
representation theory and geometry

Geordie Williamson

University of Sydney
http://www.maths.usyd.edu.au/u/geordie/ICM.pdf

http://www.maths.usyd.edu.au/u/geordie/ICM.pdf


representations



representations

⇝ Sym

¨

˚

˝

˛

‹

‚

Ă GLpR3q.

We obtain a representation of our group of symmetries

ρ : G Ñ GLpVq.

2



representations

⇝ Sym

¨

˚

˝

˛

‹

‚

Ă GLpR3q.

We obtain a representation of our group of symmetries

ρ : G Ñ GLpVq.

2



representations
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why study representations?

Symmetric group Sn
The problem of understanding

tSn-setsu{isomorphism „
Ø tsubgroups of Snu{conjugation

is hard. The theory of representations of Sn is rich, highly-developed
and useful.

Galois representations
The passage(s)

tvarieties{Qu ÝÑ tGalois representationsu

is one of the most powerful tools of modern number theory.
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simple representations

Example
Consider the symmetric group S3. It acts via permutation of
coordinates on R3.

There are two invariant subspaces:

L “ tall coordinates equalu, H “ tcoordinates sum to zerou.

R3 “ L‘ H “ trivial ‘

A representation V of a group G is simple or irreducible if its only
G-invariant subspaces are t0u and V.

A representation is semi-simple if it is isomorphic to a direct sum of
simple representations.
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jordan-hölder theorem

Example
Consider the symmetric group S3. It acts via permutation of
coordinates on F33. (Here F3 “ Z{3Z is the finite field with 3 elements.)

As before, there are two invariant subspaces:

L “ tall coordinates equalu, H “ tcoordinates sum to zerou.

However now L Ă H because 3 “ 0. We obtain a composition series

0 Ă L Ă H Ă F33.

We write (“Grothendieck group”, “multiplicities”)

rF33s “ rLs ` rH{Ls ` rF33{Hs “ 2rtrivials ` rsigns.

trivial

sign

trivial
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simple representations

representations Ø “matter”

simple representations Ø “elements”
␣

, ,
(

semi-simple Ø “elements don’t interract”

We search for a classification (“periodic table”), character formulas
(“mass”, “number of neutrons”), …
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plan of talk

“Semi-simple world”
‚ Finite groups:
Maschke’s theorem (1897).

‚ Compact Lie groups:
Weyl’s theorem (1925).

“Beyond the semi-simple world”
‚ Infinite-dimensional representations of Lie algebras:
Jantzen conjecture and Kazhdan-Lusztig conjecture (1979).

‚ Modular representations of reductive algebraic groups:
Lusztig conjecture (1980) and new character formula (2018).

‚ Modular representations of symmetric groups:
Billiards conjecture (2017).

Related situations: non-compact Lie groups, p-adic groups…
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common features

representation theory geometry

invariant forms
symmetric, hermitian, …

geometry

Related feature:
(hidden) semi-simplicity

geometric structure

A geometric structure on a real (resp. complex) vector space V will
mean a non-degenerate symmetric (resp. Hermitian) form on V.

We do not assume that our forms are positive definite; signature plays an
important role throughout.
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the semi-simple world



maschke’s theorem

Maschke (1897)
Any representation V of a finite group G over R or C is semi-simple.

Observation 1: If V has a positive-definite G-invariant geometric
structure, then V is semi-simple.

If U Ă V is a subrepresentation, then V “ U‘ UK.

Observation 2: Any representation of G admits a positive-definite
geometric structure.

Take a positive-definite geometric structure x´,´y on V. Then

xv,wyG :“
1

|G|

ÿ

xgv,gwy

defines a positive-definite and G-invariant geometric structure.
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geometric structure

Example of “semi-simplicity via introduction of geometric structure”.

If V is simple and defined over the complex numbers, then Schur’s
lemma shows that the geometric structure is unique up to positive
scalar.

This is an example of “unicity of geometric structure”.

⇝
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weyl’s theorem

Consider a compact Lie group K, e.g. S1 or SU2 or a finite group.

Weyl generalised these observations to K, with sum replaced by
integral:

xv,wyK :“

ż

K
xgv,gwydµ

Weyl (1925)

Any continuous representation of a compact Lie group K is
semi-simple.

Existence and uniqueness of geometric structure still holds.

13
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cartan’s letter

Élie Cartan to Hermann Weyl, 28 of March 1925:

“…the difficulty, I dare not say the impossibility, of finding a proof
which does not leave the strictly infinitesimal domain shows the
necessity of not sacrificing either point of view …”
An algebraic (“ infinitesimal”) proof took 10 years, and involves the Casimir element (arises from an invariant form called the trace form).

14



extended example: su2 and sl2



su2

SU2 “

#

A “

˜

a b
c d

¸ ˇ

ˇ

ˇ

ˇ

ˇ

AA˚ “ id,detA “ 1
+

“
unit

quaternions.

LiepSU2qC “ sl2pCq “C

˜

0 0
1 0

¸

‘ C

˜

1 0
0 ´1

¸

‘ C

˜

0 1
0 0

¸

f h e

“ “ “

“I don’t think it is the representations themselves, but the groups. I find
SU2, SL2, Sn etc. amazing and beautiful animals (if I have a favourite, it
is SU2), but will probably never really understand them. I might
someday understand their linear shadows though...”

– Quindici
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simple representations of su2

SU2 acts on its “natural representation”:

C2 “ C

˜

0
1

¸

‘ C

˜

1
0

¸

“ CY‘ CX.

For any m ě 0, SU2 acts naturally on homogenous polynomials in X, Y
of degree m:

Lm :“ CYm ‘ CYm´1X‘ ¨ ¨ ¨ ‘ CYmXm´1 ‘ CXm.

The Lm for m ě 0 are all irreducible representations of SU2.

“spherical harmonics”, “quantum mechanics”.

17



action of the lie algebra

Differentiate to get representation of the (complexified) Lie algebra

LiepSU2qC “ sl2pCq

sl2pCq “C

˜

0 0
1 0

¸

‘ C

˜

1 0
0 ´1

¸

‘ C

˜

0 1
0 0

¸

f h e

“ “ “

Action on Lm (here m “ 5):

e

f

h

C

Y5

C

Y4X1

C

Y3X2

C

Y2X3

C

YX4

C

X5

0
12345

1 2 3 4 5

531´1´3´5
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verma modules

For SU2 and sl2pCq we can do everything “by hand”.

This is no longer possible for more complicated groups.

In the algebraic theory an important role is played by
infinite-dimensional representations called Verma modules.

The study of Verma modules has led to important advances in
representation theory beyond the semi-simple world.

For sl2pCq they depend on a parameter λ P C.

As vector spaces:
∆λ “

à

iPZě0

Cvi

19
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verma modules

sl2pCq “C

˜

0 0
1 0

¸

‘ C

˜

1 0
0 ´1

¸

‘ C

˜

0 1
0 0

¸

f h e

“ “ “

The Verma module ∆λ determined by λ P C:

e

f

h

. . . Cv5 Cv4 Cv3 Cv2 Cv1 Cv0
0

λλ ´ 1λ ´ 2λ ´ 3λ ´ 4λ ´ 5

6 5 4 3 2 1

λλ ´ 2λ ´ 4λ ´ 6λ ´ 8λ ´ 10

20



structure of verma modules

e

f

h

. . . Cv5 Cv4 Cv3 Cv2 Cv1 Cv0
0

λλ ´ 1λ ´ 2λ ´ 3λ ´ 4λ ´ 5

6 5 4 3 2 1

λλ ´ 2λ ´ 4λ ´ 6λ ´ 8λ ´ 10

λ ‰ 0, 1, 2, 3, . . . : ∆λ is simple, call it Lλ. λ

λ “ 0, 1, 2, 3, . . . : ∆λ is not simple. ?

?

?

21



structure of verma modules

Example λ “ 2

e

f

h

. . . ‚ ‚ ‚ ‚ ‚ ‚

0
210´1´2´3

6 5 4 3 2 1

20´2´4´6´8

We have a subrepresentation isomorphic to ∆´4, and

? ∆2{∆´4 – L2 ´4
2

(L2 is our simple finite-dimensional representation from earlier.) 22



structure of verma modules

λ ‰ 0, 1, 2, 3, . . . : ∆λ is simple and infinite-dimensional. λ

λ “ 0, 1, 2, 3, . . . : ∆λ is not simple. ´λ ´ 2
λ

Summary:

(a) A single family of representations (Verma modules) produces all
simple finite-dimensional representations.

(b) We get new infinite-dimensional simple representations.
(c) The structure of Verma modules varies (subtly) based on the

parameter.

23
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kazhdan-lusztig conjecture



the weyl group

g is a complex semi-simple Lie algebra.

h Ă g a Cartan subalgebra.

W the Weyl group, which acts on h as a reflection group.

Example

g “ slnpCq “ t nˆ n matrices X | trX “ 0u.

h “ diagonal matrices Ă slnpCq

W “ Sn acting on h via permutations.

Motivation

We think of the finite group W as being the skeleton of g.

We try to answer questions about g in terms of W.
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verma modules revisited

g is a complex semi-simple Lie algebra.

“weight” λ P h˚ ⇝ Verma module ∆λ.

∆λ has unique simple quotient ∆λ ↠ Lλ
Lλ is called a simple highest weight module.

Example sl2pCq

If λ ‰ 0, 1, . . . , Lλ “ ∆λ is infinite dimensional.
If λ “ 0, 1, . . . then Lλ is finite dimensional.

Basic problem

Describe the structure of ∆λ.
Which simple modules occur with which multiplicity?
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kazhdan-lusztig conjecture

∆λ : Verma module. Lλ : simple highest weight module.

Kazhdan-Lusztig conjecture (1979)

r∆λs “
ÿ

µ

Pλ,µp1qrLµs.

Here Pλ,µ P Zrvs is a Kazhdan-Lusztig polynomial.

(a) New paradigm in representation theory.
(b) Pλ,µ only depends on a pair of elements the Weyl group W of g.
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kazhdan-lusztig conjecture

∆λ : Verma module. Lλ : simple highest weight module.

Kazhdan-Lusztig conjecture (1979)

r∆x¨0s “
ÿ

yPW
Px¨0,y¨0p1qrLy¨0s.

Here Pλ,µ P Zrvs is a Kazhdan-Lusztig polynomial.

(a) New paradigm in representation theory.
(b) Pλ,µ only depends on a pair of elements the Weyl group W of g.
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potted history

Geometric proof (’80s)

Algebraic proof (’10s)

Kazhdan-Lusztig conjecture Brylinsky-Kashiwara

Elias-W. 2014,

(multiplicity “ Py,xp1qq Beilinson-Bernstein

following
Soergel 1990

Jantzen conjecture Beilinson-Bernstein W. 2016 following
(graded multiplicity “ Py,xpvq) Soergel 2008,

Kübel 2012

Geometric proofs: D-modules, perverse sheaves, weights…

Algebraic proofs: “shadows of Hodge theory”,
i.e. invariant forms (“geometric structures”)
still satisfying Poincaré duality, Hard Lefschetz, Hodge-Riemann
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shadows of hodge theory



beyond weyl groups

Weyl groups Ă Real reflection groups Ă Coxeter groups

41



the coinvariant ring

Let W denote a real reflection group acting on hR.

Example

Sym
ˆ ˙

ýR2 or Sym
ˆ ˙

ýR3.

Let R denote the polynomial functions on hR. We view R as graded
with h˚

R in degree 2.

Let RW` denote the W-invariants of positive degree. Set

H :“ R{pRW`q.

Remark

If W is the Weyl group of a complex semi-simple Lie algebra g, then H
is isomorphic to the cohomology of the flag variety of g (the “Borel
isomorphism”).
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the invariant form

H :“ R{pRW`q

d :“ number of reflecting hyperplanes in hR

“complex dimension of flag variety”

There exists a unique (up to scalar) bilinear form

x´,´y : Hd´‚ ˆ Hd`‚ Ñ R

satisfying xγc, c1y “ xc, γc1y for all γ, c, c1 P H (the invariant form).

Remark

x´,´y is the analogue of the intersection form on cohomology.
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hodge theory for the coinvariant ring

There exists an open cone K Ă h˚
R (“Kähler cone”).

Theorem (toy model)
For all γ P K and i ě 0:

(a) (Hard Lefschetz) Multiplication by γi induces an isomor-
phism

Hd´i „
ÝÑ Hd`i

(b) (Hodge-Riemann bilinear relations) The form pc, c1q “

xc, γic1y on Hd´i is p´1q?-definite on the kernel of γi`1.

The theorem is identical to the hard Lefschetz theorem and
Hodge-Riemann bilinear relations in complex algebraic geometry.
In the Weyl group case the theorem can be deduced from complex
algebraic geometry, but not in general.

H8

H6

H4

H2

H0

γ¨

γ¨

γ¨

γ¨

„„
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connection to the kazhdan-lusztig conjecture

In 1990 Soergel defined graded H-modules Hw for all w P W. Today
they are known as “Soergel modules”. In the Weyl group case, he
proved that the Kazhdan-Lusztig conjecture is equivalent to

dimR Hw “
ÿ

yPW
Py,wp1q. (1)

By appeal to the Decomposition Theorem (a deep theorem in
algebraic geometry) he deduced the equality. In doing so he was
able to identify the Hw with the intersection cohomology of Schubert
varieties.

We provided an algebraic proof of (1) as a consequence of

Theorem (Elias-W.)

The hard Lefschetz and Hodge-Riemann relations hold for Hw.
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features of the proof

There is a resemblance to the semi-simple world:

(a) The invariant form x´,´y is unique up to scalar and satisfies the
Hodge-Riemann relations (“uniqueness of geometric structure”).

(b) The invariant form is our main tool in proving that Soergel
modules decompose as they should (“semi-simplicity via
introduction of geometric structure”).

Ideas of de Cataldo and Migliorini provide several useful clues.

Diagrammatic algebra crucial to calculate and discover correct
statements.
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kazhdan-lusztig positivity

Kazhdan-Lusztig polynomials are defined for any pair of elements in
a Coxeter group. The Kazhdan-Luszig positivity conjecture (1979) is
the statement that their coefficients are always non-negative.

Corollary (Elias-W. 2013)

The Kazhdan-Lusztig positivity conjecture holds.

A mystery for the 21st century?

Similar structures arise in the theory of non-rational polytopes (due
to McMullen, Braden-Lunts, Karu, …) and in recent work of
Apridisato-Huh-Katz on matroids. Why?
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modular representations

There are analogies between infinite-dimensional representations of
Lie algebras, and modular representations of algebraic groups. The
analogue of the Kazhdan-Lusztig conjecture in this setting is the
Lusztig conjecture (1980).

The approach of Soergel is also fruitful for studying modular
representations. A major source of difficulty is that signature no
longer makes sense, and Kazhdan-Lusztig like formulas do not
always hold (such questions are tied to deciding when Lusztig’s
conjecture holds).

Invariant forms (now defined over the integers) still play a decisive
role in the theory.
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lusztig conjecture

Lusztig conjecture (1980)

r∆̂As “
ÿ

B
qA,Bp1qrL̂Bs

(a) Analogue of Kazhdan-Lusztig conjecture for reductive algebraic
groups in characteristic p.

(b) Weyl group⇝ affine Weyl group.
(c) True for large p depending on root system (Kashiwara-Tanisaki,

Kazhdan-Lusztig, Lusztig, Andersen-Jantzen-Soergel, Fiebig), e.g.
true for p ą 10100 for SL8.

(d) False for primes growing exponentially in the rank (W. 2014,
following He-W. 2013), e.g. false for p “ 470 858 183 for SL100.
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new character formula

Intersection cohomology sheaves⇝ parity sheaves (Soergel,
Juteau-Mautner-W.).

Leads to p-Kazhdan-Lusztig polynomails pqA,B.

Riche-W. (2018)

r∆̂As “
ÿ

B

pqA,Bp1qrL̂Bs

Based on works of Achar-Makisumi-Riche-W. and Achar-Riche.
pqA,B are computable via diagrammatic algebra + computer.
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billiards conjecture

V a simple representation of Sn over Q.

⇝ reduce modulo p to get modular representation Fp bZ V.

Basic problem

Determine multiplicities of simple modules in Fp bZ V.

The answer is only known for partitions with one or two rows!

The following video illustrates the “billiards conjecture” (Lusztig-W.
2017), which predicts many new cases of this decomposition
behaviour for partitions with three rows.

The conjecture predicts that these numbers are given by a “discrete
dynamical system”...

Billiards and tilting characters:
https://www.youtube.com/watch?v=Ru0Zys1Vvq4
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