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Abstract

Tipping points (TP) are abrupt transitions between metastable states in complex systems, most

often described by a bifurcation or crisis of a multistable system induced by a slowly changing

control parameter. An avenue for predicting TPs in real-world systems is critical slowing down

(CSD), which is a decrease in the relaxation rate after perturbations prior to a TP that can be

measured by statistical early warning signals (EWS) in the autocovariance of observational time

series. In high-dimensional systems, we cannot expect a priori chosen scalar observables to show

significant EWS, and some may even show an opposite signal. Thus, to avoid false negative or

positive early warnings, it is desirable to monitor fluctuations only in observables that are designed

to capture CSD. Here we propose that a natural observable for this purpose can be obtained by

a data-driven approximation of the first non-trivial eigenfunction of the backward Fokker-Planck

(or Kolmogorov) operator, using the diffusion map algorithm.

I. INTRODUCTION

We consider how critical transitions in stochastically forced complex systems may be

anticipated by measuring increases in amplitude and temporal correlation of fluctuations

in certain observables as early-warning signals (EWS). We consider a general class of het-

erogeneous systems with many interacting agents or scales, arising for instance in ecology,

biology, social science, and the Earth system [1]. Such complex systems are often modeled

by a first-order stochastic differential equation with a non-linear, deterministic drift giving

rise to possibly chaotic dynamics, and a noise process that represents unresolved scales and

random disturbances by the environment, as well as control parameters that represent slow

changes in external boundary conditions. A critical transition occurs when upon change of

a control parameter a base state, i.e., a stable invariant set of the drift, loses stability and

the system undergoes an abrupt transition to an alternative state. This is usually due to

a collision of the base state with an edge state, which is an unstable invariant set of the

drift. The stable manifold of the edge state is the basin boundary separating the base state

from the alternative state. The simplest case of such a transition is a noisy saddle-node

bifurcation (SNB) [2], which is often considered the archetype of a tipping point (TP).
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EWS arise due to so-called critical slowing down (CSD) [3–9], which is most easily un-

derstood for the SNB. Here, as a control parameter µ that modulates the drift crosses a

critical value (e.g. µc = 0) the leading eigenvalue of the Jacobian describing the linearized

dynamics around the base fixed point crosses the imaginary axis. Leading up to this, for

0 < µ ≪ 1, the dynamics along one degree of freedom (d.o.f) becomes much slower com-

pared to all others, and after a short relaxation time the system is confined to an (extended)

center manifold, or more precisely to a neighborhood thereof due to noise from random per-

turbations of the system’s environment [10]. The drift on the manifold is one-dimensional

and given by the SNB normal form after a suitable coordinate transformation. As µ → 0,

CSD refers to the slowing down of the relaxation dynamics towards the equilibrium along

the center manifold after an arbitrary, discrete perturbation.

In more general cases, where the base state is a limit cycle or chaotic attractor, we also

expect a decrease of the relaxation rate back to steady state after a perturbation of the

system. This is plausible if we assume that upon control parameter change the underlying

deterministic dynamics experience a continuous change from being stable to neutrally stable

in one d.o.f, before finally becoming unstable. This generic feature makes the detection of

loss of resilience to perturbations the primary avenue for predicting TPs [11].

For real-world, large-scale systems controlled perturbations are not available. Instead,

there is a permanent influence of random disturbances from the environment. Such noise-

driven, natural fluctuations of the unperturbed system allow one to infer the system’s re-

sponse to perturbations if linear response theory guarantees a fluctuation-dissipation theo-

rem [12, 13]. In particular, the size and correlation of the fluctuations are expected to grow

in tandem with the system’s slowing response as the critical transition is approached - which

is the other side of the coin of CSD - thereby forming statistical EWS. Growing fluctuations

towards the basin boundary imply a flattening of the quasipotential [14]. This happens in

the direction of a particular d.o.f that is related to the location of the edge state, since the

latter usually lies on the most probable path of a noise-induced escape [15].

Real-world observations have been analyzed for CSD by measuring statistical EWS of

presumed critical transitions, including financial crises [16], depression [17, 18], neuron spik-

ing [19], and climate tipping points, such as the Greenland ice sheet [20], Amazon forest

[21] and Atlantic Meridional Overturning Circulation (AMOC) [22–24]. But statistical false

positives and false negatives can occur. The destabilization of the system in a single (crit-
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ical) d.o.f implies that the increase in noise-driven variability occurs also predominantly in

a single d.o.f, which gives rise to a scalar observable where the variance is expected to di-

verge and the autocorrelation to tend to 1 at the bifurcation. Thus, EWS can be masked if

the measurements have been taken from a dynamical observable that does not sufficiently

project on the critical d.o.f [2, 15, 25–27]. In the simple case of the SNB, this means that

the observable does not follow the SNB normal form to any good approximation and hence

does is not subjected to significant CSD.

Consequently, the central question that will be addressed here is what observables should

be used to detect CSD. This depends on how the system under the influence of noise re-

sponds to perturbations away from its steady state, and how this response changes as a

control parameter slowly approaches its critical value. This can be understood in terms of

the Fokker-Planck (FP) equation, which governs the temporal evolution of the probability

density of the state in phase space. The density can be written as an expansion in the

eigenfunctions ψn of the FP operator L. For a fixed control parameter any initial density

will converge to the unique stationary density π(x), which is the first eigenfunction ψ0 with

eigenvalue λ0 = 0. The system is then in statistical equilibrium, where the contributions

of all other ψn with λn < 0 have decayed. The first few ψn (with λn closest to 0) signify

locations in phase space where fluctuations tend to linger on a finite, but long-term time

horizon.

We consider systems with a TP, i.e., the deterministic drift is (at least) bistable with

a base and alternative attractor. In accordance with the paradigm of bifurcation-induced

tipping [28] we assume low noise, and hence the system spends long periods of time in

distinct regions around the attractors of the drift, referred to as metastable states. There

are rare transitions between the states on time scales of O(1/λ1), and the eigenfunction ψ1

with |λ1| ≪ 1 signifies a very slow transfer of density between the metastable states. While

part of the invariant density π(x) occupies the alternative metastable state, we can assume

that on a finite time horizon the system is in a quasi-stationary distribution concentrated

entirely around the base state, where the contribution of ψ1 has not decayed. Due to CSD,

the relaxation towards the base state within the quasipotential well of the base state becomes

slower along a particular mode. When close enough to the TP, this mode becomes the slowest

in the system and will be expressed by the next eigenfunction ψ2.

An observable that naturally expresses increases in fluctuations related to this critical
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mode is proposed here to be given by the corresponding eigenfunction ϕ2 of the backward

(adjoint) operator L∗, also known as the generator, which shares the same eigenvalues as L.

The latter governs the temporal evolution of expectation values of observables as a function

of initial states, and the first few ϕn can be interpreted as patterns of initial conditions with

slowest decay towards π(x). This proposition is in agreement with the framework of optimal

fingerprints presented in [29].

To obtain L∗ from observational data we propose to use the diffusion map (DM) algo-

rithm [30–32]. DM has been successfully used to define generalized collective coordinates

that capture the effective dynamics of complex systems [32–34]. It gives an approximation

(discretized on the set of data points) of L∗ induced by a stochastic differential equation

with drift ∇ ln[π(x)], i.e., a gradient system related to the quasipotential of the underlying

stochastic dynamic system [14, 35]. This incurs an error when the underlying system has

strong non-gradient dynamics, but it should still give useful results in our context since it

preserves the flattening of the quasipotential (in the direction of a particular critical d.o.f)

as a key property of CSD, which is not affected by non-gradient terms of the drift. Indeed,

we show that from a DM approximation we can obtain physical observables that carry ex-

cellent EWS also for non-gradient systems, including a high-dimensional global ocean model

exhibiting a TP of the AMOC.

The paper is structured as follows. Sec. II reviews some fundamentals of FP operators

and its spectral properties and introduces notation, as well the DM algorithm to estimate

the eigenfunctions of L∗ from data. In Sec. IIIA and III B we motivate the usage of the

backward FP eigenfunctions for the purposes of EWS with simple double well potential

systems in one and two dimensions. In Sec. III C we show that the reconstruction of the

eigenfunctions with the DM method indeed yields observables that carry strong EWS in

conceptual models. Further, in Sec. IIID we show that such observables are strictly necessary

if one wants extrapolate from increasing fluctuations to forecast the timing of a tipping point.

In Sec. III E we apply our method successfully to a high-dimensional model of the global

ocean circulation, and conclude with a discussion in Sec. IV.
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II. FOKKER-PLANCK EIGENFUNCTIONS AND DIFFUSION MAPS

Consider the d-dimensional system state X = (X1, ..., Xd), governed by an Ito diffusion

equation with time-independent coefficients written component-wise as

dXγ = aγ(X)dt+
√
ϵσγ

ν (X)dW ν , (1)

with drift aγ(X) and diffusion σγ
ν (X). The transition probability density P (X(t) = x|X(0) =

x0) ≡ P (x, t|x0) is governed by the Fokker-Planck (FP) equation

∂tP (x, t|x0) = LP (x, t|x0) (2)

with FP operator

L(x) = − ∂

∂xγ
aγ(x) +

ϵ

2

∂2

∂xγ∂xν
bγν(x) (3)

and diffusion tensor bγν(x) = σγ
λ(x)σ

ν
σ(x)δ

λσ. The stationary distribution π(x) ≡ limt→∞ P (x, t|x0)

satisfies Lπ = 0 and is an eigenfunction of L with eigenvalue λ0 = 0.

We assume in the following that the system obeys detailed balance, which is the case

in gradient systems with additive noise. As mentioned above, we still apply our method

to non-gradient systems, observing that we will effectively reconstruct a gradient system

based on the quasipotential Vq(x) ∝ ln π(x) of the full system, and that the presence of

non-gradient terms does not change π(x). The eigenfunctions of the FP operator

Lψn(x) = λnψn(x) (4)

with eigenvalues λ0 = 0 > λ1 ≥ λ2 ≥ ... > −∞ then form an orthonormal basis under an

inner product weighted by π(x). Time-varying solutions of the FP equation can be written

in the eigenfunction basis as

P (x, t) =
∞∑
n=0

cnψn(x)e
λnt, (5)

with cn =
∫
ψn(x)π

−1(x)π0(x)dx, where π0(x) = P (x, t = 0). Since λ0 = 0 > λ1 ≥ λ2 ≥ ...,

eigenfunctions with small indices decay slowest. In view of studying tipping points, we

consider here dynamical systems that are metastable, i.e., systems that spend a very long

time in one part of phase space (a metastable set) before exhibiting a rare transition to

another, and so on. In the simplest case there are two metastable sets, corresponding to

neighborhoods of the attractors of the underlying deterministic dynamics, which is reflected
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in the spectrum of L as |λ1| ≪ 1 and a spectral gap with |λ2 − λ1| ≫ |λ1|. To study the

dynamics before the TP, it is sufficient to consider this bistable case, since a critical transition

generically consists of the collision of only a single base state and a single boundary.

The adjoint of the FP operator is the generator

L∗(x) = aγ(x)
∂

∂xγ
+
ϵ

2
bγν(x)

∂2

∂xγ∂xν
. (6)

It governs the backward Kolmogorov equation

−∂su(x, s) = L∗u(x, s), (7)

which is defined on the time interval s ∈ [0, T ] for functions u(x, s) = Ex,s[f(XT )] ≡

E[f(XT )|Xs = x], i.e., conditional expectation values of observables f(x, s) (initialized at

x), and with the final condition u(x, T ) = f(x). Employing the transformation t = T − s

the equation can be formulated as an initial value problem

∂tu(x, t) = L∗u(x, t), (8)

with initial condition u(x, 0) = f(x). Here, u is the conditional expectation u(x, t) =

E[f(Xt)|X0 = x] with initial position x. The solution of (8) can be expressed as an eigen-

function expansion

u(x, t) =
∞∑
n=0

dnϕn(x)e
λnt, (9)

with coefficients dn =
∫
ϕn(x)f(x)π(x)dx, and eigenfunctions ϕn satisfying L∗ϕn = λnϕn.

The leading eigenfunction ϕ0(x), corresponding to the eigenvalue λ0 = 0, is the unique

solution of L∗ϕ0 = 0 and is given by ϕ0 = const. This reflects the ergodicity of the underlying

system, which implies that (long-term) expectation values do not depend on the initial

conditions. In the reversible case the eigenfunctions of the forward and backward operators

are related by ϕn(x) = π(x)−1ψn(x), with the same eigenvalues λn. Below we exploit this

in order to calculate ϕn from the eigenfunctions of the discretized forward FP operator in

low-dimensional example systems.

Any observable g(x) can be expressed by an expansion in the backward eigenfunction

basis with

g(x) =
∞∑
n=0

gnϕn(x), (10)
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and possibly approximated by a truncation thereof. Here, gn =
∫
g(x)ϕn(x)π(x)dx. Thus,

ϕn(x) are can themselves be considered as observables, and in particular the first few ϕn(x)

are special observables with expectation values that converge only slowly because they are

non-constant functions in regions of phase space where there is a slow relaxation to equilib-

rium. From a different point of view, the subset of leading ϕn(x) are transformations of the

system from the original coordinates to reduction coordinates. The reduction is meaningful

in case of time scale separation, which is expected to emerge when the deterministic drift

of the system approaches a bifurcation. In particular, it can be shown that the evolution

of the first k eigenfunctions is approximately Markovian [36]. In this case, the long-term

evolution of the system is governed by the first k backward eigenfunctions.

For a (large) data set, a discrete approximation to the (first few) ϕn(x) can be obtained

by the diffusion map (DM) algorithm. We briefly summarize the method, and for more

details refer the reader to, e.g., [36]. The algorithm defines a weighted graph on the data

points, and subsequently computes the first few eigenvalues and eigenvectors of a random

walk on this graph. To this end we define a kernel with bandwidth ϵ > 0 measuring the

distance of two data points x and y

K(x,y) = exp(−||x− y||2/ϵ2). (11)

With this, given N data points {xi}Ni=1, construct the N × N matrix for all pairs of data

points

K̃ij =
K(xi,xj)√
pϵ(xi)pϵ(xj)

, (12)

with pϵ(x) =
∑N

j=1K(x,xj). Finally, construct the row-stochastic Markov matrix

Mij =
K̃ij

Di

(13)

with Di =
∑N

j=1 K̃ij. The first few eigenvectors νn of M , corresponding to eigenvalues λ
(M)
n ,

define the so-called diffusion coordinates ξn = λ
(M)
n νn. In the limit N → ∞ and ϵ → 0,

the operator (M − I)/ϵ converges to the adjoint L∗ of the FP operator (i.e. the backward

FP operator), and λ
(M)
n → λn [31, 37, 38]. The Euclidean distance between data points in

the DM coordinates is called the diffusion distance. The diffusion distance measures how

closely two points are connected via diffusion of the Markov chain M . Two points x and y

may have small Euclidian distance, but large diffusion distance, which can reflect that the

dynamics evolve on a lower dimensional manifold.
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To evaluate the eigenfunctions approximately at points y that are not part of the given

data set {xi}Ni=1, we employ the so-called Nyström eigenspace interpolation

ξn(y) = λ−1
n

N∑
i=1

K̃(y,xi)

D(y)
ξn(xi), (14)

with

K̃(y,xi) =
K(y,xi)√
pϵ(y)pϵ(xi)

(15)

and D(y) =
∑N

i=1 K̃(y,xi). In Eq. 14, ξn(xi) denotes the entry of the n-th eigenvector

corresponding to the i-th data point.

In our implementation of the DM algorithm we normalize each data variable to have unit

variance. Furthermore, we remove a small number of single and double outliers so that we

can use a smaller ϵ to obtain a better approximation of the backward eigenfunctions. Single

outliers are those data points that have the largest distance to its nearest data point, i.e.,

where the minimum of the distance to all other points is largest. We find n = 15 points with

the largest minimum distance and remove the respective columns and rows in the distance

matrix K(xi,xj) in (12). Thereafter we remove n = 10 double outliers, which are those

pairs of points where the second smallest distance to all other points is largest. The number

of removed outliers has been chosen by trial and error to give the best performance across

all data sets used here, which have a typical sample size of about 10,000. If this step is

skipped, often a quite large ϵ is needed to prevent the first diffusion coordinates from not

merely acting to cluster individual outliers against the rest of the data.

III. RESULTS

A. Interpretation of Fokker-Planck eigenfunctions in one dimension

We first study the FP eigenfunctions in a one-dimensional double-well potential (DW1)

with additive noise

dXt = −
(
d

dx
V (Xt)

)
dt+ σ dWt, (16)

with potential

V (x) = x4 − x2 + βx (17)

where β is a control parameter. The potential is shown in Fig. 1e for different values of β .

The deterministic drift of the system undergoes a saddle-node bifurcation at βc =
√
8/27 ≈
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0.544331, where one of the potential wells disappears. From here on we will simply refer to

this as bifurcation or TP, also when referring to the stochastic system. In Fig. 1 we show

results where the forward eigenfunctions ψn have been determined numerically, by a discrete

approximation of L using the finite difference method by Chang and Cooper [39], and then

an eigendecomposition of the obtained matrix using an implicitly restarted Arnoldi method

(scipy.sparse.linalg.eigs package implementation of ARPACK).

As β is increased from zero towards the bifurcation, for low noise π(x) quickly becomes

heavily asymmetric with a dominant peak at the deeper potential well (Fig. 1a), and a

peak around the shallower well that is orders of magnitude smaller. ψn for small n > 0

correspond to distinct patterns that modify the density such that it takes longest until

statistical equilibrium is reached, given that the pattern projects significantly on the initial

density ρ0.

The slowest decaying pattern ψ1 describes the situation where the probability mass in

one of the wells is initially larger as it should be according to π(x) (Fig. 1b). For the

equilibration of such a configuration, part of the probability mass needs to diffuse uphill and

overcome the potential barrier. In metastable systems with low noise, as considered here,

this is associated with a long time scale, and λ1 is approximately equal to the escape rate

out of the shallow well.

The pattern ψ2 gives a large contribution when the initial density is concentrated more

prominently in the vicinity of the saddle (as compared to π(x)). The function shows minima

slightly outwards (larger |x|)) of the two stable fixed points, and a broad double maximum

around the saddle point (Fig. 1c). This pattern can be interpreted as additional mass that

survives outside the vicinity of the two minima for some time λ−1
2 due to the asymmetry of

each well, i.e., the smaller curvature of the potential towards the saddle. In other words,

the relaxation towards equilibrium is slower in the vicinity of the saddle and on the sides of

the wells that are facing the saddle. As the bifurcation is approached, the segment of the

potential within the shallow well that faces the saddle becomes smaller, and thus this is the

relevant mode that carries the CSD. In the one-dimensional case, higher eigenfunctions are

less important for our analysis, representing higher-order corrections (see Fig. 1d for ψ3).

With these considerations on ψn one may interpret the backward eigenfunctions ϕn. As

mentioned above, ϕ0 is constant due to the ergodicity of the system. ϕ1 shows a sigmoidal

shape, with plateaus around the two fixed points. On time scales smaller than the mean
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FIG. 1. Eigenfunctions of the Fokker-Planck operator for the one-dimensional double-well model

(16) for a range of parameter values from β = 0.05 to β = 0.53 drawn with increasing contrast.

The bifurcation occurs at β ≈ 0.544. The eigenfunctions are estimated by eigendecomposition of

the discrete approximation of the FP operator via the scheme of Chang and Cooper [39]. a-d The

first four eigenfunctions of the forward FP operator for σ = 0.25. e Associated potential V (x).

f-h The first three non-trivial eigenfunctions of the backward operator ϕ1,2,3 (rescaled for each

parameter value to have a maximum value of 1). The green dots in g indicate the locations of the

saddle point for the respective parameter values. The vertical red line is the inflection point of the

potential in the shallower well, which is independent of β.

escape time from the shallow well, observables thus have different, quasi-constant expecta-

tion values that depend on which is the starting basin. The transition zone of the sigmoid

function with its midpoint at the saddle becomes narrower for decreasing noise levels.

While ϕ0 can be called the trivial eigenfunction because it is constant, and ϕ1 the dom-

inant eigenfunction since |λ2 − λ1| ≫ |λ1|, we refer to ϕ2 as the first subdominant eigen-

function. ϕ2 peaks close to the saddle point, and converges to 0 at the deep well while

reaching lower values in the shallow well. On time scales of order λ−1
2 , expectation values

are thus altered when starting close to the saddle. ϕ3 (and similarly higher eigenfunctions)

is noteworthy in the sense that it is not a monotonic function within the shallow well. It

11



FIG. 2. a-c Eigenvalues {λ1, λ2, λ3, λ4} of the FP operator for the one-dimensional double-well

potential as function of the control parameter β, for different noise levels σ. The critical value

corresponding to the bifurcation is marked by the vertical dashed line. d Eigenvalues {λ1, λ2, ..., λ7}

of the FP operator of the two-dimensional DW2 model (19) as a function of the control parameter

e, using the noise level σ = 0.3. The bifurcation point is marked with the vertical dashed line.

first increases towards the inflection point in the shallow well (Fig. 1h), and then decreases

again towards the saddle. In contrast, for the purpose of EWS, we are interested in observ-

ables that are monotonic from the base attractor towards the edge state, because otherwise

fluctuations of increasing length along the critical d.o.f towards the edge state due to CSD

are suppressed in the measured observable. ¨

The CSD as β is changed towards the bifurcation is reflected in the eigenvalues, though

this requires a low noise level to be observed. Since ψ2 captures the slowing of relaxation

towards equilibrium as the curvature in the shallow well decreases, the relaxation rate λ2

should go towards zero as a manifestation of CSD. This can be seen for low noise levels

in Fig. 2b,c. For finite noise levels the relaxation time remains finite (Fig. 2a), and even

slightly decreases very close to the bifurcation. It is bounded by the noise-induced escape

rate λ1, which decreases drastically and becomes O(1) at the bifurcation, at which point the

potential is so flat that the relevant time scale for the decay of ψ2 is not the deterministic

relaxation, but pure diffusion dynamics. Additionally, the decrease in distance of the saddle

and the fixed point in the shallow well may play a role.
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B. Eigenfunctions in two dimensions

In the previous one-dimensional example, there were no other slow d.o.f that compete

with the critical d.o.f to be in the position of mode ϕ2. But generally the situation is different,

especially in high-dimensional systems with multi-scale behaviour, where the correct physical

mode first needs to slow down enough so that it emerges as ϕ2. We illustrate this with a

system of two variables x and y in the double-well potential (DW2)

V (x, y) = x2(x2 + y2 − a) + y
cy + d

x2 + b
+ ex. (18)

3 Adding Gaussian white noise independently to both variables yields the system of stochas-

tic differential equations dxt
dyt

 =

−∂V
∂x

−∂V
∂y

 dt+

σx dWx,t

σy dWy,t

 , (19)

where Wx,t and Wy,t are independent, standard Wiener processes. Fixed values a = 2.5,

b = 0.5, c = 0.2, d = 0.5 are used, and e is the control parameter. For small e, there are two

stable fixed points and one saddle point in the deterministic system. There is a saddle-node

bifurcation of the deterministic drift at ec ≈ 1.73, where the potential well with x > 0

disappears. Figure 3f shows isolines of the potential, as well as the fixed points and basin

boundary at e = 0.5.

The first non-trivial eigenfunction ψ1 is again related to the slow transport of density from

one well to the other (Fig. 3b), and accordingly the backward function ϕ1 is approximately

constant in the two basins, with a steep transition layer along the basin boundary (Fig. 3g).

Next, compared to DW1 there is an additional eigenmode because of the slow time scale from

the generally slower deterministic dynamics in the y direction. Far from the bifurcation, ψ2

represents probability mass that is more slowly contracted in the y-direction and for some

time (λ−1
2 ) has the tendency to linger at strongly negative y values (Fig. 3c) instead of

converging to either fixed point. Hence, ϕ2 identifies initial conditions that take longest

to converge to either of the two wells along the y-direction (Fig. 3h). The next mode ψ3

corresponds (at this value of the control parameter e) to ψ2 of the one-dimensional case,

i.e., a result of slow convergence to the fixed points in the more flat parts of the asymmetric

potential wells towards the saddle point (Fig. 3d). Correspondingly, ϕ3 peaks near the saddle,

and it shows that in particular initial conditions starting near the stable manifold of the
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saddle will lead to a slow relaxation of conditional expectation values. ψ4 is a higher-order,

antisymmetric pattern, analogous to ψ3 of the DW1 model.

As e approaches the bifurcation, and given the noise is low enough, the eigenvalues of

the abovementioned patterns cross (Fig. 2d), leading to a different ordering of the modes

(Fig. 3k-t). The eigenvalue of the pattern associated with the d.o.f. in the y-direction

decreases (gray band in Fig. 2d), and the pattern drops to higher n. Instead, the pattern

related to the low potential curvature towards the saddle (yellow band in Fig. 2d) becomes

ϕ2 (Fig. 3r), i.e., the pattern subdominant only to the pattern ϕ1 that reflects noise-induced

escape.

C. Eigenfunction reconstruction from diffusion maps and observables for early-

warning signals

We now reconstruct the backward eigenfunctions ϕn(x) via the DM approach from data

of the DW2 model (19) obtained by simulation with an Euler-Maruyama scheme with time

step dt = 0.005. We simulate an ensemble of 100 uniformly distributed initial conditions

covering both wells for a fixed simulation time T = 100, allowing the ensemble to converge

to π(x). We only use data after t = 75, i.e., we discard any transient dynamics. Finally, the

simulated data is subsampled and all ensemble members combined to yield a set of 15,000

data points.

The scaled eigenvectors ξn (i.e. the diffusion coordinates) obtained from a spectral de-

composition of the Markov matrix (13) define functions that can be evaluated approximately

at any point in the original phase space via Eq. 14-15. Evaluation on an evenly spaced grid

for DW2 shows that the first few non-trivial diffusion coordinates ξ1,2,3,4 are indeed in good

qualitative agreement with the (scaled) eigenfunctions ϕ1,2,3,4 obtained from the discretized

FP operator (compare Fig. 4a-d and Fig. 3g-j).

We now restrict our attention to the scenario of bifurcation-induced tipping, where we

assume the system resides in one of the metastable sets, and where we consider time scales

much shorter than λ−1
1 associated with noise-induced escape. We consider the well that

contains the base state with x > 0 (cf. Fig. 4 or Fig. 3). Assuming a slowly varying control

parameter, the system is close to a quasi-stationary distribution pqs(x) ≈ ψ0(x)+ c1ψ1(x) at

any given instantaneous control parameter value. Here, c1ψ1 compensates ψ0 such that all
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FIG. 3. a-j Forward (a-e) and backward (g-j) FP eigenfunctions of the two-dimensional double

well model (19) with σ = 0.6 and control parameter e = 0.5, computed using the method by Chang

and Cooper [39]. The black contour depicts the level where ψn = ϕn = 0. The potential V (x, y) of

the system is shown as level sets in (f). The instanton (computed by the method in [40]) is drawn

in purple, and the basin boundary in green. k-t Same but for the model with σ = 0.3 and control

parameter e = 1.0, which is closer to the bifurcation at e ≈ 1.73 compared to the case in panels a-j.

Note there is numerical noise due to the very low probabilities that occur at the steepest parts of

the potential around the boundaries of the domain. This produces numerical artefacts in the zero

contour-line of the eigenfunctions, where erroneously the values in the computed eigenfunctions

rapidly alternate in sign.
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FIG. 4. a-d First four diffusion coordinates ξ1,2,3,4, which approximate the eigenfunctions ϕ1,2,3,4

of L⋆, of the DW2 model (19) with control parameter e = 0.5 and noise strength σ = 0.6, estimated

by DM on simulated data sampling the whole phase space. The diffusion coordinates are evaluated

at evenly spaced grid points using Eq. 14-15. e,f First two non-trivial diffusion coordinates of the

DW2 model (19) from simulated data restricted to dynamics that remains in the shallow well, with

control parameter e = 0.5 and noise strength σ = 0.3.

mass is concentrated in the shallow well. The dominant eigenfunction ϕ1 is approximately

constant in the shallow well, and thus variations in expectation values are determined by ϕ2

and onward. When sufficiently close to the bifurcation, the first backward eigenfunctions are

almost constant ϕ2 ≈ ϕ3 ≈ ϕ4 ≈ 0 in the basin of the alternative state (Fig. 3q-t). Hence, it

should be possible to approximate them from data restricted to the basin of the base state.

We compute DMs from simulation data with initial conditions restricted to a square do-

main around the base state that lies entirely within its basin. The initial conditions quickly

converge to the quasi-stationary distribution pqs(x) in the shallow well and the transient

during equilibration is discarded. A small noise strength σ = 0.3 is used, ensuring that

noise-induced transitions to the other well during the simulation time are extremely rare.

Realization leading to transitions are discarded. The features of the first two non-trivial

eigenfunctions (Fig. 4e,f) are consistent with the corresponding (higher) eigenfunctions ob-

tained from the full state space (Fig. 3r,s or Fig. 3i,j). Specifically, the level sets show that
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FIG. 5. a, d Simulated data points of the DW2 model (19) in the space spanned by the first three

diffusion coordinates, for parameter value e = 0.5 far from the bifurcation (left) and for e = 1.5

(right), which is closer to the bifurcation at e ≈ 1.73. The lower panels b,c,e,f show the same data

in two-dimensional projections onto the diffusion coordinates (ξ1,ξ2) and (ξ1,ξ3). We use a lower

noise level of σ = 0.09 in order to obtain simulation data restricted to the shallow well when very

close to the bifurcation, and thus the relation of ξ1 and ξ2 is different compared to Fig. 4e-f, where

σ = 0.3.

ξ1 is increasing monotonically and non-linearly towards the saddle. Level sets of ξ2 have

similar shape, but do not exhibit a monotonic increase toward the saddle. In fact, there is

a quadratic relationship between ξ2 and ξ1.

The leading ξn are not necessarily all independent d.o.f’s. In the system restricted to the

shallow well, the critical d.o.f becomes the slowest upon approaching the bifurcation and the

time scale separation with respect to all other d.o.f’s becomes larger, at which point the first

few backward eigenfunctions (and hence the first few diffusion coordinates) are all expected

to parameterize the slowest d.o.f. This is particular for single-well systems. For instance,

in a multi-dimensional parabolic potential with a slow variable x and a spectral gap, ξ1 is

a function of x and the next k eigenfunctions ξk (with k dependent on the magnitude of

the spectral gap) are polynomially related to ξ1 [32, 36]. In this case, ξ1 is sufficient as a

reduction coordinate and is the only diffusion coordinate that indicates monotonically how
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far fluctuations evolve towards the saddle.

Accordingly, in the DW2 example restricted to the shallow well, the dynamics in the

space of the diffusion coordinates ξ1,2,3 evolves from a two-dimensional to a one-dimensional

manifold as the bifurcation is approached (Fig. 5).

Further away from the bifurcation, ξ2 represents the slow mode in the y-direction, and the

two other diffusion coordinates are quadratically related and parameterize the d.o.f related

to the asymmetry of the potential well towards the edge state (Fig. 5a-c). Close to the

bifurcation, the dynamics becomes constrained to an approximately one-dimensional curve

where ξ2 (ξ3) is a quadratic (cubic) function of ξ1 (Fig. 5d-f). The observed pattern formerly

associated with ξ2 at e = 0.5 drops to higher eigenfunctions.

The observations above suggest three main ways to leverage information contained in the

diffusion coordinates ξn for early-warning of TPs. First, one may observe the qualitative

change of the functional dependencies of the first ξn as a result of the emerging time scale

separation, as just discussed. Second, one can directly evaluate and compare ξ1 for data

sets obtained at different observational time slices (i.e. for different values of the control

parameter) via the Nyström interpolation (14)-(15). In particular, we can estimate ξ1 from

a data set believed to be closest to a TP, for example from climate observations closest

to present-day, and then evaluate the observable ξ1 on data sets sampled further away

from the TP, for example using climate observations of the past. If the variability and

correlation of the values of ξ1 is increased significantly in the former data set, this is an

indication of decrease in resilience in the critical d.o.f and an impending TP. Note that the

same normalization of the variables that is applied before the DM algorithm to the data

set where ξ1 is estimated has to be applied to data at parameter values further away from

the bifurcation. How ξ1 can be used in this manner is illustrated in Fig. 6a, where a clear

change in variability is seen when evaluating ξ1 estimated at e = 1.5 on data simulated

farther away from the bifurcation at e = 0.5. Note that here and in most of the following

we focus our presentation on the variance as EWS, but similar plots could be shown for the

autocorrelation.

Third, a physical observable can be constructed by expressing ξ1 as function of (possibly

a subset of) the state variables. ξ1 is estimated for an observational time slice closest to the

TP and the values of ξ1 at the data points (i.e. the entries of the eigenvectors of the Markov

matrix M) are fit to a suitable function, e.g., a polynomial. The fitted function can then be
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FIG. 6. a Distribution of the ξ1-values evaluated at the data points of a DW2 simulation (19) at

e = 1.5 and σ = 0.09 (red line). The black dashed line is a distribution of the same ξ1 (i.e. obtained

from the DM at e = 1.5), but evaluated on data points of a simulation at e = 0.5 via the Nyström

interpolation (14)-(15). b-d The diffusion coordinate ξ1, estimated for DW2 simulation data close

to the tipping point (e = 1.65), is fit to a polynomial of the state variables (x,y), and used as

observable to detect CSD by evaluating it on residual data of simulations at lower values of the

control parameter. All simulations are initialized in the shallow well. Shown are distributions of

the values of a linear (d) and cubic (c) polynomial, normalized to the fluctuations at e = 0.2. Panel

b shows the variance increase of the linear and non-linear observable, as well as the observable

x − y, compared to the variance of the fluctuations at e = 0.25. e-g Polynomial fits of the first

non-trivial diffusion coordinate ξ1 estimated from simulations of the DW2 system (19) (dots) with

σ = 0.09. Panel e is a cubic fit to data at the parameter value e = 0.5 far from the bifurcation,

and (f,g) is a cubic and linear fit for e = 1.5, which is closer to the bifurcation.

evaluated as an observable for any data sets further away from the TP. In Fig. 6e-g we show

polynomial fits to ξ1 estimated from simulation data of the DW2 model. The directionality

of the level sets of the observable functions is consistent with the direction of the edge state,
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FIG. 7. a-d Scatterplots of simulated data from the five-box AMOC model in projections onto

the first three diffusion coordinates, for two values of the control parameter H = 0.25 (a,b) and

H = 0.315 (c,d). e Physical observable associated with the leading diffusion coordinate ξ1, using

as cubic polynomial of the variables SN and ST , at H = 0.315. The position of the edge state is

marked by the green triangle, and the base attractor is the red dot. The blue point cloud is the

data at H = 0.315 used for the construction of the DM. The green point cloud is corresponding

simulation data further from the bifurcation (H = 0.25), shifted such that the mean is at the base

attractor at H = 0.315.

as expected. Far from the bifurcation (assuming low noise) the dynamics samples only the

relatively flat part of ξ1 far from the saddle point, provided the noise is sufficiently small,

as shown in Fig. 6e. Still, the fitted function shows a more rapid decrease towards the

saddle point, thus indicating that it already carries the crucial information for detecting

CSD. When close to the TP, non-linear functions tend to be required for an adequate fit of

the ξ1 data (Fig. 6f). However, linear fits preserve the directionality of the edge state well

(Fig. 6g). Using the fits estimated from data sampled close to the TP (Fig. 6f,g), we again

see that the variability of the values of ξ1 decreases when evaluated for data sample further

away from the TP (Fig. 6c,d). The non-linear observable shows a significantly stronger

change in variance compared to the computed linear one (Fig. 6b).

Similar results are obtained when applying the method to a slightly more complex non-
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gradient system, which is summarized in the following for a four-dimensional conceptual

model of the AMOC [41]. The variables ({SN , ST , SS, SI}) are the average salinities in four

boxes of the global ocean (see Sec. A for the equations). The large difference in the box

volumes gives a time scale separation, with SS and SI being the slowest variables, and

SN being the fastest. The model is bistable for a range of the control parameter H from

H ≈ 0.04 until the bifurcation at H ≈ 0.3214, where the stable fixed point corresponding

to a present-day AMOC disappears.

Using simulation data restricted to the present-day AMOC state, far from the bifurcation

ξ1 represents a correlated relaxation mode in the slow variables SS and SI . ξ2 is a quadratic

function of ξ1, and ξ3 is independent and strongly correlated with SN only (Fig. 7a,b).

When approaching the TP, the slow mode corresponding to relaxation along the direction

of the edge state emerges due to CSD, and eventually rises to the position of ξ1, with ξ2

(ξ3) being a quadratic (cubic) function thereof (Fig. 7c,d). ξ1 exhibits a strong non-linear

anti-correlation with SN and a non-linear positive correlation with ST (see also [15]). A

good physical observable representing ξ1 is found by considering polynomial functions in

a projected space of a subset of (e.g. two) variables. The best cubic polynomial fit of

ξ1 (estimated at H = 0.315) is a function of SN and ST . The resulting function shows

a monotonic, non-linear increase from the base state towards the edge state, while being

essentially flat in other directions (Fig. 7e). This renders the observable very sensitive to

excursions towards the edge state, and thus ideal for EWS.

D. Observables and extrapolation of tipping times

So far we discussed the construction of observables that show a large increase in variance

(and also autocorrelation) as a result of CSD, which is a qualitative indication that the

system moves towards a TP. One may go further and attempt a quantitative prediction of

the expected time of tipping by extrapolating the CSD signal in observational time series,

as was done in the context of real-world climate observations in [20, 24]. This works by

assuming that an observed time series samples the critical dynamics by obeying the SNB

normal form, implying that such a prediction is sensitive to the choice of observable.

Consider the general multi-dimensional system described by the coupled stochastic dif-

ferential equations (1), where we now assume that the drift aγ(X, µ) depends on a control

21



parameter µ and the noise σγ
ν (X) = σγ

ν is additive. If the system undergoes SNB the noise-

driven dynamics is expected to become restricted to the vicinity of a one-dimensional center

manifold, and is described by the normal form for a SNB

dx = (x2 − µ)dt+ σdWt, (20)

where µ = 0 demarcates the bifurcation. Close to the fixed point, the system can be

linearized and approximated by the Ornstein-Uhlenbeck process dx̃t = −λx̃dt+σdWt. Cru-

cially, the linear restoring rate λ is related to the control parameter with λ = 2
√
µ. Data

that are sampled at small time intervals ∆t can be approximated by an AR(1) process

Xk+1 = e−λ∆tXk + ϵk, (21)

where ϵk are Gaussian random variables with variance σ2(2λ)−1(1− e−2λ∆t). For an AR(1)

process of this form the autocorrelation at lag 1 is given by ρ1 = e−λ∆t. This means that

from the above relation of λ and the control parameter µ the autocorrelation tends to 1 at

the SNB, and we can reconstruct µ from data by

µ =

(
ln ρ1
2∆t

)2

. (22)

Thus, in a sliding window one can estimate ρ1 as a function of time, and, assuming a linear

trend in µ, estimate with a linear fit to the function on the righthand-side at what time the

control parameter will cross zero.

If only given data from an arbitrary scalar observable of the system, this extrapolation

to the time of tipping can fail since the observable need not obey the SNB normal form, or

may only approximately do so when arbitrarily close to the bifurcation. In fact, even for

bi-stable systems with only one variable (where the question of observable is obsolete), the

scaling µ ∝ [ln(ρ1(X))]2 according to the saddle-node normal form only applies when close

to the bifurcation. For the DW1 model (16) under a linear change in time of the control

parameter µ the function [ln(ρ1(X))]2 is a convex function of time (Fig. 8). Thus, the TP,

which occurs at t ≈ 420, would be predicted too early at t ≈ 390 (red line in Fig. 8b) when

the linear extrapolation is performed based on data not close enough to the bifurcation. An

estimation of the autocorrelation in a moving window introduces a further bias towards a

later estimated tipping, because the autocorrelation is underestimated by removing some

correlation during the necessary step of detrending within each window.
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FIG. 8. Simulations of the DW1 model (16) with σ = 0.05 and a linear increase of the control

parameter within 500 time units from β = −0.7 past the bifurcation point βc =
√

8/27 to β = 0.7.

a Time series of one simulation overlaid on the bifurcation diagram. b Reconstructed control

parameter (Eq. 22) obtained by the lag-1 autocorrelation ρ1, estimated at each time step (sample

spacing of ∆t = 0.05 time units) for an ensemble of 15,000 simulations (black trajectory) until

a cutoff time where 98% of the ensemble members have not tipped yet (evaluated by crossing a

threshold of x = 0.2). At the noise level σ = 0.05, this is only very shortly before the bifurcation

is reached. The 2% of realizations that tipped are removed. The solid lines are linear fits using

different segments of the data, with the red (blue) line using the first half (last sixth) of the data.

The crosses as well as dotted and dashed lines are for ρ1 estimated in a moving window of length

40.

Moreover, apart from these biases, as more dimensions are involved the prediction de-

pends on the choice of observable. For the DW2 model (19), the variable x can give an

accurate prediction when data are available close enough to the TP (Fig. 9b). In contrast,

y initially shows a quasi-linear relation of µ and [ln(ρ1(X))]2, but then a much steeper rela-

tionship closer to the bifurcation (Fig. 9c). Extrapolating based on the initial slope would
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FIG. 9. Same as Fig. 8, but for simulations with the DW2 model (19) with σx = σy = 0.05,

where the parameter e is increased linearly past the bifurcation. Shown in a is a single example

trajectory overlaid on the bifurcation diagram. Panels b-f show the evolution of the quantity

[ln(ρ1(O))]2(2∆t)−2 for different observables O(x, y), along with linear fits to different parts of the

time series.

lead to an estimated tipping time that is far too late. Especially unsuited observables exist,

such as O(x, y) = x−y, where no tipping can be predicted before a noise-induced transitions

would occur (Fig. 9d). In contrast, O(x, y) = x+ y is very closely aligned with the direction

of the edge state [15] and permits to predict the time of tipping accurately for data suffi-

ciently close to the bifurcation (Fig. 9e). Finally, the non-linear observable obtained from

the DM approximation to the first subdominant backward eigenfunction (Fig. 6f) is most

accurate, even when evaluated at data far from the bifurcation (Fig. 9f).

E. Application to tipping points in a global ocean model

As the final result, we show our method is capable of successfully detecting TPs in a

high-dimensional system. We consider the global ocean model Veros [42], which shows a

TP of the AMOC from its present-day state to a collapsed state as a result of increasing
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FIG. 10. Bifurcation diagram of the Veros ocean model without noise forcing (obtained in [44]),

with the maximum AMOC strength as order parameter, and the freshwater forcing F as control

parameter. All individual solid lines correspond to different branches of attractors, and the dotted

lines as well as the arrows indicate the transition path of the system as a given attractor loses

stability. The edge state at F = 0.3472 (computed in [45]) is marked by the green triangle.

meltwater input to the North Atlantic. Veros is a primitive-equation finite-difference ocean

model forced with a fixed atmospheric climatology, and discretized on a grid of 40 latitudinal

and 90 longitudinal grid points, as well as 40 depth levels. This is a coarse-resolution setup,

but it enables long steady-state simulations to get good statistics beneficial for our feasibility

study. As a dynamical system, the model possesses almost one million degrees of freedom.

For more details on the model, see [42–44]. The meltwater input F is the control parameter,

and the stability landscape with respect to F (computed in [44]) is shown in Fig. 10. There

are several branches of attractors with an AMOC similar to present-day, but these collapse

at a high freshwater forcing of F ≈ 0.36. After this TP, there remain only attractor branches

with a collapsed AMOC.

We use four 33,000-year long simulations (after removal of a transient for equilibration)

performed at four, fixed values of F leading up to the TP, and sampled as 5-year averages

of the state variables. These are referred to as simulations I to IV, see Fig. 10. Surface

temperature and salinity noise forcing drives fluctuations of the system around its determin-

istic attractors (for more details see [15]), which otherwise feature relatively small-amplitude

chaotic oscillations [44]. The system without noise forcing has been investigated previously

to determine an edge state on the separatrix of the present-day and collapsed AMOC regimes
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[45]. By analyzing its mean climatology it was found that the edge state distinguishes itself

most strongly from the mean states on the attractors in terms of its fresh and cold deep

Atlantic. This is the “fingerprint” of the edge state. Subsequently, it was argued that in-

creased fluctuations towards the edge state as a result of CSD should be most prominent

in variables quantifying this fingerprint [15]. Indeed, only a very small subset of all d.o.f,

coinciding exactly with the variables describing the deep ocean fingerprint, shows significant

variance increase prior to the AMOC collapse [15]. The variable that was found to exhibit

the largest increase in variance is shown in Fig. 11a-d across the four data sets. In the

following, we show that similar (if not better) results can be obtained with our the DM

method which does not require prior knowledge of the edge state or a brute-force search

across all d.o.f (risking false positives). Instead, only observational data close to the TP is

required.

It would be feasible to compute the DM distance Kernel in the full space of the three-

dimensional fields, perhaps after a weighting of the different physical units (temperature,

salinity, density and velocity). But for simplicity we perform an initial dimensionality reduc-

tion, by averaging the salinity, temperature and density fields over boxes covering the entire

ocean at different depths, and by summarizing the strength of the main ocean currents in

terms of the spatial maxima of the meridional and barotropic stream functions (see [45]).

This yields time series of 83 variables covering most important aspects of the model state.

Fig. 11a-h shows time series of two of these variables at four different values of F , with the

mean removed. Before applying the DM algorithm, we normalize all variables to have unit

variance. A bandwidth of ϵ = 35 for the similarity Kernel (11) was found to be optimal to

resolve the data manifold at all parameter values F without being influenced by outliers,

the largest of which are removed beforehand (see Sec. II).

The physical meaning of the first two inferred diffusion coordinates is summarized in

Tab. I, where the five physical variables with the highest correlation to ξ1 and ξ2 are listed.

As the control parameter is changed towards the TP, we can see that the expected critical

mode emerges. When far from the TP, ξ1 is best correlated with deep ocean density in the

Indo-Pacific, South Atlantic and Southern Ocean. The next mode, represented by ξ2, is

best explained by variability in the tropical subsurface ocean. When increasing the control

parameter to F = 0.3515, it is replaced by a mode correlated with temperature and salinity

in the deep northern and tropical Atlantic. Increasing F further to F = 0.3557 shortly
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FIG. 11. a-h Example time series of two variables in the four Veros data sets used here. Shown is

the north Atlantic deep ocean salinity (a-d) at the four different values of the control parameter

F , as well as the south Atlantic deep ocean density (e-h). The time series are shown as anomalies

with the mean removed. i-l Time series of an observable constructed by projection onto the leading

diffusion coordinate ξ1 in the subspace of deep ocean salinity. The eigenmode was estimated with

the DM algorithm from data sampled at F = 0.3557 Sv.

before the TP, this becomes the leading mode ξ1. The most important variables in this

mode (upper right column in Tab. I) are exactly those that make up the fingerprint of the

edge state [45] and feature the largest increase in variance [15].

A high-dimensional feature set gives much freedom in designing physical observables

for EWS from ξ1. The first option is again to use the Nyström extension based on all

variables and interpolate the function ξ1 to observations further back in time, in order to

find evidence for increased fluctuations in the critical mode. Next, one may fit ξ1 as a linear

or non-linear function of the variables. In high dimensions it is sensible to only consider

a subset of variables to find a parsimonious observable with the best signal-to-noise ratio

when applied for EWS. We leave a treatment of this statistical optimization problem for
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TABLE I. Spearman correlation of the top five Veros features with the first two diffusion coordinates

ξ1 and ξ2, where the ξn were estimated at the four different values of the control parameter F . In

bold text are key variables (’rho’ refers to density) related to the mode of cold and fresh excursions

in the deep north and tropical Atlantic directed towards the edge state. In italic are key variables

related to the mode of fast cold excursions in the Southern ocean, which strongly increase the

density in large parts of the deep ocean.

F=0.2957 F=0.3472 F=0.3515 F=0.3557

Variable rS Variable rS Variable rS Variable rS

ξ1 rho deep TP 0.854 rho deep SA -0.874 rho deep SA -0.886 salt deep NA -0.873

rho deep TA 0.848 rho deep TA -0.870 rho deep TA -0.868 salt subs NA -0.834

rho deep SP 0.835 rho deep IO -0.842 rho deep IO -0.860 temp deep NA -0.789

rho deep IO 0.822 rho deep SP -0.803 rho deep SP -0.827 salt deep TA -0.735

rho deep SA 0.813 rho deep SO -0.794 rho deep SO -0.821 temp deep IO 0.730

ξ2 temp subs TP 0.627 temp subs TA 0.624 salt deep NA -0.775 rho deep SO -0.782

rho subs TP -0.607 rho subs TA -0.615 salt subs NA -0.765 rho deep SA -0.763

rho subs TA -0.597 rho subs TP -0.567 temp deep NA -0.690 rho deep SP -0.723

temp subs TA 0.582 salt subs NA -0.563 temp subs TA 0.667 salt deep SO -0.701

temp deep TP 0.518 temp subs TP 0.554 rho subs TA -0.643 rho deep TP -0.681

future research, and consider here three simple examples. First, simply take the variable

with highest correlation to ξ1 as observable. This is NA deep ocean salinity (Fig. 11a-d),

which indeed has the highest increase in variance of all individual features [15], increasing

by a factor of 12.23 when going from F = 0.2957 to F = 0.3557. Second, fit ξ1 to a linear

combination of the two best features in Tab. I (at F = 0.3557). This yields a variance

increase by a factor of 14.21. Third, fit ξ1 to a cubic polynomial of two variables, which

are chosen as the two features among the best four (Tab. I) that represent two different

ocean sectors, thus giving some degree of spatial independence. This observable captures

the directionality of the edge state well (Fig. 12), and shows an increase in variance by a

factor of 12.60.

Finally, ξ1 can be mapped back into the physical space of full dimension, whereafter

spatio-temporal anomalies from different time periods can be projected onto the mode. In

particular, we propose to obtain the physical representation of this mode by averaging over

the time points where ξ1 is extremized. For instance, one can choose the data points with the
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FIG. 12. Two-dimensional observable (color map and contours) created from a cubic polynomial

fit of two variables of the Veros data (north and tropical Atlantic deep ocean salinity at parameter

value F = 0.3557) to the values of ξ1 obtained from the diffusion map. The point cloud depicts the

data with color coding according to corresponding the value of the diffusion coordinate ξ1. Shown

are anomalies with respect to the mean state of the model. The green line is a vector pointing

from this mean state to the edge state [15].

top 5% largest and 5% smallest values of ξ1. Averaging independently over these two sets of

data points defines a positive and a negative phase of the mode. By taking the difference of

the positive and negative patterns (or vice versa) we obtain a pattern that describes the mode

as a whole and that we can project data onto. This may be viewed as linear approximation

that interpolates the physical mode linearly as a function of the value of ξ1. Fig. 13 gives a

comparison of the first subdominant modes extracted in this way by extremizing ξ1 far from

(Fig. 13a,d) and close to the TP (Fig. 13b,e). The modes are projected down to the two-

dimensional physical space of vertically averaged deep ocean of temperature and salinity.

Far from the TP, the mode is characterized by a global cooling of the deep ocean initiated

by abrupt (decadal-scale) cooling events in the Southern Ocean (seen as spikes of density

increase in Fig. 11e-h), which are excited by noise in the multistability regime, as discussed

in [15]. The resulting dense deep ocean water spreads throughout the deep ocean, before

the signal decays on a multi-centennial time scale. There is no significant salinity signal.

Close to the TP, the new physical mode that has emerged as subdominant eigenfunction

is characterized by a cold and fresh anomaly of the deep northern and tropical Atlantic

(Fig. 13b,e), with a spatial pattern that very closely resembles the anomaly of the edge state
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FIG. 13. a,b,d,e Anomaly maps of deep ocean (vertical average below 1000m) temperature (a,b)

and salinity (d,e) describing the first subdominant spatiotemporal mode ξ1 of the Veros model

obtained by the DM algorithm at the control parameter values F = 0.3472 (a,d) and F = 0.3557

(b,e). c,f Corresponding anomaly map of the edge state with respect to the mean state on an

attractor with active AMOC (state II in Fig. 10), as estimated from the deterministic version of

the model in [45].

(Fig. 13c,f). A scalar observable is created by projecting the snapshots of the data fields

(at each time step, and as anomalies with respect to a mean state) onto this pattern via

the scalar product of the two fields. Comparing different observational slices (such as the

simulations I to IV) then reveals the changes in variability of this critical mode, which serves

as EWS. The variance increases by a factor of 21.05 when going from state I to state IV,

and the time series of this observable are shown in Fig. 11i-l.

While these are encouraging results, in practice there is a risk of false positives and neg-

atives, since here the critical physical mode only appears in its correct place at ξ1 when

already quite close to the TP. One needs to verify that the leading mode captured by ξ1 is

likely a critical mode. The guiding principle should be to look how strongly fluctuations in

the leading diffusion coordinate, estimated at the current time slice, have increased com-

pared to data slices back in time, and then set a level of statistical significance based on a

reference period. In the Veros data one can in this way rule out the initially leading mode

(Fig. 13a,d), because its variability does not keep increasing towards the TP (Fig. 11f-h),

and the associated excursions do not last longer. But in principle there remains a chance for

false positives of a new time scale separation would arise upon change of a control parameter
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for reasons not related to a TP.

IV. DISCUSSION

Here we propose a method to obtain observables for detecting CSD before TPs in multi-

stable systems driven by low noise via a data-driven approximation of the FP operator.

While its first k eigenfunctions are very slowly decaying modes related to rare noise-induced

escape between metastable states [46], the subsequent eigenfunctions describe probability

density patterns in phase space that relax slowest towards the quasi-stationary distribution

centered around the metastable states. In the context of TP, where a base state loses stability

and the system transitions to an alternative state, we can consider without loss of generality

the bistable situation with k = 1. Further, we consider bifurcation-induced tipping [28],

where the system prior to the TP is only observed in the basin of the base state and the

contribution of the eigenfunction ψ1 remains quasi-constant (until infinitesimally close to

the TP). In this case, the first non-trivial eigenfunction that can be observed in data is

ψ2, which describes the slowest relaxation mode towards the quasi-stationary distribution

around the base state within its basin of attraction. As the TP is approached, due to CSD

this mode will eventually represent the slowing relaxation along the critical d.o.f.

We suggest to approximate the corresponding eigenfunction of the backward FP opera-

tor by the first diffusion coordinate ξ1, obtained as scaled eigenvector of the DM Markov

matrix. From ξ1, one can obtain a physical observable - e.g. by projecting onto patterns

obtained as average over data points that extremize ξ1 - that shows a monotonic increase

from the base state along the critical d.o.f towards the edge state. With several examples of

low-dimensional bi-stable models we demonstrated that such an observable shows increases

in noise-driven fluctuations that provide robust statistical EWS of the CSD associated with

the impending TP. We also showed that measuring CSD in the correct observable is crucial

when attempting to predict the time of tipping by extrapolating the scaling of variance or au-

tocorrelation of a scalar time series based on the SNB normal form. We furthermore showed

that the method can be applied successfully to simulation data from a high-dimensional

global ocean model that features a TP of the AMOC. A critical mode was extracted that is

in excellent agreement with the mode that would be expected from knowledge of the edge

state [15, 45], and a scalar observable was derived from ξ1 that shows highly significant
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increases in variance that are useful as statistical EWS.

A general caveat for this and other methods aiming to measure CSD from high-

dimensional systems is that the critical mode may only emerge as the first subdominant

eigenmode when already very close to the TP. If there are competing non-critical modes

that are very slow, it may not be possible to identify the critical mode, since one would need

a very long observational time horizon while being close enough to the TP where the critical

mode is finally the slowest. Indeed, it was seen for the Veros model that the correct physical

mode takes on the role of ξ1, but only as the system was arguably quite close to the TP.

Unless one knows beforehand which d.o.f should be measured, for instance by knowledge

of the edge state [15] or robust physical considerations, it may only be possible to issue a

reliable warning when very close to the TP, and potentially only after the probability of

noise-induced transitions has become substantial.

There are other previously proposed dimensionality reduction methods aiming to extract

a scalar observable that can be used to detect CSD. These include variance-based techniques

[8, 47–49], where the first principle component is identified by empirical orthogonal func-

tions (EOF) - as originally proposed to obtain the critical mode for EWS [8] - or principal

oscillation patterns (POP). An autocorrelation-based method has also been proposed, where

the directions of maximum variance of the first differences of multivariate time series are

found, which gives components of high autocorrelation that should indicate directions of

lowest resilience [50]. Other methods look for a SNB in the full set of (observed) variables

via the eigenvalues of a reconstructed Jacobian, which is determined by fitting a multivariate

autoregressive model [51] or a multidimensional Langevin equation [52].

Our approach is distinguished by combining several attributes. It yields an observable

derived from the first subdominant backward FP eigenfunction that is designed to represent

the critical mode displaying CSD, based on the flattening of the quasipotential expected for

a broader class of TPs. This mirrors the reasoning for a natural tipping observable recently

proposed in [29], and it is also supported by other operator-theoretic work on the topic

[53–57]. The specific DM algorithm that we propose to use is a non-linear dimensionality

reduction method and thus allows for observables to be non-linear functions of the state

variables. It can be deployed for relatively high dimensional systems, since the quality of its

approximation for a given sample size is not dependent on the full state space dimension,

but on the intrinsic dimension of the underlying data manifold, which may be much lower.
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An equal time spacing of data points, or any time ordering at all, is not required. The

method furthermore allows for a qualitative assessment of changes in the dominant physical

modes, by observing the functional relation between eigenfunctions, and the relation of

eigenfunctions and physical variables. This is useful for determining an emerging time scale

separation before the TP, and it may help to prevent false positives. It would be interesting

in future work to compare our approach to the abovementioned methods.

Future work should address two shortcomings. First, a modification of the method that

is viable in higher dimensions and able to reconstruct the correct backward FP eigendecom-

position also including non-gradient terms is desirable. This may broaden its applicability

and further improve the significance of obtained observables for EWS. Second, in many cases

of real-world relevance, such as tipping of the polar ice sheets, the change in the control pa-

rameter is fast compared to the critical relaxation mode ψ2 and perhaps many other modes.

This means that the system is not in a quasi-stationary state, as was assumed here, and it is

likely that the critical mode is not displayed before crossing the TP. An extended framework

based on non-autonomous dynamical systems theory can hopefully yield useful insights on

whether EWS before the de-facto TP exist in this case.
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Appendix A: Equations for the five-box ocean model

In this appendix, the equations and parameter values of the five-box ocean model, orig-

inally published in [41], are described. The boxes, labelled by X = N,S, T, IP,B, are

coupled unidirectionally by the thermohaline overturning circulation q, and bi-directionally

by the wind-driven circulation. The dynamical equation for box B can be eliminated by salt
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conservation. The remaining boxes forced by an atmospheric freshwater flux FX multiplied

by the reference salinity S0 = 0.035, which is then modulated by HAX to emulate the effect

of climate change, where H is the control parameter. The varying strength of the overturn-

ing q is proportional to the density difference in the northern and southern boxes, and the

temperatures TX are fixed everywhere except in the northern box, where it is assumed that

TN = µq + T0, with a global reference temperature T0. This yields

q = λ
α(TS − T0) + β(SN − SS)

1 + λαµ
. (A1)

In the model, q > 0 corresponds to an AMOC ‘ON’ state, and it is assumed that in case of

a reversed circulation q < 0 the unidirectional coupling by the overturning flow is reversed.

This yields different dynamics for positive and negative q, and a non-smooth system of four

ODEs, using the Heaviside function Θ(·):

VN
dSN

dt
= |q| [Θ(q)(ST − SB) + SB − SN ] +KN(ST − SN)− (FN +HAN)S0 (A2a)

VT
dST

dt
= |q| [Θ(q)(γSS + (1− γ)SIP − SN) + SN − ST ] +KS(SS − ST )+

KN(SN − ST )− (FT +HAT )S0 (A2b)

VS
dSS

dt
= γ|q| [Θ(q)(SB − ST ) + ST − SS] +KIP (SIP − SS) +KS(ST − SS)+

η(SB − SS)− (FS +HAS)S0 (A2c)

VIP
dSIP

dt
= (1− γ)|q| [Θ(q)(SB − ST ) + ST − SIP ] +KIP (SS − SIP )− (FIP +HAIP )S0.

(A2d)

Time is re-scaled by τY = 3.15× 107 to go from seconds to years, and the remaining pa-

rameter values are listed in Tab. A1. Additive noise is included to yield stochastic differential

equations of the form

dSX = fX(SX , H)dt+ σXdWX , (A3)

with X ∈ {N, T, S, IP}, σX = 10−6. The drift fX represents the deterministic model (A2)

and WX are standard independent Wiener processes.
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TABLE A1. Parameter values used for the five-box model, adapted from the FAMOUSA1xCO2 cal-

ibration in [41]. α = 0.12 (thermal coefficient) and β = 790 (haline coefficient) define a linear

equation of state for the density of sea water. Vi is box volume, Fi the freshwater fluxes, T are

temperatures, Ki are wind fluxes and Ai determine the distribution of freshwater forcing. η is a

mixing parameter between the S and B boxes, γ determines the proportion of water which takes

the cold-water path, λ and µ are constants. Subscripts indicate box labels, i ∈ {N,T, S, IP,B},

and ’0’ indicates a global reference value.

Parameter Value Parameter Value

VN(m
3) 3.683 ×1016 FN(m

3s−1) 0.375 ×106

VT(m
3) 5.151 ×1016 FT(m

3s−1) -0.723 ×106

VS(m
3) 10.28 ×1016 FS(m

3s−1) 1.014 ×106

VIP(m
3) 21.29 ×1016 FIP(m

3s−1) -0.666 ×106

VB(m
3) 88.12 ×1016 FB(m

3s−1) 0

AN 0.194 η(m3s−1) 66.061 ×106

AT 0.597 γ 0.1

AS -0.226 λ(m6kg−1s−1) 2.66 ×107

AIP -0.565 µ(oCm−3s) 7.0 ×10−8

KN(m
3s−1) 5.439 ×106 TS(

oC) 5.571

KS(m
3s−1) 3.760 ×106 T0(

oC) 3.26

KIP(m
3s−1) 89.778 ×106
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