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We derive the Camassa-Holm equation (CH) as a shallow water wave equation with
surface tension in an asymptotic expansion that extends one order beyond the Korteweg-
de Vries equation (KdV). We show that CH is asymptotically equivalent to KdV5 (the
fifth-order integrable equation in the KdV hierarchy) by using the nonlinear/nonlocal
transformations introduced in Kodama (1985,1987). We also classify its travelling wave
solutions as a function of Bond number by using phase plane analysis. Finally, we discuss
the experimental observability of the CH solutions.

1. Introduction

We study the irrotational incompressible flow of a shallow layer of inviscid fluid moving
under the influence of gravity as well as surface tension. Previously Dullin, Gottwald
& Holm (2001) studied the case without surface tension, which in the shallow water
approximation leads to the Camassa-Holm equation (CH). This is the following 1+1
quadratically nonlinear equation for unidirectional water waves with fluid velocity u (x, t),

mt + c0mx + umx + 2mux + Γuxxx = 0 . (1.1)

Here m = u − α 2uxx is a momentum variable, partial derivatives are denoted by sub-
scripts, the constants α 2 and Γ/c0 are squares of length scales and c0 =

√
gh is the linear

wave speed for undisturbed water at rest at spatial infinity, where u and m are taken
to vanish. Setting α2 → 0 in (1.1) recovers the Korteweg-de Vries (KdV) equation of
Korteweg & de Vries (1895).

Equation (1.1) was first derived in Camassa & Holm (1993) by using asymptotic expan-
sions directly in the Hamiltonian for Euler’s equations governing inviscid incompressible
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flow in the shallow water regime. It was thereby shown to be bi-Hamiltonian and inte-
grable by the inverse scattering transform. Its periodic solutions were treated in Alber
et al. (1994), Alber et al. (1999,2001) and references therein. Before Camassa & Holm
(1993), families of integrable equations similar to (1.1) were known to be derivable in
the general context of hereditary symmetries in Fokas & Fuchssteiner (1981). However,
equation (1.1) was not written explicitly, nor was it derived physically as a water wave
equation and its solution properties were not studied before Camassa & Holm (1993). See
Fuchssteiner (1996) for an insightful history of how the integrable shallow water equation
(1.1) relates to the mathematical theory of hereditary symmetries.

Equation (1.1) was recently re-derived as a shallow water equation by using asymp-
totic methods in three different approaches in Fokas & Liu (1996), in Dullin, Gottwald &
Holm (2001) and also in Johnson (2002). These three derivations used different variants
of the method of asymptotic expansions for shallow water waves in the absence of surface
tension. In accounting for the effects of surface tension, we shall derive an entire family
of shallow water wave equations that are asymptotically equivalent at quadratic order in
the shallow water expansion parameters. This is one order beyond the linear asymptotic
expansion for the KdV equation. The asymptotically equivalent shallow water wave equa-
tions in this family are related amongst themselves by a continuous group of nonlocal
transformations of variables that was first introduced by Kodama (1985,1987). We also
identify four integrable soliton equations amongst the family of asymptotically equivalent
shallow water equations at quadratic order.

Outline. The remainder of this section sets the context for our investigation and dis-
cusses the transformation properties of equation (1.1). Section 2 rederives the standard
elevation field dynamics for shallow water waves following Whitham (1974). We then
use an approach based on the Kodama transformation to derive equation (1.1) with
surface tension in section 3. Section 4 discusses the relation of equation (1.1) to KdV
and other integrable equations, particularly KdV5, the fifth-order integrable equation in
the KdV hierarchy, and another integrable nonlinear equation (4.4) recently derived in
Degasperis, Holm & Hone (2002). Section 5 discusses the rather rich classes of travelling
wave solutions for equation (1.1). Finally section 6 discusses its physical relevance and
the potential for measuring its special solutions.

1.1. Context

In Dullin, Gottwald & Holm (2001) the focus was on the integrability of the equation and
its isospectral properties. The derivation from Euler’s equation in the case without surface
tension was briefly described. Here we present the necessary details of this calculation.
The present derivation also adds surface tension, which contributes to the coefficient Γ
in equation (1.1).

In the context of water waves in the presence of surface tension there has been an
increased interest in the KdV5 equation and its solitary wave solutions, see Dias & Kharif
(1999) for a review. For Bond numbers 0 < σ < 1/3 it has been shown that these solutions
are not true solitary waves which decay to zero at spatial infinity. Instead, they are
generalized solitary waves which are characterized by exponentially small ripples on their
tail, as discussed, e.g., in Beale (1991). These ripples are shown in Lombardi (2000) to be
exponentially small in terms of F − 1 where F = c/c0 is the Froude number. Numerical
experiments of Champneys et al. (2002) suggest that in the full nonlinear water wave
problem there are no real solitary waves bifurcating for Bond numbers 0 < σ < 1/3. For
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Bond numbers larger than 1/3, one obtains not elevations, but depressions with negative
velocity.

Why derive a higher-order model equation, if these more rigorous, exact, or numerical
results are already available? Or in more general terms: Which is more desirable, an
exact solution of an approximate model equation, or an approximate solution of an exact
equation? The family of asymptotic equations we shall derive here provides more accurate
travelling waves than KdV, without requiring considerably more elaborate models. Thus,
although one may obtain less information, compared to the sophisticated methods beyond
all orders, the cost is also less. Including yet higher order terms in our derivation would
lead to equations possessing the same exponentially small effects. Thus, one may improve
the description of the shape and speed of the travelling wave without resorting to the
more complicated models. That they provide only an approximation to the true solution
shall be taken for granted.

Our inclusion of surface tension has a similar motivation. Although the equation (3.16)
that we shall derive has some drawbacks concerning the global properties of its dispersion
relation for large k, it still gives improved descriptions for small k and small σ. Moreover,
the improved simple solutions are easily obtained and analyzed.

1.2. Transformation Properties

Before embarking on its derivation, we shall survey the transformation properties of
equation (1.1). First, it is reversible, i.e., it is invariant under the discrete transformation
u(x, t) → −u(x,−t). Equation (1.1) is also Galilean covariant. That is, it keeps its form
under transformations to an arbitrarily moving reference frame. This includes covariance
under transforming to a uniformly moving Galilean frame. However, equation (1.1) is
not Galilean invariant, even assuming that the momentum m Galileo-transforms in the
same way as u. In fact, equation (1.1) transforms under

t→ t+ t0 , x → x+ x0 + ct , u→ u+ c+ u0 , m→ m+ c+ u0 , (1.2)

to the form

mt + umx + 2uxm+ (c0 + u0)mx + 2ux(c+ u0) + Γuxxx = 0 . (1.3)

Thus, equation (1.1) is invariant under space and time translations (constants x0 and
t0), covariant under Galilean transforms (constant c), and acquires linear dispersion terms
under velocity shifts (constant u0). The dispersive term u0mx introduced by the constant
velocity shift u0 6= 0 breaks the reversibility of equation (1.1).

Under scaling transformations of x, t and u, the coefficients of equation (1.1) can be
changed. However, such scaling leaves the following coefficient ratios invariant,

C(uxuxx) : C(uuxxx) = 2 : 1 , (1.4)

C(uxxt)C(uux) : C(uuxxx) = 3 : 1 , (1.5)

where C(T ) stands for the coefficient of the term T in the scaled equation. It is pertinent
to mention that the above ratios are crucial for the integrability of equation (1.1) Dullin,
Gottwald & Holm (2001). See also equation (4.4) and its discussion in section 4.1.
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2. Derivation of the η equation

Our derivation of equation (1.1) proceeds from the physical shallow water system
along the lines of Whitham (1974). Consider water of depth h = h0 + η(x, t) where h0

is the mean depth, so that z = −h0 at the flat bottom and z = 0 at the free surface
in equilibrium. Denote by uh and uv the horizontal and vertical velocity components,
respectively. The z-momentum balance is

Duv

Dt
= −g − 1

ρ
∂zp with p = σ̃

hxx

(1 + h2
x)3/2

, (2.1)

where g is the constant of gravity and σ̃ is the surface tension. At the free surface the
boundary condition is

Dη

Dt
= uv at z = η . (2.2)

Introducing the potential velocity u(x, z, t) = ∇ϕ we have uh = ϕx and uv = ϕz for
the horizontal and vertical velocity components. The velocity potential ϕ must satisfy
Laplace’s equation in the interior. Eq. (2.2) gives the kinematic boundary condition for
the free surface

ηt + ϕxηx = ϕz at z = η .

Eq. (2.1) can now be integrated to yield the dynamic boundary condition

ϕt +
1

2
(ϕ2

x + ϕ2
z) = −gh− 1

ρ
p at z = η .

The equations for a fluid are written in a non-dimensionalized form by introducing x =
lxx

′, z = h0z
′, t = (lx/c0)t

′, η = aη′ and ϕ = (glxa/c0)ϕ
′, where c0 =

√
gh0. We are

interested in weakly nonlinear small amplitude waves in a shallow water environment and
introduce the small parameters ε = a/h0 and δ2 = (h0/lx)2 where ε > δ2 > ε2 > εδ2 > δ4.
Upon omitting the primes and expanding the pressure term up to order ε2δ2, the Euler
equations and the boundary conditions at the free surface and at the bottom take the
form

δ2ϕxx + ϕzz = 0 in −1 < z < εη (2.3)

ηt + εϕxηx − 1

δ2
ϕz = 0 at z = εη (2.4)

η + ϕt +
1

2
(εϕ2

x +
ε

δ2
ϕ2

z) − σδ2ηxx = 0 at z = εη (2.5)

ϕz = 0 at z = −1 , (2.6)

where σ = σ̃/(h0ρc
2
0) is the dimensionless Bond number. The ordering of ε and δ2 is as

specified, provided that σ = O(1).

The equation for the interior is identically satisfied by the ansatz,

ϕ(x, z, t) =

∞
∑

m=0

δ2m(−1)m z2m

(2m)!

∂2mf(x)

∂x2m
, (2.7)

with an arbitrary function f(x). The velocity potential ϕ is expanded at the mean height
z = z0, where ψ = ϕ(x, z0), up to order O(δ6) as

ϕ = ψ − 1

2
δ2(z − z0)(z + z0)ψxx +

1

24
δ4(z − z0)(z + z0)(z

2 − 5z2
0)ψxxxx

− 1

720
δ6(z − z0)(z + z0)(z

4 − 14zz0 + 61z4
0)ψxxxxxx . (2.8)
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For an expansion at z = z0 = 0, in fact f = ψ. We will present the derivation with this
choice, in order to make it as transparent as possible. However, the derivation would yield
the same result when expanding at an arbitrary height z = z0, (see the comments at the
end of this section). We have included one more order in δ2 in this expansion because in
(2.4) φz is divided by δ2. The dynamics of the free surface is entirely determined by the
upper boundary conditions which to order O(δ4) read

ηt + ψxx + ε(ηxψx + ηψxx) − δ2

6
ψxxxx − εδ2

2
(ηxψxxx + ηψxxxx) − δ4

120
ψxxxxxx = 0

η + ψt +
ε

2
ψ2

x − δ2

2
(ψxxt + 2σηxx) − εδ2

2
(2ηψxxt + ψxψxxx − ψ2

xx) +
δ4

24
ψxxxxxt = 0 .

Differentiating the second equation with respect to x and introducing the horizontal
velocity w = ψx at the mean height z = 0 yields the following set of equations in
conservation form

ηt + wx + ε(wη)x − δ2

6
wxxx − εδ2

2
(wxxη)x − δ4

120
wxxxxx = 0 , (2.9)

wt + ηx +
ε

2
(w2)x − δ2

2
(wxt + 2σηxx)x − εδ2

2
(2ηwxt − w2

x + wwxx)x +
δ4

24
wxxxxt = 0 .

Note that the terms to order O(ε) are the well known shallow water equations.

As in the derivation of the KdV equation in Whitham (1974) we now restrict to
unidirectional waves by assuming a relationship w = η+ εf [η] between w, the horizontal
velocity at the mean height, and the elevation, η. The functional f shall be determined
so that the two equations in (2.9) both reduce to the same single equation for the height
field η. The relation w = η+εf [η] can be considered as an approximate reduced manifold
which is tangent to the space of linear waves moving to the right. Note: allowing leftward
travelling waves would violate the hypothesis that such a relation exists at order ε4, due to
a coupling between the left- and right-going waves. See Prasad & Akylas (1997), Marchant
(2002), Schneider & Wayne (2000) for discussions of this point. We expand w in a power-
series of ε, δ and include terms of order O(εδ2) and O(δ4) to find

w = η + εA(η) + δ2B(η) + ε2C(η) + εδ2D(η) + δ4E(η) . (2.10)

Upon ordering in powers of the small parameters the coefficients in the transformation
(2.10) are determined by requiring that both boundary conditions in (2.9) are satisfied
simultaneously. We find

O(ε) : Ax + ηηx = At (2.11)

O(δ2) : ∂x

(

B − 1

6
(1 − 6σ)ηxx

)

= ∂t

(

B − 1

2
ηxx

)

(2.12)

O(ε2) : Cx = Ct (2.13)

O(εδ2) : ∂x

(

D − 1

6
Axx − 1

2
η2

x

)

= ∂t

(

D − 1

2
Axx − 1

2
η2

x

)

− ηηxxt (2.14)

O(δ4) : ∂x

(

E − 1

6
Bxx +

1

120
ηxxxx

)

= ∂t

(

E − 1

2
Bxx +

1

24
ηxxxx

)

. (2.15)

The first two equations (2.11) and (2.12) are readily solved by

A = −1

4
η2 and B =

1

6
(2 − 3σ)ηxx . (2.16)
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At the next iteration of the expansion, the time-derivatives

ηt = −wx − ε(ηxw + ηwx) +
δ2

6
wxxx

= −ηx − 3

2
εηηx − 1

6
δ2(1 − 3σ)ηxxx , (2.17)

that appear in equations (2.11) and (2.12) generate higher order terms which modify the
higher order balances (2.13-2.15). These then lead to

C =
1

8
η3, D =

1

16
(3 + 7σ)η2

x +
1

4
ηηxx, E =

1

120
(12 − 20σ − 15σ2)ηxxxx . (2.18)

Under the transformation (2.10) both equations in (2.9) are equivalent to the desired
order and one finds a single decoupled equation for the height field, or elevation, η,

ηt + ηx +
3

2
εηηx +

1

6
δ2(1 − 3σ)ηxxx − 3

8
ε2η2ηx + εδ2

( 1

24
(23 + 15σ)ηxηxx

+
1

12
(5 − 3σ)ηηxxx

)

+ δ4
1

360
(19 − 30σ − 45σ2)ηxxxxx = 0. (2.19)

This is a well known result, which up to this order has been derived for example by
Marchant & Smyth (1990) and recently in Johnson (2002) without surface tension. Note
that the same elevation equation would be obtained by expanding the potential not
about the mean depth z0 = 0, but about an arbitrary depth z0, see Olver (1983) and
Kirby (1997). This still holds, even when surface tension is included. Thus, the height
field equation in this approximation is independent of the depth at which the horizontal
velocity is measured. For simplicity, we have chosen to evaluate the velocity potential ϕ
at z0 = 0. As a matter of fact, the same elevation equation would also hold if we had
chosen a vertically averaged potential to determine the velocity field u, as done in Wu
(1998).
From the point of view of physically meaningful interpretations of solutions of equation
(2.19), z0 is the depth at which velocity measurements are taken. The above discussion
shows that the evolution equation of the height field (2.19) is independent of this arbitrary
measurement location z0. However, the transformation (2.10) does explicitly contain z0
in relating the height field η to the measured velocity w.

3. Transformation to an integrable equation

Equation (1.1) will emerge as being asymptotically equivalent to equation (2.19) after
two further steps. First, we shall perform a near-identity transformation,

η = η[u] = u+ εf [u] + δ2g[u],

relating the wave elevation and a velocity-like quantity, u. One may consider u as an
auxiliary quantity in which the transformed equation becomes particularly simple. To
obtain the physically meaningful quantity, η, one must transform back, see below. The
functionals f and g are to be chosen so that they generate the terms proportional to uux,
uxuxx, uuxxx and uxxx in equation (1.1), afterwards we apply the Helmholtz operator
H = 1− νδ2∂2

x which generates the uxxt term. As in Kodama (1985,1987) the functional
g[u] is proportional to uxx and f [u] is a linear combination of u2 and the non-local term
ux∂

−1, where ∂−1 means integration in x. Thus, together with the parameter ν there
are four coefficients in this transformation. These shall be chosen so that equation (1.1)
emerges after a rescaling of u, x and t.
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The near-identity Kodama transformation depends on three parameters α1, α2 and β,

η = η[u] = u+ ε(α1u
2 + α2ux∂

−1u) + δ2βuxx . (3.1)

Terms of degree n in the expansion parameters ε and δ2 start contributing at degree n+1
in the transformed equation. Therefore no terms of quadratic order are needed in the
transformation. Inserting transformation (3.1) into equation (2.19) for the height field η
leads at each order to

O(1) : ut + ux

O(ε) : 2α1uut + 2α1uux + α2(uxt∂
−1u+ uxx∂

−1u+ ux∂
−1ut + uux) +

3

2
uux

O(δ2) : βuxxt + uxxx(β +
1

6
− 1

2
σ) (3.2)

O(ε2) :
9

2
α1u

2ux +
3

2
α2(u

2ux + uuxx∂
−1u+ u2

x∂
−1u) − 3

8
u2ux

O(εδ2) : (
23

24
+

5

8
σ +

1

3
(3α1 + 2α2)(1 − 3σ) +

3

2
β)uxuxx +

+(
5

12
− 1

4
σ +

1

6
(2α1 + 3α2)(1 − 3σ) +

3

2
β)uuxxx +

1

6
α2(1 − 3σ)uxxxx∂

−1u

O(δ4) : (
1

6
β2(1 − 3σ) +

1

360
(19 − 30σ − 45σ2))uxxxxx .

As before, we expand the time derivatives to linear order as

ut = −ux − 3

2
εuux − 1

6
δ2(1 − 3σ)uxxx , (3.3)

uxt = −uxx − 3

2
εu2

x − 3

2
εuuxx − 1

6
δ2(1 − 3σ)uxxxx ,

uxxt = −uxxx − 9

2
εuxuxx − 3

2
εuuxxx . (3.4)

This expansion generates higher order terms, leading to

O(1) : ut + ux

O(ε) :
3

2
uux

O(δ2) :
1

6
(1 − 3σ)uxxx

O(ε2) : (
3

2
α1 +

3

4
α2 −

3

8
)u2ux (3.5)

O(εδ2) : Ãuxuxx + B̃uuxxx (3.6)

O(δ4) :
1

360
(19 − 30σ − 45σ2)uxxxxx . (3.7)

where in (3.6) we used

Ã =
23

24
+

5

8
σ +

1

2
(2α1 + α2)(1 − 3σ) − 3β and B̃ =

5

12
− 1

4
σ +

1

2
α2(1 − 3σ) .

The first step of the derivation is now complete. In the second step, applying the Helmholtz
operator H = 1 − νδ2∂2

x creates terms with two more x derivatives multiplied by δ2. In
particular the terms of order O(ε2) are unchanged. These terms are proportional to u2ux

and they must vanish for equation (1.1) to emerge. The application of the Helmholtz op-
erator simply recreates the uxxt term that had previously been eliminated. Alternatively,
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the same equation (1.1) could be obtained by splitting the time derivative, that is, by
partially substituting the time derivative uxxt in (3.2) using its asymptotic approxima-
tions (3.4), as in Peregrine (1966). The order O(ε2) coefficient will vanish, provided the
parameters α1 and α2 are chosen to satisfy

4α1 + 2α2 = 1 . (3.8)

The order O(δ4) terms receive a contribution that arises from applying the Helmholtz
operator to the terms of order O(δ2), and this combination has to vanish, so that the
final equation does not possess a uxxxxx term. This requirement determines ν as

ν =
1

60

19− 30σ − 45σ2

1 − 3σ
, (3.9)

and in the following we shall consider ν to be given by this function of σ. Note that
removal of the highest order term was made possible by introducing the additional pa-
rameter ν via the Helmholtz operator. The remaining terms containing free parameters
α2 and β are of order εδ2 and they combine additively as

(Ã− 9

2
ν)uxuxx + (B̃ − 3

2
ν)uuxxx .

To ensure equivalence to (1.1) except for scaling we need the relative coefficients to appear
in the ratio (1.4), so that

(Ã− 9

2
ν) : (B̃ − 3

2
ν) = 2 : 1 . (3.10)

In addition we also need to satisfy (1.5), so that

3

2
ν : (B̃ − 3

2
ν) = 3 : 1 .

These two conditions imply B̃ = 2ν and Ã = 11ν/2. As a result we finally obtain the
equation

ut − νδ2uxxt +ux +
3

2
εuux −

1

2
εδ2ν(uuxxx + 2uxuxx) + δ2(

1

6
− ν − 1

2
σ)uxxx = 0 , (3.11)

which can be rewritten in terms of m = u− νδ2uxx as

mt +mx +
ε

2
(umx + 2mux) + δ2(

1

6
− 1

2
σ)uxxx = 0 . (3.12)

The explicit coefficients in the Kodama transformation (3.1) are thus

α1 =
7

20
− σ

1

5

2 − 3σ

(1 − 3σ)2
(3.13)

α2 = −1

5
+ σ

2

5

2 − 3σ

(1 − 3σ)2
(3.14)

β =
1

30
− σ

1

30

17 − 30σ

1 − 3σ
. (3.15)

Scaling back to physical variables where u has units of ϕx which are ga/c0 = c0a/h0

gives

mt + c0mx +
1

2
(umx + 2mux) + Γuxxx = 0 , (3.16)

where m = u− νh2uxx and Γ = c0h
2(1 − 3σ)/6. By an additional scaling of u by 2 this
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can be reduced to the canonical form (1.1). The parameters α2 and Γ in (1.1) are given
in terms of physical variables as

α2 = νh2 = h2 1

60

19− 30σ − 45σ2

1 − 3σ
, (3.17)

Γ =
c0h

2

6
(1 − 3σ) . (3.18)

The parameter Γ changes sign when the Bond number σ crosses the critical value 1/3.
For later reference we record the values of σ > 0 for which α2 or Γ − c0α

2 vanish as

σα = −1

3
+

2

15

√
30 ≈ 0.39696, σγ =

1

9
+

4

45

√
10 ≈ 0.39220 , (3.19)

respectively.

In the special case c0 = Γ = 0, equation (3.16) is called the “peakon equation.” Its
peakon solutions are solitary waves whose derivative is discontinuous at the extremum.
These solution were introduced and discussed in Camassa & Holm (1993). However, the
peakon equation is a zero-dispersion case that does not strictly follow as a water wave
equation in a weakly nonlinear shallow approximation from the Euler equation by this
technique. Neither a Galilean transformation nor an appropriate splitting can eliminate
the two linear dispersive terms simultaneously. One is always left with a residual linear
dispersion, whose final removal requires the additional velocity shift, u0, appearing in
the transformation (1.2).

Johnson (2002) has recently derived the CH equation as a shallow water wave equation
in a superficially similar way. However, there are fundamental differences between the
derivations here and in Johnson (2002). First, the derivation in Johnson (2002) involves
the evaluation of the potential (2.8) at a particular height z0 = 1/

√
2. Instead of the

height z0, the free parameters in the Kodama transformation (3.1) are used here to obtain
the desired equation. But a deeper issue is involved in distinguishing between the two
different derivations. In Johnson (2002) the fifth-order derivative, which is an essential
part of our derivation, was omitted. In Section 4 we shall show that the CH equation is
asymptotically equivalent to the KdV5 equation, which involves the fifth-order derivative.
In obtaining (3.16), the free parameters in the Kodama transformation (3.1) and in the
Helmholtz operator were used in transforming away the fifth-order derivative. However,
in Johnson (2002) this term was simply omitted by using a scaling of ε and δ that does
not allow for ε = δ2. However, the particular scaling ε = δ2 cannot be discarded, as it
assures the primary balance of linear dispersion and nonlinear steepening in the KdV
equation and is, hence, the backbone for the lower order balance of the higher order
equation (3.16). The scaling we employ and the transformations we use yield the same
result and, moreover, also allow one to study the KdV5 equation (see Section 4).

In order to compare predictions and to compare solutions to physically measurable
quantities, the solutions for the horizontal velocity-like variable u must be transformed
back to the elevation field η by using (3.1). However, the derivation not only used the
transformation (3.1) but it also involved application of the Helmholtz operator. Therefore
one should check that it is sufficient to simply invert (3.1). Fortunately, when the inverse
transformation u = u[η] of the same form as (3.1) with u and η interchanged is substituted
into (3.12), we find that the coefficients just reverse their signs. We conclude that (1.1) is
equivalent to the shallow water wave equation (2.19) up to and including terms of order
O(δ4).
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4. Relation to other integrable equations

The Kodama transformation can also be used to transform the CH equation into the
integrable 5th order KdV equation (henceforth called KdV5). Li & Sibgatullin (1997)
show that equation (2.19) for the elevation η can be transformed into the KdV5 equation.
Here we shall show that the CH equation and the KdV5 equation are also asymptoti-
cally equivalent under a Kodama transformation. To this end, we first expand the time
derivative in the uxxt-term using the equation itself and then apply a transformation of
the form introduced in Kodama (1985,1987), namely

u = v + ε(α1v
2 + α2vx∂

−1v) + δ2βvxx . (4.1)

Choosing the values in this Kodama transformation as

α1 =
α2

Γ
, α2 = 2

α2

Γ
, β = 2α2 (4.2)

transforms the CH equation (1.1) into the integrable KdV5 equation

vt + c0vx + 3vvx + 5 (vvxxx + 2vxvxx)α2 +
15

2

α2v2vx

Γ
+ Γ

(

α2vxxxxx + vxxx

)

. (4.3)

The transformation (4.1) is singular in the limit Γ → 0, so that the peakon solutions of
CH in this limit cannot be mapped to solutions of KdV5.

A Kodama transformation of the form (4.1) cannot transform the CH equation to the
KdV equation itself. However, Fokas & Liu (1996) show that such a transformation is
possible, provided another term of the form xvt is included in the Kodama transfor-
mation. Unfortunately, the term xvt is not uniformly bounded, so we shall decline to
use it. Were one to use (4.1) to transform solutions of the CH equation into solutions
of the KdV5 equation, the unboundedness of this term would present a real problem
when transforming travelling wave solutions, which move asymptotically in time toward
x = ±∞. Moreover, as we shall see, the term xvt would change the dispersion relation,
so again its use would be problematic. In contrast, to see that the transformation (4.1)
does not change the dispersion relation, one may observe that only terms linear in u
or its derivatives produce linear terms in the transformed equation. Similarly, nonlinear
terms in the equation being transformed will only create nonlinear terms in the resulting
transformed equation. Therefore, we may restrict to a transformation u = v + εL(v) in
which L is a linear differential operator with constant coefficients and the linear equation
to be transformed is ut = M(u). To first order, we then have vt = M(v) and the full
transformation gives

vt + εL(vt) = M(v + εL(v)) .

Now the first order equation may be used to eliminate the time derivatives that are not
of order zero, thereby yielding

vt + εL(M(v)) = M(v) + εM(L(v)) .

If M and L commute, as they do when they have constant coefficients, the final answer is
vt = M(v) so that a linear equation is unchanged. However, including a term of the form
xut in the transformation in general will cause the operators to no longer commute and,
thus, the linear equation will be changed. A proper near-identity transformation should
leave the linear part of the equation invariant and only transform higher order terms.
Therefore we do not include terms of the form xvt in the transformation.

Transforming from KdV5 to CH also involves the application of the Helmholtz operator
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H = 1−νδ2∂2
x. As we have just seen, the Kodama transformation leaves the linear part of

the equation unchanged. Applying the Helmholtz operator to an equation does change the
linear part, but it still leaves the dispersion relation unchanged. To see this, let the linear
part of the equation be given by ut = M(u). The new equation is H(ut) = H(M(u)).
If H and M are linear with constant coefficients this gives H(u)t = M(H(u)) so that
with the definition m = H(u) we obtain mt = M(m), which has the same dispersion
relation. Note that this is not true if we truncate higher order terms in H(M(u)). If
we truncate, then the dispersion relation will agree up to the order of truncation. For
example, the dispersion relation for (1.1) is a rational function, which differs from the
polynomial dispersion relation obtained from (2.19). However, by the above argument
the two agree up to the desired order.

We conclude that (1.1) is asymptotically equivalent to the integrable KdV5 equation,
and both of them are equivalent to (2.19) at order O(δ4). However, the equivalence of
(1.1) to the KdV5 equation breaks down in the limit Γ → 0, because the transformation
as well as the resulting equation contains terms divided by Γ. Therefore, the peakon
equation cannot be transformed into KdV5.

Using the additional parameter supplied by the Helmholtz operator allows for the
removal of the highest order term while preserving the dispersion relation, which is un-
changed by applying a linear operator to the equation. One advantage of the CH equation
over the asymptotically equivalent KdV5 equation is that it is easier to integrate numer-
ically because it does not contain the fifth derivative. This is in accordance with the
general smoothing effect of the Helmholtz operator.

4.1. The b-equation

Recently a new variant of (1.1) was introduced in Degasperis, Holm & Hone (2002) as

mt + umx + buxm = c0ux − Γuxxx , (4.4)

where b is an arbitrary parameter. The solutions of the b−equation (4.4) were studied
numerically for various values of b in Holm & Staley (2003a,b), where the parameter
b was taken as a bifurcation parameter. The cases b = 2 and b = 3 are special values
for the b−equation (4.4). The case b = 2 restricts the b−equation to the integrable CH
equation of Camassa & Holm (1993). The case b = 3 in (4.4) recovers the DP equation of
Degasperis & Procesi (1999), which was shown to be integrable in Degasperis, Holm &
Hone (2002). These two cases exhaust the integrable candidates for (4.4), as was shown
using Painlevé analysis in Degasperis, Holm & Hone (2002). The b-family of equations
(4.4) was also shown in Mikhailov & Novikov (2002) to admit the symmetry conditions
necessary for integrability only in the cases b = 2 for CH and b = 3 for DP.

We shall show here that the b−equation (4.4) can also be obtained from the shallow wa-
ter elevation equation (2.19) by an appropriate Kodama transformation. The derivation
in the previous section is essentially unchanged up to equation (3.10). The two scaling
relations (1.4,1.5) now read

(Ã− 9

2
ν) : (B̃ − 3

2
ν) = b : 1,

3

2
ν : (B̃ − 3

2
ν) = b+ 1 : 1 .



12 H. R. Dullin, G. A. Gottwald and D. D. Holm

These two conditions imply

B̃ = ν
3

2

b+ 2

b+ 1
and Ã = ν

3

2

4b+ 3

b+ 1
.

The resulting Kodama transformation of the form (3.1) with coefficients α′
1, α

′
2, and β′

are

α′
1 = α1 + 3Λ

α′
2 = α2 − 6Λ

β′ = β − (1 − 3σ)Λ where

Λ =
b− 2

b+ 1

45σ2 + 30σ − 19

360
.

Therefore any b 6= −1 may be achieved by an appropriate Kodama transformation.
Note that when σ = σα, see (3.19), then α2 = 0, hence Λ = 0 is independent of b. After
this transformation (4.4) is obtained by further scaling of the new dependent variable
u by the factor b + 1. See Holm & Staley (2003a,b) for discussions of equation (4.4) in
which b is treated as a bifurcation parameter when c0 = 0 and Γ = 0.

We conclude that the detailed values of the coefficients of the asymptotic analysis hold
only modulo the Kodama transformations and these transformations may be used to
advance the analysis and thereby gain insight. Thus, the Kodama-transformations may
provide an answer to the perennial question “Why are integrable equations so ubiquitous
when one uses asymptotics in modelling?”

5. Travelling Wave Solutions

The water wave equation (3.16) can be viewed as a hybrid of two different integrable
limiting equations. On the one hand, the limit α2 = 0 leads to the KdV equation when
including terms of order ε and δ2 which supports regular solitons. Thus, the primary
physical mechanism for the propagation of solitary shallow water waves at order O(ε, δ2)
is the balance between nonlinear steepening and linear dispersion. However, the CH
equation (3.16) introduces additional higher order combinations of balance, including
the nonlinear/nonlocal balance in the following (rescaled) zero-dispersion case, whose
nonlinear dynamics still remains, even in the limit of vanishing linear dispersion, i.e.
c0 = 0 = Γ, namely,

mt + umx + 2mux = 0 , with m = u− α2uxx . (5.1)

This nonlinear/nonlocal balance produces a confined solitary travelling wave pulse,

u(x, t) = ce−|x−ct|/α ,

called the peakon. In the momentum variable m it is given by a δ-function at x − ct.
The peakon travels with speed equal to its peak amplitude. This solution is nonanalytic,
having a jump in derivative at its peak. Peakons are true solitons that interact via
elastic collisions under equation (5.1), as discussed in Camassa & Holm (1993). Whereas
the KdV equation has purely linear dispersion, its extension the Camassa-Holm (CH)
equation (3.16) possesses the peakon limit (5.1) which evolves by nonlinear balance.
Other non-classical solutions such as the travelling waves of compact support called
compactons in Li, Olver & Rosenau (1999) also exist in this equation and we will discuss
their parameter dependence in the following.
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Figure 1. Normalized dispersion relations for σ = 0.25, 0.35, 0.8 as a function of hk. The full
line is the exact phase speed (5.3); the dashed line is the approximation (5.2) .

5.1. Dispersion Relation

The interplay between the local and nonlocal linear dispersion in the CH equation (1.1),
or (3.16), is evident in its phase velocity relation,

ω

k
= c0 −

Γk2

1 + α2k2
, (5.2)

for waves with frequency ω and wave number k linearized around u = 0. For Γ < 0,
short waves and long waves travel in the same direction. Long waves travel faster than
short ones (as required in shallow water) provided Γ < 0. Then the phase velocity lies in
ω/k ∈ (c0− Γ/α2, c0]. At low wave numbers, the constant dispersion parameters α2 and Γ
perform rather similar functions. At high wave numbers, however, the parameter α2 keeps
the phase velocity of the wave properly bounded and the dispersion relation is similar to
the original dispersion relation for water waves, provided that the surface tension vanishes
and σ = 0 (see Section 6). Its remarkably accurate linear dispersion properties give the
CH equation (1.1) a clear advantage over the KdV equation (provided σ = 0). We note
that radiation is absent in the peakon equation – in this case, linear dispersion is absent
(c0 = Γ = 0). For nonvanishing surface tension the dispersion relation describing shallow
water waves is unbounded for large wave numbers, whereas the dispersion relation of
equation (1.1) saturates to the asymptotic value c0 − Γ/α2. This property makes (1.1)
inferior to KdV5 for non-zero surface tension. The linear dispersion relation of KdV5 and
its unboundedness for high wave numbers allows for resonances of a supercritical solitary
wave with high wave number linear waves which give rise to exponentially small ripples
at the tails of the solitary wave in accordance with the study of water wave solution of
the full Euler equation, see for example Beale (1991), Grimshaw & Joshi (1995), Dias &
Kharif (1999) and Lombardi (2000). Nevertheless, when k and σ are small, we do obtain
improved results regarding the shape and speed of travelling waves, as discussed below.

The connection to the physical parameters α = α(σ) and Γ = Γ(σ) is defined in
equations (3.17-3.18). Equation (3.16) was derived from the original water wave prob-
lem by means of two transformations, (2.10) and (3.1) respectively, and the application
of the Helmholtz operator. Only the linear terms of (2.10) and (3.1) and the linear
Helmholtz-operator could alter the dispersion relation, but since the transformations
and the Helmholtz-operator are applied to the whole equation, the original linear disper-
sion relation is not altered at all, independently of the actual choice of the coefficients
of the transformation and of the parameter ν, see the discussion in Sec. 4. Therefore the
dispersion relation (5.2) matches the dispersion relation for water waves up to quintic
order. For comparison, the dispersion relation for water waves developed for small wave
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number k is

ω

c0k
=

√

1 + σh2k2

hk
tanhhk (5.3)

≈ 1 − 1

6
(1 − 3σ)h2k2 +

1

360
(19− 30σ − 45σ2)h4k4 (5.4)

≈ 1 − 1

6
(1 − 3σ)h2k2(1 − νh2k2) . (5.5)

Therefore the dispersion relations are in agreement up to 5th order in wave steepness hk.

5.2. Reduction to an ODE

Travelling wave solutions are obtained by the ansatz u(x, t) = u(s), with s = x− ct. We
obtain after integration,

u′′(Γ + α2(∆ − u)) = ∆u− 3

2
u2 +

α2

2
u′2 , (5.6)

where the prime denotes differentiation with respect to s. We note that the dispersion
coefficient Γ is the dispersion coefficient in the equations after transformation into the
rest frame, and ∆ is the difference in the wave speeds ∆ = c − c0. This system follows
from the canonical equations with Hamiltonian function

H(u, p) =
p2

2(Γ + α2(∆ − u))
− ∆

2
u2 +

1

2
u3 , (5.7)

where the momentum p canonically conjugate to u is defined by p = (Γ + α2(∆− u))u ′.
Regular equilibria are defined by ∂H/∂u = ∂H/∂p = 0. They have p = 0 and u = 0 or
u = 2∆/3. There also can exist singular equilibria defined by the vanishing of Γ+α2(∆−u)
and in addition the right hand side of (5.6).

To include the singular equilibria in the discussion it is better to use the energy ex-
pressed in terms of the variables u and u ′ instead of the canonical variables u and p in
the Hamiltonian. In addition we perform a scaling of u and s such that

u = ∆ũ, u ′ =
∆

|α| ũ
′ . (5.8)

After this scaling the single remaining dimensionless parameter is

r =
Γ

|α|2∆ . (5.9)

Note that if ∆ < 0 then this rescaling changes elevations travelling to the left into
depressions travelling to the right, and vice versa. This transformation is not canonical;
however, for discussing critical points this is not important. Scaling the energy with ∆3

yields (after dropping the tildes)

E±(u, u ′) =
1

2

(

(r ± (1 − u))u ′2 − u2 + u3

)

. (5.10)

Here the subscript ± denotes the sign of α2. The equilibria are now given by the critical
points of the energy (5.10). We note that α2 < 0 is admitted; in our derivation of equation
(3.16) we defined α2 = νh2 (3.17). Thus the sign of α2 is entirely determined by ν which
is defined in (3.9), so that ν < 0 for σ ∈ (1/3, σα), see (3.19). We note that for negative ν
the Helmholtz-operator is not smoothing anymore. Also note that the dispersion relation
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u : 0 2/3 1 + r order

r > 0 ×t ◦ × × ◦ |
0 > r > −1/3 ×c ◦ ×p × ◦ |

−1/3 > r > −1 ×c ×c − ×|×
−1 > r > −4/3 ◦ ×c ×p | ◦ ×

r < −4/3 ◦ ×t × | ◦ ×

Table 1. Type of critical points for α2 > 0, also see Fig. 2. ◦ points: stable, × points: unstable.
The subscript denotes the type of separatrix: t travelling wave, p periodic peakon, c cuspon.

possesses a pole in this case. Noninvertibility of the Helmholtz operator in the case
α2 < 0 does not exclude this case. In the transformations used for the derivation of
equation (3.16), the inverse Helmholtz operator does not occur. Equation (3.16) can
also be transformed into equation (2.19) (or into (4.3)) by means of re-substituting time
derivatives.

The parameter r allows a classification of different solution types in a simple way. E±

has two critical points which are independent of r, namely

u ′ = 0 andeither u = 0, or u =
2

3
, (5.11)

with corresponding critical values of the energy 0 and −2/27, respectively. In general,
the solution types are different for positive and negative α2.

5.3. Case 1: α2 > 0

This case possesses two r−dependent singular critical points for which

u ′ = ±
√

3u2
c − 2uc and u = uc = 1 + r , (5.12)

provided 3u2
c − 2uc > 0. These critical points only exist, provided either r < −1, or

r > −1/3. Their critical value is r(1 + r)2/2. Stability of the critical points (5.11) is
determined by the sign of the determinant of the Hessian of the energy. The determinant
at theses critical points is

D(E+) = (3u− 1)(r + 1 − u) . (5.13)

Varying r allows one to change the stability properties of the critical points (5.11) and
the existence of the additional critical points (5.12), see Table 1.

Fig. 2 shows typical pictures of the phase portrait in the phase plane u ′ versus u. In
all pictures only some solutions that correspond to bounded travelling waves are shown
in addition to all critical solutions. The top row shows the generic phase portraits, while
in the bottom row the bifurcation values are illustrated.

Solutions corresponding to critical values of E are called peakons if they have a finite
jump in first derivative of u and are called cuspons if the derivative at the jump diverges.

The main feature of Fig. 2 is a homoclinic orbit to the origin u = 0, u ′ = 0 with zero
energy. The origin is unstable and the equilibrium u′ = 0, u = 2/3 is stable. In Tab. 1,
first row, the corresponding unstable point is denoted by ×, the stable one by ◦. The
singular line is located at u = uc = 1+ r. In Fig. 2a the parameter r is large enough that
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Figure 2. Phase portraits for α2 > 0. There are 5 different cases a) - e) depending on the
value of r, cmp. Table 1.

the singular line u = uc is well separated from the value u = 1 where the homoclinic orbit
of the origin crosses the u ′ = 0−axis. Varying r so that the singular line u = uc moves
closer to the rightmost point u = 1 of the separatrix of the origin gives a travelling wave
with a more and more pronounced peak. For the limiting case r = 0 which defines the
peakon limit, the travelling wave shows a jump in the first derivative as shown in Fig. 2f.
The travelling wave is now a peakon. One can vary r even further towards negative r to
obtain the scenario depicted in Fig. 2b which allows for cuspons and periodic peakons.
If r > −1/3 we have the two additional critical points (5.12) and if in addition r < 0
these critical points correspond to periodic peakons. The origin u = 0 which has E = 0
defines now a cuspon which has an infinite slope. For −1 < r < −1/3 the critical point at
u = 2/3 becomes unstable and we have now two cuspons; one describing elevations and
the other defining depressions. The typical phase portrait of this scenario is depicted in
Fig. 2c. We can push the singular line uc further across the u ′−axis, by allowing r < −1
which is shown in Fig. 2d. Now we have a cuspon defining a depression wave and again
periodic peakons corresponding to the additional critical points (5.12). The separatrix of
these points reconnects if their energy equals the energy of the unstable saddle. Simple
algebra shows that this is the case for r = −4/3. At this r−value the periodic peakons
vanish and the cuspon degenerates into a peakon as depicted in Fig. 2i. For r < −4/3
a homoclinic orbit corresponding to smooth travelling waves of depression emerges as
shown in Fig. 2e. We note here that the phase portraits in the original variables for these
waves are reflected around the u ′-axis when ∆ < 0. E.g. when ∆ < 0 and the Bond
number is larger than σα, the case r > 0 is in fact a depression wave. Such scenarios
for a similar, but different, equation have been studied in detail in Qian & Tang (2001).
Another system which admits coexistence of regular solitary waves, peakons and cuspons
has been studied in Grimshaw, Malomed & Gottwald (2002).

5.4. Case 2: α2 < 0

In Fig. 3 we show the different solution types for negative α2. Again we show solutions
that lead to compact (in u!) solutions of generic type in the top row and of special type in
the bottom row. In addition to (5.11) there are two r dependent singular critical points
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Figure 3. Phase portraits for α2 < 0, cmp. Table 2.

u : 0 2/3 1 − r order

r > 1 ×ct ◦ − | × ◦
1/3 < r < 1 ◦ ◦ ×pp ◦|◦

r < 1/3 ◦ ×tc − × ◦ |

Table 2. Type of critical points for α2 < 0, also see Fig. 3. The index denotes the two (!)
possible separatrices.

for which

u ′ = ±
√

−(3u2
c − 2uc) and u = uc = 1 − r , (5.14)

provided 3u2
c − 2uc < 0. Therefore these critical points only exist if 1/3 < r < 1. Their

critical value is r(1 − r)2/2. The stability of the two r-independent critical points (5.11)
is determined by the determinant of the Hessian

D(E−) = (3u− 1)(r − 1 + u) . (5.15)

Taking into account the condition for the existence of the additional critical points (5.14)
we find that for r > 1 we have travelling waves described by the homoclinic orbit with
energy E = 0. This is the regular solitary wave.

In Fig. 3d the singular line collides with the equilibrium and this gives rise to the
compactons first found by Li, Olver & Rosenau (1999). This happens again at r = 1/3,
see Fig. 3e.

If 1/3 < r < 1 both critical points (5.11) are stable and the additional critical points
(5.14) exist only in this r−interval. The phase portrait Fig. 3b shows two periodic
peakons, one being an elevation wave train, the other being a depression wave train.
Further variation of r with r < 1/3 allows for depression travelling waves. We stress here
that again the sign of ∆ flips the pictures in the original variables.
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5.5. Parameterisation of travelling waves

In Section 6 the physical relevance of these solution and their observability is investigated.
We shall see that not all mathematically admissible solutions correspond to physically
observable solutions.

The energy may be rewritten as

2E± = ±u ′2(uc − u) + u3 − u2

By an additional transformation of the independent variable (ds/dτ)2 = uc−u if α2 > 0,
or (ds/dτ)2 = u− uc if α2 < 0 this can be reduced to the simple equation

du

dτ
=
√

u3 − u2 − 2E . (5.16)

This change of independent variable is called a Sundman transformation in the classical
mechanics literature. For E = 0 and for E = −2/27 the right hand side has double
roots, so that the solution is given by (hyperbolic) trigonometric functions. Note that
the parameter r is now completely hidden in the transformation from s to τ . Obviously
this scaling fails for u = uc, so that the solutions asymptotic to the singular equilibria
have to be treated separately.

For E = 0 equation (5.16) has the well known solution

u(τ) = sech2τ/2 . (5.17)

Substituting this solution into the Sundman transformation leads to
∫

(±(uc−sech2τ/2))1/2dτ .

This becomes an elementary integral after the substitution v = sinh2 τ/2. The scaled
“time”-variable for α2 > 0 and r > 0 is

s(τ)

2
=

√
uc sinh−1

(

sinh τ/2
√

1 − 1/uc

)

− tanh−1





tanh τ/2
√

tanh2 τ/2 + uc − 1



 ,

while for α2 < 0 and r > 1 it is

s(τ)

2
=

√
−uc sinh−1

(

sinh τ/2
√

1 − 1/uc

)

+ tan−1





tanh τ/2
√

1 − uc − tanh2 τ/2



 .

Note that these expressions are still written down in the scaled coordinates. Going back
to the original u we have to multiply the right hand sides by ∆ for u and by |α| for s. The
curvature at the maximum is −1/2r. In the original variables we find −∆2/2Γ instead.
The curvature depends essentially on σ, and diverges when σ → 1/3, corresponding to
r → 0. The curvature is the same as for the ordinary KdV soliton. For α2 < 0 the
curvature has the opposite sign.

The pulse-solutions (5.17) are solitary waves and inherit the properties such as elastic
interaction by its two limiting equations. In fact, in Dullin, Gottwald & Holm (2001)
the spectral scattering problem is stated that allows an exact analytical treatment of
initial value problems and wave interactions.† A typical picture of a collision of these
solitary waves is shown in Fig. 4. We note that travelling waves with c0 6= 0 and Γ 6= 0
are very close to KdV solitary waves. The initial condition for this picture (at negative
time not shown) was a Gaussian initial peak. After an elastic collision the only impact

† Note, in the formula after equation (5) in Dullin, Gottwald & Holm (2001), the term 1/(4α)
should read 1/(4α2).
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Figure 4. Elastic collisions of solitary waves for α2 = 1.5, Γ = 0.0115, c0 = 0.001

of the collision is a phase shift of the interacting waves. In principle this phase shift may
be determined analytically by means of the inverse scattering technique. However, the
Kodama transformation (3.1) used in Section 3, in particular the nonlocal term,

ux

∫ x

u(x′)dx′ , (5.18)

relates the phase shift of the different water wave equations to each other, i.e. equations
(3.16), (4.3) and (2.19); Kodama (2001). This may be seen by noting that the integral
in (5.18) is different after the collision and hence keeps track of the waves during the
collision. Let us assume two waves are about to collide. We integrate from negative
spatial infinity to the position of the wave crest of the taller wave. The term (5.18) does
not involve the second wave which is to the right of the integration boundary. However,
after the collision, the taller wave is to the right of the smaller wave and in this case the
integration domain in (5.18) from negative spatial infinity to the wave crest of the taller
wave now includes the smaller wave, which provides information on the phase shift that
occurs during the collision.

6. Physical Relevance

How much of the richness of solutions discovered in Section 5 actually occurs in nature?
One cannot claim that the solution types found in the travelling wave reduction are all
present in the Euler equation. For example with non-vanishing σ any non-smoothness
in the profile would be removed by the curvature term proportional to σ in (2.1). The
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Figure 5. The essential parameter r of (6.1) as a function of the Bond number σ for a) F > 1
(supercritical, non-resonant for σ < 1/3) and b) F < 1 (subcritical, non-resonant for σ > 1/3).

following discussion should be understood in the sense that the profiles found are ap-
proximations to the true solutions.

A discussion of the existence question may be phrased in terms of the two essential
physical parameters, namely the Bond number σ and the Froude number F . In Fig. 1 we
show typical dispersion relations for σ < 1/3 and σ > 1/3. We focus on solitary waves
which are not inside the continuous spectrum (i.e. non-resonant, or non-embedded) for
small k. Such solitary waves must be supercritical (F > 1) for σ < 1/3 and subcritical
(F < 1) for σ > 1/3. This relation between the speed of the solitary wave and the
surface tension is implicit in equation (3.16). The condition of non-resonance states that
the solitary wave moves faster (slower) than any linear wave with small k.

We now investigate the dependence of the parameter r on the Bond number σ and the
Froude number F . Using the expressions for α2 and Γ (3.17-3.18) we find

r =
Γ

|α|2∆ =
10

1 − F

(1 − 3σ)2

45σ2 + 30σ − 19
sign(α2) . (6.1)

The graph of this function is shown in Fig. 5. The σ−axis is separated into 3 different
regions: The interval (1/3, σα) in the middle in which we have α2 < 0, corresponding to
Fig. 3, and two other intervals, [0, 1/3) and (σα,∞), in which α2 > 0, corresponding to
Fig. 2. Non-resonant travelling waves are found for σ < 1/3 if F > 1, hence for r > 0 in
Fig. 5a, similarly for σ > 1/3 if F < 1, hence again for r > 0 in Fig. 5b. The physical
significance of embedded solitons, which occur for r < 0 is not clear, but it might be
interesting to investigate it. We conclude that r > 0 leaves only travelling waves of the
type depicted in Fig. 2a or Fig. 3a. All other cases with α2 > 0 and r < 0 (Fig. 2b-e)
are embedded solitons, which are beyond our present scope. It is pertinent to mention
that F < 1 implies negative u (see (5.8)). Hence the travelling waves for σ > 1/3 are
waves of depression whereas the waves for σ < 1/3 and F < 1 are elevations which is
in accordance with the numerical observations for the full water wave system discussed
above.

Remarkably, the restriction to r > 0 for σ ∈ (1/3, σα) still allows all cases shown in
Fig. 3. Hence beside the travelling waves, there are periodic peakons, shelf waves, cuspons
and compactons. For a given fluid, the Bond number σ is fixed and the Froude number
F is a free parameter for the solution. For σ in the two outer intervals the only non-
embedded solitons are those of Fig. 2a. If, however, σ ∈ (1/3, σα) changing F between 0
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and 1 can produce the qualitatively different solutions of Fig. 3a-c. The standard soliton
with r > 1 is always possible for F sufficiently close to 1. For σ ∈ (1/3, 1/9 + 4

√
10/45)

periodic peakons are possible for sufficiently small F . For σ ∈ (1/3, 5/21 + 4
√

15/105)
also the shelf waves of Fig. 3c are possible for sufficiently small F . Since for σ in this
interval viscous effects are presumably already large it is not clear whether any of these
solution types are present in fluids. But one may still ask the question whether the full
Euler equations would have similar solutions.

If α2 < 0 the Helmholtz operator is no longer invertible. However, this poses no
problem for the derived equations. As a matter of fact the inverse transformation back
to η does not involve the application of the inverse Helmholtz operator. Instead, it is
achieved by simple substitution of the time derivatives and the Kodama-transformation
along the lines of Section 4 where KdV5 is recovered from CH without the inversion of
the Helmholtz-operator. An issue here is the required accuracy of the inversion. Since the
exotic solutions for α2 < 0 exist only for σ sufficiently close to 1/3 and the asymptotic
expansion collapses for σ = 1/3, the predictions for this case may not be accurate. A
study of the full Euler equations would be needed to resolve this issue. In this regard,
we recall the investigations reported in Benjamin (1982) of anomalies in solitary shallow
water wave behavior for σ ' 1/3.

We conclude that the peakon, which is the critical solution shown in Fig. 2f, apparently
cannot exist in water waves. This is because the critical condition r = 0 implies Γ = 0,
and considering (3.18) it follows that either the equilibrium depth vanishes, h0 = 0, or
the acceleration of gravity vanishes, g = 0. However, either of these conditions would
invalidate the initial assumptions of the derivation. The only other way to achieve Γ = 0
is when σ = 1/3, but in this case ν (and hence α2) diverges.
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