability condition is just

`

(1)(c u 1 k y 2 u )u du 5 0. (B9)E 1 0x 1 0x 0T 0 1

2`

Substitution of u0 and y 0 gives us the desired evolution
equation for the amplitude a1:

` 2da w w1 22 25 22k a w sech (u ) sech u 2 w DF tanh u 2 w DF du , (B10)1 2 2 E 1 1 2 1 2 11 2 1 2dt w w1 12`

where DF 5 F2 2 F1. In the lower layer we get at the
order, O(e), the following linear equation for y 1:

(D2 2 2 6]x(y0y1) 2 y1xxx
(0)c )y2 1x

5 1 y0T 2 k2u0x 2 Ey0 1 Dx.(1)c y2 0x (B11)

Using the same arguments as described above for the

upper layer, we obtain the following solvability con-
dition:

`

(1)(c y 2 y 2 u 2 y 1 D )y du 5 0, (B12)E 2 0x 0T 0x 0 x 0 2

2`

which yields the evolution equation for the solitary-
wave amplitude a2,

` 1da w w 42 12 2(T ) 5 22k a w sech (u ) sech u 1 w DF tanh u 1 w DF du 2 Ea2 1 1 E 2 2 1 2 1 2 21 2 1 2dT w w 32 22`

` u221 w sech (u )D 1 F ) du . (B13)2 E 2 u 2 221w22`
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The amplitude equations (B10) and (B13) contain the
leading-order energy balance, as can be seen by insert-
ing u0 and y 0 into the full system (B1), multiplying the
first equation by u0 and second one by y 0, and inte-
grating over the whole spatial domain.

At this order the first-order speed corrections re-(1)ci

main undetermined and the phase equation is just

dDF
5 D 2 D 2 2a 1 2ma . (B14)2 1 2 1dt

To determine it is first necessary to obtain u1 and(1)ci

y 1, and then apply a solvability condition to the linear
equations for u2 and y 2 analogous to (B7) and (B11),
respectively. We shall not give details as the procedure
is analogous to that described by Grimshaw and Mit-
sudera (1993) (see also Grimshaw et al. 1995). However,
it is pertinent to note first that the solutions for u1 and
y 1 contain terms 5 u1(6`) and 5 y 1(6`), re-6 6U V1 1

spectively, indicative of radiative tails. Indeed it is read-
ily shown from (B7) that

a1T1 2U 2 U 5 2 , (B15)
2ma w1 1

and analogously from (B11),

a E2T1 2V 2 V 5 2 2 . (B16)
2a w w2 2 2

Because the radiative tails are essentially linear waves,
they propagate ahead of (behind) the solitary wave for
the u component according as l . 0 (,0), and ahead
of the solitary wave for the y component, which can be
easily seen by moving into a frame of reference in which
the solitary wave is stationary. Thus we set U7 5 0
according to l . 0 (,0) and V2 5 0. The full expression
for is quite complicated and described by a further(1)ci

pair of differential equations. Here, however, we shall
follow standard practice and use approximate expres-
sions for valid on the intermediate timescale T K(1)ci

1 or t K e21. Thus,

`1
(1) 1 2 2c 5 m(U 2 U ) 1 [tanh(u ) 1 u sech (u )]k y du , (B17)1 E 1 1 1 1 0x 12a w1 1 2`

and
`1

(1) 1 2 2c 5 (V 1 V ) 1 [tanh(u ) 1 u sech (u )](k u 2 D ) du , (B18)2 E 2 2 2 2 0x x 22a w2 2 2`

Let us next summarize the results for the asymp-
totic equations for the amplitudes and the phases
[(B10), (B13), (B14), (B17), and (B18)] while re-

storing the original version of the parameters k1 , k 2 ,
and F. Thus we obtain the set of ordinary differential
equations:

` 2da w w1 22 25 22k a w sech (c) sech c 2 w DF tanh c 2 w DF dc,1 2 2 E 2 21 2 1 2dt w w1 12`

` 1da w w 42 12 25 22k a w sech (c) sech c 1 w DF tanh c 1 w DF dc 2 Ea2 1 1 E 1 1 21 2 1 2dt w w 32 22`

`

21 w sech (w c)D (c 1 F ) dc,2 E 2 c 2

2`

`3dF m w w1 2 22 2 25 D 2 2ma 2 k [tanh(c) 1 c sech (c) 2 sgn(l) tanh (c)] sech c 2 w DF1 1 1 E 23 1 2dt l w w1 12`

2w
3 tanh c 2 w DF dc,21 2w1
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`3dF l w w2 1 12 2 25 D 2 2a 2 k [tanh(c) 1 c sech (c) 2 tanh (c)] sech c 1 w DF2 2 2 E 13 1 2dt m w w2 22`

1w
3 tanh c 1 w DF dc11 2w2

`1 E
2 21 [tanh(w c) 1 w c sech (w c) 2 tanh (w c)]D (c 1 F ) dc 2 . (B19)E 2 2 2 2 c 22a 3w2 22`
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