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TOWARDS THE p-CANONICAL BASIS IN Ã1

GASTÓN BURRULL

ABSTRACT. For a universal Coxeter system (W,S) and a realization, we give a
topological formula for the local intersection forms Iw,x, where w is a reduced
expression and x is an element of W . This formula is given in terms of the gener-
alized Cartan matrix determined by the realization. For this purpose, we calculate
compositions modulo lower terms of degree zero Libedinsky’s light leaves. In
fields k of characteristic p > 0, ranks of local intersection forms over k are used
to define the p-canonical basis of the Hecke algebra. Furthermore, these numbers
govern the direct sum decomposition of Soergel bimodules over k.

1. INTRODUCTION

1.1. Representation theory and Coxeter groups. Representation theory is a branch
of mathematics that simplifies the study of algebraic structures, replacing it by the
study of linear algebra. This translation is done by “representing" elements of the
algebraic structure by linear transformations between vector spaces. Formally, we
have the following definition of a representation.

Definition 1.1. Let F be a field. A representation of a group G (respectively, an
associative algebra A) on an F-vector space V is a group homomorphism (re-
spectively, an associative algebra homomorphism) φ : G → GL(V ) (respectively,
φ : G → EndF(V )). We denote the image of g ∈ G respect to φ by φg := φ(g), and
for v ∈ V , we denote φg(v) = g · v. If φ is injective, we say that the representation
is faithful. A representation φ of an algebraic group G is called rational if it is a
rational map between the algebraic varieties G and GL(V ).

Example 1.2. Let m, r ∈ Z with r | m, let Z/mZ be the additive group of integers
modulo m, V = R2 and θ = 2π/r. Let φ be the homomorphism given by

φ : Z/mZ −→ GL(2,R)

1 7−→
[
cos θ − sin θ
sin θ cos θ

]
.

The representation is faithful only if r = m.

Definition 1.3. Let V be a finite-dimensional vector space and let φ be a group
representation of G on V . The character of φ is the function χφ : G → F given by
χφ(g) = Tr(φg), where Tr is the matrix trace.

Characters carry essential information about group representations. Further-
more, over the field C there is a bijective correspondence between characters and
finite group representations. Knowledge about characters gives us some valuable
data in order to study finite group theory and their classification theorems. Some
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fundamental objects in the study of representations are the irreducible group rep-
resentations, since one can construct many other representations and characters
from these simple ones.

It is of great interest the study of representations of groups arising as symme-
tries, reflections or root systems. The symmetry group of an object is the group of
all isometries under which the object is invariant. For instance, the dihedral group
D2n corresponds to the symmetry group of an n-gon. A reflection group is a group
which is generated by a set of reflections of a finite-dimensional Euclidean space.
A Weyl group associated with a root system Φ is a group generated by reflections
associated with Φ, see [Hum92]. All groups described in this paragraph are par-
ticular cases of Coxeter groups. This kind of groups are the central object of this
thesis. Its definition is the following.

Definition 1.4. Let S = {s, t, . . . , u} be a finite set, for each pair (s, t) of elements
in S we define ms,t ∈ N ∪ {∞} such that ms,s = 1 and ms,t > 1 if s ̸= t. Let W be
the group with presentation

W = ⟨S | (st)ms,t = e whenever ms,t ̸= ∞⟩.
We say that W is a Coxeter group and the pair (W,S) is a Coxeter system.

Notation 1.5. For each element of S, we will associate a different color, e.g. S =
{s, t, . . . , u}.

Let us introduce a basic object of study in this thesis.

1.2. The Hecke algebra. The study of representations of a group W is closely re-
lated to the study of representations of the group algebra k[W ], where k is a ring
(commonly a field). In representation theory, it is important to study a more gen-
eral substitute of this algebra.

We focus on a Coxeter system (W,S). The algebra that we will define now is a
“quantum” deformation of the group algebra Z[W ].

Definition 1.6. The Hecke algebra H is defined as the unique Z[v, v−1]-algebra gen-
erated by {Hs}s∈S , with relations:

H2
s = (v − v−1)Hs +He, for s ∈ S,

HsHtHsHt · · ·︸ ︷︷ ︸
ms,t

= HtHsHtHs · · ·︸ ︷︷ ︸
ms,t

, for s, t ∈ S.(1.1)

Where He is the multiplicative identity of H.

Specializing at v = 1 we recover the group algebra Z[W ]. For w ∈ W and a
reduced expression w = (s, t, . . . , u) of w, let us define Hw := HsHt · · ·Hu. As we
will see in Section 2.2, this is well-defined (i.e. it does not depend on the reduced
expression w, only on w) thanks to the braid relation (1.1) and the Matsumoto
theorem (Theorem 2.22). The set {Hw | w ∈ W} is a Z[v, v−1]-basis of H called the
standard basis. There is another Z[v, v−1]-basis

{Hw | w ∈ W}
of H. The element Hw is defined as the unique element in H which is invariant
under the involution map ι : H → H, defined by Hx 7→ H−1

x−1 and such that

Hw ∈ Hw +
∑
y<w

vZ[v]Hy,
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where < is the “Bruhat order” on W , see Chapter 2. This is the Kazhdan-Lusztig
basis (or just, the KL-basis) of the Hecke algebra H. In particular,

Hw = Hw +
∑
y<w

vPy,w(v)Hy,

where Py,w are the so-called Kazhdan-Lusztig polynomials. This is the purely alge-
braic part of the story. Before continuing, let us recall some definitions.

Definition 1.7. A connected linear algebraic group G over a field k is called reduc-
tive if the radical (maximal connected solvable normal subgroup) of the connected
component of the identity G0 is an algebraic torus. A split reductive group over k is
a reductive group which contains a torus T , where T is maximal among all k-tori
in G. The algebraic subgroup T is called a split maximal torus of G. A Borel subgroup
B ⊂ G is a maximal smooth connected solvable Zariski closed subgroup of G.

Example 1.8. The general linear group G := GL(n,C) of invertible n× n matrices
is a split reductive group over C. A split maximal torus T is the set of diagonal
matrices which have all diagonal entries different from zero. In this case, it is easy
to see that T ∼= Gn

m. One possible Borel subgroup B is given by the set of all
upper-triangular invertible n× n matrices. Clearly T ⊂ B ⊂ G.

A first description of the Hecke algebra appeared in the study of the irreducible
complex characters of a split reductive group G over a finite field Fq , where q =
pm, see [Iwa64]. Iwahori studied the algebra

FunB×B(G,C),

i.e., the set of B-bi-invariant complex-valued functions on G, with multiplication
given by convolution * and B ⊂ G is a Borel subgroup. Fix a maximal split torus
T ⊂ B. Iwahori [Iwa64] observed that this algebra has a description which is
in a certain sense independent of the size q of the base field and only relies on
the Weyl group. Let (W,S) be the Weyl group associated with (G,B), namely,
W = NG(T )/T . The algebra above has a basis given by indicator functions of the
subsets BwB ⊂ G. This fact can be proved using the Bruhat decomposition of G,

G =
⊔

w∈W

BwB.

Defining HFq
:= H ⊗ C to be the specialization of v−1 at

√
|Fq| ∈ C, we have an

isomorphism of algebras

HFq

∼−→ FunB×B(G,C).

Sending Tw := v−ℓ(w)Hw to the indicator function 1BwB of BwB ⊂ G, where ℓ is
the length function in the Weyl group W . As we stated above, Iwahori defined
the Hecke algebra only in terms of the Coxeter system structure, whether or not it
arises as the Weyl group of a reductive group.

The study of linear group representations over different fields is a central sub-
ject in representation theory. In 1963, Steinberg proved that all the irreducible rep-
resentations of the finite groups GL(n,Fq) could be obtained from the irreducible
representations of GL(n,Fp) by restriction (see [Ste63]). Sixteen years later, Lusztig
conjectured a description of the irreducible characters of highest weight w · 0, i.e.,
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those that are in the orbit of 0. From this conjecture and other theorems (Stein-
berg’s theorem of tensor product, the linkage principle of Andersen and the trans-
lation principle), one obtain all irreducible rational representations of any reduc-
tive group G over Fp, when p > h, where h is the Coxeter number of the Weyl
group associated with G. He gave in [Lus80] the following formulas for those
characters,

ch(Lw) =
∑
y≤w

(−1)ℓ(w)−ℓ(y)Py,w(1) ch(My),

ch(Mw) =
∑
y≤w

Pw0w,w0y(1) ch(Ly).

Where w0 is the longest element in W , Mw is the Verma module of highest weight
w · 0, Lw its irreducible quotient, and the polynomials P are the Kazhdan-Lusztig
polynomials. These are the famous Kazhdan-Lusztig’s conjectures.

1.3. The Hecke category. Due to the seminal work [KL79] of Kazhdan and Lusztig,
it was realized that the Hecke algebra admits a categorification. Let G be a com-
plex reductive group with Borel subgroup B ⊂ G and maximal torus T ⊂ B as
in the previous section. The Hecke category H is the additive subcategory of
semi-simple complexes

H ⊂ Db
B×B(G,C),

in the equivariant bounded derived category1of sheaves on G (in the sense of Bern-
stein and Lunts). In particular, the objects of H are direct sums of shifts of finitely
many ICw := IC(Xw), where IC denotes the “equivariant" intersection cohomol-
ogy complex2 of Xw, with w ∈ W . The variety Xw as well as the equivariant coho-
mology will be defined below. The monoidal structure * on Db

B×B(G,C) is given
by convolution of complexes, which preserves H . This fact can be proved due to
the Decomposition Theorem and the compactness of the flag variety X := G/B,
using ideas from Springer and MacPherson in [Spr82] which are described in a
better way by Riche in [Ric10]. The rough idea is the following. Consider the
Bruhat decomposition of X :

X =
⊔

w∈W

BwB/B.

1The derived category Db(A ) of an abelian category A is the category whose objects are chain com-
plexes of A , but instead of having arrows as the usual morphisms of complexes, this category is a
“localization" of all quasi-isomorphisms. A quasi-isomorphism between chain complexes is a morphism
of complexes which induces isomorphisms between cohomologies.

2The intersection homology is an analog of the singular homology but it has a better behavior in the
study of singular points of a variety. This requires the space X to be “stratified”.
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which is a Whitney stratification3 T of the flag variety. We now define the closure
of a strata

Xw := BwB/B =
⊔
y≤w

ByB/B,

which is called a Schubert variety. The simple perverse sheaves are the intersection
cohomology complexes IC(Xw) corresponding to the trivial local system (see the
StackExchange discussion [Loc]) on the B × B-orbit BwB/B. The key result is
to relate the stalk IC(Xw)y with the Kazhdan-Lusztig polynomial Py,w using the
anti-involution property of the KL-basis defined in the previous section. The for-
mula given by Kazhdan and Lusztig following ideas of Deligne was the following,

Py,w(q) =
∑
i

qi dim IH2i
Xy

(Xw).

Here IH is the intersection homology complex. We will not prove this formula in
this thesis.

Finally, the split Grothendieck group4 of H , say [H ], has a Z[v, v−1] structure
given by v[F•] := [F•[1]], where [1] is the homological shift by 1. A key result is an
isomorphism of Z[v±1]-algebras

FunB×B(G,C) ∼−→ [H ],

given by sending the Kazhdan-Lusztig basis element corresponding to Hw ∈ H
(defined in a purely algebraic way in the previous section) to the element [ICw].

1.4. The category of Soergel bimodules. In 1990, Soergel gave an alternative proof
of Kazhdan-Lusztig conjectures using certain modules over the cohomology ring
of the flag variety associated with the Weyl group [Soe90]. Later, Soergel intro-
duced an equivariant analog of these modules which were subsequently called
Soergel bimodules [Soe92]. In that article, Soergel gave a purely algebraic defini-
tion of the Hecke category which depends only on a representation of the Coxeter
group (see Chapter 2) of the Coxeter system. That is, in the same spirit as Iwa-
hori gave an essentially algebraic definition of the Hecke algebra which relies only
on the associated Weyl group. Furthermore, the Hecke category given by Soergel
categorifies the Hecke algebra H. Also, it coincides with the Hecke category de-
scribed in the previous section when the Coxeter group comes from a Weyl group
associated with a split reductive group. For the rest of this section, let G be a
reductive group as denoted in the previous section.

Let h := Lie(T ) be the Lie algebra of the split torus T and let R := k[h] be the
algebra of regular functions on h. We consider a Z-grading in the polynomial ring

3A stratification of a singular variety is a decomposition of the space in pieces called strata, which
are topological manifolds. This decomposition separates a variety in a finite number of parts. First,
decomposing the variety in a manifold and a new lower dimensional variety containing all singular
points. Then repeating the decomposition of this new lower dimensional variety, and so on. A strat-
ification is needed to define the intersection cohomology. A Whitney stratification is a particular type
of stratification very common in this context. We will not enter into much details about stratification
theory.

4The split Grothendieck group [A ] of an additive category A is the abelian group generated by
isomorphism classes of objects of A, with relations of the form

[A] = [B] + [C],

if A,B,C ∈ Ob(A ) and A ∼= B ⊕ C. If A ∈ A we denote its class by [A] ∈ [A ].
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R by decreeing deg(h∗) = 2. Due to Borel, we have an isomorphism

R ∼= H•
T (pt,R).

In order to have an insight of this, we will explain what is the meaning of equivari-
ant cohomology of a G-space X and we will do some calculations. A G-space is a
smooth manifold (respectively, a variety) X with an action of a compact Lie group
G (respectively, a reductive algebraic group). The equivariant cohomology can be
viewed as a natural generalization of the usual cohomology. The main difficulty is
that the action on the space X may not be free and in that situation, we will need
to enlarge the space.

Definition 1.9. A space E is said to be a universal G-space if E carries a free G
action and E is contractible.

It is a well know fact that for a given G, E is unique up to homotopy equiv-
alence. So we will pick one universal G-space and denote it by EG. Let XG :=
(X × EG)/G.

Definition 1.10. The equivariant cohomology of a G-space X , denoted by H•
G(X), is

defined as
H•

G(X) := H•(XG).

In other words, it is the ordinary cohomology of the topological space XG. The
quotient space BG := EG/G is called the classifying G-space since it classifies the
principal G-bundles.

Remark 1.11. If we have any cohomology functor H•(−) and a space M , the con-
stant morphism M → pt induces a ring homomorphism H•(pt) → H•(M). This
gives H•(M) an H•(pt)-module structure. Thus the cohomology of a point serves
as the coefficient ring in any cohomology theory.

Example 1.12 (Baby example). Let T = C∗ be the 1-dimensional torus. The space

C∞ \ {0} := lim−→Cn \ {0},

is a direct limit of contractible spaces. By compactness of S1, the direct limit is
also contractible. Furthermore, T acts freely on it by multiplication, then ET =
C∞ \ {0}. Let us calculate BT ,

BT = ET /T = lim−→(Cn \ {0})/C∗ = lim−→CPn =: CP∞.

In particular, C∞ \ {0} is a line bundle of BT . Therefore, we can obtain the T -
equivariant cohomology of a point pt as follows

H•
T (pt,R) = H•((pt× ET )/T,R) = H•(BT ,R) = H•(CP∞,R) ∼= R[u].

where u = −c1(ET ) ∈ H2(BT ,R) and c1 is the first Chern class. In other words,
H•

T (pt,R) is the polynomial ring with real coefficients with indeterminate u of
degree 2.

Example 1.13. Let T = (C∗)ℓ be the ℓ-dimensional torus. One can compute that
the classifying space is BT = (P∞)×ℓ and ET = L1 ⊕ · · · ⊕ Lℓ, where Li is the
pullback of the canonical bundle on the i-th component of BT . Furthermore, the
coefficient ring is given by

H•
T (pt,R) = H•(BT ,R) = H•(P∞,R)×n ∼= R[u1, . . . , uℓ],
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where ui = −c1(Li) ∈ H2(BT ) ∼= Hom(T,C∗), and the isomorphisms here are
canonical.

We have a canonical identification between T -equivariant and B-equivariant
cohomology groups, since T is a deformation retract of B. Then

R = Lie(h) = H•
B(pt) = H•

T (pt).

In the bounded equivariant derived category Db
B×B(G,C), we have the hypercoho-

mology functor H• : Db
B×B(G,C) → R − Bim. The hypercohomology is the gen-

eralization of the sheaf cohomology, from sheaves to complexes of sheaves, and it
coincides with the former one in the complexes of the form

F•
0 = · · · 0 −→ 0 −→ F −→ 0 −→ 0 · · · ,

where F is a sheaf in degree 0. In other words, we have a natural isomorphism

H•(F•
0)

∼= H•(F).

Let us define a particular case of hypercohomology in the well-known context of
Čech cohomology. We define the Čech hypercohomology of a complex of sheaves

F• = · · ·F−2 −→ F−1 −→ F0 −→ F1 −→ F2 · · · ,

as the cohomology of a corresponding chain complex. This chain complex comes
from a double chain complex. One chain is the usual Čech cohomology chain
complex for a fixed sheaf Fi. For a fixed covering U of the space, the first complex
is given by

· · · Č−2(U ,Fi) −→ Č−1(U ,Fi) −→ Č0(U ,Fi) −→ Č1(U ,Fi) −→ Č2(U ,Fi) · · · ,

and the other complex comes from the map induced by Fi −→ Fi+1. This gives us
a double complex Cp,q := Čp(U ,Fq), but a double complex always defines a chain
complex by

Kn =
⊕

p+q=n

Cp,q and d = d1 + (−1)pd2.

Applying the cohomology to this complex and then the direct limit over all the
coverings U , we obtain the hypercohomology of the original complex.

The hypercohomology ring of Db
B×B(G,C) is H•

B×B(pt), and it is isomorphic to
R⊗CR. As we have seen before, the hypercohomology of any object in Db

B×B(G,C)
is a Z- graded R ⊗C R-module. Since R is a commutative Z-graded ring, the cat-
egory of R-graded bimodules R − Bim is equivalent to the category of R-graded
R⊗C R-modules. R−Bim is a monoidal category under the tensor product ⊗R of
R-bimodules.

Soergel observed that the decomposition theorem of Beilinson, Berstein, Deligne,
and Gabber [BBD82] gives an alternative characterization of H . This characteri-
zation comes from the Bott-Samelson resolution of the flag variety G/B, which is a
resolution of singularities. We will describe this resolution in the same algebraic
way as presented in [Dem74]. Let Ps be the group generated by B and BsB in
G. Let Ex(S) be the set of all reduced expressions in a Coxeter system (W,S), see
Chapter 2. For a fixed reduced expression w = (s, t, . . . , z, u) ∈ Ex(S) of w, we
define

Zw := Ps × Pt × · · · × Pu/B
ℓ(w),
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where ℓ is the length of w in the Weyl group W . This quotient is with respect to
the left-action of Bℓ(w) defined by

(bs, bt, . . . , bz, bu) · (p1, p2 . . . , pℓ) = (p1b
−1
s , bsp2b

−1
t , . . . , bzpℓb

−1
u ).

One can notice that Zw is isomorphic to the Schubert variety Xw defined above.
The multiplication of all ℓ(w) coordinates of Zw is an algebraic map

π : Zw −→ Xw,

and it is a resolution of singularities. In particular, Zw is a smooth projective
scheme. Furthermore, we have π∗OZw = OXw and Riπ∗OZw = 0, i ≥ 1. As Schu-
bert varieties are normal, the above means that Xw has just rational singularities,
see [Har13].

The characterization of H given by Soergel is the following. In the first place,
he describes the elements ICw for w ∈ W . For any reduced expression w =
(s, t, . . . , u) ∈ Ex(S) of w, he noted that ICw is an indecomposable direct sum-
mand with multiplicity 1 of ICs ∗ ICt ∗ · · · ∗ ICu. Furthermore, if v = (s′, t′, . . . , u′)
is any reduced expression of an element v ∈ W , such that v ≤ w in the Bruhat
order, he proved that

ICw ̸⊕⊂ ICs′ ∗ ICt′ ∗ · · · ∗ ICu′ .

This means that ICw does not appear as a direct summand of ICs′ ∗ICt′ ∗· · ·∗ICu′ .
We call this characterization “the Bott-Samelson description".

Soergel proved that the hypercohomology functor

H•
B×B : H → R− Bim

is fully-faithful and monoidal, the convolution operator of complexes corresponds
to the tensor product ⊗R. The essential image of this functor is the category of
Soergel bimodules and it is equivalent to the category H . It is denoted by SBim.
Since W acts on the torus by conjugation, it acts on h = Lie(T ) and by functoriality,
it also acts on the graded algebra R = Sym(h∗). For a simple reflection s ∈ S, let
Rs denote the subalgebra of all s-invariant elements in R. The inclusion Rs ⊂ R is
a Frobenius extension, see [ESW13]. For s ∈ S, we have

H•
B×B(ICs) = R⊗Rs R(1)

as graded algebra elements, where (1) denotes the grading shift by one. We denote
Bs := R ⊗Rs R(1). Using the Bott-Samelson description of H , Soergel obtained
the following elementary description of SBim (and therefore, for H via the hyper-
cohomology equivalence of graded monoidal categories): it is equivalent to the
full additive monoidal graded pseudo-abelian5 subcategory of R−Bim generated
by {Bs | s ∈ S}.

Since SBim is a category equivalent to H , it is another incarnation of the Hecke
category. Furthermore, this category is defined in a purely algebraic way starting
from R. This definition also allows us to define the Hecke category for arbitrary
Coxeter systems (W,S), even if there is no geometric context, i.e., when W is not
the Weyl group associated to a split reductive group G. In [Soe07], Soergel defined
SBim for any Coxeter system (W,S) starting from a “reflection faithful" represen-
tation h of W over a ring k, which replaces the role of the Lie algebra of a torus

5A Karoubian or pseudo-abelian category is a pre-additive category C such that every idempotent
morphism p : A → A has a kernel, and hence also a cokernel.
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T . In particular, the role of R is replaced by the symmetric algebra of h∗. As
before, R is also a polynomial ring R = k[αs, αt, . . . , αu] in |S| variables, where
s, t, . . . , u ∈ S. In this level of generality, Soergel constructed an isomorphism of
Z[v, v−1]-algebras

ε : [SBim]
∼−→ H.

Soergel conjectured if k = R that under this isomorphism, the indecomposable
objects will descend to the Kazhdan-Luzstig basis, more precisely,

ε([Bw]) = Hw,

where w ∈ W . This fact is the so-called Soergel’s conjecture.
Soergel’s conjecture was first proved by Soergel, in the geometric context of

Weyl groups, see [Soe92]. Recently, in the year 2012, Elias and Williamson proved
Soergel’s conjecture over R for any Coxeter group and “nice” realizations [EW12].
This was done by adapting the Hodge-theoretic proof of the decomposition the-
orem, given by de Cataldo and Migliorini’s in the year 2002 [CM02]. Elias and
Williamson gave a striking purely algebraic proof of this fact. Furthermore, they
gave an algebraic proof of the Kazhdan-Lusztig’s conjectures, which also were
enunciated in a purely algebraic manner. On the other hand, the analog of So-
ergel’s conjecture over a field of characteristic p is false, and this fact (for weights
around the Steinberg weight and p bigger than the Coxeter number, see [Soe00])
is equivalent to the existence of counterexamples of Lusztig’s conjecture. Geordie
Williamson used this fact to give counterexamples of Lusztig conjecture on the
characters of simple rational modules for SLn over fields of positive characteristic
[Wil17]. However, the image of the indecomposable objects kBw over a field k of
characteristic p under the isomorphism ε is still a Z[v, v−1]-basis of H. We denote
this basis by

pHw := ε(kBw),

and call it the p-canonical basis of the Hecke algebra H. It does not depend on the
base field k, only in its characteristic if W is a Weyl or affine Weyl group.

For any Coxeter system, for reflection faithful representations over infinite fields
of characteristic ̸= 2, Soergel proved that the indecomposable bimodules up to
grading shifts in SBim are in a bijection correspondence with W , and they are de-
noted by Bw. He mimicked the Bott-Samelson description. He proved that Bw

has multiplicity 1 in Bw := Bs ⊗R Bt ⊗R · · · ⊗R Bu, for any reduced expression
w = (s, t, . . . , u) of w. The graded bimodule Bw is called the Bott-Samelson bimodule
associated with w. In particular, for a fixed i ∈ Z we have

Bw(i)
⊕
⊂ Bw(i) = Bs ⊗R Bt ⊗R · · · ⊗R Bu(i).

Finally, Soergel proved that for a reduced expression v = (s′, t′, . . . , u′) of v ∈ W ,
such that v ≤ w in the Bruhat order,

Bw ̸⊕⊂ Bs′ ⊗R Bt′ ⊗R · · · ⊗R Bu′ .

This completes the analogy with the Bott-Samelson description of intersection co-
homology complexes in H .

These results are known as Soergel’s Categorification Theorem (or just SCT). So-
ergel’s Categorification Theorem comes directly in the case of a Weyl group, by
just applying the cohomology functor on H .
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Later, in 2008, Libedinsky defined SBim using the “easier” geometric representa-
tion h of W , instead of the “harder” reflection faithful representation, and proved
that the Soergel’s conjecture in this setting is equivalent to the Soergel’s conjecture
in the “harder” setting, see [Lib08a]. He also proved the Soergel’s Categorification
Theorem for the geometric representation, see [Lib08a].

For Weyl groups, one can prove Soergel’s Categorification Theorem easily, by
transferring known facts about H to SBim using hypercohomology. Soergel’s
proof for the general case is much trickier but relies only on commutative alge-
bra.

Soergel’s theory for the category SBim not only “lifts” the objects Hw to bimod-
ules Bw, but it also lifts relations between Hw, see Example 1.14. This category
cannot lift relations on the standard basis Hw (another categorification of H called
“Rouquier complexes” accomplishes this task). In particular, it is impossible to lift
to SBim the Iwahori presentation of the Hecke algebra H. However, there are pre-
sentations of the Hecke algebra in terms of the Kazhdan-Lusztig basis, hence all
relations in these presentations can be lifted. Heuristically speaking, SBim is the
algebrization of H . It is the categorical analog of Iwahori’s algebrization of H, on
the level of objects. Nevertheless, in SBim there is a whole new layer of structure,
with no analog in the Hecke algebra H: morphisms.

Example 1.14. In the category SBim over the real geometric representation of the
symmetric group S3, the Hecke algebra relations

HsHs = vHs + v−1Hs,

HstsHsts = (v−3 + 2v−1 + 2v1 + v3)Hsts,

are lifted to the isomorphisms,

Bs ⊗R Bs
∼= Bs(1)⊕Bs(−1),

Bsts ⊗R Bsts
∼= Bsts(−3)⊕Bsts(−1)⊕2 ⊕Bsts(1)

⊕2 ⊕Bsts(3).

1.5. Local intersection forms. One of the fundamental tools of de Cataldo and
Migliorini’s Hodge-theoretic proof of the decomposition theorem [CM02] is the
appearance of some bilinear forms, which were called local intersection forms and
control the behavior of the decomposition theorem. More precisely, intersection
forms describe how the direct image of the constant sheaf decomposes into inde-
composable objects (indecomposable objects are those with local endomorphism
ring in the cohomology of smooth varieties). There is an equivalence between a
part of the decomposition theorem and the non-degeneracy of local intersection
forms. Juteau, Mautner, and Williamson noted this fact in [JMW14] and they used
an analog of those intersection forms with modular coefficients. Furthermore, they
proved that the decomposition theorem fails over fields of characteristic p, but it is
still possible to determine the multiplicities of parity sheaves in the direct image of
the constant sheaf. These multiplicities are just the rank of local intersection forms.
In fact, they proved (Lemma 3.1 [JMW14])) Lemma 1.16. Let us make a definition
before stating the lemma.

Definition 1.15. Let k be a field. Let C be a Krull-Remak-Schmidt k-linear category
with finite dimensional morphism spaces. Let a ∈ C denote an indecomposable
object. Given any object x ∈ C , we can write x ≃ a⊕m⊕y such that a is not a direct
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summand of y. The integer m is called the multiplicity of a in x. This multiplicity
is well-defined because C is Krull-Remak-Schmidt.

Lemma 1.16. Assume that End(a) = k. Composition gives us a pairing:

B : Hom(a, x)×Hom(x, a) −→ End(a) = k
(α, β) 7→ β ◦ α.

The multiplicity of a in x is equal to the rank of B.

1.6. Calculations in the category of Soergel bimodules. Let us recall the alge-
braic definition of the category SBim of Soergel bimodules. We fix a Coxeter sys-
tem (W,S) and a realization (h, h∗, {αs}, {α∨

s }) over a commutative integral do-
main k (see Section 2.3)

W → End

(⊕
s∈S

kα∨
s

)
on the k-module h := span(α∨

s | s ∈ S). Let R := k[αs, αt, . . . , αu] be the graded
symmetric algebra of h∗ with deg(h∗) = 2, where αs is the dual object of α∨

s . Since
W acts on h through the realization, by functoriality W acts on R. Given s ∈ S,
let Rs be the subalgebra of all s-invariant elements of R. Let Bs denote the graded
R-bimodule

Bs := R⊗Rs R(1),

where (1) is the standard grading shift by one to the right. For a reduced expres-
sion w = (s, t, . . . , u), we define

Bw := Bs ⊗R Bt ⊗R · · · ⊗R Bu.

The graded R-bimodule Bw is called the Bott-Samelson bimodule associated with
w. Given w ∈ W , let Bw be the unique indecomposable direct summand of Bw

for any reduced expression w of w, such that it is not a direct summand of Bv ,
whenever v is a reduced expression of v with v < w. The category of Bott-Samelson
bimodules BSBim is the full monoidal subcategory of R−Bim generated by the set
{Bs | s ∈ S} of R-bimodules, in particular, whose objects are of the form Bw. The
category of Soergel bimodules SBim is the graded additive category whose objects are
direct sums of shifts of summands of graded bimodules in BSBim.

Despite the elementary definition of the category of Soergel bimodules, calcu-
lations here are extremely difficult. Some advances on how to calculate in this
category were made by Libedinsky in the year 2008 in [Lib08b]. He presented a
combinatorial R-basis for the spaces Hom(Bw, Bv) in the category BSBim, called
Libedinsky’s light leaves basis. This simplifies our work on finding the local intersec-
tion forms.

Other advances on how to calculate in SBim were first made by Libedinsky
[Lib10] who gave a presentation by generators and relations of SBim for right-
angled Coxeter systems, later by Elias and Khovanov [EK11] who gave a diagram-
matic presentation in type A, by Elias [Eli16] who gave a diagrammatic presenta-
tion for the dihedral group, and finally the general result for any Coxeter system
by Elias and Williamson [EW16]. This last work was called “Soergel Calculus”
introduces the diagrammatic category, a powerful tool which presents diagrammat-
ically the category of Soergel bimodules in terms of generators and relations in
any Coxeter system for some family of realizations. They describe the space of
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morphisms Hom(Bw, Bv), as the R-module generated by the isotopy classes of S-
graphs with some relations. The S-graphs are colored diagrams as in the following
picture,

.

This tool simplifies incredibly some calculations. However, those topological
and combinatorial calculations are still extremely complicated to perform in many
cases.

1.7. Recent achievements and related nowadays works. In spite of the develop-
ment of “Soergel Calculus", there are few (half a dozen) works performing combi-
natoric and topological calculations of local intersection forms and decomposition
numbers in the category of Soergel bimodules.

In 2013, such calculations in Ã1 were made by Chen and Unda in [CU13]. De-
spite that, in their work, they do not compute explicitly the local intersection
forms, but they were able to provide a recursive formula for the composition of
any two Libedinsky’s light leaves modulo lower terms on the category of Bott-
Samelson bimodules. They cannot give an explicit expression. The ideas in this
thesis allow us to perform better calculations and give a new formula for the local
intersection form. This formula holds for the universal Coxeter group Un. This
can be done since we give a combinatorial and topological formula for the com-
position modulo lower terms of any two degree zero Libedinsky’s light leaves. In
order to compute intersection forms, we do not need to consider other degrees (see
Theorem 3.9 below). Then calculations can be done explicitly in this thesis.

In 2016 He and Williamson reduced the problem of calculating some coefficients
of the intersection forms in type A [HW15] to a problem about the nil-Hecke ring.
The coefficients they compute are the ones corresponding to compositions modulo
lower terms of Libedinsky’s light leaves without D1’s, see Chapter 3.

In 2017, Ryom-Hansen produced Jucys-Murphy elements for the category of So-
ergel bimodules for general Coxeter groups [RH16]. The Jucys-Murphy elements
are represented diagrammatically by the following picture.



TOWARDS THE p-CANONICAL BASIS IN Ã1 13

He used them to diagonalize some bilinear forms related to the local intersection
forms but considering Libedinsky’s light leaves of all degrees. Furthermore, he
was able to find a closed expression for the determinant of these forms. How-
ever, in a personal conversation, he was skeptical about the possibility of repeat-
ing his argument to get the decomposition numbers or just the determinants of the
local intersection forms. This may be due to the fact that the Jucys-Murphy ele-
ments are of degree two and not of degree zero. Sentinelli worked with the author
performing calculations of the decomposition numbers for some realizations, but
they have been able to calculate completely only the easier ones. The author will
present some of these calculations in this thesis.

The work in this thesis has direct implications for the study of the aforemen-
tioned p-canonical basis for the Hecke algebra in type Ã1. Additional motivation,
overview, nowadays works and properties of the p-canonical basis can be found
in [JW15].

1.8. Structure of the thesis. This thesis contains four parts.

§2 Background. Contains background on Coxeter systems, Hecke algebras,
realizations of Coxeter systems, the diagrammatic category of Soergel bi-
modules and local intersection forms in this category.

§3 Libedinsky’s light leaves in Un. We define the Libedinsky’s light leaves
basis in Un (type Ã1) and recall some of their properties.

§4 Properties of End•≮x,k(x) in Un. We perform calculations in the space of
morphisms End•≮x,k(x), of the diagrammatic category k ⊗ SD≮x in Un.

§5 Intersection forms formula in Un. We prove our main result giving a for-
mula for the local intersection forms in Un.

1.9. Acknowledgments. First of all, the author would like to thank his advisor
Nicolás Libedinsky, for his guidance, confidence and very motivating conversa-
tions. Secondly, he would like to thank Natalia García and Giancarlo Urzúa for
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ometry. Thirdly, he would like to thank his collaborator and friend Paolo Sentinelli
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Troncoso for very valuable comments and some important corrections on this the-
sis. Fifthly, he would like to thank his parents for their unconditional love and
support, without which this thesis would have been impossible. Sixthly, he would
like to thank his girlfriend Aylin Valdivia for her great companionship and sup-
port. Finally, the author would also like to thank the Government of Chile by par-
tially funding his studies through the National Master Scholarship 2015 provided
by CONICYT Folio No. 22151454.

This thesis was developed within the framework of the Anillo Project ACT 1415
PIA CONICYT.

2. BACKGROUND

In this chapter, we will give the basic theorems and definitions to introduce the
category of Soergel bimodules. A more detailed background in Coxeter groups
and Hecke algebras can be found in [Hum92].
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2.1. Coxeter Groups. Let S = {s, t, . . . , u} be a finite set, for each pair (s, t) of
elements in S consider ms,t ∈ N ∪ {∞} such that ms,s = 1 and ms,t > 1 if s ̸= t.
Let W be the group with presentation

W = ⟨S | (st)ms,t = e whenever ms,t ̸= ∞⟩.
We say that W is a Coxeter group and the pair (W,S) is a Coxeter system. We will
use different colors to represent different elements in S, e.g. S = {s, t, z, . . . , u}.

Remark 2.1. Different Coxeter systems might have isomorphic underlying Coxeter
groups, although this cannot happen in finite Coxeter groups.

Definition 2.2. The relation s2 = e is called the involution relation.

Remark 2.3. The involution relation can also be written as

(2.1) s = s−1.

Definition 2.4. The generators s ∈ S are called simple reflections. The rank of a
Coxeter system is the cardinality of S.

Definition 2.5. The relation (st)ms,t = e can be written as

(2.2) stst · · ·︸ ︷︷ ︸
ms,t

= tsts · · ·︸ ︷︷ ︸
ms,t

.

This relation is called the braid relation.

There are many important examples of Coxeter systems, but we recall three of
them.

Example 2.6 (Universal Coxeter systems). The universal Coxeter system of rank n is
the group

Un = ⟨s1, s2, . . . , sn | s21 = s22 = · · · = s2n = e⟩,
together with the set S = s1, s2, . . . , sn. When n = 2, U2 is called the infinite dihedral
Coxeter system. We refer to U2 as the Weyl group of type Ã1.

Example 2.7 (Type A Coxeter systems). The Weyl group of type An−1 is the group
of all symmetries of an n-simplex. Equivalently, it can be defined as Sn, the sym-
metric group in n elements. The isomorphism between these two groups is easy
to see. It admits a Coxeter presentation given by generators si, 1 ≤ i < n and
relations

s2i = e for all i ∈ {i | 1 ≤ i < n},
sisj = sjsi for all (i, j) ∈ {(i, j) | |i− j| ≥ 2},

sisjsi = sjsisj for all (i, j) ∈ {(i, j) | |i− j| = 1}.

The isomorphism from this group to the symmetric group is given by sending si
to the transposition (i, i+ 1) ∈ Sn.

Example 2.8 (The rank two or “two color" or “dihedral" Coxeter systems). The
dihedral group of order n is the finite group Dn of symmetries of a regular n-sided
polygon in the plane. This is also a finite Coxeter group denoted by I2(n) (the
subindex 2 refers to the rank of the Coxeter system) a Coxeter presentation is given
by

I2(n) = ⟨s, t | s2 = t2 = (st)n = e⟩.
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An isomorphism between Dn and I2(n) is given by picking any two closest reflec-
tions to be s and t respectively. The other rank two Coxeter group is Ã1, which is
infinite.

There are many other examples of Coxeter systems which are much harder to
study. In the following example, we will show one, which is not finite nor a Weyl
or an affine Weyl Coxeter group, the “triangle group" △(3, 4, 5).

Example 2.9. [Triangle groups △(p, q, r)] Let p, q, r be integers greater or equal to
2 or infinite. A triangle group △(p, q, r) is a group of reflections of the Euclidean
plane, of the two-dimensional sphere, or of the hyperbolic plane generated by the
reflections in the sides of a triangle with angles π/p, π/q and π/r. Triangle groups
admit the following Coxeter system presentation

△(p, q, r) = ⟨a, b, c | a2 = b2 = c2 = (ab)p = (bc)q = (ca)r = e⟩.

(1) For every triplet of integers (p, q, r) such that

1

p
+

1

q
+

1

r
= 1,

the group △(p, q, r) is an infinite triangle group of reflections of the Eu-
clidean plane. There is a finite number of those triples. In this case △(p, q, r)
is also the group of symmetries of a tiling of the Euclidean plane. For ex-
ample, the group △(3, 3, 3) is the group of symmetries of the following
tiling,

.

(2) For every triplet of integers (p, q, r) such that

1

p
+

1

q
+

1

r
> 1,

the group △(p, q, r) is a finite triangle group of reflections of the two-
dimensional sphere. There are a finite number of those triples. In this case
△(p, q, r) is also the group of symmetries of a tiling of the two-dimensional
sphere. For example, the group △(2, 3, 5) is the group of symmetries of the
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following tiling,

.

(3) For every triplet of integers (p, q, r) such that

1

p
+

1

q
+

1

r
< 1,

the group △(p, q, r) is an infinite triangle group of reflections of the hy-
perbolic plane. There is an infinite number of those triples. In this case
△(p, q, r) is also the group of symmetries of a tiling of the hyperbolic plane.
For example, the group △(3, 4, 5) is the group of symmetries of the follow-
ing tiling,

(2.3) .

Definition 2.10. An expression in a Coxeter system (W,S) is a finite sequence of
elements of S. We denote by Ex(S) the set of all expressions of (W,S), i.e,

Ex(S) :=
⊔
i∈N

Si.
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Let w = (s1, s2, · · · , sr) ∈ Ex(S). The length ℓ(w) of w is r. A subexpression of w is a
sequence (se11 , se22 , . . . , serr ), where ei ∈ {0, 1} for all i, s0i := e and s1i := si for all i.
We call e := (e1, e2, . . . , er) the associated binary sequence with the subexpression
we := (se11 , se22 , · · · , serr ). Caution: We want to remove all “e" appearing in we due
to the zero exponents. In particular, we will not be considered as an expression of
length r. For example, the expression (e, s, t, e, s) should be replaced with (s, t, s)
which represents the same element in W .

Definition 2.11. Given an expression w = (s1, s2, · · · , sr) ∈ Ex(S), we have an
associated element w = s1s2 · · · sr ∈ W . We say that w is an expression for w ∈
W . Every element of W has infinitely many expressions. If the expression w =
(s1, s2, · · · , sr) ∈ Ex(S) of an element w is such that r is minimal, we say that w is
a reduced expression for w. In this case, we say w has length r and we denote it by
ℓ(w) := r. The set of all reduced expressions of an element w ∈ W is denoted by
Rex(w).

Notation 2.12. The group multiplication gives us a natural map

Ex(S) → W,

w = (s1, s2, . . . , sr) 7→ w• := s1s2 · · · sr.

Example 2.13. In the triangle group △(3, 3, 3) generated by S = (a, b, c), we have
ma,b = ma,c = mb,c = 3. Let w = (a, b, a, b, c, c, c) ∈ S7 ⊂ Ex(S). We define
x := w• ∈ W . Note that w is not a reduced expression. We have

(a, b, a, b, c, c, c)• = ababccc = (aba)b(cc)c

= (bab)b(cc)c = ba(bb)(cc)c

= ba(e)(e)c = bac.

Where we have used the braid relation 2.2 and two times the involution relation
2.1. Therefore, v := (b, a, c) ∈ S3 is another expression for x. Furthermore, it is not
hard to show that it is a reduced expression. In particular, ℓ(x) = 3 even though
ℓ(w) = 7.

Definition 2.14. Notice that ℓ(w•) ≤ ℓ(w). If the equality holds, then we call w
a reduced expression. In particular, note that if w ∈ Ex(S) is a reduced expression,
then it is a reduced expression for w• ∈ W .

Every Coxeter system has a partial order ≤ called the Bruhat order of (W,S). The
definition is as follows. Given x an element of W , pick some reduced expression
of x, say w, then y < x for y ∈ W whenever y = (we)• for some subexpression we

of w. In other words, all elements below x are those elements that can be obtained
by removing a number of simple reflections from some reduced expression of x,
and then multiplying the remaining simple reflections.

Definition 2.15. Given an expression w = (s1, s2, . . . , sr) ∈ Ex(S) and a binary
sequence e = (e1, e2, . . . , er) ∈ {0, 1}r, for 1 ≤ k ≤ r we set w≤k := (s1, . . . , sk),
e≤k := (e1, . . . , ek) and wk := (w

e≤k

≤k )•. We set w0 := e. We will define the decora-
tion (or coloration) of the subexpression we as the sequence d ∈ {U0,U1,D0,D1}r
defined as follows. For 1 ≤ i ≤ r, we set

ci =

{
U if wi−1si > wi−1,
D if wi−1si < wi−1.
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Where < is the Bruhat order, U refers to the word “Up” and D refers to the word
“Down”. Then, the decoration d is given by,

(c1e1, c2e2, . . . , crer) ∈ {U0,U1,D0,D1}r.
If w is clear from the context, we will just refer to d as the decoration of the binary
sequence e.

Definition 2.16. The Bruhat stroll of the subexpression we is the sequence

bs(we) := (w0, w1, w2, . . . , wr) ∈ W r+1.

We call wr the end-point of the Bruhat stroll.

Another important definition is the following.

Definition 2.17. The defect of the subexpression we is defined to be

df(we) := ♯{i; di = U0} − ♯{i; di = D0},
where d = (d1, d2, . . . , dr) is the decoration associated with the subexpression. If
w is clear from the context, we will just refer to df(e) as the defect of the binary
sequence e and we will not mention w.

Remark 2.18. If we consider w to be fixed then, we can define three sequences
of the same length: a binary expression e, the decoration expression d, and the
subexpression we. Each of these three sequences determines the other two. The
same could be said of the Bruhat stroll and the other three sequences.

Here we give some examples of subexpressions, colorations, Bruhat strolls, and
defects. These examples help to get familiarity with our notations.

Example 2.19. Let (W,S) be any Coxeter system and let s be an element of S. Let
w = (s, s, s) to be the expression of length three consisting entirely of s. There are
four binary strings (or subexpressions) with end-point e. We have:

• e = (1, 1, 0) with coloration d = (U1,D1,U0) with defect 1, and Bruhat
stroll (e, s, e, e).

• e = (0, 1, 1) with coloration d = (U0,U1,D1) with defect 1, and Bruhat
stroll (e, e, s, e).

• e = (1, 0, 1) with coloration d = (U1,D0,D1) with defect −1, and Bruhat
stroll (e, s, s, e).

• e = (0, 0, 0) with coloration d = (U0,U0,U0) with defect 3, and Bruhat
stroll (e, e, e, e).

There are four binary strings (or subexpressions) with end-point s. We have:
• e = (1, 1, 1) with coloration d = (U1,D1,U0) with defect 0, and Bruhat

stroll (e, s, e, s).
• e = (0, 1, 0) with coloration d = (U0,U1,D1) with defect 0, and Bruhat

stroll (e, e, s, s).
• e = (1, 0, 0) with coloration d = (U1,D0,D1) with defect −2, and Bruhat

stroll (e, s, s, s).
• e = (0, 0, 1) with coloration d = (U0,U0,U0) with defect 2, and Bruhat

stroll (e, e, e, s).

Example 2.20. Let (W,S) be the dihedral Coxeter system I2(3) or be the Coxeter
system Ã1, with generators s, t and ms,t = 3. Let w = (s, t, s) to be the reduced
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expression (for the longest element sts = tst in I2(3)). There are unique subex-
pressions with end-points sts, ts, st and t. We have:

• e = (1, 1, 1) with coloration d = (U1,U1,U1) with defect 0, and Bruhat
stroll (e, s, st, sts).

• e = (0, 1, 1) with coloration d = (U0,U1,U1) with defect 1, and Bruhat
stroll (e, e, t, ts).

• e = (1, 1, 0) with coloration d = (U1,U1,U0) with defect 1, and Bruhat
stroll (e, s, st, st).

• e = (0, 1, 0) with coloration d = (U0,U1,U0) with defect 2, and Bruhat
stroll (e, e, t, t).

There are two binary strings (or subexpressions) with end-point s. We have:
• e = (1, 0, 0) with coloration d = (U1,U0,D0) with defect 0, and Bruhat

stroll (e, s, s, s).
• e = (0, 0, 1) with coloration d = (U0,U0,U1) with defect 2, and Bruhat

stroll (e, e, e, s).
There are two binary strings (or subexpressions) with end-point s. We have:

• e = (1, 0, 1) with coloration d = (U1,U0,D1) with defect 0, and Bruhat
stroll (e, s, s, e).

• e = (0, 0, 0) with coloration d = (U0,U0,U0) with defect 3, and Bruhat
stroll (e, e, e, e).

Remark 2.21. The last example illustrates a more general fact about universal Cox-
eter systems. The fact is that every subexpression of a reduced expression in Un

has positive or zero defect. This fact is equivalent to Lemma 3.5 but in the language
of subexpressions instead of the language of Libedinsky’s light leaves.

2.2. The Hecke Algebra. Let (W,S) be a Coxeter system, with length function ℓ
and Bruhat order ≤. The Hecke Algebra H is the Z[v, v−1]-algebra generated by the
elements {Hs | s ∈ S}, satisfying the following relations:

H2
s = (v − v−1)Hs +He, for s ∈ S,

HsHtHsHt · · ·︸ ︷︷ ︸
ms,t

= HtHsHtHs · · ·︸ ︷︷ ︸
ms,t

, for s, t ∈ S.(2.4)

Where He is the identity element of the algebra. For w ∈ W and a reduced expres-
sion w = (s, t, . . . , u) of w, i.e. w• = w, let Hw := HsHt · · ·Hu. This is well-defined
as a consequence of the following theorem.

Theorem 2.22 (Matsumoto, 1964). Let x ∈ W be an element of the Coxeter system
(W,S). Every reduced expression in Rex(x) is obtained from any other by applying a
finite number of times braid relations.

Notation 2.23. For an expression w = (s, t, . . . , u) we set

Hw := HsHt · · ·Hu.

Since the expression w may be non-reduced, one could have Hw ̸= Hv even when
w• = v• ∈ W . In other words, Hw depends on the expression.

Remark 2.24. If we specialize at v = 1 in H, we have an isomorphism

H|v=1 −→ ZW
Hw 7−→ w,
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between the Hecke algebra H|v=1 and the group algebra ZW .

Remark 2.25. The set {Hw | w ∈ W} is a Z[v±1]-basis of H. We call this basis the
standard basis of H. The set {Hs | s ∈ S} is a set of generators of H as a Z[v±1]-
algebra.

Let us introduce a more interesting combinatorial basis, the Kazhdan-Lusztig ba-
sis of H. First of all, we note by a simple computation that

H−1
s = Hs + (v − v−1He).

In particular, all Hw are invertible. We define the involution map h 7→ h by sending
Hx 7→ H−1

x−1 and p(v) = p(v−1) for p ∈ Z[v, v−1]. A simple calculation shows that
Hs + v = H−1

s + v−1, so that the element Hs := Hs + v is (−)-invariant. We have
the following theorem.

Theorem 2.26 (Kazhdan-Lusztig [KL79]). There exists a unique basis {Hw | w ∈ W}
of H as a Z[v±1]-module, called the Kazhdan-Lusztig basis (or just, the KL-basis),
which satisfies:

• Hw = Hw;
• Hw = Hw +

∑
x<w Px,wHx where Px,w ∈ vZ[v].

The elements Py,w are the so-called Kazhdan-Lusztig polynomials (or just, the KL-
polynomials).

Notation 2.27. For an expression w = (s, t, . . . , u) ∈ Ex(S) we set

Hw := Hs . . .HtHu.

Note that Hw ̸= Hw in general, even if the expression w is reduced.

Example 2.28 (KL-basis in I2(3)). Let I2(3) to be the group of symmetries of an
equilateral triangle, with Coxeter presentation determined by, s, t, ms,t = 3. It is
easy to see that He = 1, Hs = Hs, and Hst = HsHt (these identities always hold).
Let us calculate the (−)-invariant element HsHtHs,

HsHtHs = (Hst + vHs + vHt + v2)(Hs + v)

= (Hsts + vH2
s + vHts + v2Hs) + (vHst + v2Hs + v2Ht + v3)

= Hsts + (Hs − v2Hs + v) + vHts + v2Hs) + (vHst + v2Hs + v2Ht + v3.

= Hsts + (Hs + v) + vHts + vHst + v2Hs + v2Ht + v3.

We can see that HsHtHs /∈ Hsts +
∑

vZ[v]Hy , since there is a term Hs that cannot
be factorized by v, but if we subtract Hs we obtain

HsHtHs −Hs = Hsts + vHts + vHst + v2Hs + v2Ht + v3.

This element is obviously (−)-invariant and it is of the desired form. By unique-
ness given in Theorem 2.26 we have that Hsts = HsHtHs − Hs. It is an easy
exercise to see that HsHtHs−Hs = HtHsHt−Ht, this is due to the braid relation
sts = tst. However, if ms,t ̸= 3 then HsHtHs −Hs ̸= HtHsHt −Ht.



TOWARDS THE p-CANONICAL BASIS IN Ã1 21

Example 2.29 (KL-basis in Type I2(n)). Generalizing the previous example, we
can take I2(n) for each n ∈ N, i.e. ms,t = n. The first few examples are:

ms,t = 2 : Hst = HtHs

= HsHt

ms,t = 3 : Hsts = HsHtHs −Hs

= HtHsHt −Ht

ms,t = 4 : Hstst = HsHtHsHt − 2HsHt

= HtHsHtHs − 2HtHs

ms,t = 5 : Hststs = HsHtHsHtHs − 3HsHtHs +Hs

= HtHsHtHsHt − 3HtHsHt +Ht.

The following example is the most important calculation for this thesis.

Example 2.30 (KL-basis in Universal type Un). In 1988, Matthew Dyer gave a for-
mula [Dye88] to calculate inductively the Kazhdan-Lusztig basis for a Universal
Coxeter system. By “induction" on a Coxeter group, we will always mean induc-
tion over the length ℓ. In this case, every element w ∈ Un has only one reduced
expression, since we do not have any braid relation. The Dyer’s formula is the
following:

Theorem 2.31 (Dyer’s Formula). Let w ∈ Un and w = st · · ·u with s, t, . . . u ∈ S.
Then we have the following recursive formula

HsHw = (v + v−1)Hw,

HzHw = Hzw if z ̸= s, t,(2.5)
HtHw = Htw +Hsw if t ̸= s.

2.3. Realizations. In this section, we will define what a “realization" is, in order
to define the “nice” diagrammatic category SD. We will work in SD and it will
be the “good" substitute of the category SBim of Soergel bimodules. The origi-
nal definition of a realization given by Elias and Williamson [EW16, §3.1.] is very
technical and requires some unnecessary background for this thesis. However, we
will try to keep it as general as possible for our practical calculations and purposes.
Some technicalities concerning the good choice of positive roots, “Frobenius real-
izations" and “root realizations" are developed in [Eli16, §A.4] only in the dihedral
situation, we will not mention them here.

First of all, we need a preliminary definition.

Definition 2.32. A generalized Cartan matrix is a square matrix A = (aij), such that:
• aij ∈ Z≤0 ∪ {2}.
• aij = 2 if and only if i = j.
• aij = 0 if and only if aji = 0.

Let us define a realization of a Coxeter system (W,S).

Definition 2.33. Let k be a commutative integral domain and let (W,S) be a Cox-
eter system. A realization of W over k consist of the following data:

• A finite-rank k-module h.
• A root datum (Φ,Φ∨), i.e., a set of roots Φ = {αs} ⊂ h∗ indexed by S, and a

set of co-roots Φ∨ = {α∨
s } ⊂ h also indexed by S, such that:



22 GASTÓN BURRULL

– ⟨αs, α
∨
s ⟩ = 2 for all s ∈ S.

– The map

S 7−→ Endk(h
∗)

s 7−→ s : h∗ → h∗,

determined by

s(v) := v − ⟨v, α∨
s ⟩αs,

induces a representation of W .

Assumption 2.34. For practical purposes, we will always assume that a realization
h is obtained by the simple extension of scalars (that is, by applying ⊗kF, where F
is a field), from a realization whose matrix

(ast) := (⟨αt, α
∨
s ⟩ | s, t ∈ S)

is a generalized Cartan matrix.

Assumption 2.35. Moreover, we always assume Demazure surjectivity which states
the maps αs : h → k and α∨

s : h
∗ → k are surjective, [EW16, Assumption 3.9]. For

example, it is satisfied when 2 is invertible in k.

Definition 2.36. We call a realization faithful if the action of W on h (and hence
the contragredient action on h∗) is faithful. We call a faithful realization reflection
faithful if there is a bijection between the set of reflections (i.e., the conjugates in
W of S) and the subset of elements of W that act as reflections, i.e., that fix a co-
dimension 1 space.

Remark 2.37. If a realization is faithful. By applying a change of basis or an exten-
sion of scalars, the resulting realization could be not faithful.

Example 2.38 (Geometric representation). We define the geometric representation of
any Coxeter system (W,S) of finite rank. It is given by k = R and the vector space
h is defined by

h =
⊕
s∈S

Rα∨
s .

The dual space h∗ is defined by

(2.6) ⟨αt, α
∨
s ⟩ = −2 cos(π/mst),

where cos(π/∞) := 1. Then h is called the geometric representation of (W,S), see
[Hum92, §5.3]. Note that the subset {αs} ⊂ h∗ is linearly independent if and only
if W is finite. This is a symmetric realization and faithful when W is finite.

Definition 2.39. We call a realization symmetric if ⟨α∨
s , αt⟩ = ⟨α∨

t , αs⟩ for all s, t ∈
S. For example, the geometric representation is symmetric.

Let R := Sym(h∗) be the graded symmetric algebra of h∗ over k, graded such
that deg h∗ = 2. Then,

R ∼= k[αs | s ∈ S]

is the polynomial k-algebra where each αs is on degree 2. Since W acts on h∗, it
also acts on R by functoriality. Let Rs be the k-subalgebra of s-invariant elements
of R.
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Definition 2.40. For any s ∈ S, let the Demazure operator be the graded linear map
defined by

∂s : R −→ Rs(−2)(2.7)

f 7−→
(
f − s(f)

)
αs

.(2.8)

Remark 2.41. This definition might not be very convincing. However, it is well
defined since p := (f − s(f)) is an s-anti-invariant element, i.e., s(x) = −x. As
was proved in [EW16, §3.3], the set of s-anti-invariant elements of R (under all
the above assumptions) lies in the subspace αsR. Therefore, the expression (f −
s(f))/αs lies in R. It also lies in Rs, since αs is s-anti-invariant. It is well defined
as a graded map because dividing by αs decreases the degree by 2.

2.4. S-graphs. Let S = {s, t, z, . . . , u} be the decorated finite set associated with a
Coxeter system (W,S), where elements of S have different colors. Sometimes we
will refer to an element of S as a color.

Definition 2.42. An S-graph with boundary (or just an S-graph) is an isotopy class
of a decorated, planar, finite graph G embedded in the planar strip M := R× [0, 1].
The edges of such a graph G are colored by the elements of S. An edge may
terminate with a vertex in the boundary ∂M := R × {0, 1}. We require that each
vertex in the boundary has only one edge. We also require that the edges can touch
the boundary only at its endpoints. Henceforth, vertices in the boundary are not
considered as vertices. The (interior) vertices of G can be of the following four
types, with their respective degree:

(1) The zero-valent vertex (a “box"), without edges, associated with a homoge-
neous element f ∈ R,

.

Its associated degree is deg f .
(2) The univalent vertex (a “dot"), colored by its unique edge,

.

Its associated degree is 1.
(3) The trivalent vertex, with all its edges decorated with the same element

s ∈ S,

.

Its associated degree is −1.
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(4) The 2ms,t-valent vertex with 2ms,t edges, with coloration counterclockwise
alternating between s and t. For example,

.

Its associated degree is 0.

Definition 2.43. Let D be an S-graph. The bottom boundary bot(D) (respectively,
top boundary top(D)) of an S-graph is the ordered sequence of points in R × {0}
(respectively, R×{1}), read from the left to the right. Each boundary point has as-
sociated a color given by its unique edge, then we can identify bottom(D), top(D)
inside of Ex(S).

Definition 2.44. The degree of an S-graph with boundary is the sum of the degrees
of its vertices.

Example 2.45 (S-graph). Let (W,S) be the rank four Coxeter system given by S =
{s, t, z, u} and relations

ms,t = 2, mz,u = 2,

ms,u = 4, mt,u = 3,

ms,z = 5, mt,z = 2.

The following diagram represents an S-graph D for (W,S),

.

Where f, g, h ∈ R are homogeneous polynomials. In order to calculate the degree
of D, we need to count all univalent, trivalent and zero-valent vertices, since the
other are degree zero vertices. There are eight green dot vertices, five red dot ver-
tices, seven blue dot vertices, five pink dot vertices, each one of degree one. Then
we have a total of twenty-five univalent vertices. There are five green trivalent
vertices, four red trivalent vertices, five blue trivalent vertices, six pink trivalent
vertices, each one of degree −1. Then we have a total of twenty trivalent vertices.
The two determined box vertices are of degree 4 each one. The indeterminate zero-
valent vertices sum a total degree of deg f + deg g + 2deg h. Then the degree of D
is

deg(D) = 25− 20 + 4 + 4 + deg f + deg g + 2deg h

= 13 + deg f + deg g + 2deg h.
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It is easy to determine the bottom and top boundaries from the picture (the usual
order in R× {0} is taken from the left to the right),

top(D) = (u, z, u, t, u, z, z, s, z) ∈ S9,

bot(D) = (t, u, s, t, z, t, s, s, z, s) ∈ S10.

Notation 2.46. Given an S-graph D we denote by D the S-graph obtained by flip-
ping the diagram vertically. This operation induces a contravariant equivalence
on the graded monoidal category SD defined in the next section.

2.5. Diagrammatic category of Soergel bimodules. The diagrammatic category of
Soergel bimodules denoted by SD is the monoidal category defined as follows. Ob-
jects are expressions w ∈ Ex(S) with the monoidal operation given by the hori-
zontal concatenation of expressions in Ex(S). This category is enriched over the
category k-mod of k-modules. For each x, y ∈ Ex(S) the set of arrows HomSD(x, y)
is defined to be the k-module generated by the set of isotopy classes of S-graphs
with top boundary x and bottom boundary y modulo the relations below.

(1) Zero-color relation.
(a) Multiplication law.

Where f, g are homogeneous elements of R.
(2) One-color relations.

(a) Frobenius unit.

(b) Frobenius associativity.

(c) Needle relation.

(d) Barbell relation.
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(e) Nil Hecke relation.

(3) Two-color and three-color relations. We are not going to show or use those
relations in this thesis, so we will not write them down.

The barbell forcing relations are particular cases of the Nil Hecke relation.

(2.9)

The composition of arrows is defined to be the isotopy class of the vertical jux-
taposition of their underlying S-graphs. In order to get a well defined S-graph as a
result, vertical juxtaposition should be made matching vertices of the boundary of
one S-graph with the other in a bijective pairing. This composition is denoted by
◦, for example, f ◦ g can be depicted by the S-graph of f just above of the S-graph
of g. The monoidal structure of arrows in SD is given by the isotopy class of the
horizontal juxtaposition of their underlying S-graphs. It is denoted by ⊗R or just
by ⊗, for example, f ⊗ g can be depicted by the S-graph of g placed “very far to
the right" of the S-graph of f . By “very far to the right" of f , we mean the place at
the right where f is empty, this place exists since S-graphs are finite graphs, then
they are compact as subsets of R2.

All relations presented here are homogeneous for the grading on S-graphs.
Thus, the category SD is enriched over the category of graded R-modules by the
action of R-modules induced by the following action on homogeneous elements:

Remark 2.47. In a diagrammatic category like this, there are some extra implicit
relations. As stated in [Eli16] we need cyclicity which states that taking any mor-
phism and using adjunction maps to rotate it by 360 degrees will not change the
morphism. This is required in order to be able to draw morphisms on a plane
because any labeling we use to depict the morphism is evidently invariant un-
der a 360-degree rotation. Furthermore, for each generator morphism for which
we used labeling with some non-trivial rotation invariances (this excludes the box
label for the zero-valent vertices, which is considered to have the same group of
invariance transformations as a single point, i.e., every rotation is an invariance)
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those labels carry hidden and non-stated relations called the symmetry labeling rela-
tions which formulates that rotating this morphism in a certain way does nothing.
For example, the trivalent vertex above has an invariance under a non-trivial 120-
degree rotation, then we have the following relation

.

Those relations extend to any diagrams having non-trivial symmetries, i.e., not
only the generating ones.

2.6. Local intersection forms. Let x be an element of W . Let SD≮x be the quotient
category of SD by the ideal SD<x generated by lower terms than x, i.e., by all mor-
phisms which can be factorized through a morphism with domain or codomain
y ∈ Rex(y) for some y < x in the Bruhat order of W . Let Hom≮x(−,−) denote the
set of morphisms in this category. In the category SD≮x, the images of any two
reduced expressions for x are canonically isomorphic, see [EW16, §6.5]. Therefore,
we denote the image of any reduced expression for x in SD≮x by x just as well.
Furthermore as it is mentioned in [EW16, §6.5] we have End≮x(x) ∼= R. For any
w ∈ Ex(S) we have the following R-bilinear pairing of graded R-modules

Ix,w : Hom≮x(x,w)×Hom≮x(w, x) → End≮x(x) ∼= R.

(f, g) 7−→ g ◦ f.
In order to define the intersection forms, we need to make an extension of scalars.
Let Hom≮x,k(−,−) be the set of arrows in k ⊗R SD≮x, where we are killing the
action of each polynomial of positive degree in R. The category k ⊗R SD≮x is a
Krull-Remak-Schmidt k-linear graded monoidal category. In particular, we have
End≮x,k(x) ∼= k ⊗R R ∼= k.

Notation 2.48. In a graded category, we denote by

Hom•(a, b) :=
⊕
n∈Z

Hom(a, b(n)),

to the set of arrows in the induced category which forgets the grades.

Definition 2.49. For any w reduced expression in S, the local intersection form of w
at x is the k-bilinear pairing

Iw,x : Hom•
≮x,k(x,w)×Hom•

≮x,k(w, x) −→ End•≮x,k(x)
∼= k

(f, g) 7−→ g ◦ f.

Remark 2.50. Observe that End•≮x,k(x) has only degree zero elements. A morphism
in Hom≮x,k(x,w(d)) for some d ∈ Z can only be paired non-trivially with elements
of Hom≮x,k(w(−d), x).

Definition 2.51. The d-th grading piece of the local intersection form is defined as the
k-bilinear pairing

Idw,x : Hom
•
≮x,k(x(d), w)×Hom•

≮x,k(w, x(−d)) −→ End•≮x,k(x)
∼= k

(f, g) 7−→ g ◦ f.
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Finally, the graded rank of Iw,x is denoted by nx,w ∈ Z[v±1] and defined as

nx,w :=
∑
d∈Z

rk
(
Idw,x

)
vd.

Then we can restate Lemma 1.16 as:

Lemma 2.52. The graded multiplicity of x in w in SD is given by the graded rank of Iw,x.

In order to understand what a graded multiplicity means in terms of powers of
v, we need to note that v acts by the grading shift functor (1) on the graded cate-
gory SD. This is the analog of what happens in the category of Soergel bimodules
SBim defined in the introduction.

Example 2.53. In the category SBim defined over the real geometric representation
of the symmetric group S3, we saw in the introduction that the Hecke algebra
relation

(2.10) HstsHsts = (v−3 + 2v−1 + 2v1 + v3)Hsts,

is lifted by the isomorphism

(2.11) Bsts ⊗R Bsts
∼= Bsts(−3)⊕Bsts(−1)⊕2 ⊕Bsts(1)

⊕2 ⊕Bsts(3).

In this case, we say that the graded multiplicity of Bsts in Bsts ⊗R Bsts is v−3 +
2v−1 + 2v1 + v3 to mean the following four statements:

(a) Bsts(−3) has multiplicity one in Bsts ⊗R Bsts.
(b) Bsts(−1) has multiplicity two in Bsts ⊗R Bsts.
(c) Bsts(1) has multiplicity two in Bsts ⊗R Bsts.
(d) Bsts(3) has multiplicity one in Bsts ⊗R Bsts.

2.7. The p-canonical basis and the relation with Soergel bimodules. Before in-
troducing the p-canonical basis, we have to fix some notations which will be used
in this thesis.

Notation 2.54. Let O denote a complete discrete valuation ring of characteristic
zero (e.g., a finite extension of Zp), K its field of fractions (e.g., a finite extension of
Qp), and k its residue field (e.g., a finite field Fq (q = pm)). Unless stated otherwise,
k denotes a complete local principal ideal domain, which may be for example K,
O or k.

Notation 2.55. Let
M =

∑
i∈Z

Mi

be a Z-graded module. The graded rank of M is given by

grk(M) =
∑
i∈Z

dim (Mi)v
i.

Let SD⊕ denote the graded idempotent completion of SD. That is, objects of
SD⊕ are shifts of finitely many direct sums of elements of the form (w, p), where
w is an object of SD and p ∈ End(w) is such that p ◦ p = 1w. On the other hand,
arrows from (w, p) to (v, q) are triples (e, f, h), where

f ∈ HomSD(w, v), e ∈ EndSD(w), h ∈ EndSD(v),(2.12)
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such that, f ◦ e = h ◦ f = f , e ◦ e = 1w and h ◦h = 1v . In this category, we have the
following theorem known as Soergel Categorification Theorem (or just SCT) which is
the main theorem of [EW16, Theorem 6.25].

Theorem 2.56 (Soergel Categorification Theorem). Let k be a complete local principal
ideal domain. Let SD⊕ be the additive diagrammatic category defined over k, then:

(1) SD⊕ is a Krull-Remak-Schmidt k-linear category with a grading shift functor (1).
(2) For all w ∈ W there exists a unique indecomposable direct summand

bw
⊕
⊂ w

in SD⊕ for any reduced expression w of w and which is not isomorphic to a grad-
ing shift of any direct summand of any expression v for an element v < w. The
object bw does not depend on the reduced expression w of w.

(3) The set {bw | w ∈ W} gives a complete set of representatives of the isomorphism
classes of indecomposable objects in SD⊕ up to grading shift.

(4) There exists a unique isomorphism of Z[v±1]-algebras

ε : ⟨SD⊕⟩ −→ H

[bs] 7−→ Hs,

where s ∈ S, and ⟨SD⊕⟩ denotes the split Grothendieck group of H. Above, the
group ⟨SD⊕⟩ has a Z[v±1]]-algebra structure as follows: the monoidal structure
on SD⊕ induces a unital, associative multiplication and v acts via v[b] := [b(1)]
for an object b of H. Furthermore, the explicit isomorphism is given by

ε : ⟨SD⊕⟩ −→ H

[b] 7−→
∑
w∈W

grk
(
Hom•

≮x,k(b, w)
)
Hw.

The second part of this theorem is analog to the Bott-Samelson description pre-
sented in the introduction in the category SBim of Soergel bimodules.

Remark 2.57. Despite the fact we have a diagrammatic presentation of SD, we do
not have a diagrammatic presentation of SD⊕ as determining the idempotents in
SD is usually extremely difficult. In [EL14], it is presented a recursion formula for
the idempotents in type Ã1 over fields K of characteristic zero, but over character-
istic p this is still an interesting open question which strongly motivates the results
in this thesis.

For any w ∈ Ex(S), by the Lemma 2.52 one has in [SD⊕] the identity

[w] =
∑
x∈W

mx[bx],

where mx denotes the graded rank of the intersection form Ix,w. This explains the
central importance of the intersection forms.

On the one hand, in [EW12] it is proved (using Soergel bimodules) that if K ∼= R
then ε sends the Kazhdan-Lusztig basis element Hw to the class of bw. On the other
hand, over fields k of characteristic p, the set {ε(Hw) | w ∈ W} is still a Z[v±1]-basis
of H and it is called the p-canonical basis of H. We denote

pHw := ε(Hw).
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Let SBim the category of Soergel bimodules described in the introduction. In
[EW16], a functor F : SD → SBim is constructed and it is proved that it induces an
equivalence of graded monoidal categories SD⊕ ∼= SBim. In particular, F maps
bw to Bw, for any w ∈ W .

Example 2.58. This is the analog of the example 2.53 but in the diagrammatic cat-
egory. Let SD be the diagrammatic category defined over the real geometric rep-
resentation of the symmetric group S3. By the equation 2.11 and the equivalence
described in the previous paragraph, we have that

HstsHsts = (v−3 + 2v−1 + 2v1 + v3)Hsts,

is lifted by the isomorphism

(2.13) bsts ⊗R bsts ∼= bsts(−3)⊕ bsts(−1)⊕2 ⊕ bsts(1)
⊕2 ⊕ bsts(3).

We say that the graded multiplicity of bsts in bsts ⊗R bsts is v−3 + 2v−1 + 2v1 + v3

to mean the following four statements:
(a) bsts(−3) has multiplicity one in bsts ⊗R bsts.
(b) bsts(−1) has multiplicity two in bsts ⊗R bsts.
(c) bsts(1) has multiplicity two in bsts ⊗R bsts.
(d) bsts(3) has multiplicity one in bsts ⊗R bsts.

3. LIBEDINSKY’S LIGHT LEAVES IN Un

As a requirement of Lemma 1.16 (from which we have deduced Lemma 2.52),
we have the fact that morphisms spaces are finitely generated as k-modules. Here
is where we need to introduce the Libedinsky’s light leaves in the category SD.
Henceforth, for simplicity, we will work in the universal Coxeter system Un (Cox-
eter systems of type Ã1). More general light leaves are not required in this thesis
and can be found in a diagrammatic version in [EW16, §6]. They are not canon-
ically constructed. Their construction depends on a finite number of arbitrary
choices. They are the diagrammatic translation of the Libedinsky’s light leaves
defined over the category SBim of Soergel bimodules, see [Lib15, §3].

Notation 3.1. In the category SD, the identity morphism in s = (s) will be denoted
by 1s. Its class as an S-graph consist of the class of just a vertical s-colored line,
as in the right-hand side of the Frobenius unit relation, see Section 2.5. Secondly,
the s-colored trivalent vertex corresponds to a morphism from (s, s) to (s) and
it will be denoted by js. Finally, the s-colored univalent vertex corresponds to a
morphism from (s) to (e) and it will be denoted by ms.

Notation 3.2. The identity of an expression w = (s1, . . . , sn) will be denoted by 1w
or just 1 if the domain is clear from the context. It is equal to 1s1 ⊗ 1s2 ⊗ · · · ⊗ 1sn ,
in particular, its graph will sometimes be depicted with n colored vertical and
parallel segments.

3.1. Diagrammatic construction. Let w = (s1, . . . , sn) be any expression (reduced
or not) of length n. Recall from Chapter 2 that given a binary string e of length
n, we have a coloration d = d1, . . . , dn for the subexpression wd. For 1 ≤ k ≤ n

we set w≤k := (s1, . . . , sk), e≤k := (e1, . . . , ek) and wk := (w
e≤k

≤k )• as before. We
set wk as the unique6 reduced expression of wk. We will construct a canonical

6In the universal Coxeter group Un, all reduced expressions are unique.
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morphism LLw,e ∈ Hom(w,we) associated with this subexpression. This will
be done constructing its S-graph. In order to do this, we will construct for each
0 ≤ k ≤ n an intermediate diagram LLw,e,k. Let LLw,e,0 be the empty diagram.
Suppose that LLw,e,k−1 ∈ Hom(w,wk−1) has already been constructed, it is well
defined and wk−1 is its codomain. Then we need to construct a well-defined map
LLw,e,k ∈ Hom(w,wk) and prove that wk is a reduced expression. There are only
four cases:

(1) Case dk = D0. This case occurs when ek = 0 and wk−1sk < wk−1. The last
condition can only happen if wk−1 ends with sk. Let

LLw,e,k := (1⊗ jsk) ◦ (LLw,e,k−1 ⊗ 1sk).

It is easy to show that the codomain of LLw,e,k is wk which in this case
equals to the reduced expression wk−1. This can be depicted by the follow-
ing picture

.

(2) Case dk = D1. This case occurs when ek = 1 and wk−1sk < wk−1. The last
condition can only happen if wk−1 ends with sk. Let

LLw,e,k :=
(
1⊗ (msk ◦ jsk)

)
◦ (LLw,e,k−1 ⊗ 1sk).

We have that the codomain of LLw,e,k is wk. If follows by definition of wk,
since wk−1 ends with sk, we have that wk is just wk−1 without the last sk.
This can be depicted by the following picture

.

(3) Case dk = U0. This case occurs when ek = 0 and wk−1sk > wk−1. The last
condition can only happen if wk−1 ends with si for some i ̸= k. Let

LLw,e,k := (1⊗msk) ◦ (LLw,e,k−1 ⊗ 1sk).
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It is easy to show that the codomain of LLw,e,k is wk which in this case
equals to the reduced expression wk−1. This can be depicted by the follow-
ing picture

.

(4) Case dk = U1. This case occurs when ek = 1 and wk−1sk > wk−1. The last
condition can only happen if wk−1 ends with si for some i ̸= k. Let

LLw,e,k := LLw,e,k−1 ⊗ 1sk .

We have that the codomain of LLw,e,k is wk. If follows by definition of wk,
since wk−1 ends with si, we have that wk is just wk−1 with a sk at the end.
This can be depicted by the following picture

.

Define LLw,e := LLw,e,n ∈ Hom(w,we) to be the desired morphism. It turns by
construction that the top of LLw,e := LLw,e,n is the reduced expression we.

Definition 3.3. The morphism LLw,e in the diagrammatic category SD is called
the Libedinsky light leaf from w to we. Let x ∈ W , the set of light leaves from w to
we such that (we)• = x is denoted by LLw(x). The set of light leaves from w to
anywhere is denoted by LLw. In particular,

LLw =
⊔

x≤(w)•

LLw(x).

3.2. Basic properties.

Lemma 3.4. The degree of the map LLw,e equals to the defect of the subexpression we.

Proof. This follows by induction in the k-th step of construction LLw,e,k of LLw,e.
Notice that dk = U0 adds just a degree 0 line and dk = D1 adds a trivalent vertex
of degree −1 and a dot of degree 1. Therefore, the only contributions to the degree
are the cases dk = D0 and dk = U0, which adds a trivalent vertex of degree −1 or
a dot of degree 1 respectively. □

The following lemma is standard and follows easily from [EL14, Proposition
3.7].
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Lemma 3.5. If w is a reduced expression, then every light leaf in LLw has non-negative
degree. If l ∈ LLw(e) then deg l ≥ 1.

The main theorem of [EW16] is the following.

Theorem 3.6 (Double-leaves basis). In the category SD, the set

{l2 ◦ l1 | l1 ∈ LLw, l2 ∈ LLv, top(l1) = top(l2)}
is an R-basis for Hom(w, v).

We conclude the following corollaries.

Corollary 3.7. In the category SD, if w and v are reduced expressions. Then there are no
negative degree morphisms in Hom(w, v).

Corollary 3.8. In the category SD≮x, the set LLw(x) is an R-basis for Hom≮x(w, x). In
particular, in the category k ⊗ SD≮x, the set LLw(x) is a k-basis for the k-vector space
Hom≮x,k(w, x).

Finally, we have the main theorem of this section.

Theorem 3.9. The local intersection form Iw,x in the category k ⊗ SD≮x is completely
determined by the matrix

{LLw,f ◦ LLw,e | (wf )• = (we)• = x, and df(wf ) = df(we) = 0}.

Proof. By Corollary 3.8 and k-bi-linearity of Iw,x, we know that the set

{LLw,f ◦ LLw,e | (wf )• = (we)• = x}

corresponds to the image of a basis of the domain of (Iw,x). Then this set deter-
mines completely Iw,x. However, this set is still too big. By Remark 2.50, we know
that each degree d light leaf can be paired non-trivially only with a degree −d light
leaf. But there does not exist light leaves of negative degree by Lemma 3.5. Then
it suffices with degree zero (defect zero) light leaves. □

4. PROPERTIES OF End•≮x,k(x) IN Un.

Fix x = (t1, t2, . . . , tr) a reduced expression of x ∈ W . Consider the k-vector
space End•≮x,k(x) defined above. Note that morphisms in this space have 2r ver-
tices on its boundary. There are r vertices on the bottom boundary, they are colored
from left to right by (ti | 1 ≤ i ≤ r) and indexed by (i | 1 ≤ i ≤ r), we denote them
by ai. Analogously, there are r vertices on the top, we denote them by bi := ar+i.
In particular, for each i, both ai and bi are colored by the same element ti of S. We
will refer to an arbitrary boundary vertex by ai or just a, where i ∈ {1, 2, . . . , 2r}.

4.1. Topological behavior of SD.

Definition 4.1. A curve of an S-graph D is a non-empty connected subset of D ⊂
R × [0, 1]. A loop of an S-graph D is a curve of D homeomorphic to the circle S1. A
loop of a curve γ of an S-graph D is a loop of D contained in γ.

Definition 4.2. Let γ be a curve of an S-graph D. A cycle of γ in D is a minimal
loop n ⊂ γ in γ, i.e., there are no other loops of γ such that its interior region (as
a subset of R2) is contained in the interior region of n. A cycle in D is a cycle for
some curve in D.
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Example 4.3. In the following picture, we can appreciate three different loops.

But the big one is the only which is not minimal, therefore there are only two
cycles.

Definition 4.4. Given an S-graph D. The connected portion or just a portion of a
point p ∈ D (respectively, of a cycle n or a curve γ) is the connected component
Γ which contains it, united with the interior region (as a subset of D) of any cycle
n belonging to Γ. We will denote it by porD(p) (respectively, by porD(n) or by
porD(γ)). We can omit the label D if the graph is clear from the context. A portion
of D is the portion of some point, cycle or curve of D.

Remark 4.5. Since S-graphs are finite graphs, S-graphs and portions can be ex-
pressed as a finite union of curves. Furthermore, curves of an S-graph D can be
expressed as a finite union of 1-manifolds.

Remark 4.6. Recall that an open edge of an S-graph D is a curve homeomorphic
to the closed interval [0, 1], whose two endpoints correspond to two different ver-
tices. An edge of an S-graph with at least one non-boundary endpoint can be con-
tracted in a way as small as one wants in SD by the isotopy relations (see Section
2.5), as in the following picture.

(4.1)

Caution: This relation should be not confused with the Frobenius unit relation (see
Section 2.5) which is stronger and eliminates the dot. Furthermore, any portion
with no cycles (called a tree), which does not contain any boundary vertex can be
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contracted as in the following picture.

(4.2)

This relation is obtained using a finite number of times the relation 4.1 for a small
distance. This can be done without touching the dark line by compactness of por-
tions in D. Furthermore a cycle and its respective interior region can be contracted.

(4.3)

All relations in the remark above can be translated in a single topological claim.

Claim 4.7 (Contraction to a neighborhood of a point). Let ε > 0 and a a point of D.
Let D be an S-graph. If porD(a) does not contain any boundary vertex (except maybe for
a itself), then there is an S-graph E such that:

(1) The images of D and E are equal in SD.
(2) The connected portion porE(a) is completely contained in the open ball with ra-

dius ε and center a.
(3) The complement of porE(a) relative to E is equal (as S-graphs) to the complement

of porD(a) relative to D.

The proof of claim 4.7 follows by the application of the isotopy relations in SD
and compactness of SD. This is a standard topological fact about tubular neigh-
borhoods and we will not prove it here. An example of an application of this claim
is the following identity.
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(4.4)

Analogously, we have another useful relation of contraction, we will not state
it. It enables us to move some parts of our S-graph near to the bottom (or top)
boundary, i.e., in a region of the form R × [0, ϵ] for a small ϵ. We will just show a
picture of this.

(4.5)

Here we also used the Frobenius associativity relation (see Section 2.5), in order
to move the red dot to the top of the diagram.

4.2. Criterion for being zero. We will start with the following illustrative exam-
ple:

Example 4.8. Let U2 the universal dihedral group with generators s and t. Let
x = stst and w = (s, t, s, t, s, t). Consider the binary strings d = (1, 1, 1, 1, 0, 0) and
e = (1, 0, 0, 1, 1, 1). We will look at the composition of the two light leaves

LLw,e ◦ LLw,d ∈ End•≮x(x).

We have the following equality.
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On the left-hand side, we have used relation 4.5 two times. We also used Claim 4.7
two times, the first time in a3 and the second time in a6. This was done in order
to obtain the right-hand side. The middle gray line represents w on the left-hand
side and (s, t) on the right-hand side. Since st < x we conclude that

LLw,e ◦ LLw,d = 0

in SD≮x. In particular
Iw,x(LLw,f ◦ LLw,e) = 0.

Let us characterize those phenomena by the following lemma.

Lemma 4.9 (Zero criterion). Let D be the S-graph representing a morphism f in End•≮x,k(x)

and ℓ(x) = r. If there is some j ∈ {1, 2, . . . , r} such that

por(aj) ̸= por(ar+j)

then f = 0. (Recall that bj := ar+j)

Proof. We will analyze the three different cases in which the hypothesis holds.
(1) Suppose that there is an i ∈ {1, 2, . . . , r} such that for all k ∈ {1, 2, . . . , 2r}

with k ̸= i

por(ai) ̸= por(ak).

or for all k ∈ {1, 2, . . . , 2r} with k ̸= i

por(ar+i) ̸= por(ak).

By Claim 4.7 applied to ai we have the following equality

.

Where w is the subexpression of x by suppressing ai and f ′ is a morphism
from w to x. Then clearly w• < x. Therefore f factors through a lower
term, then f = 0.

(2) Suppose there are i, j ∈ {1, 2, . . . , r} such that i ̸= j and

por(ai) = por(aj)

or
por(ar+i) = por(ar+j).

Then we have two bottom vertices or two top vertices connected. By rela-
tion 4.5 applied to some trivalent vertex connecting ai and aj we have the
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following equality

. .

Where w is the subexpression of x by suppressing ai+1, . . . , aj and f ′ is a
morphism from w to x. Then clearly w• < x. Therefore f factors trough a
lower term, then f = 0. We cannot assure that we can suppress ai itself,
since in this case ai may be connected with other boundary vertices.

(3) Suppose that the first two cases do not occur. Then f induces a well-
defined function f∗ from the ordered r-tuple (ai) to the ordered r-tuple
(bi) (remember that bi := ar+i), where f(ai) is bj if ai is connected with aj .
This is a well-defined function since, by assumptions of this case, each aj is
forced to be connected to some bj . This function is non-decreasing by the
intermediate value theorem because curves cannot cross between them in
a universal S-graph, the last sentence is true since there are no ms,t-valent
vertices. The unique function f∗ satisfying these conditions is the function
such that for all j ∈ {1, 2, . . . , r}

f∗(ai) = bi.

In particular, for all j ∈ {1, 2, . . . , r} we have

por(aj) = por(ar+j).

Which is a contradiction with the hypothesis.
There are no more cases if the hypothesis holds. □

Remark 4.10. When the hypothesis of the previous lemma fail (i.e., f∗ defined
above is determined by the rule f∗(ai) = bi), the graph is divided into r + 1 re-
gions Rj , which are the connected components of the complement of D in R×[0, 1].
Where Rj is the connected component containing the point ai − ϵ×[0, 1] if j < r+1
and Rr+1 is the connected component containing the point ar + ϵ×[0, 1] for ϵ small.
Then, we have for all i ∈ {1, 2, . . . , r}

por(ai) = por(ar+i).

Furthermore, since x is a reduced expression, we have for all i, j ∈ {1, 2, . . . , r}
such that i ̸= j that

por(ai) ̸= por(aj)

and
por(ai) ̸= por(ar+j).
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This tells us that the connections between the bottom and top vertices are one to
one, and there are no more connections.

Example 4.11. Let U4 be the universal group generated by the set {s, t, u, z}. Let
x = zsztut. Here we give an example of a non-zero morphism in SD≮x.

Note that the strip R× [0, 1] is divided into seven different disjoint regions. There
are also four interior regions, but they are trapped in cycles. Three of them are part
of the big red portion in the middle por(a4). The other one lies in the pink portion
of a1.

4.3. Evil cycles in End•≮x,k(x). Let us make some definitions in order to charac-
terize the cycles appearing in the graphs representing morphisms in End•≮x,k(x).

Definition 4.12. Let D be an S-graph. A maximal free portion is a maximally por-
tion which is not connected to any vertex of the boundary. A free cycle is a cycle
contained in a maximally free portion.

Definition 4.13. Let n be a cycle. We define a portion inside n as a portion contained
in the interior region of n. A main portion of n is a portion inside n which is maximal
with respect to this property. The set of main portions of a cycle n is denoted by
M(n).

Definition 4.14. An evil cycle e is either a free cycle (in which case we call it a free
evil cycle) or a cycle e that satisfies

♯M(e) > 1.

The evilness E(e) of a free evil cycle e is defined by

E(e) := ♯M(e).

The evilness E(e) of a non-free evil cycle e is defined by

E(e) := ♯M(e)− 1.

Definition 4.15. A cycle n is contained in a cycle m if the interior region of n is
contained in the interior region of m.

Definition 4.16. The depth of a cycle is defined recursively. We say that a cycle has
depth 1 if it is not contained in any other cycle. A cycle has depth k + 1 if it is
contained in a cycle nk of depth k and it is not contained in any cycle contained in
nk.
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Definition 4.17. Let D be an S-graph. A barbell is an edge with a dot vertex in each
of its two endpoints, the edge and the dots have all the same coloration. A barbell
is called an evil barbell if it is not contained in any interior region of a cycle.

Example 4.18. Let U4 be the universal group generated by the set {s, t, u, z}. Let
x = utus. Here we give an example of a non-zero morphism in SD≮x.

This morphism does not belong to End•≮x(x) since it is a degree six morphism, then
it lives in Hom≮x(x, x(6)). It divides the strip into five free regions. The red cycle
more to the left is non-evil and non-free cycle since it contains only one blue main
portion and the red portion which contains it is connected to two red boundary
vertices. This red cycle has a depth equal to one since there are no other cycles
containing it. The other depth-one cycles are the free pink cycle and the non-free
blue cycle at the right. The blue cycle is not evil since it contains only one green
main portion. The green cycle is contained in the blue cycle, then the green cycle
has depth two. It is an evil cycle since contains two main portions: a pink and
a red barbell. The lonely red barbell at the top is free, then it is an evil barbell.
Finally, the pink cycle is evil, even though it has only one main green portion, it is
an evil cycle since it is free, i.e., its associated portion does not touch any boundary
vertex.

We have the following lemma.

Lemma 4.19. In SD, let αs be the map from e to e given by the left multiplication by αs,
where s ∈ S, then any map of the form 1w ⊗ αs ⊗ 1v where w and v are two expressions
(not necessarily reduced) has degree two.

Proof. Since αs is a barbell and 1w consist of a finite number ℓw of vertical lines,
then 1 has degree zero and αs has degree two. Since the degree of a tensor of
morphisms is the sum of degrees. The resulting map has degree two. □

Corollary 4.20. If D is an S-graph of a non-zero morphism f ∈ End•≮x(x), then D has
no evil barbells.

Proof. Suppose that D has at least one evil barbell. Let ε > 0. We can contract the
barbell by Claim 4.7, making the diameter of it less than ε and move it to the top
of the diagram without touching any portion of D. Then we can write

f = (1w ⊗ αs ⊗ 1v) ◦ g,
where g has an S-graph given by the complement of the evil barbell. However, by
Lemma 4.19, g is forced to have degree equal to −2, which contradicts Corollary
3.7. □

Notation 4.21. Let D be an S-graph. We denote by E(d, e) to the number of evil
cycles of D with evilness e and depth d. Define n(d, e) to be the cardinal of E(d, e).
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Using the relations 2.9 we can reduce evilness and depth of cycles. As in the
following example.

Example 4.22. Let U2 the universal dihedral group generated by {s, t}. We have
the following identity:

(4.6)

Where in the dashed box we replaced the left-hand side of the first equation of 2.9
by the right-hand side of it. Also, we used the Frobenius unit relation (see Section
2.5) to contract those two red dots. Analogously, we have the following relation.

(4.7)

But we used here the second equation of 2.9 and the neddle relation to kill the
second term, see Section 2.5.

Let D an S-graph. For r, p in S let us define the set IDr,p as follows:

IDr,p := {non evil cycles of D colored by r and main portion colored by p}.
As a consequence, we have the main lemma of this section.

Lemma 4.23. If D is an S-graph of a non-zero morphism f ∈ End•≮x(x) with non-evil
cycles. Then we have the following formula:

f =
∏

(r,p)∈S2

(ar,p)
♯IDr,p · 1x

Proof. We will proceed by induction in the number of cycles. The set of cycles is
equal to ∪

(r,p)∈S2

Ir,p.
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The base case is when we have no cycles, then by Remark 4.10 and Corollary 4.20
we have no free components and all boundary vertices are connected in a bijective
correspondence aj ↔ aℓ(x)+j . Then by isotopy relations, we have that f has only
ℓ(x) vertical parallel lines without cycles, then f = 1. Let D be an S-graph as in
the hypothesis. Let d be the maximal depth of a cycle in D. We pick a cycle g of
depth d colored by r, since it is non-evil it contains only one main portion colored
by r. That main portion cannot have a cycle by maximality of depth, therefore it is
a tree. By the Frobenius unit relation (see Section 2.5), we can reduce it to a barbell.
We have two possible situations:

(1) If d = 1, then we apply we have the following situation

.

Where we have applied 4.7 to the cycle near the top. In the picture, r = s
and p = t.

(2) If d > 1, then the cycle g is contained as a maximal cycle inside another
cycle n colored by q, then we have two possible sub-scenarios
(a) The cycle g is the unique cycle contained in n.

.
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(b) The cycle g is not the unique cycle contained in n.

.

Where in both sub-scenarios we have applied 4.7 to the red cycle (of
course, with colors changed). In the pictures, q = u, r = t and p = s.
In both cases the cycle n remains being colored by the same way, it
still is colored by q and contains a unique main portion colored by r.

In all cases, we obtained a graph E with:
(a) The same cycles as D, with same colorations except a cycle belonging

to Ir,p.
(b) An additional boxed ar,p in some part of the diagram. Denote by B to

the diagram E without the boxed ar,p.
By the Nil Hecke relation (see Section 2.5), the number ar,p can pass

through all lines and go to the left free region of the diagram. Then f =
ar,p ·g where g can be represented by the diagram B. By induction hypoth-
esis,

g = (ar,p)
♯IDr,p − 1 ·

∏
(q,t)∈S2

(aq,t)
♯IDq,t · 1x.

But f = ar,p · g. By replacing g in this equation we finally obtain the for-
mula.

□
We will also prove a kind of converse of the last lemma.

Lemma 4.24. If D is an S-graph of a non-zero morphism f ∈ End•≮x(x), then D has no
evil cycles.

Proof. The conclusion is equivalent to say that for all d ∈ N and for all e ∈ N the set
E(d, e) is empty. We will proceed by contradiction, in other words, we will assume
that ∪

d∈N

∪
e∈N

E(d, e) ̸= ∅.

Since graphs are finite, there is a maximum d0 such that∪
e∈N

E(d0, e) ̸= ∅.
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By the same reason we can take e0 such that

e0 = max {e ∈ N : E(d0, e) ̸= ∅} .
We will prove that there is a function g with a lower degree than g with just evil
cycles in the set E(1, 1). But this follows straightforward since e0 > 1 we pick a
cycle in E(d0, e0), and delete all e0 − 1 maximal portions contained in this cycle
except one. This gives us a valid new graph with

e1 = max {e ∈ N : E(d0, e) ̸= ∅} < e0.

As a consequence of 3.5, the deleted portions cannot have a negative degree (they
have degree two), then the degree of the new diagram must be less than or equal
to the original degree which is zero, then this new diagram has a negative degree
We can repeat this argument until∪

e∈N

E(d0, e) = ∅.

Then we can define.

d1 = max

{
d ∈ N :

∪
e∈N

E(d, e) ̸= ∅

}
< d0.

And repeat this argument until∪
d∈N

∪
e∈N

E(d, e) ̸= ∅.

Then the resulting graph has no evilness and has a strictly negative degree. But by
the Lemma 4.23 this resulting graph has a formula, which corresponds to a degree
zero morphism, a contradiction. □

5. INTERSECTION FORMS FORMULA IN Un

In this section, we will prove the main theorem of this thesis.

Theorem 5.1 (Main theorem). Let w be a reduced expression of length r. Let x ∈ Un.
Let f and e be two binary expressions of length r. Let D an S-graph associated to LLw,f .
Then

Iw,x

(
LLw,f ◦ LLw,e

)
=


0, if ∃j | porD(aj) ̸= porD(ar+j),∏
(r,p)∈S2

a
♯IDr,p
r,p , otherwise.

The intersection form Iw,x is completely determined by those numbers.

Proof. The first case comes from Corollary 4.9. The second case follows by Lemma
4.23 and Lemma 4.24. The last phrase comes from Theorem 3.9. □
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