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Abstract

This thesis concerns the study of chiral algebras over schemes of arbitrary

dimension 𝑛.

In Chapter I, we construct a chiral algebra over each smooth variety 𝑋 of

dimension 𝑛. We do this via the Hilbert scheme of points of 𝑋, which we

use to build a factorisation space over 𝑋. Linearising this space produces

a factorisation algebra over 𝑋, and hence, by Koszul duality, the desired

chiral algebra. We begin the chapter with an overview of the theory of fac-

torisation and chiral algebras, before introducing our main constructions.

We compute the chiral homology of our factorisation algebra, and show

that the 𝒟-modules underlying the corresponding chiral algebras form a

universal 𝒟-module of dimension 𝑛.

In Chapter II, we discuss the theory of universal 𝒟-modules and 𝒪-

modules more generally. We show that universal modules are equivalent

to sheaves on certain stacks of étale germs of 𝑛-dimensional varieties. Fur-

thermore, we identify these stacks with the classifying stacks of groups of

automorphisms of the 𝑛-dimensional disc, and hence obtain an equiva-

lence between the categories of universal modules and the representation

categories of these groups. We also define categories of convergent univer-

sal modules and study them from the perspectives of the stacks of étale

germs and the representation theory of the automorphism groups.
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Introduction

Vertex algebras and vertex operator algebras have been studied and applied fruitfully

in a number of areas, ranging from physical disciplines such as conformal field theory

and string theory to finite group theory and the geometric Langlands correspondence.

Beilinson and Drinfeld [4] reformulated the axioms of a vertex algebra in geometric

language in terms of chiral algebras, and showed that the latter are equivalent to

factorisation algebras—both geometric objects which take the form of 𝒟-modules over

a complex curve, equipped with additional structure. The sophisticated machinery

of factorisation and chiral algebras elegantly captures the data of vertex algebras in

an often more intuitive way.

In the one-dimensional setting, Frenkel and Ben-Zvi [10] explain the relationship

between vertex algebras and chiral algebras over curves. To make this relationship

precise, we need adjectives on both sides. First, we require our vertex algebras to

be quasi-conformal, or equipped with a one-dimensional infinitesimal translation. On

the other hand, the chiral algebras we obtain are universal : they are defined over all

smooth families of curves, and are compatible with pullback by étale morphisms of

these families. Roughly, the infinitesimal translation allows us to spread the vector

space underlying the vertex algebra canonically along any complex curve 𝐶. In this

way, we obtain a 𝒟-module on 𝐶 which will have the structure of a chiral algebra.

The fact that this procedure works for any smooth curve 𝐶 means that we obtain a

universal chiral algebra.

Francis and Gaitsgory [9] showed that Beilinson–Drinfeld’s definitions can be ex-

tended to higher dimensions. They identify chiral and factorisation algebras as specific

Lie algebra and cocommutative coalgebra objects in a certain monoidal category, and

then show that the equivalence of chiral and factorisation algebras amounts to a par-

ticular case of Koszul duality. We expect Frenkel–Ben-Zvi’s result to extend to this

setting: that is, a higher-dimensional analogue of a vertex algebra should correspond

to a higher-dimensional universal chiral algebra. However, although some attempt
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Introduction

has been made to define such higher vertex algebras (see for example Borcherds [5]),

these definitions have not been compared with the algebras of Francis–Gaitsgory.

In this thesis, we approach the study of higher-dimensional chiral algebras from

two perspectives. In the first chapter, we use the Hilbert scheme of points to construct

concrete examples of chiral algebras of arbitrary dimension. On the other hand, in

the second chapter, we study the theory of universal 𝒟-modules, which is a structure

weaker than that of universal chiral algebras. We develop a thorough understanding

of the relationship between the category of universal 𝒟-modules and the category

of representations of the group of automorphisms of the formal disc; the functors

that we provide between these two categories agree with the functors exhibiting the

equivalence between universal chiral algebras and quasi-conformal vertex algebras.

This understanding should shed light on the extension of the definition of a vertex

algebra to higher dimensions.

The Hilbert scheme of points is a natural starting point when attempting to

find examples of chiral algebras. One reason for this is the well-known result of

Nakajima [32] and Grojnowski [21], that the cohomology of the Hilbert scheme of

points on a smooth projective surface 𝑋 has a canonical structure of a vertex algebra,

the Heisenberg vertex algebra modelled on the integral cohomology of the surface 𝑋.

By the above, this means that for the fixed surface 𝑋 and for any curve 𝐶, there is

a chiral algebra on 𝐶 coming from the cohomology of the Hilbert scheme of 𝑋.

However, we are interested in constructing chiral algebras over higher-dimensional

varieties, not just curves. In fact, in this thesis we take a different approach to Naka-

jima and Grojnowski, and use the Hilbert scheme of points to define a chiral algebra

over 𝑋, for 𝑋 a smooth variety of any dimension, not just for a surface. We do this

via the category of factorisation algebras: an important advantage of working in the

setting of factorisation algebras rather than that of chiral algebras or vertex algebras

is that the definition of a factorisation algebra extends in a straightforward way to

non-linear settings, leading to the notions of factorisation spaces and factorisation cat-

egories. In particular, once one has constructed a factorisation space living over the

variety 𝑋 one can linearise it in several natural ways to obtain factorisation algebras

over 𝑋. Our strategy is to exploit the geometry of the Hilbert scheme to construct a

factorisation space over 𝑋; we linearise this space to produce a factorisation algebra

over 𝑋, and hence a chiral algebra. We study these objects in Chapter I.

In Chapter II we study categories of universal 𝒟-modules and universal𝒪-modules

of dimension 𝑛. Motivated by a claim of Beilinson and Drinfeld [4] we relate these

2



categories to categories of representations of groups of automorphisms of the 𝑛-

dimensional formal disc. A universal 𝒟-module is a rule assigning to each smooth

𝑛-dimensional variety a 𝒟-module in a way compatible with pullback by étale mor-

phisms between the varieties. A key observation is that all of this data is equivalent

to the data of a single sheaf on a stack parametrising étale germs of 𝑛-dimensional

varieties.

A second critical observation is that, using a generalisation of Artin’s approxima-

tion theorem to the relative setting, we can relate this stack to the classifying stack

of the group 𝐺 of automorphisms of the 𝑛-dimensional formal disc. More precisely,

our stack is equivalent to the classifying stack of the group 𝐺ét of automorphisms of

étale type, which is a dense subgroup of 𝐺. It follows that a universal 𝒟-module is

equivalent to a representation of 𝐺ét; furthermore, any representation of 𝐺 restricts

to give a representation of 𝐺ét and hence a universal 𝒟-module.

A natural question to ask is whether we can characterise those universal 𝒟-

modules which come from representations of 𝐺 rather than representations of just

the subgroup 𝐺ét. We give two characterisations of these universal 𝒟-modules, which

we call convergent universal 𝒟-modules. However, at the time of writing, we do

not know whether all universal 𝒟-modules are actually convergent. This question is

equivalent to the question of whether all representations of 𝐺ét extend uniquely to

representations of 𝐺. We are able to show that if an extension exists, it is unique.

Furthermore, any finite-dimensional representation of 𝐺ét extends to a representation

of 𝐺, and in fact this is true of any representation of 𝐺ét satisfying a weaker finiteness

condition which we call being 𝐾 ét-locally-finite. All representations of 𝐺 satisfy this

condition, and so the question is reduced to the existence of representations of 𝐺ét

which are not 𝐾 ét-locally-finite. If such a representation exists, it will give rise to a

universal 𝒟-module which is not convergent; on the other hand, it seems that such

an object would be unlikely to arise in ordinary applications of the theory and would

be unpleasant to work with. In other words, we are only interested in working with

𝒟-modules satisfying the properties implied by convergence, and we suggest that the

category of convergent universal 𝒟-modules is the correct category in which to work.

An intended application of this theory is the following. As in Francis–Gaitsgory

[9], we know that chiral algebras over a variety 𝑋 are certain Lie algebra objects

in the category of 𝒟-modules on the Ran space of 𝑋, which is equipped with a

monoidal structure called the chiral monoidal structure. In the universal setting, we

can introduce Ran versions of the stack of étale germs and the automorphism groups

3



Introduction

𝐺 and 𝐺ét, and define chiral monoidal structures on the associated categories of quasi-

coherent sheaves. We should then interpret the monoidal structure in terms of the

classifying stack in order to obtain higher-dimensional analogues of vertex algebras as

Lie algebra objects in the representation category with this chiral monoidal structure.

This will be explored in future work.
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Chapter I

Factorisation structures on the
Hilbert scheme of points

In this chapter, our goal is to use the Hilbert scheme of points of a variety 𝑋 of

arbitrary dimension 𝑛 to define a factorisation space and factorisation algebra over

𝑋. We will begin in section 1 by establishing the necessary definitions and results

regarding factorisation spaces and factorisation algebras. In section 2 we define and

and study our factorisation space and the resulting factorisation algebra.

0.1 Conventions

We fix an algebraically closed field 𝑘 of characteristic zero. We work in the categories

Sch of schemes over 𝑘 and Schf.t. of schemes of finite type over 𝑘. Let us emphasise

that these are classical rather than DG schemes.

The “spaces” we consider will all be in particular prestacks, locally of finite type,

that is, functors

Schop
f.t. → ∞-Grpd.

We denote this category by PreStkl.f.t., and view Schf.t. as a full subcategory under

the Yoneda embedding. See Appendix A.1 for some basic definitions and properties.

We work with the DG-categories of 𝒟-modules on our prestacks. See Appendix

A.2.3 for an overview of the theory, or [18] and III.4 of [20] for a more complete

account; the key idea to keep in mind is that for any prestack 𝒴 which is locally of

finite type, 𝒟(𝒴) is defined as

lim
(𝑆→𝒴)∈((SchAff

f.t.)/𝒴)
op
𝒟(𝑆),

where the limit is taken with respect to the functor sending 𝑓 : 𝑆 → 𝑆 ′ to 𝑓 ! :

𝒟(𝑆 ′) → 𝒟(𝑆).

5



1 Preliminaries on factorisation
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1 Preliminaries on factorisation

In this section, we introduce the theory of factorisation spaces and factorisation al-

gebras. We begin in 1.1 by defining the Ran space of a separated scheme 𝑋, and its

variant, the Ran space of marked points. We show, following Beilinson–Drinfeld [4],

that if 𝑋 is connected, both of these spaces are homologically contractible. In 1.2

we define factorisation spaces and algebras, and show how we can produce examples

of factorisation algebras from factorisation spaces by linearisation. In 1.3 we define

the notion of a chiral algebra, and focus in particular on commutative chiral alge-

bras. In 1.4 we discuss the equivalence between the categories of chiral algebras and

factorisation algebras.

Finally, we conclude by introducing the notion of a vertex algebra in 1.5, and

by discussing the equivalence between quasi-conformal vertex algebras and chiral

algebras over curves. The material of 1.5 is not necessary for the second section of

the chapter, but it is the motivation for the study of universal 𝒟-modules in Chapter

II.

1.1 The Ran space

Fix a separated scheme 𝑋 of finite type over 𝑘. In this section we introduce the Ran

space of the surface 𝑋, as well as its variant, the Ran space of marked points, and

prove that, as long as 𝑋 is connected, they are homologically contractible.
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1.1 The Ran space

Definition 1.1.1. Let fSet denote the category of finite non-empty sets 𝐼 and sur-

jections 𝛼 : 𝐼 � 𝐽 .

Key construction 1.1.2. Given any finite non-empty set 𝐼, let 𝑋𝐼 denote the 𝐼-fold

fibre product of 𝑋 over Spec 𝑘. For any surjective map 𝛼 : 𝐼 � 𝐽 there is a natural

map 𝑋𝐽 → 𝑋𝐼 sending the point (𝑥𝑗)𝑗∈𝐽 ∈ 𝑋𝐽 to the 𝐼-tuple (𝑦𝑖)𝑖∈𝐼 in 𝑋
𝐼 which has

coordinates 𝑦𝑖 = 𝑥𝛼(𝑖) for each 𝑖 ∈ 𝐼. We denote this map by Δ(𝛼) : 𝑋𝐽 → 𝑋𝐼 . It is

easy to see that we obtain a functor

𝑋 fSet : fSetop → Sch

𝐼 ↦→ 𝑋𝐼

(𝛼 : 𝐼 � 𝐽) ↦→ (Δ(𝛼) : 𝑋𝐽 → 𝑋𝐼),

and that the maps Δ(𝛼) are closed embeddings of schemes. It follows that the colimit

(in the category PreStkl.f.t.)

colim
𝐼∈fSetop

𝑋𝐼

is a pseudo-indscheme.

Definition 1.1.3. We denote the above pseudo-indscheme by Ran𝑋, and call it the

Ran space of 𝑋.

We are interested in the category of 𝒟-modules on Ran𝑋,

𝒟(Ran𝑋) ≃ lim
𝐼∈fSet

𝒟!(𝑋𝐼) ≃ colim
𝐼∈fSetop

𝒟!(𝑋
𝐼).

(See Appendix A2.3.2 for a discussion of 𝒟-modules on prestacks.) For any 𝐼 ∈ fSet,

we denote by ((Δ𝐼)!, (Δ
𝐼)!) the adjoint pair of functors 𝒟(𝑋𝐼) � 𝒟(Ran𝑋) given by

the tautological functors from the descriptions of 𝒟(Ran𝑋) as a colimit and limit,

respectively.

It follows from the discussion in Appendix A2.3.3 that the de Rham cohomology

of Ran𝑋

H∙(Ran𝑋) ..= (𝑝Ran𝑋)! ∘ (𝑝Ran𝑋)
!(𝑘) ∈ Vect = 𝒟(pt)

is defined, and that there is a canonical map

TrRan𝑋 : H∙(Ran𝑋) → H∙(pt) = 𝑘.

The following important fact is a theorem of Beilinson and Drinfeld when 𝑋 is a

curve (see the proposition in 4.3.3, [4]), and is proved by the same methods for 𝑋 of

higher dimension in section 6 of [16].
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1 Preliminaries on factorisation

Proposition 1.1.4. For 𝑋 a connected separated scheme of finite type over 𝑘, the

trace map

TrRan𝑋 : H∙(Ran𝑋) → 𝑘

is an isomorphism of DG-vector spaces over 𝑘. In other words, Ran𝑋 is homologically

contractible.

Beilinson and Drinfeld’s proof of Proposition 1.1.4 is easily generalised to the

following setting:

Lemma 1.1.5. Let 𝒴 be prestack expressible as a colimit of schemes

𝒴 ≃ colim
𝐼∈𝒮

𝑍(𝐼),

and satisfying the following properties:

1. For each 𝐼 ∈ 𝒮, 𝑍(𝐼) is either empty or connected, and for at least some 𝐼 ∈ 𝒮,
𝑍(𝐼) is non-empty.

2. There is a map 𝑚 : 𝒴×𝒴 → 𝒴 which is associative and commutative, and such

that its composition with the diagonal map is the identity:

𝒴 𝒴 × 𝒴 𝒴 .
Δ𝒴 𝑚

id𝒴

Then 𝒴 is homologically contractible.

In the case of the Ran space, the map 𝑚 corresponds to taking the union of two

finite sets:

union : Ran𝑋 × Ran𝑋 → Ran𝑋

(𝑆, 𝑇 ) ↦→ 𝑆 ∪ 𝑇.

It is easy to see that this satisfies the conditions of (2).

We will now consider another example of a prestack which is homologically con-

tractible by this same lemma. We have the following variant of the Ran space,

introduced by Gaitsgory:

Definition 1.1.6 (2.5.2, [16]). Fix a finite set 𝐴, and consider the category fSet𝐴

whose objects are finite sets 𝐼 equipped with any map 𝑎𝐼 : 𝐴 → 𝐼, and whose

morphisms from (𝐴→ 𝐼) to (𝐴→ 𝐽) are commutative triangles:

8



1.1 The Ran space

𝐴

𝐼 𝐽.

𝑎𝐼 𝑎𝐽

𝛼

Now fix a 𝑘-point 𝑦𝐴 ∈ 𝑋𝐴 and for any (𝑎𝐼 : 𝐴→ 𝐼) ∈ fSet𝐴 let 𝑋𝑎𝐼
𝐴

..=
{︀
𝑦𝐴
}︀
×𝑋𝐴𝑋𝐼 .

Notice that for any 𝛼 : 𝐼 � 𝐽 giving a map (𝑎𝐼 : 𝐴→ 𝐼) → (𝑎𝐽 : 𝐴→ 𝐽) in fSet𝐴,

the closed embedding Δ(𝛼) : 𝑋𝐽 →˓ 𝑋𝐼 induces a closed embedding 𝑋𝑎𝐽
𝐴 →˓ 𝑋𝑎𝐼

𝐴 .

Therefore we can consider the colimit

Ran𝑋𝐴
..= colim

(𝐼,𝑎𝐼)∈fSetop𝐴
𝑋𝛼
𝐴.

It is a pseudo-indscheme, and we will call it the Ran space of 𝑋 with marked points.

Intuitively, Ran𝑋𝐴 parametrises all finite non-empty subsets of 𝑋 containing 𝑦𝑎

for each 𝑎 ∈ 𝐴.

It follows from Proposition 1.1.4 above and Corollary 2.5.10 of [16] that Ran𝑋𝐴 is

homologically contractible; however, it is easy enough to see it directly from Lemma

1.1.5. We explain this now.

Proposition 1.1.7. If 𝑋 is connected, then the trace map

TrRan𝑋𝐴
: H∙(Ran𝑋𝐴) → 𝑘

is an equivalence.

Proof. Let us first check condition (1) of Lemma 1.1.5. Given any (𝐴
𝑎𝐼−→ 𝐼) ∈ fSet𝐴,

we can decompose 𝐼 as 𝐼 = 𝐼 ′ ⊔ 𝐼 ′′, where 𝐼 ′ ..= im(𝑎𝐼). Then we have

𝑋𝐼
𝐴

..= {𝑦𝐴} ×𝑋𝐴 𝑋𝐼 ≃
(︁
{𝑦𝐴} ×𝑋𝐴 𝑋𝐼′

)︁
×𝑋𝐼′′ .

Since the map 𝑋𝐼′ → 𝑋𝐴 is a closed embedding, the scheme {𝑦𝐴} ×𝑋𝐴 𝑋𝐼′ is either

empty or a single point (and in the case that 𝑎𝐼 is injective, it is a point), and so the

scheme 𝑋𝐼
𝐴 is either empty or isomorphic to 𝑋𝐼′′ , which is a connected scheme.

So to complete the proof, it remains to define a suitable map

𝑚 : Ran𝑋𝐴 × Ran𝑋𝐴 → Ran𝑋𝐴.

Intuitively, the map we will use is just the map sending two finite subsets of 𝑋

containing
{︀
𝑦𝐴
}︀
to their union; let us now define this rigorously.
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1 Preliminaries on factorisation

Recall from the universal property of colimits that to define a map 𝑚 : Ran𝑋𝐴×
Ran𝑋𝐴 → Ran𝑋𝐴 it suffices to give compatible maps 𝑚𝐼,𝐽 : 𝑋𝐼

𝐴 × 𝑋𝐽
𝐴 → Ran𝑋𝐴

for any pair of objects (𝐴
𝑎𝐼−→ 𝐼) and (𝐴

𝑎𝐽−→ 𝐽) of fSet𝐴.

Given such a pair, we define 𝐴
𝑎𝐼⊔𝐴𝐽−−−→ 𝐼 ⊔𝐴 𝐽 to be the pushout 𝐼 ⊔𝐴 𝐽 of 𝐼 and 𝐽

along the maps from 𝐴, together with the natural map from 𝐴 to 𝐼 ⊔𝐴 𝐽 . (Note that
this is an object of fSet𝐴, but it is not the coproduct of (𝐴

𝑎𝐼−→ 𝐼) and (𝐴
𝑎𝐽−→ 𝐽).)

Then 𝑋𝐼⊔𝐴𝐽 is isomorphic to the fibre product 𝑋𝐼 ×𝑋𝐴 𝑋𝐽 , and so we can see that

𝑋𝐼⊔𝐴𝐽
𝐴 ≃ {𝑦𝐴, 𝑦𝐴} ×𝑋𝐴×𝑋𝐴 (𝑋𝐼 ×𝑋𝐽).

We need to define a map 𝑚𝐼,𝐽 from 𝑋𝐼
𝐴 × 𝑋𝐽

𝐴 into Ran𝑋𝐴, and since 𝑋𝐼
𝐴 × 𝑋𝐽

𝐴 ≃
{𝑦𝐴, 𝑦𝐴} ×𝑋𝐴×𝑋𝐴 (𝑋𝐼 ×𝑋𝐽), we can simply take 𝑚𝐼,𝐽 to be the natural map

𝑋𝐼⊔𝐴𝐽
𝐴 → colim

𝐾∈fSetop𝐴
𝑋𝐾
𝐴 = Ran𝑋𝐴.

This gives a compatible family of maps into Ran𝑋𝐴, and hence defines a map 𝑚 :

Ran𝑋𝐴 × Ran𝑋𝐴 → Ran𝑋𝐴. The associativity and commutativity of this map 𝑚

follow from the corresponding properties of the coproduct of finite sets. It is also

easy to see that 𝑚 is left inverse to the diagonal map Ran𝑋𝐴 → Ran𝑋𝐴 × Ran𝑋𝐴,

and so 𝑚 satisfies all the required properties. Hence, by Lemma 1.1.5, the proof is

complete.

1.2 Factorisation spaces and factorisation algebras

Let us again fix 𝑋 a separated scheme of finite type over 𝑘.

Definition 1.2.1. A factorisation space over 𝑋 consists of the following data:

1. A prestack 𝒴Ran𝑋 expressible as a colimit over fSetop:

𝒴Ran𝑋 ≃ colim
𝐼∈fSetop

𝑌𝑋𝐼 ,

where each 𝑌𝑋𝐼 is an indscheme and for any 𝛼 : 𝐼 � 𝐽 , the map 𝑌 (𝛼) : 𝑌𝑋𝐽 →
𝑌𝑋𝐼 is ind-proper.

2. For each finite set 𝐼 a map

𝑓 𝐼 : 𝑌𝑋𝐼 → 𝑋𝐼 ,

natural in fSet, i.e. a natural transformation 𝑓 : 𝑌𝑋fSet =⇒ 𝑋 fSet.

10



1.2 Factorisation spaces and factorisation algebras

3. Ran’s condition: For any surjection 𝛼 : 𝐼 � 𝐽 , there is a natural map 𝜈𝛼 :

𝑌𝑋𝐽 → 𝑋𝐽 ×𝑋𝐼 𝑌𝑋𝐼 given by

𝑌𝑋𝐽

𝑋𝐽 ×𝑋𝐼 𝑌𝑋𝐼 𝑌𝑋𝐼

𝑋𝐽 𝑋𝐼 .

𝑌 (𝛼)

𝑓𝐽 𝑓𝐼

Δ(𝛼)

𝜈𝛼

We require that 𝜈𝛼 be an equivalence of indschemes, and that 𝜈 be associative

in the obvious sense.

4. Factorisation: Given 𝛼 : 𝐼 � 𝐽 as above, we obtain a partition of 𝐼 as
⨆︀
𝑗∈𝐽 𝐼𝑗,

where 𝐼𝑗 = {𝑖 ∈ 𝐼 | 𝛼(𝑖) = 𝑗}, and we consider the following open subscheme of

𝑋𝐼 :

𝑈 = 𝑈(𝛼) ..=
{︀
(𝑥𝑖)𝑖∈𝐼 ∈ 𝑋𝐼 | 𝑥𝑖1 ̸= 𝑥𝑖2 unless 𝛼(𝑖1) = 𝛼(𝑖2)

}︀
.

We let 𝑗 = 𝑗(𝛼) denote the open embedding 𝑈 →˓ 𝑋𝐼 ∼=
∏︀

𝑗∈𝐽 𝑋
𝐼𝑗 , and consider

the following two pullback diagrams:

𝑈 ×𝑋𝐼 𝑌𝑋𝐼 𝑌𝑋𝐼 𝑈 ×𝑋𝐼

(︁∏︀
𝑗∈𝐽 𝑌𝑋𝐼𝑗

)︁ ∏︀
𝑗∈𝐽 𝑌𝑋𝐼𝑗

𝑈 𝑋𝐼 𝑈
∏︀

𝑗∈𝐽 𝑋
𝐼𝑗 .

𝑗′

(𝑓𝐼)′ 𝑓𝐼

𝑗′′

(︁∏︀
𝑗∈𝐽 𝑓

𝐼𝑗
)︁′′ ∏︀

𝑗∈𝐽 𝑓
𝐼𝑗

𝑗 𝑗

We require an equivalence

𝑑𝛼 : 𝑈 ×𝑋𝐼

(︃∏︁

𝑗∈𝐽

𝑌𝑋𝐼𝑗

)︃
∼−→ 𝑈 ×𝑋𝐼 𝑌𝑋𝐼

of indschemes over 𝑈 . Moreover, these equivalences 𝑑𝛼 should be associative

and compatible with the other structure maps 𝜈𝛼.

Let us describe explicitly a compatibility condition between the maps 𝜈 and 𝑑.

Suppose that we have three finite sets 𝐼, 𝐽,𝐾 with surjections:

𝐼 𝐽 𝐾.
𝛼 𝛽

11



1 Preliminaries on factorisation

Write 𝛼𝑘 for the restriction of 𝛼 to the pre-image 𝐼𝑘 of 𝑘 under the composition 𝛽 ∘𝛼,
so that we have

𝛼𝑘 : 𝐼𝑘 =
⨆︁

𝑗∈𝐽𝑘

𝐼𝑗 � 𝐽𝑘.

Notice that 𝑈(𝛽) = 𝑈(𝛽 ∘ 𝛼) ×𝑋𝐼 𝑋𝐽 . Then we require that the following diagram

be commutative.

𝑈(𝛽)×𝑋𝐽

(︃∏︁

𝑘∈𝐾

𝑌𝑋𝐽𝑘

)︃
𝑈(𝛽)×𝑋𝐽 𝑌𝑋𝐽

𝑈(𝛽)×𝑋𝐽

(︃∏︁

𝑘∈𝐾

(︀
𝑋𝐽𝑘 ×𝑋𝐼𝑘 𝑌𝑋𝐼𝑘

)︀
)︃

𝑈(𝛽)×𝑋𝐽

(︀
𝑋𝐽 ×𝑋𝐼 𝑌𝑋𝐼

)︀

𝑋𝐽 ×𝑋𝐼

(︃
𝑈(𝛽 ∘ 𝛼)×𝑋𝐼

(︃∏︁

𝑘∈𝐾

𝑌𝑋𝐼𝑘

)︃)︃
𝑋𝐽 ×𝑋𝐼 (𝑈(𝛽 ∘ 𝛼)×𝑋𝐼 𝑌𝑋𝐼 ) .

∼ ∼

∼
𝑑𝛽

∼

(𝜈𝛼𝑘
)𝑘∈𝐾

∼

𝜈𝛼

∼
𝑑𝛽∘𝛼

Remark 1.2.2. Note that, by the universal property of colimits, the maps 𝑓 𝐼 in (2)

give rise to a map 𝑓 : 𝒴Ran𝑋 → Ran𝑋.

An important example of a factorisation space is due to Beilinson and Drinfeld [3]:

Example 1.2.3. Let 𝐺 be an algebraic group and let 𝑋 = 𝐶 be a curve. For 𝐼 ∈ fSet

define Gr𝐺,𝐶𝐼 to be the prestack that sends a test-scheme 𝑆 to the groupoid

⎧
⎨
⎩(𝑐𝐼 ,𝒫 , 𝛼)

⃒⃒
⃒⃒
⃒⃒
𝑐𝐼 : 𝑆 → 𝐶𝐼

𝒫 → 𝑆 × 𝐶 a principal 𝐺-bundle
𝛼 : 𝑆 × 𝐶 ∖

{︀
𝑐𝐼
}︀
→ 𝒫 a trivialisation

⎫
⎬
⎭ .

Let

Gr𝐺,Ran𝐶
..= colim

𝐼∈fSetop
Gr𝐺,𝐶𝐼 .

This is a factorisation space, known as the Beilinson-Drinfeld Grassmannian. (Note

that it is not very interesting for 𝑋 with dim𝑋 ≥ 2.)
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1.2 Factorisation spaces and factorisation algebras

Convention 1.2.4. Whenever we have 𝑥𝐼 : 𝑆 → 𝑋𝐼 , or equivalently a collection of

maps 𝑥𝑖 : 𝑆 → 𝑋 indexed by 𝐼, we write
{︀
𝑥𝐼
}︀
to mean the closed subset of 𝑆 × 𝑋

given by the union of the graphs of the functions 𝑥𝑖.

We are interested in factorisation spaces because they are non-linear analogues

of factorisation algebras. As we will see in 1.2.8, we can use factorisation spaces to

construct examples of factorisation algebras.

Definition 1.2.5. A factorisation algebra over 𝑋 is a 𝒟-module 𝒜Ran𝑋 over Ran𝑋

together with the data of factorisation isomorphisms. Recall that, as a 𝒟-module over

Ran𝑋, 𝒜Ran𝑋 is given by a collection (𝒜𝐼 ∈ 𝒟(𝑋𝐼))𝐼∈fSet together with compatible

isomorphisms

𝜈𝛼 : Δ(𝛼)!(𝒜𝐼) ≃ 𝒜𝐽

for any 𝛼 : 𝐼 � 𝐽 (c.f. Ran’s condition for factorisation spaces). Then we demand

factorisation isomorphisms

𝑐𝛼 : 𝑗(𝛼)*𝒜𝐼 ∼−→ 𝑗(𝛼)*( �
𝑗∈𝐽

𝒜𝐼𝑗)

for any 𝛼 : 𝐼 � 𝐽 . These isomorphisms must be compatible with composition of 𝛼 and

with the structure isomorphisms 𝜈𝛼 (c.f. the factorisation condition for factorisation

spaces).

Remark 1.2.6. In fact, instead of beginning with a 𝒟-module on Ran𝑋, we could

start with a quasi-coherent sheaf. Assume in addition that there are no non-zero local

sections supported at the diagonal 𝑋 ⊂ Ran𝑋. Then it follows from the factorisation

structure that this sheaf has a canonical structure of crystal on Ran𝑋, i.e. that it

is a 𝒟-module. (See 3.4.7 [4] for the construction of the canonical connection when

working with a curve 𝑋 and in the abelian setting.)

Convention 1.2.7. From now on, if we write 𝑈 ⊂ 𝑋2 without specifying the map

𝛼, we mean 𝑈 = 𝑈(𝛼) for 𝛼 = id : {1, 2} → {1, 2}. On the other hand, if we write

Δ we always mean Δ = Δ(𝛽) : 𝑋 → 𝑋2 for 𝛽 : {1, 2} → {pt}. More generally,

for any finite set 𝐼, 𝑗(𝐼) : 𝑈(𝐼) → 𝑋𝐼 comes from to the map id𝐼 : 𝐼 → 𝐼, while

Δ(𝐼) : 𝑋 → 𝑋𝐼 comes from the projection 𝐼 → {pt}.

Key construction 1.2.8. Let 𝒴Ran𝑋 = colim𝑌𝑋𝐼 be a factorisation space, and

assume that the structure maps 𝑓 𝐼 : 𝑌𝑋𝐼 → 𝑋𝐼 are ind-proper. Assume also that we

have a 𝒟-module F on 𝒴Ran𝑋 , i.e. a compatible family of 𝒟-modules (F 𝐼 ∈ 𝒟(𝑌𝑋𝐼 )),
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1 Preliminaries on factorisation

and suppose that F is compatible with the factorisation structure on 𝒴Ran𝑋 . Let us

explain what we mean by this. Recall that for each 𝛼 : 𝐼 � 𝐽 we have a commutative

diagram as follows:

𝑈(𝛼)

𝑈(𝛼)×𝑋𝐼

(︁∏︀
𝑗∈𝐽 𝑌𝑋𝐼𝑗

)︁
𝑈(𝛼)×𝑋𝐼 𝑌𝑋𝐼

𝑋𝐼

∏︀
𝑗∈𝐽 𝑌𝑋𝐼𝑗 𝑌𝑋𝐼

𝑗(𝛼)

(︀∏︀
𝑓𝐼𝑗

)︀′′

𝑗′′

𝑑𝛼

∏︀
𝑓𝐼𝑗

(𝑓𝐼)′

𝑗′

𝑓𝐼

With this notation, F is compatible with the factorisation structure on 𝒴Ran𝑋 if we

have isomorphisms

̃︀𝑐𝛼 : (𝑗′)*(F 𝐼) ∼−→ (𝑑𝛼)*(𝑗
′′)*
(︂
�
𝑗∈𝐽

F 𝐼𝑗

)︂

which are themselves compatible with respect to composition of 𝛼 and the isomor-

phisms 𝑌 (𝛼)!(F 𝐼) ≃ F 𝐽 .

In such a setting, we obtain a factorisation algebra 𝒜Ran𝑋 by setting 𝒜𝐼 ..=

𝑓 𝐼* (F
𝐼).

Indeed, we have isomorphisms

Δ(𝛼)!𝑓 𝐼* (F
𝐼) ≃ 𝑓𝐽* 𝑌 (𝛼)!(F 𝐼) ∼−→ 𝑓𝐽* (F

𝐽),

and

𝑗(𝛼)*𝑓 𝐼* (F
𝐼) ≃ (𝑓 𝐼)′*(𝑗

′)*(F 𝐼)

∼−→ (𝑓 𝐼)′*(𝑑𝛼)*(𝑗
′′)*
(︂
�
𝑗∈𝐽

F 𝐼𝑗

)︂

≃
(︁∏︁

𝑓 𝐼𝑗
)︁′′
*
(𝑗′′)*

(︂
�
𝑗∈𝐽

F 𝐼𝑗

)︂

≃ 𝑗(𝛼)*
(︁∏︁

𝑓 𝐼𝑗
)︁
*

(︂
�
𝑗∈𝐽

F 𝐼𝑗

)︂

≃ 𝑗(𝛼)*
(︂
�
𝑗∈𝐽

𝑓
𝐼𝑗
* (F 𝐼𝑗)

)︂
.

Example 1.2.9. Let 𝒴Ran𝑋 = colim𝐼∈fSetop 𝑌𝑋𝐼 be a factorisation space such that

each 𝑓 𝐼 is ind-proper, and consider the 𝒟-module 𝜔𝒴Ran𝑋
on 𝒴Ran𝑋 . It is not hard to

check that this is compatible with the factorisation structure, and so

𝑓*(𝜔𝒴Ran𝑋
) =

{︀
𝑓 𝐼* (𝜔𝑌𝑋𝐼

)
}︀
𝐼∈fSet

is a factorisation algebra.
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1.3 Chiral algebras

In this section, we introduce the notion of a chiral algebra, following [9]. We work in

the category 𝒟(Ran𝑋) of 𝒟-modules on the Ran space, and begin by defining two

natural monoidal structures on 𝒟(Ran𝑋).

To describe a monoidal structure, we need to give compatible maps

𝒟(Ran𝑋)⊗𝐽 → 𝒟(Ran𝑋)

for all 𝐽 ∈ fSet. Using the presentation of 𝒟(Ran𝑋) as a colimit, it suffices to define

compatible maps

⨂︁

𝑗∈𝐽

𝒟(𝑋𝐼𝑗) → 𝒟(Ran𝑋)

for any collection {𝐼𝑗} of finite sets parametrised by another finite set 𝐽 . Such a

family of maps can be defined from the following data: for each 𝐽 ∈ fSet, a functor

𝑚𝐽 : fSetop × · · · × fSetop → fSetop,

together with a natural transformation between the resulting two functors

(︀
𝐹1 : (𝐼𝑗)𝑗∈𝐽 ↦→ ⊗𝑗∈𝐽𝒟(𝑋𝐼𝑗)

)︀
⇒
(︀
𝐹2 : (𝐼𝑗)𝑗∈𝐽 ↦→ 𝒟(𝑋𝑚𝐽 (𝐼𝑗))

)︀
.

This data should be compatible with the operation ⊔ on fSet.

Definition 1.3.1. The ⋆ symmetric monoidal structure on 𝒟(Ran𝑋) is the sym-

metric monoidal structure coming from the map 𝑚𝐽 : (𝐼𝑗) ↦→ 𝐼 ..= ⊔𝑗∈𝐽𝐼𝑗, together
with the natural transformation 𝜏 : 𝐹1 ⇒ 𝐹2 defined for each (𝐼𝑗)𝑗∈𝐽 by the external

tensor product of 𝐷-modules:

𝜏(𝐼𝑗) :
⨂︁

𝑗∈𝐽

𝒟(𝑋𝐼𝑗) → 𝒟(𝑋𝐼)

(𝑀 𝐼𝑗 ∈ 𝒟(𝑋𝐼𝑗)) ↦→ �
𝑗∈𝐽

(𝑀 𝐼𝑗).

We denote this monoidal product by ⊗⋆.

Given 𝑀1,𝑀2 ∈ 𝒟(Ran𝑋), the fibre of 𝑀1⊗⋆𝑀2 at a point (𝑆 ⊂ 𝑋) ∈ Ran𝑋 is

(𝑀1 ⊗⋆𝑀2)[𝑆] ≃
⨁︁

{(𝑆1,𝑆2)|𝑆=𝑆1∪𝑆2,𝑆𝑖 ̸=∅}

(𝑀1)𝑆1 ⊗ (𝑀2)𝑆2 .
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1 Preliminaries on factorisation

Definition 1.3.2. The chiral monoidal structure on 𝒟(Ran𝑋) is the symmetric

monoidal structure coming from the maps 𝑚𝐽 : fSet× . . . fSet → fSet as in definition

1.3.1 and the natural transformations 𝜏 ′ : 𝐹1 ⇒ 𝐹2 given for {𝐼𝑗}𝑗∈𝐽 by

𝜏 ′(𝐼𝑗) :
⨂︁

𝑗∈𝐽

𝒟(𝑋𝐼𝑗) → 𝒟(𝑋𝐼)

(︀
𝑀𝑗 ∈ 𝒟(𝑋𝐼𝑗)

)︀
↦→ 𝑗(𝛼)* ∘ 𝑗(𝛼)*( �

𝑗∈𝐽
𝑀 𝐼𝑗).

(Here we denote by 𝛼 the obvious surjection 𝐼 = ⊔𝑗∈𝐽𝐼𝑗 � 𝐽 .) We denote this

monoidal operation by ⊗ch.

Given 𝑀1,𝑀2 ∈ 𝒟(Ran𝑋), the fibre of 𝑀1 ⊗ch 𝑀2 at a point (𝑆 ⊂ 𝑋) ∈ Ran𝑋

is

(𝑀1 ⊗ch 𝑀2)𝑆 ≃
⨁︁

{(𝑆1,𝑆2)|𝑆=𝑆1⊔𝑆2,𝑆𝑖 ̸=∅}

(𝑀1)𝑆1 ⊗ (𝑀2)𝑆2 ,

where now the direct sum is over decompositions of 𝑆 by disjoint sets 𝑆𝑖.

Suppose we have a surjection 𝛼 : 𝐼 � 𝐽 in fSet, with 𝐼𝑗 ..= 𝛼−1(𝑗), and for each

𝑗 ∈ 𝐽 let 𝑀𝑗 ∈ 𝒟(Ran𝑋). By definition of ⊗ch, we have

(Δ𝐼)!

(︁
𝑗(𝛼)* ∘ 𝑗(𝛼)*(�

𝐽
(Δ𝐼𝑗)!𝑀𝑗)

)︁
≃ ⊗

𝐽

ch
(︀
(Δ𝐼𝑗)! ∘ (Δ𝐼𝑗)!𝑀𝑗

)︀

and hence we obtain a map

𝑗(𝛼)* ∘ 𝑗(𝛼)*(�
𝐽
(Δ𝐼𝑗)!𝑀𝑗) → (Δ𝐼)!

(︂
⊗
𝐽

ch𝑀𝑗

)︂
.

Lemma 1.3.3 (Lemma 2.3.4, [9]). For 𝐼, 𝐽 and 𝑀𝑗 ∈ 𝒟(Ran𝑋) as above, the re-

sulting map

⨁︁

𝛼:𝐼�𝐽

(︁
𝑗(𝛼)* ∘ 𝑗(𝛼)*(�

𝐽
(Δ𝐼𝑗)!𝑀𝑗)

)︁
→ (Δ𝐼)!

(︂
⊗
𝐽

ch𝑀𝑗

)︂
.

is a homotopy equivalence (where the direct sum is taken over all surjections 𝛼 : 𝐼 →
𝐽 , i.e. all partitions of 𝐼 into |𝐽 | non-empty subsets).

This result allows us to understand the structure of a 𝐽-fold chiral tensor product

by breaking it down into exterior tensor products.

Given the two symmetric monoidal structures on 𝒟(Ran𝑋), we can consider

algebra and coalgebra objects in 𝒟(Ran𝑋). In particular, we will use the Lie operad

and the co-commutative cooperad. (See e.g. Loday and Vallette [27] or Markl,

Shnider and Stasheff [29] for an introduction to operads, and Chapter 2 of Lurie [28]

for the theory of ∞-operads.)
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Definition 1.3.4. A chiral algebra 𝒞 over 𝑋 is a Lie algebra object in the symmetric

monoidal category (𝒟(Ran𝑋),⊗ch) which is supported on 𝑋 ⊂ Ran𝑋.

That is, we have ℬ ∈ 𝒟(𝑋) such that for any finite set 𝐼, 𝒞𝐼 ≃ Δ(𝐼)!ℬ ∈ 𝒟(𝑋𝐼).

Moreover, for any surjection 𝛼 : 𝐼 � 𝐽 we have a chiral operation

𝜇ℬ : 𝑗(𝛼)*𝑗(𝛼)
*
(︂
�
𝑗∈𝐽

Δ(𝐼𝑗)!ℬ
)︂

→ Δ(𝐼)!ℬ

corresponding to the chiral Lie bracket

𝜇𝒞 : ⊗
𝐽

ch𝒞 → 𝒞.

The chiral operations satisfy relations coming from the anti-symmetry, Leibniz rule,

and Jacobi identity of the chiral Lie bracket.

We denote the category of chiral algebras by Lie-algch(𝑋). We will often refer to

the underlying 𝒟𝑋-module ℬ as the chiral algebra rather than 𝒞.

Example 1.3.5. Let ℬ = 𝜔𝑋 ∈ 𝒟(𝑋). Then we have a canonical exact sequence

0 → 𝜔𝑋 � 𝜔𝑋 → 𝑗*𝑗
*(𝜔𝑋 � 𝜔𝑋)

𝜇𝜔𝑋−−→ Δ!(𝜔𝑋) → 0,

and the map 𝜇𝜔𝑋
gives a chiral bracket on 𝜔𝑋 .

Definition 1.3.6. Similarly, a Lie ⋆ algebra on 𝑋 is a Lie algebra object in the

symmetric monoidal category (𝒟(Ran𝑋),⊗⋆) which is supported on 𝑋.

If 𝒮 is a Lie ⋆ algebra on 𝑋, we will denote the Lie bracket by [ ]𝒮 . We denote

the category of Lie ⋆ algebras on 𝑋 by Lie-alg⋆(𝑋).

For any 𝒞 ∈ 𝒟(Ran𝑋), there are natural maps

⊗
𝐽

⋆𝒞 → ⊗
𝐽

ch𝒞,

meaning that every chiral algebra is in particular a Lie ⋆ algebra. This gives rise to

a forgetful functor

𝐹 : Lie-algch(𝑋) → Lie-alg⋆(𝑋)

Definition 1.3.7. If 𝒞 is a chiral algebra such that the Lie bracket [ ]𝐹𝒞 on the

underlying Lie ⋆ algebra vanishes, then we say that 𝒞 is a commutative chiral algebra.
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1 Preliminaries on factorisation

Suppose𝑀 ∈ 𝒟(𝑋) is a commutative algebra object with respect to the ⊗! tensor

structure on the category 𝒟(𝑋) of right 𝒟-modules. That is, we have a morphism

𝑚 :𝑀 ⊗! 𝑀 →𝑀

in 𝒟(𝑋) which is associative and commutative. We want to use 𝑚 to define a chiral

algebra structure on 𝑀 , i.e. a map 𝑗*𝑗
*(𝑀 �𝑀) → Δ!𝑀 (and analogues for more

general 𝛼 : 𝐼 � 𝐽). By definition of the tensor structure on 𝒟(𝑋) = IndCoh (𝑋dR),

we have

𝑀 ⊗! 𝑀 = Δ!(𝑀 �𝑀).

Hence we define the chiral operation 𝜇𝑀 to be the composition

𝑗*𝑗
*(𝑀 �𝑀) → Δ!Δ

!(𝑀 �𝑀) ≃ Δ!(𝑀 ⊗! 𝑀)
Δ!(𝑚)−−−→ Δ!𝑀.

Here the first map is the canonical map from the Cousin complex for 𝑀 �𝑀 :

𝑀 �𝑀 → 𝑗*𝑗
*(𝑀 �𝑀) → Δ!Δ

!(𝑀 �𝑀).

It has the following alternate description: recall that if 𝑀1,𝑀2 ∈ 𝒟(𝑋), then

𝑀1 ⊗! 𝑀2 ≃ 𝑀 ℓ
1 ⊗𝒪𝑋

𝑀2, where 𝑀
ℓ
1

..= 𝑀1 ⊗ 𝜔−1
𝑋 is the left 𝒟-module associated to

𝑀1. (See for example Appendix A.2.3.15.) Note also that we have

𝑗*𝑗
*(𝑀 �𝑀) ≃ 𝑗*𝑗

* (︀(𝑀 ℓ �𝑀 ℓ)⊗ (𝜔𝑋 � 𝜔𝑋)
)︀

≃ 𝑗*
(︀
𝑗*(𝑀 ℓ �𝑀 ℓ)⊗ 𝑗*(𝜔𝑋 � 𝜔𝑋)

)︀

≃ (𝑀 ℓ �𝑀 ℓ)⊗ 𝑗*𝑗
*(𝜔𝑋 � 𝜔𝑋),

using the projection formula (see Lemma A.2.2.11 (1)).

Now we apply the canonical map

𝜇𝜔𝑋
: 𝑗*𝑗

*(𝜔𝑋 � 𝜔𝑋) → Δ!(𝜔𝑋) (I.1)

to obtain a map into (𝑀 ℓ �𝑀 ℓ) ⊗Δ!(𝜔𝑋). Again using the projection formula, we

have

(𝑀 ℓ �𝑀 ℓ)⊗Δ!(𝜔𝑋) ≃ Δ!

(︀
Δ*(𝑀 ℓ �𝑀 ℓ)⊗ 𝜔𝑋

)︀

≃ Δ!

(︀
𝑀 ℓ ⊗𝑀 ℓ ⊗ 𝜔𝑋

)︀

≃ Δ!

(︀
𝑀 ⊗! 𝑀

)︀
,

as required.
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The skew-symmetry and Jacobi identity satisfied by the map (I.1) together with

the symmetry and associativity of 𝑚 ensure that the composition

𝜇𝑀 : 𝑗*𝑗
*(𝑀 �𝑀) → Δ!𝑀

is indeed a chiral bracket. Moreover, this gives a commutative chiral algebra, because

of the exactness of the canonical sequence

0 → 𝜔𝑋 � 𝜔𝑋 → 𝑗*𝑗
* (𝜔𝑋 � 𝜔𝑋) → Δ!(𝜔𝑋) → 0.

In fact, a chiral algebra ℬ is commutative precisely if it comes from a commutative

⊗! algebra in this way. That is, we have the following equivalence:

Proposition 1.3.8. The above construction gives an equivalence of categories

Com-alg(𝒟(𝑋),⊗!) ∼−→ Lie-algch(𝑋)com.

1.4 Koszul duality

In this section, we will see that the category of chiral algebras is equivalent to the

category of factorisation algebras.

Let us begin by considering again the symmetric monoidal category

(𝒟(Ran𝑋),⊗ch).

A cocommutative coalgebra object in this category is a𝒟-moduleℳ = (ℳ𝐼) together

with comultiplication maps

𝛿𝐼ℳ : ℳ → ⊗
𝐼

chℳ

which are coassociative and cocommutative.

Given such an object (ℳ, 𝛿ℳ) and a surjection 𝛼 : 𝐼 � 𝐽 , we use Lemma 1.3.3

and the (𝑗(𝛼)*, 𝑗(𝛼)*) adjunction to obtain morphisms

𝑗(𝛼)*(�
𝐽
ℳ𝐼𝑗) → 𝑗(𝛼)*(ℳ𝐼);

if these morphisms are all isomorphisms, then ℳ is a factorisation algebra on 𝑋.

Conversely, given a factorisation algebra, we can apply the adjuction isomorphisms to

the factorisation isomorphisms, and we obtain the structure maps of a cocommutative

coalgebra in (𝒟(Ran𝑋),⊗ch). That is, we have the following result:
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Lemma 1.4.1. Let ℳ be a 𝒟-module on Ran𝑋. The structure of a factorisation

algebra on ℳ is equivalent to the structure of a chiral cocommutative coalgebra struc-

ture on ℳ such that the induced maps

𝑗(𝛼)*(�
𝐽
ℳ𝐼𝑗) → 𝑗(𝛼)*(ℳ𝐼);

are all isomorphisms.

As described by Francis and Gaitsgory in [9], there is a Koszul duality between

the Lie operad and the cocommutative coalgebra cooperad, which is particularly well-

behaved in our setting of (𝒟(Ran𝑋),⊗ch):

Theorem 1.4.2 (Theorem 5.1.1, [9]). The adjoint functors

𝐶ch : Lie-algch(Ran𝑋) � Com-coalgch(Ran𝑋) : Primch[−1]

provided by Koszul duality are in fact mutually inverse equivalences.

Furthermore, we have the full subcategories

Lie-algch(𝑋) ⊂ Lie-algch(Ran𝑋) and Fact(𝑋) ⊂ Com-coalgch(Ran𝑋),

and the Koszul duality functors also respect these:

Theorem 1.4.3 (Theorem 5.2.1, [9]). The above equivalences 𝐶ch and Primch[−1]

restrict to give mutually inverse equivalences

𝐶ch : Lie-algch(𝑋) � Fact(𝑋) : Primch[−1].

In other words, a cocommutative coalgebra (ℳ, 𝛿ℳ) is a factorisation algebra

if and only if the corresponding Lie algebra object is supported on the diagonal

𝑋 ⊂ Ran𝑋.

In sections 3.4.11–12 of [4] there is an explicit description of 𝐶ch(ℬ) as a left 𝒟-

module on Ran𝑋, in the case that 𝑋 = 𝐶 is a curve and ℬ ∈ 𝒟(𝐶) is concentrated

in degree zero. Namely, we define the Chevalley-Cousin complex Chev(ℬ) as follows:
for 𝐼 ∈ fSet we set Chev(ℬ)𝐶𝐼 to be the complex given in degree 𝑛 by

Chev(ℬ)𝑛𝐶𝐼
..=
⨁︁

𝛼:𝐼�𝑇

Δ(𝛼)!𝑗(𝑇 )*𝑗(𝑇 )
* (ℬ[1])�𝑇

where we take the sum over all surjections 𝛼 from 𝐼 to a set 𝑇 of cardinality |𝑇 | = −𝑛.
We define the differential 𝑑 by specifying its components

𝑑𝑇,𝑇 ′ : Δ(𝛼)!𝑗(𝑇 )*𝑗(𝑇 )
* (ℬ[1])�𝑇 → Δ(𝛼′)!𝑗(𝑇

′)*𝑗(𝑇
′)* (ℬ[1])�𝑇 ′

for two sets 𝑇, 𝑇 ′ with 𝑇 = 𝑇 ′′ ⊔ {𝑡1, 𝑡2}, 𝑇 = 𝑇 ′′ ⊔ {𝑡0} and surjections 𝛼, 𝛼′ making

the following diagram commute:
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1.5 Vertex algebras

𝐼

𝑇 𝑇 ′.

𝛼 𝛼′

𝑡1, 𝑡2 ↦→ 𝑡0

Then 𝑑𝑇,𝑇 ′ comes from the chiral bracket 𝜇ℬ : 𝑗*𝑗
*(ℬ𝑡1 � ℬ𝑡2) → Δ!ℬ𝑡0 . The Jacobi

identity ensures that the resulting map 𝑑 satisfies 𝑑2 = 0.

This complex Chev(ℬ) satisfies Ran’s condition and factorisation, and we have

𝐶ch(ℬ)𝐼 =
(︀
𝐻−|𝐼| Chev(ℬ)𝐶𝐼

)︀ℓ
.

In particular, for 𝐼 = pt we have that Chev(ℬ)𝐶pt = ℬ[1], and so

𝐶ch(ℬ)pt = ℬℓ.

A natural question to ask is the following: what property of a factorisation alge-

bra will ensure that the corresponding chiral algebra is commutative? We have the

following characterisation of these so-called commutative factorisation algebras :

Lemma 1.4.4 (Proposition 3.4.20, [4]). A factorisation algebra 𝒜Ran𝑋 = (𝒜𝐼) is

commutative if and only if for every 𝛼 : 𝐼 � 𝐽 the isomorphism

𝑗(𝛼)*
(︂
�
𝑗∈𝐽

𝒜𝐼𝑗

)︂
∼−→ 𝑗(𝛼)*

(︀
𝒜𝐼
)︀

extends to a morphism

�
𝑗∈𝐽

𝒜𝐼𝑗 → 𝒜𝐼 .

1.5 Vertex algebras

In this section, we give the definition of a vertex algebra, and discuss the relationship

between vertex algebras and chiral algebras. See for example [10] or [12] for more

details.

Definition 1.5.1 (Definition 1.3.1, [10]). A vertex algebra

𝑉 = (𝑉, |0⟩, 𝑇, 𝑌 (·, 𝑧))

consists of the following data:
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∙ The space of states : a graded complex vector space

𝑉 =
⨁︁

𝑖≥0

𝑉𝑖.

∙ The vacuum vector : |0⟩ ∈ 𝑉0.

∙ The translation operator : 𝑇 : 𝑉 → 𝑉 a linear map of degree 1.

∙ The vertex operators : 𝑌 (·, 𝑧) : 𝑉 → End𝑉 [[𝑧, 𝑧−1]] a linear map such that if we

have 𝐴 ∈ 𝑉𝑖 and write

𝑌 (𝐴, 𝑧) =
∑︁

𝑛∈Z

𝐴(𝑛)𝑧
−𝑛−1,

then the (−𝑛− 1)th coefficient 𝐴(𝑛) ∈ End𝑉 is of degree −𝑛+ 𝑖− 1.

These data are subject to the following conditions:

∙ The vacuum axiom:

𝑌 (|0⟩, 𝑧) = id𝑉 .

Furthermore, for any 𝐴 ∈ 𝑉 , 𝐴(𝑛)|0⟩ = 0 for 𝑛 ≥ 0, and 𝐴(−1)|0⟩ = 𝐴.

∙ The translation axiom:

[𝑇, 𝑌 (𝐴, 𝑧)] = 𝜕𝑧𝑌 (𝐴, 𝑧) ∀𝐴 ∈ 𝑉,

𝑇 |0⟩ = 0.

∙ The locality axiom: For any 𝐴,𝐵 ∈ 𝑉 there exists 𝑁 ∈ N such that

(𝑧 − 𝑤)𝑁 [𝑌 (𝐴, 𝑧), 𝑌 (𝐵,𝑤)] = 0 ∈ End𝑉 [[𝑧±1, 𝑤±1]].

It is also possible to modify the definition slightly to work in the super-setting, as

in remark 1.3.2 of [10].

Definition 1.5.2 (Definition 2.5.8, [10]). A vertex algebra

𝑉 = (𝑉, |0⟩, 𝑇, 𝑌 (·, 𝑧))

is said to be conformal of central charge 𝑐 ∈ C if we have a conformal vector 𝜔 ∈ 𝑉2

with the following property. We introduce the notation

𝑌 (𝜔, 𝑧) =
∑︁

𝑛∈Z

𝜔(𝑛)𝑧
−𝑛−1 =

∑︁

𝑛∈Z

𝐿𝑉𝑛−1𝑧
−𝑛−1;
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we require that the operators 𝐿𝑉𝑛 ∈ End𝑉 [[𝑧, 𝑧−1]] satisfy the Virasoro relations :

[𝐿𝑉𝑛 , 𝐿
𝑉
𝑚] = (𝑛−𝑚)𝐿𝑛+𝑚 +

𝑛3 − 𝑛

12
𝛿𝑛,−𝑚𝑐,

𝐿𝑉−1 = 𝑇,

𝐿𝑉0 |𝑉𝑖 = 𝑖 id𝑉𝑖 .

Definition 1.5.3 (Definition 6.3.4, [10]). A vertex algebra is called quasi-conformal

if it carries an action of the Lie algebra Der𝒪 = C[[𝑧]]𝜕𝑧 satisfying the following

properties: if we let 𝐿𝑚 denote the linear operator on 𝑉 defined by the action of

−𝑧𝑚+1𝜕𝑧, 𝑚 ≥ −1, then:

1. 𝐿−1 = 𝑇 .

2. 𝐿0 acts semi-simply with integral eigenvalues.

3. Given a vector field

𝑣(𝑧) =
∑︁

𝑛≥−1

𝑣𝑛𝑧
𝑛+1𝜕𝑧 ∈ Der𝒪

defining the linear operator

v = −
∑︁

𝑛≥−1

𝑣𝑛𝐿𝑛,

we require that

[v, 𝑌 (𝐴,𝑤)] = −
∑︁

𝑚≥−1

1

(𝑚+ 1)!

(︀
𝜕𝑚+1
𝑤 𝑣(𝑤)

)︀
𝑌 (𝐿𝑚𝐴,𝑤).

4. Der+𝒪 = 𝑧2C[[𝑧]]𝜕𝑧 acts locally nilpotently.

Example 1.5.4. A conformal vertex algebra is in particular quasi-conformal. If

(𝑉, |0⟩, 𝑇, 𝑌 (·, 𝑧)) is a vertex algebra with conformal vector 𝜔 ∈ 𝑉2, then we can define

an action of Der𝒪 on 𝑉 by letting 𝑧𝑚+1𝜕𝑧 act on 𝑉 by −𝐿𝑉𝑚 (i.e. the coefficient of

𝑧−𝑚−2 in 𝑌 (𝜔, 𝑧)). This makes 𝑉 into a quasi-conformal vertex algebra.

We are interested in quasi-conformal vertex algebras because of their close relation

to chiral algebras over curves. This was made precise by Frenkel–Ben-Zvi, but we

follow here the exposition of section 6.2 of [25]:
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Key construction 1.5.5. Let (𝑉, |0⟩, 𝑇, 𝑌 (·, 𝑧)) be a quasi-conformal vertex algebra,

and let 𝐷 = Spf 𝑘[[𝑡]] be the formal one-dimensional disc. Then we can construct a

chiral algebra 𝒱 over any curve 𝐶 as follows.

We give 𝑉 [[𝑡]] the unique vertex algebra structure such that:

1. The translation operator ̃︀𝑇 is the sum of the translation operator 𝑇 of 𝑉 and

the differential 𝜕𝑡.

2. The vacuum vector is equal to the vacuum vector |0⟩ of 𝑉 .

3. ̃︀𝑌 (𝑎𝑡𝑛, 𝑧) = (𝑡+ 𝑧)𝑛𝑌 (𝑎, 𝑧).

Let ℬ𝑉 be the sheaf on 𝐷 associated to the 𝑘[[𝑡]]-module 𝑉 [[𝑡]] ·𝑑𝑡. Then ℬ𝑉 is a chiral

algebra, with chiral operation induced by

𝑉 ⊗ 𝑉 [[𝑡1, 𝑡2]][(𝑡1 − 𝑡2)
−1] → 𝑉 ⊗ 𝑉 [[𝑡1, 𝑡2]][(𝑡1 − 𝑡2)

−1]/𝑉 ⊗ 𝑉 [[𝑡1, 𝑡2]]

𝑓(𝑡1, 𝑡2)𝐴⊗𝐵 ↦→ 𝑓(𝑡1, 𝑡2)𝑌 (𝐴, 𝑡1 − 𝑡2)(𝐵) mod 𝑉 ⊗ 𝑉 [[𝑡1, 𝑡2]]

for 𝑓(𝑡1, 𝑡2) ∈ 𝑘(𝑡1 − 𝑡2), 𝐴,𝐵 ∈ 𝑉 .

So far we have not used the quasi-conformal structure on 𝑉 , but we will use it

now: the action of Der𝒪 can be exponentiated to give an action of 𝐾 = Aut(𝒪),

so that 𝑉 is a (Der𝒪,Aut(𝒪))-module, or equivalently an object of Rep(𝐺), where

𝐺 = Aut(𝒪) (see Chapter II, section 2 for the precise definitions of 𝐾 and 𝐺). It

follows from the results of Chapter II that 𝑉 corresponds to a universal 𝒟-module

𝒱 of dimension one, such that for any 𝑐 in 𝐶 the restriction of 𝒱(𝐶) to the disc 𝐷𝑐

around 𝑐 is isomorphic to ℬ𝑉 . (The isomorphism depends only on a choice of formal

coordinate at 𝑐.)

In other words, we obtain a universal chiral algebra of dimension one.

Conversely, any universal chiral algebra of dimension one is in particular a uni-

versal 𝐷-module, and the corresponding Aut(𝒪)-module has a uniquely determined

structure of quasi-conformal vertex algebra.

2 The main constructions

With the basic theory established, we now restrict our attention to 𝑋 a smooth

variety over 𝑘. We will use the Hilbert scheme Hilb𝑋 to construct a factorisation

space H ilbRan𝑋 over the variety 𝑋; by linearising we produce a factorisation algebra

𝒜Ran𝑋 .
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2.1 The factorisation space

In 2.1 we define the prestack H ilbRan𝑋 , and prove that it is in fact an ind-proper

factorisation space over 𝑋. In 2.2 we also introduce a slight variant, ˜H ilbRan𝑋 , and

compare it to our original factorisation space. In 2.3 we consider the natural map

H ilbRan𝑋 → Hilb𝑋 ,

and show that its fibres are contractible. This allows us to compute the chiral homol-

ogy of the factorisation algebra 𝒜Ran𝑋 defined by linearising H ilbRan𝑋 . We do this

in 2.4.

Finally, in 2.5 we allow the base variety 𝑋 to vary, and consider the corresponding

factorisation spaces H ilbRan𝑋 , and especially the indscheme H ilb𝑋 living over a

single copy of the variety 𝑋. We show that the factorisation space can be defined

over families 𝑋 → 𝑆 of smooth varieties. We also show that the assignment

𝑋/𝑆 → H ilb𝑋/𝑆

is compatible with pullback by étale maps between smooth families. It follows that

the assignment

𝑋/𝑆 → 𝒜𝑋/𝑆 ∈ 𝒟(𝑋/𝑆)

defined by linearising this space is also compatible with pullback by étale maps. We

will see in the next chapter that this means that
{︀
𝒜𝑋/𝑆

}︀
gives a universal 𝒟-module.

2.1 The factorisation space

We begin by recalling some preliminaries about the Hilbert scheme of points, before

defining the factorisation space.

Recall the following definition:

Definition 2.1.1. For 𝑛 ∈ Z≥0, the Hilbert scheme of 𝑛 points in 𝑋 is the scheme

Hilb𝑛𝑋 representing the functor

Schop → Set

𝑆 ↦→
{︂
𝜉 ⊂ 𝑆 ×𝑋

⃒⃒
⃒⃒ 𝜉 is flat over 𝑆 with zero-dimensional support

on fibres over 𝑆 of length 𝑛

}︂
.

See for example [33]. It is a theorem of Grothendieck [22] that this functor is

indeed representable for any smooth projective scheme 𝑋. It is also representable

for any affine scheme Spec𝐴 (see for example [23]), and for any smooth variety. It
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2 The main constructions

follows from the valuative criterion of properness that whenever it exists, the Hilbert

scheme is in fact proper.

Note that Hilb0
𝑋 ≃ pt and Hilb1

𝑋 ≃ 𝑋.

We let Hilb𝑋 be the disjoint union of Hilb𝑛𝑋 for 𝑛 ≥ 0. The scheme Hilb𝑋 is a

scheme of infinite type, which we prefer to think of as an indscheme. Indeed, Hilb𝑋

is the colimit over 𝑁 ∈ Z≥0 of the schemes

𝑁⨆︁

𝑛=0

Hilb𝑛𝑋 ,

which are each of finite type.

Notice that the data of a closed subscheme 𝜉 of 𝑆×𝑋 is equivalent to the data of

a quasi-coherent sheaf F ∈ QCoh (𝒪𝑆×𝑋) together with a surjection 𝜑 : 𝒪𝑆×𝑋 � F

(flat over 𝑆). Setting E𝜉 ..= ker𝜑, we obtain a torsion-free sheaf with trivial first Chern

class and second Chern class equal to 𝑛. In fact this gives an equivalent description

of Hilb𝑛𝑋 as the moduli space of rank one torsion-free sheaves on 𝑋 with trivial

first Chern class and ch2 = 𝑛. It will sometimes be useful to keep this alternative

description in mind.

The Hilbert scheme is closely related to the symmetric product Sym𝑛
𝑋

..= 𝑋𝑛/𝑆𝑛.

Indeed, we have the Hilbert-Chow morphism

𝜋 : Hilb𝑛𝑋 → 𝑆𝑛(𝑋)

𝜉 ↦→
∑︁

𝑥∈𝑋

length(𝜉𝑥)[𝑥].

If we restrict to the open loci of Hilb𝑛𝑋 and Sym𝑛
𝑋 where all 𝑛 points are distinct,

then 𝜋 becomes an isomorphism. When 𝑋 is a smooth surface over 𝑘, Fogarty [8]

showed that Hilb𝑛𝑋 is particularly well-behaved:

Theorem 2.1.2. If 𝑋 is a smooth surface, then Hilb𝑛𝑋 is non-singular of dimension

2𝑛, and the Hilbert-Chow morphism 𝜋 : Hilb𝑛𝑋 → Sym𝑛
𝑋 is a resolution of singulari-

ties.

With these definitions in mind, we can introduce our main construction:

Definition 2.1.3. Given 𝐼 ∈ fSet, let H ilb𝑋𝐼 be the prestack which sends a test

scheme 𝑆 to the set
⎧
⎨
⎩(𝜉, 𝑥𝐼)

⃒⃒
⃒⃒
⃒⃒
𝑥𝐼 : 𝑆 → 𝑋𝐼 ;
𝜉 ∈ Hilb𝑋(𝑆);
Supp(𝜉) ⊂⋆

{︀
𝑥𝐼
}︀

⎫
⎬
⎭ .
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2.1 The factorisation space

Recall from example 1.2.3 that
{︀
𝑥𝐼
}︀
is the subset given by the union of the graphs

of the functions 𝑥𝑖 : 𝑆 → 𝑋𝐼 pr𝑖−→ 𝑋. The condition on the support of 𝜉 is not to be

interpreted simply set-theoretically, but instead in the following way: 𝜉 : 𝑆 → Hilb𝑛𝑋

induces a map 𝑆 → Sym𝑛
𝑋 via composition with the Hilbert-Chow morphism. In this

way we obtain a family of 𝑛 (unordered) maps 𝜉𝑗 : 𝑆 → 𝑋. We require that for each

𝑗 = 1, . . . , 𝑛, there exists some 𝑖 ∈ 𝐼 such that 𝜉𝑗 = 𝑥𝑖.

Remark 2.1.4. We can define a factorisation space with the set-theoretic contain-

ment condition instead, but it will not be quite as well-behaved, as we will see in

Definition 2.2.1 and Lemma 2.2.3 below.

We can write H ilb𝑋𝐼 as the disjoint union of subfunctors H ilb𝑛𝑋𝐼 , defined in the

obvious way.

Lemma 2.1.5. For any 𝐼 ∈ fSet and any 𝑛 ≥ 0, H ilb𝑛𝑋𝐼 is representable by a closed

subscheme of 𝑋𝐼 × Hilb𝑛𝑋 ; in particular it is proper over 𝑋𝐼 .

Proof. We will identify H ilb𝑛𝑋𝐼 as the pullback of a closed subscheme of 𝑋𝐼 × Sym𝑛
𝑋

along the map id𝑋𝐼 ×𝜋 induced by the Hilbert-Chow morphism.

Consider the incidence scheme, the closed reduced subscheme of 𝑋×𝑋𝑛 given by

Γ𝑋𝑛
..= {(𝑥, (𝑥1, . . . , 𝑥𝑛))| 𝑥 = 𝑥𝑖 for some 𝑖} ⊂ 𝑋 ×𝑋𝑛.

For any 𝑖 ∈ 𝐼, we let Γ𝑖𝑋𝑛 be its pullback along the 𝑖th projection map 𝑋𝐼 ×𝑋𝑛 →
𝑋 ×𝑋𝑛. This is closed in 𝑋𝐼 ×𝑋𝑛, and hence so is the finite union Γ𝐼𝑋𝑛 of the Γ𝑖𝑋𝑛

over all 𝑖 ∈ 𝐼. Now, we let ̃︀Γ𝐼𝑋𝑛 be the image of Γ𝐼𝑋𝑛 in the quotient 𝑋×Sym𝑛
𝑋 ; this is

also closed by definition of the quotient topology, and we give it the reduced scheme

structure.

We claim that H ilb𝑛𝑋𝐼 is the pullback

̃︀Γ𝐼𝑋𝑛 ×𝑋𝐼×Sym𝑛
𝑋
(𝑋𝐼 × Hilb𝑛𝑋).

Indeed, under the Hilbert-Chow morphism, a point (𝑥𝐼 , 𝜉) of H ilb𝑛𝑋𝐼 (𝑆) gives rise to

an unordered collection of 𝑛maps 𝜉𝑗 from 𝑆 → 𝑋. The resulting map 𝑆 → 𝑋𝐼×Sym𝑛
𝑋

factors through ̃︀Γ𝐼𝑋𝑛 exactly when for each 𝑗 = 1, . . . , 𝑛 there is an element 𝑖 ∈ 𝐼 such

that 𝜉𝑗 = 𝑥𝑖, or equivalently such that the graphs of 𝜉𝑗 and 𝑥
𝑖 are scheme-theoretically

equal in 𝑆 ×𝑋. In turn, this corresponds to the statement that the support of 𝜉 is

contained in {𝑥𝐼}, as required.
It is clear that the natural map from H ilb𝑛𝑋𝐼 to 𝑋𝐼 given by (𝑥𝐼 , 𝜉) ↦→ 𝑥𝐼 is

compatible with the projection from 𝑋𝐼 × Hilb𝑛𝑋 , which is proper. Hence it is a
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composition of a closed embedding with a proper map, and is again proper, as claimed.

The following is immediate:

Corollary 2.1.6. For any 𝐼 ∈ fSet, H ilb𝑋𝐼 is an ind-closed sub-indscheme of 𝑋𝐼 ×
Hilb𝑋 , ind-proper over 𝑋𝐼 .

Proposition 2.1.7. The assignment

𝐼 ↦→ H ilb𝑋𝐼

extends to a functor

fSetop → IndSch,

and defines a factorisation space H ilbRan𝑋
..= colim𝐼∈fSetop H ilb𝑋𝐼 over 𝑋.

Proof. This is a matter of routine checking: we will proceed through the defining

axioms of a factorisation space, and show that each one is satisfied.

Step 1 Given a map 𝛼 : 𝐼 � 𝐽 ∈ fSet, we need to define 𝑌 (𝛼) : H ilb𝑋𝐽 →
H ilb𝑋𝐼 ∈ IndSch and prove that it is ind-proper. On a connected test scheme

𝑆, an element of H ilb𝑋𝐽 is a pair (𝑥𝐽 , 𝜉) ∈ 𝑋𝐽(𝑆)×Hilb𝑛𝑋(𝑆) (for some 𝑛 ∈ Z≥0)

such that Supp(𝜉) ⊂
{︀
𝑥𝐽
}︀
in 𝑆×𝑋. We define 𝑌 (𝛼)𝑆(𝑥

𝐽 , 𝜉) to be (Δ(𝛼)∘𝑥𝐽 , 𝜉);
it is immediate that this lies in H ilb𝑋𝐼 (𝑆), and that this assignment is natural

in 𝑆, giving a map of prestacks 𝑌 (𝛼) : H ilb𝑋𝐽 → H ilb𝑋𝐼 .

To show that the resulting map is ind-proper, we must show that for any scheme

𝑆 lying over H ilb𝑋𝐼 , the pullback 𝑆 ×H ilb
𝑋𝐼

H ilb𝑋𝐽 (which is automatically

an indscheme over H ilb𝑋𝐽 ) is ind-proper over 𝑆. In fact, we will show that

𝑆 ×H ilb
𝑋𝐼

H ilb𝑋𝐽 → 𝑆 is a closed embedding of schemes.

It is enough to check for connected schemes 𝑆, but in that case a morphism

𝑆 → H ilb𝑋𝐼 corresponds to a pair (𝑥𝐼 , 𝜉), where 𝑥𝐼 : 𝑆 → 𝑋𝐼 , and 𝜉 ∈
Hilb𝑛𝑋(𝑆) for some 𝑛 ≥ 0. Then a morphism from a connected test scheme 𝑇

to 𝑆 ×H ilb
𝑋𝐼

H ilb𝑋𝐽 corresponds to a morphism 𝛽 : 𝑇 → 𝑆 such that 𝑥𝐼 ∘ 𝛽 =

Δ(𝛼) ∘ 𝑦𝐽 for some 𝑦𝐽 : 𝑇 → 𝑋𝐽 . That is, 𝑆 ×H ilb
𝑋𝐼

H ilb𝑋𝐽 can be identified

with the pullback 𝑆 ×𝑋𝐼 𝑋𝐽 , and the projection 𝑆 ×H ilb
𝑋𝐼

H ilb𝑋𝐽 is just the

closed embedding into 𝑆.
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2.1 The factorisation space

Step 2 We need to define a natural transformation 𝑓 : H ilb𝑋fSet =⇒ 𝑋 fSet. Given

𝐼 ∈ fSet, 𝑓 𝐼 : H ilb𝑋𝐼 → 𝑋𝐼 is just the obvious forgetful functor, sending a pair

(𝑥𝐼 , 𝜉) to 𝑥𝐼 . It is easy to see that this is natural in 𝐼.

Step 3 Given 𝛼 : 𝐼 � 𝐽 , we wish to show that 𝑋𝐽 ×𝑋𝐼 H ilb𝑋𝐼 ≃ H ilb𝑋𝐽 . Again,

this is easy to see at the level of connected test schemes: the set (𝑋𝐽 ×𝑋𝐼

H ilb𝑋𝐼 )(𝑆) is equal to

⎧
⎨
⎩
(︀
𝑥𝐽 , (𝑥𝐼 , 𝜉)

)︀
⃒⃒
⃒⃒
⃒⃒
𝑥𝐽 : 𝑆 → 𝑋𝐽 ;
(𝑥𝐼 , 𝜉) ∈ H ilb𝑛𝑋𝐼 (𝑆), 𝑛 ∈ Z≥0;
𝑥𝐼 = Δ(𝛼) ∘ 𝑥𝐽

⎫
⎬
⎭ .

This is naturally in bijection with the following set:
⎧
⎨
⎩(𝑥𝐽 , 𝜉)

⃒⃒
⃒⃒
⃒⃒
𝑥𝐽 : 𝑆 → 𝑋𝐽 ;
𝜉 : 𝑆 → Hilb𝑛𝑋(𝑆), 𝑛 ∈ Z≥0;
(Δ(𝛼) ∘ 𝑥𝐽 , 𝜉) ∈ H ilb𝑛𝑋𝐼 (𝑆)

⎫
⎬
⎭ ,

which can in turn be rewritten as

{︀
(𝑥𝐽 , 𝜉) ∈ H ilb𝑛𝑋𝐽 (𝑆) | 𝑛 ∈ Z≥0

}︀
= H ilb𝑋𝐽 (𝑆),

using the fact that
{︀
𝑥𝐽
}︀
=
{︀
Δ(𝛼) ∘ 𝑥𝐽

}︀
because 𝛼 is surjective.

Step 4 Finally, given 𝛼 : 𝐼 � 𝐽 , we wish to show there is a natural equivalence of

indschemes

𝑗* (H ilb𝑋𝐼 ) ≃ 𝑗*

(︃∏︁

𝑗∈𝐽

H ilb𝑋𝐼𝑗

)︃
.

Given a connected test scheme 𝑆 and a map 𝑥𝐼 : 𝑆 → 𝑋𝐼 , the image of 𝑥𝐼 lies

in 𝑈 ⊂ 𝑋𝐼 precisely when 𝑥𝐼 can be written as a product of maps 𝑥𝐼𝑗 : 𝑆 → 𝑋𝐼𝑗

such that the sets
{︀
𝑥𝐼𝑗
}︀
⊂ 𝑆 ×𝑋 are pairwise disjoint as 𝑗 varies.

Then for 𝜉 ∈ Hilb𝑛𝑋(𝑆), 𝑛 ∈ Z≥0, the condition Supp(𝜉) ⊂⋆

{︀
𝑥𝐼
}︀
is satisfied if

and only if 𝜉 can be written as a disjoint union of closed subschemes 𝜉𝑗 ⊂ 𝑆×𝑋
such that for each 𝑗, Supp(𝜉𝑗) ⊂⋆

{︀
𝑥𝐼𝑗
}︀
. In that case, each (𝑥𝐼𝑗 ,H ilb𝑋𝐼𝑗 ) ∈

H ilb
𝑛𝑗

𝑋𝐼𝑗
(𝑆), where 𝑛𝑗 are some non-negative integers such that

∑︀
𝑗∈𝐽 𝑛𝑗 = 𝑛.

This gives a natural assignment

𝑗*(H ilb𝑋𝐼 )(𝑆) → 𝑗*

(︃∏︁

𝑗∈𝐽

H ilb𝑋𝐼𝑗

)︃
(𝑆)

(𝑥𝐼 , 𝜉) ↦→ (𝑥𝐼𝑗 , 𝜉𝑗)𝑗∈𝐽
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2 The main constructions

which defines a morphism of indschemes

𝑗*(H ilb𝑋𝐼 ) → 𝑗*

(︃∏︁

𝑗∈𝐽

H ilb𝑋𝐼𝑗

)︃
.

It follows from the above discussion that this morphism is an equivalence. It

is clear from the definitions that the structure morphisms are compatible with

composition and with each other.

2.2 A variation on the factorisation space

As indicated in Remark 2.1.4 above, we can consider a slightly different factorisation

space by letting the condition on the support of schemes be strictly set-theoretic. We

introduce this space now.

Definition 2.2.1. Given 𝐼 ∈ fSet, let H̃ ilb𝑋𝐼 be the prestack sending a test scheme

𝑆 to the set
⎧
⎨
⎩(𝜉, 𝑥𝐼)

⃒⃒
⃒⃒
⃒⃒
𝑥𝐼 : 𝑆 → 𝑋𝐼 ;
𝜉 ∈ Hilb𝑋(𝑆);
Supp(𝜉) ⊂

{︀
𝑥𝐼
}︀

set-theoretically

⎫
⎬
⎭ .

Remark 2.2.2. The condition on the support of 𝜉 ∈ Hilb𝑛𝑋(𝑆) can be interpreted as

follows: recall that 𝜉 gives rise to 𝑛 morphisms 𝜉𝑗 : 𝑆 → 𝑋; then for each 𝑗 the graph

of 𝜉𝑗 must be equal set-theoretically to the graph of some 𝑥𝑖 : 𝑆 → 𝑋. Equivalently,

we must have 𝜉𝑗 ∘ 𝜄𝑆 = 𝑥𝑖 ∘ 𝜄𝑆 : 𝑆red → 𝑋. (Here, 𝜄𝑆 : 𝑆red →˓ 𝑆 is the canonical

inclusion.)

It follows that the two prestacks H ilb𝑋𝐼 and H̃ ilb𝑋𝐼 agree when evaluated on

reduced schemes; in particular they have the same 𝑘-points.

We can see that (𝑥𝐼 , (𝜉𝑗)
𝑛
𝑗=1) : 𝑆 → 𝑋𝐼 × Sym𝑛

𝑋 factors through the formal neigh-

bourhood ̂︀Γ𝐼𝑋𝑛 of the incidence scheme ̃︀Γ𝐼𝑋𝑛 in 𝑋𝐼×Sym𝑛
𝑋 precisely when the original

pair (𝑥𝐼 , 𝜉) : 𝑆 → 𝑋𝐼 × Hilb𝑛𝑋 factors through H̃ ilb𝑛𝑋𝐼 . That is, H̃ ilb𝑛𝑋𝐼 is the

fibre-product ̂︀Γ𝐼𝑋𝑛 ×𝑋𝐼×Sym𝑛
𝑋
(𝑋𝐼 × Hilb𝑛𝑋). We have proved:

Lemma 2.2.3. For any 𝐼 ∈ fSet and any 𝑛 ≥ 0, H̃ ilb𝑛𝑋𝐼 is representable by an

ind-closed sub-indscheme of 𝑋𝐼 × Hilb𝑛𝑋 ; in particular it is ind-proper over 𝑋𝐼 .
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2.2 A variation on the factorisation space

Proof. Indeed, fibre products commute with filtered colimits. Since the formal com-

pletion ̂︀Γ𝐼𝑋𝑛 is the colimit over 𝑘 ∈ N of the 𝑘th infinitesimal neighbourhoods of ̂︀Γ𝐼𝑋𝑛 ,

which are closed subschemes of 𝑋𝐼×Sym𝑛
𝑋 , H̃ ilb𝑛𝑋𝐼 is the colimit of the fibre product

of these closed subschemes with 𝑋𝐼 × Hilb𝑛𝑋 , and in particular is a colimit of closed

subschemes as required.

It is also clear that we have analogues of Corollary 2.1.6 and Proposition 2.1.7 for

H̃ ilb𝑋𝐼 .

Example 2.2.4. Let 𝑋 = Spec 𝑘[𝑡1, 𝑡2], 𝑆 = Spec 𝑘[𝜖]/𝜖2, and 𝑛 = 2. We will

construct an 𝑆-point of H̃ ilb𝑛𝑋 which is not a point of H ilb𝑛𝑋 . Let 𝑥1 : 𝑆 → 𝑋 be

given by

𝑘[𝑡1, 𝑡2] → 𝑘[𝜖]/𝜖2

𝑡1, 𝑡2 ↦→ 0,

and let 𝑥2 : 𝑆 → 𝑋 be given by

𝑡1 ↦→ 0; 𝑡2 ↦→ 𝜖.

Now let 𝜉1, 𝜉2 ⊂ 𝑆 × 𝑋 = Spec 𝑘[𝜖, 𝑡1, 𝑡2]/𝜖
2 be the closed subschemes cut out by

the ideals 𝐼1 = (𝑡1, 𝑡2) and 𝐼2 = (𝑡1, 𝑡2 − 𝜖), respectively. Then the point 𝜉 ∈ Hilb2
𝑋

corresponding to the union of 𝜉1 and 𝜉2 is the closed subscheme cut out by the ideal

𝐼 = (𝑡1, 𝑡2(𝑡2 − 𝜖)). We consider the pair (𝑥1, 𝜉) : 𝑆 → 𝑋 × Hilb2
𝑋 .

The graph of 𝑥1 is given by Spec 𝑘[𝜖, 𝑡1, 𝑡2]/(𝜖
2, 𝑡1, 𝑡2) ⊂ 𝑆 × 𝑋: on the level of

reduced schemes, it is given by Spec 𝑘[𝑡1, 𝑡2]/(𝑡1, 𝑡2) ⊂ pt×𝑋. This is the same as the

support of 𝜉1 and 𝜉2 on the level of reduced schemes, and hence (𝑥1, 𝜉) ∈ H̃ ilb2𝑋 (𝑆).

On the other hand, it is not a point of H ilb2𝑋 (𝑆) because the image of 𝜉 under the

Hilbert-Chow morphism is given by 𝑥1 + 𝑥2, and 𝑥2 ̸= 𝑥1 : 𝑆 → 𝑋.

Conversely, if we take any 𝑆-point 𝜉′ of the Hilbert scheme which is in the preimage

of 2 · 𝑥1 ∈ Sym2
𝑋(𝑆) under the Hilbert-Chow morphism, then (𝑥1, 𝜉

′) will live in

H ilb2𝑋 (𝑆) (as well as H̃ ilb2𝑋 (𝑆)), even though 𝜉′ will not be scheme-theoretically

contained in the graph of 𝑥1. For example, we could take 𝜉′ to be cut out by the ideal

𝐼 ′ = (𝑡1, 𝑡
2
2).

Remark 2.2.5. Many definitions of a factorisation space {𝑌𝑋𝐼}𝐼 require that each

space 𝑌𝑋𝐼 be equipped with a connection over 𝑋𝐼 . That is, they require that the

space 𝑌𝑋𝐼 descends to some space 𝑌 dR
𝑋𝐼 over 𝑋𝐼

dR; then the collection of spaces
{︀
𝑌 dR
𝑋𝐼

}︀

satisfies suitable analogues of Ran’s condition and the factorisation condition. We do
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not need this property for most of our constructions, and so we have not included it

in our definition of a factorisation space.

However, if we do wish to work with this stronger definition, we must work with

H̃ ilb𝑋𝐼 rather than H ilb𝑋𝐼 . It is clear that the former descends to the de Rham

stack 𝑋𝐼
dR, while the latter does not. On the other hand, the two spaces themselves

have the same de Rham stack, and since our factorisation algebra constructions in

2.4 begin with a 𝒟-module on the factorisation space, it does not matter which space

we work with.

2.3 The fibre of H ilbRan𝑋 over Hilb𝑋

There is a natural forgetful map 𝜌 : H ilbRan𝑋 → Hilb𝑋 ; we shall now study its fibre

over a given point 𝜉 ∈ Hilb𝑋 . The goal is to show that the fibre is homologically

contractible, and more generally that 𝜌! : 𝒟(Hilb𝑋) → 𝒟(H ilbRan𝑋) is fully faithful.

We introduce some general lemmas that will allow us to prove our result.

First, the argument in the first step of the proof of Theorem 4.1.6 [16] generalises

to give the following:

Lemma 2.3.1. Let 𝜌 : 𝒴1 → 𝒴2 be a morphism of prestacks. Given an affine scheme

𝑆 and a map 𝑓 : 𝑆 → 𝒴2, we form the Cartesian diagram:

𝑆 ×𝒴2 𝒴1 𝒴1

𝑆 𝒴2.

𝑓 ′

𝜌𝑆 𝜌

𝑓

Suppose that for all 𝑆 and 𝑓 as above, the functor 𝜌!𝑆 is fully faithful. Then 𝜌! is

fully faithful as well.

Proof. (We follow the argument of Gaitsgory from the proof of Theorem 4.1.6, [16].)

We wish to show that for any F ,G ∈ 𝒟(𝒴2), the map

Hom𝒟(𝒴2)(F ,G ) → Hom𝒟(𝒴1)(𝜌
!F , 𝜌!G )

is an isomorphism. We know that

Hom𝒟(𝒴2)(F ,G ) ≃ lim
(𝑆

𝑔−→𝒴2)

∈SchAff
/𝒴2

Hom𝒟(𝑆)(𝑔
!F , 𝑔!G ).
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2.3 The fibre of H ilbRan𝑋 over Hilb𝑋

On the other hand

Hom𝒟(𝒴1)(𝜌
!F , 𝜌!G ) ≃ lim

(𝑆
𝑔−→𝒴2)

∈SchAff
/𝒴2

Hom𝒟(𝑆×𝒴2
𝒴1)((𝑔

′)!𝜌!F , (𝑔′)!𝜌!G )

≃ lim
(𝑆

𝑔−→𝒴2)

∈SchAff
/𝒴2

Hom𝒟(𝑆×𝒴2
𝒴1)(𝜌

!
𝑆𝑔

!F , 𝜌!𝑆𝑔
!G ).

So it suffices to show that for any (𝑆
𝑔−→ 𝒴2), the map

Hom𝒟(𝑆)(𝑔
!F , 𝑔!G ) → Hom𝒟(𝑆×𝒴2

𝒴1)(𝜌
!
𝑆𝑔

!F , 𝜌!𝑆𝑔
!G )

is an isomorphism. This is immediate from the assumption.

In fact, in special situations, we can prove something even stronger:

Lemma 2.3.2. Let 𝜌 : 𝒴1 → 𝒴2 be a morphism of prestacks and suppose that 𝜌 has a

section 𝑢 : 𝒴2 → 𝒴1. Then to show that 𝜌! is fully faithful, it suffices to show that 𝜌!pt

is fully faithful for any map 𝑓 : pt → 𝒴2, or equivalently that pt×𝒴2𝒴1 is homologically

contractible.

Proof. Since 𝑢! ∘ 𝜌! = id𝒟(𝒴2), it is clear that 𝜌
! is faithful, so it remains to check that

it is full. That is, given F ,G ∈ 𝒟(𝒴2) and some 𝜑 : 𝜌!F → 𝜌!G ∈ 𝒟(𝒴1), we need

to find 𝜓 : F → G such that 𝜑 ≃ 𝜌!𝜓. Thanks to the section 𝑢, we have an obvious

candidate for 𝜓, namely 𝑢!𝜑.

Therefore, to prove the claim it suffices to show that 𝜑 ≃ 𝜌!𝑢!𝜑. In fact, it suffices

to show that these two morphisms agree when pulled back to the fibre pt×𝒴2 𝒴1 over

any 𝑘-point of 𝒴2. We have the following diagram:

pt×𝒴2 𝒴1 𝒴1

pt 𝒴2.

𝑓 ′

𝑓

𝜌pt𝑢pt 𝜌𝑢

We wish to show that (𝑓 ′)!𝜌!𝑢!𝜑 ≃ (𝑓 ′)!𝜑. From the commutativity of the diagram,

we have that

(𝑓 ′)!𝜌!𝑢!𝜑 ≃ 𝜌!pt𝑓
!𝑢!F

≃ 𝜌!pt(𝑢pt)
!(𝑓 ′)!𝜑.

By assumption 𝜌!pt is fully faithful, and so 𝜌!pt(𝑢pt)
!(𝑓 ′)!𝜑 ≃ (𝑓 ′)!𝜑 as required.
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2 The main constructions

With these general results established, let us now turn our attention to the map

𝜌 : H ilbRan𝑋 → Hilb𝑋 .

We wish to show that 𝜌! is fully faithful. Note that we can construct a section

𝑢 : Hilb𝑋 → H ilbRan𝑋 as follows. We map an 𝑆-point 𝜉 of Hilb𝑋 to the pair (𝑥𝐼 , 𝜉),

where 𝑥𝐼 : 𝑆 → Ran𝑋 is given by taking the support of 𝜉 (i.e. a representative in

𝑋𝑛(𝑆) of 𝜋(𝜉) ∈ Sym𝑛
𝑋(𝑆)). There are different choices of representative on the level

of maps 𝑆 → 𝑋𝐼 , but all representatives are identified in the colimit Ran𝑋, so the

section 𝑢 is well-defined.

Therefore, by Lemma 2.3.2, it is enough to show that

𝜌−1(𝜉) ..= pt×Hilb𝑋 H ilbRan𝑋

is fully faithful for any 𝑘-point 𝜉 : pt → Hilb𝑋 .

We have

𝜌−1(𝜉) ≃ colim
𝐼∈fSetop

𝜌−1
𝐼 (𝜉),

where

𝜌𝐼 : H ilb𝑋𝐼 → Hilb𝑋

is given at the level of a test scheme 𝑆 by

(𝑥𝐼 , 𝜂) ↦→ 𝜂.

It is easy to see that for such an 𝑆, we have that

𝜌−1
𝐼 (𝜉)(𝑆) =

{︀
(𝑥𝐼 , 𝜂) ∈ H ilb𝑋𝐼 (𝑆) | 𝜂 = 𝑆 × 𝜉

}︀

≃
{︀
𝑥𝐼 | Supp(𝑆 × 𝜉) ⊂⋆

{︀
𝑥𝐼
}︀}︀

.

In other words, 𝜌−1
𝐼 (𝜉)(𝑆) consists of 𝑆 points of 𝑋𝐼 such that for each point 𝑠 ∈ 𝑆,

the set {𝑥𝐼(𝑠)} ⊂ 𝑋 contains the support of 𝜉. Motivated by this, we formulate the

following proposition:

Proposition 2.3.3. For our fixed 𝜉 ∈ Hilb𝑋 , let {𝑦1, . . . , 𝑦𝑛} be a complete and

repetition-free list of the points in 𝑋 at which 𝜉 is supported. Let 𝐴 ..= {1, . . . , 𝑛} and

let 𝑦𝐴 ∈ 𝑋𝐴 = 𝑋𝑛 be the point corresponding to this list. Then we have that

𝜌−1(𝜉) ≃ Ran𝑋𝐴

as prestacks.
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Proof. We begin by defining a map

𝐹 : Ran𝑋𝐴 → 𝜌−1(𝜉)

in terms of a compatible family of maps given at the level of test schemes 𝑆 by

𝐹(𝐼,𝑎𝐼) : 𝑋
(𝐼,𝑎𝐼)
𝐴 (𝑆) → 𝜌−1(𝜉)(𝑆)

(𝑦𝐴, 𝑥𝐼) ↦→ 𝜆𝐼(𝑥
𝐼 , 𝑆 × 𝜉).

Here 𝜆𝐼 : H ilb𝑋𝐼 → H ilbRan𝑋 are the structure maps and 𝑦𝐴 is viewed as a constant

map from 𝑆. This definition makes sense because the condition (𝑦𝐴, 𝑥𝐼) ∈ 𝑋
(𝐼,𝑎𝐼)
𝐴 (𝑆)

implies that Supp(𝑆×𝜉) =
{︀
𝑦𝐴
}︀
⊂⋆

{︀
𝑥𝐼
}︀
, so that (𝑥𝐼 , 𝑆×𝜉) is indeed in H ilb𝑋𝐼 (𝑆);

moreover it is clear that (𝑥𝐼 , 𝑆 × 𝜉) lies in 𝜌−1
𝐼 (𝜉)(𝑆) and that the maps 𝐹(𝐼,𝑎𝐼) are

compatible over (𝐼, 𝑎𝐼) ∈ fSetop𝐴 .

Now we will define an inverse 𝐺 : 𝜌−1(𝜉) → Ran𝑋𝐴 to 𝐹 , by giving a compatible

family of morphisms

𝐺𝐼 : 𝜌
−1
𝐼 (𝜉) → Ran𝑋𝐴.

Recall that an 𝑆-point of 𝜌−1
𝐼 (𝜉) consists of a pair (𝑥𝐼 , 𝜂) ∈ H ilb𝑋𝐼 such that 𝜂 = 𝑆×𝜉.

Since the support of 𝜉 is given by the set {𝑦𝐴} ⊂ 𝑋, the support of 𝑆 × 𝜉 is given

by the union {𝑐𝑦𝑎} of the graphs of the constant functions 𝑐𝑦𝑎 : 𝑆 → 𝑋. Therefore

{𝑐𝑦𝑎} ⊂* {𝑥𝐼}, and so for each 𝑎 ∈ 𝐴 we can choose some 𝑖 ∈ 𝐼, which we’ll call 𝑎𝐼(𝑎),

such that 𝑐𝑦𝑎 = 𝑥𝑖.

These choices define a map 𝑎𝐼 : 𝐴→ 𝐼, and 𝑥𝐼 gives an 𝑆-point of 𝑋𝑎𝐼
𝐴 . We define

𝐺𝐼,𝑆(𝑥
𝐼 , 𝜂) ..= 𝜇𝑎𝐼 (𝑥

𝐼), where 𝜇𝑎𝐼 is the structure map 𝑋𝑎𝐼
𝐴 → Ran𝑋𝐴.

We need to check first of all that this gives a well-defined map of sets

𝐺𝐼,𝑆 : 𝜌−1
𝐼 (𝜉)(𝑆) → Ran𝑋𝐴(𝑆);

i.e. that 𝜇𝑎𝐼 (𝑥
𝐼) is independent of the choice of map 𝑎𝐼 : 𝐴 → 𝐼. To see this, let us

impose an equivalence relation on 𝐼 by setting

𝑖 ∼ 𝑗 if there exists 𝑎 ∈ 𝐴 such that 𝑥𝑖 = 𝑐𝑦𝑎 ∘ 𝜑 = 𝑥𝑗.

(In fact this is already an equivalence relation because we chose our list {𝑦𝐴} to

be repetition-free; if we had not done this, then we would now need to take the

equivalence relation generated by ∼.) Then the map

𝑞 ∘ 𝑎𝐼 : 𝐴→ 𝐼/∼
𝑎 ↦→ [𝑎𝐼(𝑎)]
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is independent of the choice of 𝑎𝐼 , and makes (𝐴→ 𝐼/∼) into an object of fSet𝐴. By

construction of 𝐼/∼, (𝑥[𝑖]) gives an 𝑆-point of𝑋
(𝐼/∼,𝑞∘𝑎𝐼)
𝐴 , whose image in

(︁
𝑋

(𝐼,𝑎𝐼)
𝐴

)︁
(𝑆)

is (𝑥𝐼).

We have the following commutative diagram

Ran𝑋𝐴

𝑋
(𝐼/∼,𝑞∘𝑎𝐼)
𝐴 𝑋

(𝐼,𝑎𝐼)
𝐴

𝜇𝑞∘𝑎𝐼 𝜇𝑎𝐼

and so 𝜇𝑎𝐼 (𝑥
𝐼) = 𝜇𝑞∘𝑎𝐼 (𝑥

[𝑖]) is independent of the choice of 𝑎𝐼 . This shows that 𝐺𝐼,𝑆

is well-defined.

It is also straightforward to check that 𝐺𝐼,∙ is natural in 𝑆, and hence gives a map

of prestacks

𝐺𝐼 : 𝜌
−1
𝐼 (𝜉) → Ran𝑋𝐴.

The last thing to check is that the maps 𝐺𝐼 are compatible under surjections

𝛼 : 𝐼 � 𝐽 ; this is straightforward as well. Given a point (𝑥𝐽 , 𝜂) ∈ 𝜌−1
𝐽 (𝜉)(𝑆), we have

(Δ(𝛼)(𝑥𝐽), 𝜂) ∈ 𝜌−1
𝐼 (𝜉)(𝑆). We choose any 𝑎𝐼 : 𝐴 → 𝐼 as above, such that for each

𝑎 ∈ 𝐴 we have 𝑐𝑦𝑎 = (Δ(𝛼)(𝑥𝐽))𝑎𝐼(𝑎) = 𝑥𝛼∘𝑎𝐼(𝑎). Then we take 𝑎𝐽 : 𝐴→ 𝐽 to be given

by 𝛼 ∘ 𝑎𝐼 , and we see from the definitions that 𝐺𝐽(𝑥
𝐼 , 𝜂) = 𝐺𝐼(Δ(𝛼)(𝑥𝐽), 𝜂), which is

the required compatibility.

Therefore, we obtain a map 𝐺 : 𝜌−1(𝜉) → Ran𝑋𝐴.

It is clear that 𝐺 and 𝐹 are mutually inverse, and so exhibit an equivalence of

prestacks

𝜌−1(𝜉) ≃ Ran𝑋𝐴.

Combining Lemma 2.3.2 with Propositions 1.1.7 and 2.3.3 we obtain the desired

result:

Theorem 2.3.4. Assuming that 𝑋 is connected, the map

𝜌! : 𝒟(Hilb𝑋) → 𝒟(H ilbRan𝑋)

is fully faithful.
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Remark 2.3.5. An alternate proof of this fact is the following: we can generalise

the proof of Proposition 2.3.3 to show that for any 𝑆 → Hilb𝑋 the fibre-product

𝑆 ×Hilb𝑋 H ilbRan𝑋 is isomorphic to Ran𝑋𝐴,𝑆, the so-called relative Ran space with

marked points. (See 2.5.12 [16] for the definition.) It is easy to check that for any

𝑠 ∈ 𝑆, the fibre of Ran𝑋𝐴,𝑆 is the ordinary Ran space with marked points; it is also

easy to define a section 𝑆 → Ran𝑋𝐴,𝑆. Then the Theorem follows from Lemma 2.3.2

and Proposition 1.1.7.

2.4 A factorisation algebra over the variety 𝑋

In this section, we consider a factorisation algebra produced by linearising the fac-

torisation space H ilbRan𝑋 .

Definition 2.4.1. Set

𝒜𝐼 ..= 𝑓 𝐼*𝜔H ilb
𝑋𝐼

∈ 𝒟
(︀
𝑋𝐼
)︀
;

𝒜Ran𝑋
..= 𝑓*𝜔H ilbRan𝑋

∈ 𝒟 (Ran𝑋) .

It is a factorisation algebra on 𝑋. We denote the chiral algebra corresponding to

𝒜 by ℬ.
Let us make some remarks on this definition:

Remark 2.4.2. 1. Given a smooth surface 𝑆, Kotov [26] defines a factorisation al-

gebra ℬ over 𝑆. This factorisation algebra agrees with our factorisation algebra

for 𝑋 = 𝑆. Kotov claims that for 𝑆 simply connected, ℬ is commutative (The-

orem 4, [26]). We do not yet know an algebro-geometric proof of this fact, but

we expect that such a proof exists and should generalise to higher dimensions.

We expect to make use of the results of II.7.4.

2. Since we are working with the de Rham cohomology of the factorisation space

H ilbRan𝑋 , we could equally well have used the variant ˜H ilbRan𝑋 for this defi-

nition.

We wish to compute the chiral homology of ℬ, which by definition is given by

∫︁

𝑋

ℬ ..= (𝑝Ran𝑋)!𝒜Ran𝑋 .
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Remark 2.4.3. The chiral homology of a chiral algebra, defined by Beilinson–

Drinfeld [4], is a generalisation of the notion of the space of conformal blocks associ-

ated to a vertex algebra. More specifically, in the case that 𝑉 is a quasi-conformal

vertex algebra and ℬ𝑉 is the corresponding chiral algebra on A1, the degree zero piece

of the chiral homology of ℬ is isomorphic to the space of conformal blocks of 𝑉 .

Proposition 2.4.4. The chiral homology of ℬ is given by the de Rham cohomology

of the Hilbert scheme:

∫︁

𝑋

ℬ ≃ H∙(Hilb𝑋).

Proof. We have the following diagram, which is trivially commutative:

H ilbRan𝑋

Hilb𝑋 Ran𝑋

pt.

𝜌 𝑓

𝑝Hilb𝑋
𝑝Ran𝑋

Then we can see that
∫︁

𝑋

ℬ ..= (𝑝Ran𝑋)!𝑓*𝜔H ilbRan𝑋
≃ (𝑝Hilb𝑋 )!𝜌!𝜌

!𝜔Hilb𝑋 .

By Theorem 2.3.4, we have an isomorphism

(𝑝Hilb𝑋 )!𝜌!𝜌
!𝜔Hilb𝑋

∼−→ (𝑝Hilb𝑋 )!𝜔Hilb𝑋
..= H∙(Hilb𝑋),

so the theorem is proved.

2.5 Universality of H ilb∙

In this section we consider how the spaces H ilb𝑋𝐼 change as we change the base

variety 𝑋.

We begin by fixing an arbitrary scheme 𝑆 of finite type together with

𝜋 : 𝑋 → 𝑆

a smooth morphism of dimension 𝑛. Then we can consider a relative version of the

Hilbert scheme:
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Definition 2.5.1. The relative Hilbert scheme of 𝑛 points on 𝑋/𝑆 is the scheme

Hilb𝑛𝑋/𝑆 representing the functor

(︀
SchAff

/𝑆

)︀op → ∞-Grpd

(𝑇/𝑆) ↦→
{︂
𝜉

⃒⃒
⃒⃒ 𝜉 ⊂ 𝑇 ×𝑆 𝑋 is a closed subscheme, flat over T with

zero dimensional fibres of finite length 𝑛.

}︂
.

As in the non-relative case, Grothendieck [22] proved that this functor is repre-

sentable; it is also representable for any affine base scheme 𝑆 with 𝑋 affine over 𝑆

(see again [23]), and hence by gluing for any smooth family 𝑋 → 𝑆. It is proper over

𝑆, again by the valuative criterion of properness.

We let Hilb𝑋/𝑆 be the disjoint union of Hilb𝑛𝑋/𝑆 for 𝑛 ≥ 0. It is an indscheme,

ind-proper over 𝑆.

Our goal is to use this definition to construct a relative version of our factorisation

space. First let us generalise the definition of a factorisation space to the relative

setting. The 𝐼th component of a factorisation space will be an l.f.t. prestack over 𝑆,

that is, a functor
(︁(︀

SchAff
f.t.

)︀
/𝑆

)︁op
→ ∞-Grpd.

For any finite set 𝐼 let (𝑋/𝑆)𝐼 = 𝑋 ×𝑆 𝑋 ×𝑆 . . . ×𝑆 𝑋 ≃ 𝑋𝐼 ×𝑆𝐼 𝑆 denote the

𝐼-fold fibre product of 𝑋 over 𝑆. For any 𝛼 : 𝐼 � 𝐽 , let 𝑈(𝛼)𝑆 ⊂ (𝑋/𝑆)𝐼 be given

by the fibre product

𝑈(𝛼)×𝑋𝐼 (𝑋/𝑆)𝐼 .

Definition 2.5.2. A relative factorisation space over 𝑋/𝑆 is given by the following

data:

1. For each 𝐼 ∈ fSet we have a prestack 𝑌(𝑋/𝑆)𝐼 ∈ PreStk/𝑆 representable by an

indscheme, and equipped with a map

𝑓 𝐼 : 𝑌(𝑋/𝑆)𝐼 → (𝑋/𝑆)𝐼

over 𝑆.

2. For any 𝛼 : 𝐼 � 𝐽 in fSet, an identification

𝑌(𝑋/𝑆)𝐽 ∼−→ 𝑋𝐽 ×𝑋𝐼 𝑌(𝑋/𝑆)𝐽

of indschemes over (𝑋/𝑆)𝐽 . In particular, we have an ind-closed embedding

𝑌 (𝛼) : 𝑌(𝑋/𝑆)𝐽 → 𝑌(𝑋/𝑆)𝐼 .
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3. For any 𝛼 : 𝐼 � 𝐽 in fSet, an identification

𝑈(𝛼)×𝑋𝐼

(︃(︃∏︁

𝑗∈𝐼

𝑌(𝑋/𝑆)𝐼𝑗

)︃
×𝑆𝐽 𝑆

)︃
∼−→ 𝑈(𝛼)×𝑋𝐼 𝑌(𝑋/𝑆)𝐼 .

of indschemes over 𝑈(𝛼)𝑆.

We require that these identifications be compatible with each other and with compo-

sition.

Remark 2.5.3. Note that a factorisation space over 𝑋/𝑆 is not necessarily a fac-

torisation space over the total space 𝑋: the condition in (2) is the same for both

definitions, but the condition in (3) is weaker than the requirement for a factorisation

space over 𝑋.

On the other hand, suppose that
{︀
𝑌𝑋𝐼 → 𝑋𝐼

}︀
𝐼∈fSetop is a factorisation space over

𝑋. Define ̃︀𝑌(𝑋/𝑆)𝐼 ..= 𝑌𝑋𝐼 ×𝑆𝐼 𝑆 for each 𝐼 ∈ fSet. Then

{︁
̃︀𝑌(𝑋/𝑆)𝐼 → (𝑋/𝑆)𝐼

}︁
𝐼∈fSet

gives a factorisation space over 𝑋/𝑆.

Definition 2.5.4. We define the H ilb(𝑋/𝑆)𝐼 ∈ PreStk/𝑆 to be the functor which

sends a scheme 𝑇 → 𝑆 to the set of pairs (𝑥𝐼 , 𝜉), where 𝑥 : 𝑇 → 𝑋 is a morphism of

schemes over 𝑆 and 𝜉 : 𝑇 → Hilb(𝑋/𝑆) with Supp(𝜉) ⊂⋆ {𝑥𝐼}.

Here the inclusion ⊂⋆ is to be interpreted in the same sense as in the definition

2.1.3. That is, via the relative version of the Hilbert-Chow morphism, 𝜉 determines

an unordered finite collection of morphisms 𝜉𝑗 : 𝑇 → 𝑋 over 𝑆, and the condition is

that each of these 𝜉𝑗 is equal to the 𝑖th projection

𝑥𝑖 : 𝑇
𝑥𝐼−→ (𝑋/𝑆)𝐼

pr𝑖−→ 𝑋

of 𝑥𝐼 for some 𝑖 = 𝑖(𝑗) ∈ 𝐼.

Let 𝑓 𝐼𝑋/𝑆 : H ilb(𝑋/𝑆)𝐼 → (𝑋/𝑆)𝐼 denote the natural projection.

Proposition 2.5.5. The collection

𝐼 ↦→ H ilb(𝑋/𝑆)𝐼

defines a relative factorisation space over 𝑋/𝑆.

Proof. The proof uses the same ideas as in Lemma 2.1.5 and Proposition 2.1.7.
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We have seen that linearising a factorisation space produces a factorisation alge-

bra; similarly, linearising a relative factorisation space produces a relative version of a

factorisation algebra. Recall from remark 1.2.6 that, in the non-relative setting, rather

than assuming that a factorisation algebra is a 𝒟-module, we can define a factorisa-

tion structure on a 𝒪-module and then obtain the 𝒟-module structure canonically

from the axioms. However, the factorisation condition for relative factorisation alge-

bras is weaker than for ordinary factorisation algebras: the factorisation isomorphism

is given only over 𝑈(𝛼)𝑆 rather than all of 𝑈(𝛼).

This means that the construction used to produce the connection on the quasi-

coherent sheaf underlying a factorisation algebra no longer produces a connection

in the relative setting. Instead, we obtain only a connection along the fibres of the

morphism 𝑋 → 𝑆. That is, we should expect a relative factorisation algebra to be in

particular a relative 𝒟-module, i.e. a family of objects IndCoh
(︁
𝑋𝐼

dR ×𝑆𝐼
dR
𝑆
)︁
.

Apart from this subtlety, the definition of a relative factorisation algebra is exactly

the linear analogue of a relative factorisation space. We omit the details.

For the remainder of the section, let us restrict our attention to the case 𝐼 = pt.

Consider the dualising sheaf in IndCoh
(︀
(H ilb𝑋/𝑆)dR ×𝑆dR

𝑆
)︀
; by abuse of notation

we will denote it by 𝜔H ilb𝑋/𝑆
. Let 𝒜𝑋/𝑆 denote the pushforward of 𝜔H ilb𝑋/𝑆

under the

map

𝑔𝑋/𝑆 : (H ilb𝑋/𝑆)dR ×𝑆dR
𝑆 → (𝑋/𝑆)dR ..= 𝑋dR ×𝑆dR

𝑆.

(This map is proper, so the * and ! pushforwards coincide.) This is the 𝐼 = {pt}
component of a relative factorisation algebra, and is in particular a relative 𝒟-module

over 𝑋/𝑆.

Proposition 2.5.6. Suppose that we have a fibrewise étale morphism 𝜙 = (𝜙𝑋 , 𝜙𝑆)

of smooth families

𝑋 𝑋 ′

𝑆 𝑆 ′.

𝜙𝑋

𝜋 𝜋′

𝜙𝑆

That is, 𝑋/𝑆 and 𝑋 ′/𝑆 ′ are smooth families, necessarily of the same dimension 𝑛,

and (𝜙𝑋 , 𝜙𝑆) are compatible maps such that for any point 𝑠 ∈ 𝑆 with 𝑠′ ..= 𝜙𝑆(𝑠) ∈ 𝑆 ′,

the induced morphism on fibres (𝑋)𝑠 → (𝑋 ′)𝑠′ is étale.
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Then there is a natural morphism 𝜙𝑋/𝑆 : (𝑋/𝑆)dR → (𝑋 ′/𝑆 ′)dR, and we have a

canonical identification

𝒜(𝜙) : 𝒜𝑋/𝑆
∼−→ 𝜙!

𝑋′/𝑆′𝒜𝑋′/𝑆′ .

Moreover, these identifications are compatible with composition of fibrewise étale mor-

phisms

𝑋/𝑆
𝜙−→ 𝑋 ′/𝑆 ′ 𝜓−→ 𝑋 ′′/𝑆 ′′.

Proof. First note that the map 𝜙𝑋/𝑆 is defined as follows:

(𝑋/𝑆)dR 𝑋dR

(𝑋 ′/𝑆 ′)dR 𝑋 ′
dR

𝑆

𝑆 ′ 𝑆 ′
dR.

𝜙𝑋,dR

𝜙𝑆

𝜋′
dR

𝑝dR,𝑆

𝜙𝑋/𝑆

With this in mind, the result follows easily from the following claim:

Lemma 2.5.7. In the above setting, there is a natural map of indschemes

H (𝜙) : H ilb𝑋/𝑆 → H ilb𝑋′/𝑆′

such that the diagram

H ilb𝑋/𝑆 H ilb𝑋′/𝑆′

𝑋 𝑋 ′

H (𝜙)

𝑓𝑋/𝑆 𝑓𝑋′/𝑆′

𝜙𝑋

is Cartesian.

Let us assume the lemma for the moment, and show how it implies the statement

of the proposition.

The map H (𝜙) induces a map

H (𝜙)𝑋/𝑆 :
(︀
H ilb𝑋/𝑆

)︀
dR

×𝑆dR
𝑆 →

(︀
H ilb𝑋′/𝑆′

)︀
dR

×𝑇dR 𝑇

such that the diagram
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(︀
H ilb𝑋/𝑆

)︀
dR

×𝑆dR
𝑆

(︀
H ilb𝑋′/𝑆′

)︀
dR

×𝑇dR 𝑇

(𝑋/𝑆)dR (𝑋 ′/𝑆 ′)dR

H (𝜙)𝑋/𝑆

𝑔𝑋/𝑆 𝑔𝑋′/𝑆′

𝜙𝑋/𝑆

is Cartesian.

Then we have by proper base change

𝜙!
𝑋/𝑆𝒜𝑋′/𝑆′ = 𝜙!

𝑋/𝑆(𝑔𝑋′/𝑆′)*

(︁
𝜔H ilb𝑋′/𝑆′

)︁

≃ (𝑔𝑋/𝑆)*(H (𝜙)𝑋/𝑆)
!
(︁
𝜔H ilb𝑋′/𝑆′

)︁

≃ (𝑔𝑋/𝑆)*

(︁
𝜔H ilb𝑋/𝑆

)︁

..= 𝒜𝑋/𝑆.

The compatibility of these identifications with composition comes from the com-

patibility of the base-change isomorphisms with composition.

Proof of Lemma 2.5.7. Notice that the fibrewise étale morphism 𝜙 = (𝜙𝑋 , 𝜙𝑆) can

always be factored as

𝑋 𝑆 ×𝑆′ 𝑋 ′ 𝑋 ′

𝑆 𝑆 𝑆 ′.

𝜓𝑋

𝜋 𝜋′

𝜙𝑆

where 𝜓𝑋 is étale and the square on the right is Cartesian. Thus it suffices to prove the

claim in two cases: when 𝜙 = (𝜙𝑋 , id𝑆) with 𝜙𝑋 étale, or else when the commutative

square formed by (𝜙𝑋 , 𝜙𝑆) is a pullback square.

Let us treat first the case that 𝜙 = (𝜙𝑋 , id𝑆). Suppose we have a map 𝑇 →
H ilb𝑋/𝑆 given by a pair (𝑥, 𝜉); we wish to show that this is equivalent to a map 𝑇 →
𝑋 ×𝑋′ H ilb𝑋′/𝑆. We need to construct compatible maps 𝑇 → 𝑋 and 𝑇 → H ilb𝑋′/𝑆

over 𝑋 ′.

The map 𝑇 → 𝑋 is given by 𝑥. The map 𝑇 → H ilb𝑋′/𝑆 will be given by a pair

(𝑥′, 𝜉′) where Supp(𝜉′) ⊂⋆ {𝑥′}. It is clear that we must take 𝑥′ = 𝜙𝑋 ∘ 𝑥. Also if

we choose a representative (𝜉′𝑗) : 𝑇 → (𝑋 ′)𝑛 of the image of 𝜉′ in Sym(𝑋 ′) under the

Hilbert-Chow morphism, then each 𝜉′𝑗 must be equal to 𝑥′. It remains to give the

scheme structure of 𝜉′ in 𝑇 ×𝑆 𝑋
′.
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By definition of H ilb𝑋′/𝑆, 𝜉
′ the closed embedding

𝜉′ →˓ 𝑇 ×𝑆 𝑋
′

must factor through the formal neighbourhood of the graph of 𝑥′ in 𝑇 ×𝑆 𝑋
′. But

since 𝜙𝑋 is étale, this is isomorphic to the formal neighbourhood of the graph of 𝑥 in

𝑇 ×𝑆 𝑋. We have the following:

𝜉 ̂︂{𝑥} 𝑇 ×𝑆 𝑋

𝜉′ ̂︂{𝑥′} 𝑇 ×𝑆 𝑋
′

∼̂︀𝜙

That is, we define 𝜉′ to be the image of 𝜉 under the isomorphism ̂︀𝜙.
It is clear that this gives a bijection between the 𝑇 -points of H ilb𝑋/𝑆 and those

of 𝑋 ×𝑋′ H ilb𝑋′/𝑆. It is also easy to see that this is functorial in 𝑇 , and hence gives

the desired result.

Now let us address the second case: the morphism 𝜙𝑆 : 𝑆 → 𝑆 ′ is arbitrary, but

𝜙𝑋 is its pullback along the smooth map 𝜋′ : 𝑋 ′ → 𝑆 ′. Given a 𝑇 -point (𝑥, 𝜉) of

H ilb𝑋/𝑆, we wish to define a 𝑇 -point (𝑦, 𝑥′, 𝜉′) of H ilb𝑋/𝑆. As in the above discussion,

it is clear that we must have 𝑥 = 𝑦 and 𝑥′ = 𝜙𝑋 ∘ 𝑥, and it remains to specify the

subscheme 𝜉′ of ̂︂{𝑥} →˓ 𝑇 ×𝑆 𝑋.

But in this case we have that 𝑇 ×𝑆 𝑋 ≃ 𝑇 ×𝑆′ 𝑋 ′, and that ̂︂{𝑥} and ̂︂{𝑥′} are

identified under this isomorphism. So again, we take 𝜉′ to be the subscheme of 𝑇×𝑆′𝑋 ′

corresponding to 𝜉.

We again obtain a functorial identification of the 𝑇 -points, and hence an isomor-

phism of the prestacks

H ilb𝑋/𝑆 ≃ 𝑋 ×𝑋′ H ilb𝑋′/𝑆′ .

Observation 2.5.8. For future reference, we make the following observation about

the proof in the case 𝜙 = (𝜙𝑋 , id𝑆). Suppose that our 𝑇 -point (𝑥, 𝜉) : 𝑇 → H ilb𝑐𝑋/𝑆

for some 𝑐 ∈ N. Then in fact the inclusion of 𝜉 in the formal neighbourhood ̂︂{𝑥}
factors through the 𝑐th infinitesimal neighbourhood:
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𝜉 ̂︂{𝑥}.

{𝑥}(𝑐)

So we could have defined 𝜉′ to be the image of 𝜉 under 𝜙(𝑐) : {𝑥}(𝑐) ∼−→ {𝑥′}(𝑐).

Let us make some further remarks on the result of Proposition 2.5.6.

Remark 2.5.9. 1. The structure given by this compatible family

{︀
(𝑋/𝑆) ↦→ 𝒜𝑋/𝑆

}︀

is of particular interest, and is the subject of the next part of this thesis: for

any fixed dimension 𝑛, we have constructed a so-called universal 𝒟-module of

dimension 𝑛.

2. We conjecture, further, that the assignment

(𝑋/𝑆) ↦→
{︀
𝒜(𝑋/𝑆)𝐼 ∈ 𝒟(𝑋𝐼/𝑆)

}︀
𝐼∈fSet

is also universal in a similar sense. More specifically, we expect that the chiral

algebra structures on the 𝒟(𝑋/𝑆)-modules 𝒜𝑋/𝑆 are compatible under pull-

back by fibrewise étale morphisms. In that case, this data is an example of

what should be defined as an 𝑛-dimensional vertex algebra.

3. More generally, we expect that there exists some natural condition on an as-

signment

𝑋/𝑆 ↦→ 𝑌Ran𝑋/𝑆

of relative factorisation spaces which will ensure that the chiral algebras formed

by linearising these spaces give a universal chiral algebra. However, it is not

clear to the author what this condition should be.

More precisely, it is certain that the analogue of Lemma 2.5.7 must hold for

𝐼 = pt, but we do not expect it to hold for |𝐼| ≥ 2. It already does not hold for

𝑛 = 2 and the factorisation spaces given by H ilb∙ or the affine Grassmannian

over curves. In these cases, we do not even have maps

H ilb𝑋2 → H ilb(𝑋′)2 or Gr𝐺,𝑋2 → Gr𝐺,(𝑋′)2 ,
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unless 𝜙 : 𝑋 → 𝑋 ′ is an open embedding.

On the other hand, Kapranov–Vasserot [25] define a factorisation space denoted

ℒ(𝑋)Ran𝐶 over any smooth curve 𝐶 and claim (for example in the statements of

Proposition 3.4.6 and 3.6.2) that for any étale map 𝜋 : 𝐶 → 𝐷 and for any finite

set 𝐼 there is an étale map ℒ(𝜋) : ℒ(𝑋)𝐶𝐼 → ℒ(𝑋)𝐷𝐼 having many desirable

properties. They do not provide a construction of this map.
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Chapter II

Universal 𝒟-modules and stacks of
étale germs

The goal of this chapter is to understand universal families of 𝒟-modules and 𝒪-

modules as quasi-coherent sheaves on certain stacks. These universal modules are

rules assigning to each 𝑛-dimensional variety a 𝒟-module or an 𝒪-module in a way

compatible with étale morphisms; we will introduce several stronger versions of the

compatibility condition, which will allow us to define the notion of a convergent

universal module. In particular, we introduce stacks classifying étale germs of 𝑛-

dimensional varieties, and show that the universal modules are quasi-coherent sheaves

on these stacks; we also introduce variations on these stacks corresponding to the

stronger compatibility conditions.

Moreover, we show that these stacks are isomorphic to the classifying stacks of

certain automorphism groups of the formal 𝑛-dimensional disc Spf 𝑘[[𝑡1, . . . , 𝑡𝑛]], and

hence that the categories of quasi-coherent sheaves on our stacks are the same as the

representation categories of these automorphism groups. The difference between 𝒟-

modules and 𝒪-modules amounts to an action by infinitesimal translations, present

only in the case of 𝒟-modules; in the case of the stacks in this chapter, this difference

is manifested in the automorphism groups as follows: the group corresponding to 𝒪-

modules contains only those automorphisms of the formal disc preserving the origin,

while in the case of 𝒟-modules infinitesimal translations of the origin are permitted.

0.1 The key players

Let us now introduce the main players of this chapter, which fall into three classes:

we have two flavours of stacks—those corresponding to classifying stacks, and those

corresponding to stacks of germs of varieties—and in addition, we have the categories

of universal modules.
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Let 𝐺 denote the group formal scheme of automorphisms of the formal disc. It

has a pro-structure, since it can be viewed as the limit of its quotients 𝐺(𝑐), which

are the automorphism groups of the 𝑐th infinitesimal neighbourhood of a point in an

𝑛-dimensional variety. The classifying stacks of interest will be those corresponding

to these groups; quasi-coherent sheaves on these classifying stacks correspond to rep-

resentations of the associated group. There is a subgroup 𝐺ét of 𝐺, of automorphisms

of étale type; it is closely related to the stacks of étale germs that we will define later.

We will see that this subgroup is dense in 𝐺, so that the representation theory of the

two groups is very similar. More specifically, placing a finiteness condition on their

representations yields equivalent categories of representations.

The second flavour of stacks are those parametrising étale germs of 𝑛-dimensional

varieties—that is, we are interested in pointed 𝑛-dimensional varieties with morphisms

given by roofs of étale morphisms, or common étale neighbourhoods :

(𝑉, 𝑣)

(𝑋1, 𝑥1) (𝑋2, 𝑥2).

Imposing different equivalence relations on these classes of morphisms allows us to

define the different versions of the stack that we will need, corresponding to the

various classifying stacks mentioned above. The equivalence relations are defined by

identifying common étale neighbourhoods which give rise to the same isomorphisms

of the formal completions ̂︁𝑋1
∼−→ ̂︁𝑋2 or of the 𝑐th infinitesimal neighbourhoods for

𝑐 ∈ N. We denote these stacks by ℳ𝑛, ℳ(𝑐)
𝑛 , and ℳ(∞)

𝑛 .

Finally, we consider the category U 𝒟
𝑛 of universal 𝒟-modules, as introduced by

Beilinson and Drinfeld [4]. These are families of 𝒟-modules on 𝑛-dimensional vari-

eties, compatible with pullback along étale morphisms. We impose an additional re-

quirement, that these compatibilities be themselves compatible with identifications of

étale morphisms giving rise to the same morphisms of infinitesimal neighbourhoods.

This allows us to define subcategories U 𝒟,(𝑐)
𝑛 , and finally the category U 𝒟,conv

𝑛 of

convergent universal 𝒟-modules, which are the kind of modules arising from vertex

algebras.

Extending the finiteness condition on representations alluded to above allows us

to define analogous conditions on the categories of quasi-coherent sheaves, and finally

to give a characterisation of convergent universal 𝒟-modules as those universal 𝒟-

modules which are of ind-finite type.
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The relationship between these objects is the main focus of this chapter; the results

are summarised in Figure 1.1

This diagram corresponds to the setting of universal 𝒟-modules; we have an en-

tirely analogous diagram to describe the setting of universal 𝒪-modules. The key

differences are the following:

1. We replace the group 𝐺 of automorphisms of the formal disc by its reduced

subgroup 𝐾 = 𝐺red : this is the group of automorphisms which preserve the

origin of the disc. By contrast, 𝐺 includes automorphisms which may involve

an infinitesimal translation of the origin. These infinitesimal translations corre-

spond to the action of the sheaves of differential operators on the corresponding

universal 𝒟-modules, not present in the case of universal 𝒪-modules.

2. We replace the stacks of étale germs of 𝑛-dimensional varieties by stacks with

the same objects but with fewer isomorphisms: in this case we only allow iso-

morphisms which fix the distinguished points of our pointed varieties, whereas

the original stacks permitted isomorphisms which could shift these points in-

finitesimally. We will denote these stacks by adding a superscript ∙pt to the

symbol denoting the corresponding stack for the 𝒟-module setting (e.g. ℳpt
𝑛 ).

3. Rather than considering universal families of 𝒟-modules, we consider families

of universal 𝒪-modules. We denote these categories by U 𝒪
𝑛 , etc.

4. The finiteness conditions in the bottom part of the back row are simpler. In

fact, these finiteness conditions are most naturally defined in the 𝒪-module

setting; the corresponding conditions in the 𝒟-module setting are then defined

by requiring the objects to be suitably finite when regarded as objects in the

𝒪-module setting after applying a forgetful functor.

We will give the full definitions of the stacks and categories for both the 𝒟-

and 𝒪- module settings, but for the proofs of the equivalences we will mainly focus

on the story of universal 𝒟-modules. This is the setting needed for working with

universal chiral algebras. Moreover, generally the proofs in the 𝒪-module setting are

just simpler versions of the 𝒟-module proofs. The exception is in the study of the

categories of representations; there we will see that it is first necessary to study the

groups 𝐾 and 𝐾 ét, and then to extend our results to 𝐺 and 𝐺ét.

1The reader may wish to pull out the additional copy of the diagram included in Ap-
pendix B so that he can refer back to it easily while reading this chapter.
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Figure II.1: The main diagram: this chapter in one page.
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0.2 The structure of the chapter

We will begin in section 1 by discussing and defining the stacks ℳ(∞)
𝑛 and ℳpt,(∞)

𝑛

of unpointed and pointed étale germs, as well as the necessary variations. In section

2 we introduce the automorphism groups 𝐺 and 𝐾, as well as their quotients 𝐺(𝑐)

and 𝐾(𝑐). We will see that there is a natural map 𝐹 from our stack ℳ(∞)
𝑛 to the

classifying stack 𝐵𝐺, and analogues 𝐹 (𝑐) for the quotients 𝐺(𝑐). Pullback along these

maps gives rise to the functors in column (B) of the main diagram. In section 3, we

state and prove a generalisation of Artin’s approximation theorem [2] to the relative

setting, and show as a corollary that the map 𝐹 (𝑐) is an isomorphism of stacks. It

follows that the functors in the front part of column (B) are equivalences.

In section 4, we introduce the group-valued prestack 𝐺ét of étale-type automor-

phisms of the formal disc; it will be immediate from the relative Artin approximation

theorem and the definition of 𝐺ét that the classifying stack 𝐵𝐺ét is equivalent to

the stack ℳ(∞)
𝑛 of étale germs of 𝑛-dimensional varieties. We will then study the

representation theory of 𝐺ét, and identify representations of 𝐺 as the subcategory of

Rep(𝐺ét) of 𝐾 ét-locally-finite representations. In section 5 we define the categories

of universal 𝒟- and 𝒪-modules, as well as the functor Ψ in the back part of column

(C). We then prove that this functor is an equivalence.

In section 6, we define the categories U 𝒟,(𝑐)
𝑛 and U 𝒟,conv

𝑛 of 𝑐th-order and con-

vergent universal 𝒟-modules, and we prove that the functor Ψ restricts to give the

equivalences of the front part of column (C). We also characterise convergent uni-

versal 𝒟-modules as those universal 𝒟-modules which are locally finite in the sense

analogous to that in the study of Rep(𝐺) →˓ Rep(𝐺ét)—we shall call these universal

𝒟-modules of ind-finite type to avoid confusion with the standard use of the word “lo-

cal” in sheaf theory. In the final section, we discuss the extension of these definitions

and results to the setting of ∞-categories.

Combining our results, we obtain the following equivalences of categories:

QCoh
(︁
ℳpt

𝑛

)︁
QCoh (ℳ𝑛)

Rep(𝐾) U 𝒪,conv
𝑛 Rep(𝐺) U 𝒟,conv

𝑛 .

∼ ∼ ∼ ∼

That is, we have proved a variation of the theorem suggested by Beilinson and

Drinfeld [Proposition and Exercise 2.9.9, [4]]:
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Theorem 0.2.1. We have the following equivalences of categories:

U 𝒪,conv
𝑛 ≃ Rep(𝐾)

U 𝒟,conv
𝑛 ≃ Rep(𝐺).

Composing the functors in the main diagram, we obtain a functor

Rep(𝐺) → U 𝒟
𝑛 .

This functor agrees with the functor (2.9.9.1) of [4]. It follows from our results

that this functor is a fully faithful embedding, but it is not clear that it is essentially

surjective. If it is not, then not all universal 𝒟-modules are convergent; we argue that

in that case the category of convergent universal 𝒟-modules should be the preferred

setting.

Note that the statement of Proposition 2.9.9 [4] is also discussed in a more re-

stricted setting by Jordan and Orem (see section 4 of [24]).

0.3 Conventions and notation

We fix 𝑘 = 𝑘, an algebraically closed field of characteristic zero. By Sch, we will

always mean the category of schemes over 𝑘. By PreStk, we mean the category of

functors

(︀
SchAff

)︀op → ∞-Grpd.

Unlike in the previous chapter, we now work with ordinary categories of sheaves,

𝒟-modules, and representations, rather than DG- or ∞-categories. Our categories

are cocomplete (i.e. closed under colimits); in particular, colimits of categories are

always taken in the ∞-category of cocomplete categories.

Note that each of the stacks appearing in the main diagram can be defined by

giving a prestack parametrising only the trivial objects; then we take the stackification

of the prestack to obtain the stacks in our diagram. (For example, the classifying stack

of a group is the stackification of the prestack classifying only the trivial principal

bundles; similarly in the third column of the diagram we can consider prestacks

classifying the “trivial” pointed 𝑛-dimensional variety, (A𝑛, 0).) These prestacks will

be denoted by adding the subscript ∙triv to the symbol for the corresponding stack.

In the case of the stacks of germs of varieties, it will also be convenient to consider an

intermediate prestack, which has more objects and automorphisms than the trivial

version of the prestack, but which still has the same stackification; this prestack will
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1 Stacks of étale germs

We fix a natural number 𝑛, and are interested in studying smooth pointed varieties

of dimension 𝑛 up to étale morphism. We will define the stack ℳ(∞)
𝑛 classifying

families of such varieties—in fact, we will first introduce the prestack
(︁
ℳ(∞)

𝑛

)︁
triv

classifying trivial 𝑛-dimensional pointed families, and then will define ℳ(∞)
𝑛 to be

its stackification. We will also introduce an intermediate prestack ℳ̃(∞)
𝑛 , which has

ℳ(∞)
𝑛 as its stackification as well, but which is somewhat more manageable.

We begin in 1.1 with some preliminary definitions on 𝑛-dimensional families of

varieties and common étale neighbourhoods between them. In 1.2 we discuss equiva-

lence relations which can be imposed on common étale neighbourhoods so that they

form the morphisms of a groupoid, and in 1.3 we use these ideas to define stacks of

𝑐th-order and étale germs of 𝑛-dimensional varieties. In 1.4 we consider the categories

of quasi-coherent sheaves on these stacks. All of this material is related to the setting

of universal 𝒟-modules, but we conclude in 1.5 with some remarks about the strict

analogues of these definitions, which will be necessary for the setting of universal

𝒪-modules.

1.1 Families of pointed varieties and common étale neigh-
bourhoods

Recall the following notion from Proposition I.2.5.6.
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1 Stacks of étale germs

Definition 1.1.1. Given two smooth families 𝜋𝑖 : 𝑋𝑖 → 𝑆𝑖 a fibrewise étale morphism

between them is given by a commutative diagram

𝑋1 𝑋2

𝑆1 𝑆2

𝑓𝑋

𝜋1 𝜋2

𝑓𝑆

such that for any 𝑠 ∈ 𝑆1 with 𝑠′ ..= 𝑓𝑆(𝑠) ∈ 𝑆2, the induced morphism on fibres

(𝑋1)𝑠 → (𝑋2)𝑠′ is étale.

Notation 1.1.2. We will often use the subscripts 𝑋 and 𝑆 to distinguish between the

two maps comprising a fibrewise étale morphism, even when neither of the smooth

families involved is 𝑋/𝑆.

We are interested in pointed 𝑛-dimensional varieties; in the relative setting this is

formalised as follows:

Definition 1.1.3. Fix a base scheme 𝑆 ∈ Sch. A pointed 𝑛-dimensional family over

𝑆 is a scheme 𝑋 equipped with

∙ a morphism 𝜋 : 𝑋 → 𝑆, smooth of relative dimension 𝑛; and

∙ a section 𝜎 : 𝑆 → 𝑋.

Notation 1.1.4. We shall denote such a family by 𝜋 : 𝑋 � 𝑆 : 𝜎, but will often

abbreviate to (𝜋, 𝜎) or 𝑋 � 𝑆 when there is no risk of confusion.

A particular 𝑛-dimensional family which will be of special importance to us is the

trivial 𝑛-dimensional family A𝑛
𝑆 = 𝑆 × A𝑛 over 𝑆. We will often work with the zero

section 𝑧 : 𝑆 → 𝑆 × A𝑛, induced by the inclusion of the origin in A𝑛. Whenever we

write 𝑆 × A𝑛 � 𝑆 without specifying the maps, we will always mean the canonical

projection and the zero section.

Another important pointed 𝑛-dimensional family is the following: let 𝑋 → 𝑆 be

any smooth family of relative dimension 𝑛, and consider the pointed family

pr1 : 𝑋 ×𝑆 𝑋 � 𝑋 : Δ. (II.1)

We think of this as the universal pointed family over𝑋. Whenever we write𝑋×𝑆𝑋 �

𝑋 without specifying the maps, we will always mean the projection onto the first

factor and the diagonal embedding.
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We want to define a groupoid of pointed 𝑛-dimensional families over a fixed base

scheme 𝑆 up to étale morphism. When 𝑆 = Spec 𝑘 is a point, we have the notion of a

common étale neighbourhood of pointed varieties, which plays the role of isomorphism

in the groupoid, and we generalise this notion to the relative setting as follows:

Definition 1.1.5. Let 𝜋𝑖 : 𝑋𝑖 � 𝑆 : 𝜎𝑖 (𝑖 = 1, 2) be smooth 𝑛-dimensional families

over 𝑆. A common étale neighbourhood is given by a third pointed 𝑛-dimensional

family (𝜌 : 𝑉 � 𝑆 : 𝜏) together with a pair of étale maps (𝜑 : 𝑉 → 𝑋1, 𝜓 : 𝑉 →
𝑋2) such that 𝜑 and 𝜓 are compatible with the projections, and furthermore are

compatible with the sections on the level of reduced schemes. That is, we require

1. 𝜋1 ∘ 𝜑 = 𝜌 = 𝜋2 ∘ 𝜓

2. 𝜎1 ∘ 𝜄𝑆 = 𝜑 ∘ 𝜏 ∘ 𝜄𝑆, 𝜎2 ∘ 𝜄𝑆 = 𝜓 ∘ 𝜏 ∘ 𝜄𝑆,

where 𝜄𝑆 : 𝑆red →˓ 𝑆 denotes the canonical closed embedding. Diagrammatically, we

depict this common étale neighbourhood as follows, where the section 𝜏 is denoted

by a dotted line to remind us that it is only compatible with the sections 𝜎𝑖 on the

reduced part of 𝑆:

𝑉

𝑋1 𝑋2

𝑆.

𝜑 𝜓

Notation 1.1.6. We will denote a common étale neighbourhood by (𝑉, 𝜑, 𝜓); when

no confusion will result, we may use the notation (𝜑, 𝜓) or simply 𝑉 .

Definition 1.1.7. In the case that the diagram is actually commutative, and not

just up to precomposing with 𝜄𝑆, we will say that the common étale neighbourhood

is strict, and will use a solid rather than a dotted line for the section 𝑆 → 𝑉 .

Remark 1.1.8. We can also introduce another variation on the definition of common

étale neighbourhood: rather than requiring the middle family to live over 𝑆, we allow

smooth families over any scheme 𝑇 equipped with an étale morphism to 𝑆 which is

compatible with the projections. There are both strict and non-strict versions of such

étale-locally-defined common étale neighbourhoods.
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1.2 Groupoids of common étale neighbourhoods

Our goal is to define a groupoid ℳ̃(∞)
𝑛 (𝑆) for each scheme 𝑆, whose objects are pointed

𝑛-dimensional families over 𝑆, and whose morphisms are represented by common étale

neighbourhoods. In order to do this, we need to impose an equivalence relation on

common étale neighbourhoods, so that the composition of morphisms is well-defined

and associative, and the morphisms are invertible.

Moreover, we expect that restricting a common étale neighbourhood by pulling

back along another étale morphism should not change the corresponding morphism in

our groupoid. More formally, let (𝑉, 𝜑, 𝜓) be a common étale neighbourhood between

𝑋1 � 𝑆 and 𝑋2 � 𝑆, and suppose that we have a pointed 𝑛-dimensional 𝑆-family

𝑉 ′ étale over 𝑉 :

𝑉 ′ 𝑉

𝑆 𝑆.

𝑓𝑋

𝜌′𝜏 ′ 𝜌𝜏

Then this yields a second common étale neighbourhood (𝑉 ′, 𝜑 ∘ 𝑓𝑋 , 𝜓 ∘ 𝑓𝑋):

𝑉 ′

𝑉

𝑋1 𝑆 𝑋2

𝑆

𝑆 𝑆.

𝜋𝜎

𝜌𝜏

𝜋𝜎

𝜑
𝜓

𝑓𝑋

𝜑′

𝜓′

Motivated by this, we introduce the following equivalence relation:

Definition 1.2.1. We will say that two common étale neighbourhoods (𝑉𝑖, 𝜑𝑖, 𝜓𝑖)

between 𝑋1 � 𝑆 and 𝑋2 � 𝑆 are similar if there exists a pointed family 𝑊 � 𝑆

and étale maps 𝑓𝑖 : 𝑊/𝑆 → 𝑉𝑖/𝑆 compatible with the sections on the level of 𝑆red ,

such that

𝜑1 ∘ 𝑓1 = 𝜑2 ∘ 𝑓2;
𝜓1 ∘ 𝑓1 = 𝜓2 ∘ 𝑓2.
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This is an equivalence relation, but it is slightly too restrictive for our purposes.

We modify it as follows:

Definition 1.2.2. We will say that two common étale neighbourhoods (𝑉𝑖, 𝜑𝑖, 𝜓𝑖) are

(∞)-equivalent if for each 𝑠 ∈ 𝑆 there is a Zariski open neighbourhood 𝑆 ′ of 𝑠 such

that the restrictions of (𝑉𝑖, 𝜑𝑖, 𝜓𝑖) to 𝑆 ′ give similar common étale neighbourhoods

between 𝑋1 ×𝑆 𝑆
′ � 𝑆 ′ and 𝑋2 ×𝑆 𝑆

′ � 𝑆 ′.

This equivalence relation is exactly what we need to define a groupoid structure.

Given two common étale neighbourhoods

(𝑉𝑖/𝑆, 𝜑𝑖, 𝜓𝑖), 𝑖 = 1, 2,

representing morphisms 𝑋1/𝑆 → 𝑋2/𝑆 → 𝑋3/𝑆, we would like to define their com-

position using the fibre product 𝑉1 ×𝑋2 𝑉2, but it requires a little care to show that

this is well-defined. It is clear that this is a smooth scheme of relative dimension 𝑛

over 𝑆, but what is not immediate is the existence of a suitable section. However,

we can define a map 𝑆red → 𝑉1 ×𝑋2 𝑉2 using the compatibility of the sections 𝜏1 ∘ 𝜄𝑆
and 𝜏2 ∘ 𝜄𝑆; this map then extends to the desired section using formal smoothness

of 𝑉1 ×𝑋2 𝑉2 → 𝑆. Although the choice of extension is not unique, any two choices

differ only up to nilpotence, so the resulting common étale neighbourhoods will be

equivalent. Therefore, the composition of the morphisms 𝑋1/𝑆 → 𝑋2/𝑆 → 𝑋3/𝑆 is

indeed represented by the pullback:

𝑉1 ×𝑋2 𝑉2

𝑉1 𝑉2

𝑋1 𝑋2 𝑆 𝑋3

𝑆 𝑆

𝑆 𝑆 𝑆.

It is not hard to check that this is associative.

Next, given 𝑋 � 𝑆, it is straightforward to check that the identity morphism

id𝑋�𝑆 is simply represented by (𝑋, id𝑋 , id𝑋). Moreover, any symmetric common

étale neighbourhood (𝑉, 𝜑, 𝜑) is equivalent to the family (𝑋, id𝑋 , id𝑋) and hence also

represents the identity morphism.
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Finally, given a common étale neighbourhood, its inverse is represented by the

mirror image diagram:

𝑉 𝑉

𝑋1 𝑋2 ↦→ 𝑋2 𝑋1

𝑆 𝑆

𝑆 𝑆 𝑆 𝑆.

𝜋1𝜎1

𝜌

𝜋2𝜎2

𝜑 𝜓

𝜏

𝜋2𝜎2

𝜌

𝜋1𝜎1

𝜓 𝜑

𝜏

Indeed, to show that the composition of this common étale neighbourhood with its

mirror image represents the identity morphism, we need only remark that

Δ : 𝑉 → 𝑉 ×𝑋2 𝑉

is an open embedding (because 𝜓 is unramified and locally of finite type), and in

particular is étale. Pulling back the composition along Δ gives (𝑉, 𝜑, 𝜑), which is

equivalent to the identity common étale neighbourhood.

We have proved the following:

Proposition 1.2.3. Under the (∞)-equivalence relation and with the composition

and inverses described above, ̃︂ℳ𝑛

(∞)
(𝑆) is a groupoid.

Remark 1.2.4. As we will see in Lemma 3.4.3 and Proposition 3.4.4, two common

étale neighbourhoods (𝑉𝑖, 𝜑𝑖, 𝜓𝑖) (𝑖 = 1, 2) are (∞)-equivalent precisely when they

induce the same isomorphism of the formal neighbourhoods of 𝑆 in the schemes 𝑋1

and 𝑋2:

𝜓1 ∘ 𝜑1

−1
= 𝜓2 ∘ 𝜑2

−1
.

Motivated by this observation, we introduce a family of coarser equivalence rela-

tions:

Definition 1.2.5. Let 𝑐 ∈ N. Two common étale neighbourhoods (𝑉𝑖, 𝜑𝑖, 𝜓𝑖) are

(𝑐)-equivalent if they induce the same isomorphisms on the 𝑐th infinitesimal neigh-

bourhoods of 𝑆 in 𝑋1 and 𝑋2:

𝜓
(𝑐)
1 ∘

(︁
𝜑
(𝑐)
1

)︁−1

= 𝜓
(𝑐)
2 ∘

(︁
𝜑
(𝑐)
2

)︁−1

: 𝑋
(𝑐)
1

∼−→ 𝑋
(𝑐)
2 .
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1.3 Stacks of étale and 𝑐th-order germs of varieties

Then we let ℳ̃(𝑐)
𝑛 (𝑆) be the groupoid whose objects are pointed 𝑛-dimensional

families over 𝑆 and whose morphisms are common étale neighbourhoods up to (𝑐)-

equivalence.

Since (𝑐)-equivalence is coarser than (𝑐 + 1)-equivalence for any 𝑐, and also than

(∞)-equivalence, we obtain morphisms of groupoids

ℳ̃(∞)
𝑛 (𝑆) → . . .→ ℳ̃(𝑐+1)

𝑛 (𝑆) → ℳ̃(𝑐)
𝑛 (𝑆) → . . . .

1.3 Stacks of étale and 𝑐th-order germs of varieties

With these preliminary notions and definitions established, we can define the pre-

stacks of germs of varieties as follows:

Definition 1.3.1. Given 𝑐 ∈ N ∪ {∞}, let
(︁
ℳ(𝑐)

𝑛

)︁
triv

be the prestack that sends a

test scheme 𝑆 to the groupoid whose only object is the trivial pointed 𝑛-dimensional

variety 𝜋 : 𝑆 × A𝑛 � 𝑆 : 𝑧, and whose automorphisms are given by common étale

neighbourhoods of 𝑆 × A𝑛 with itself, modulo (𝑐)-equivalence.

There is a distinguished class of common étale neighbourhoods of 𝑆 × A𝑛, char-

acterised as follows:

Definition 1.3.2. A common étale neighbourhood 𝑉 = (𝑉, 𝜑, 𝜓) between the trivial

pointed family and itself will be called split if there exists an 𝑛-dimensional variety𝑊

together with maps 𝜑, 𝜓 : 𝑆×𝑊 → 𝑆×A𝑛 (not necessarily étale), an open embedding

𝑉 →˓ 𝑆 ×𝑊 , and a point 𝑤 ∈ 𝑊 such that the following diagram commutes:

𝑉

𝑆 ×𝑊

𝑆 × A𝑛 𝑆 𝑆 × A𝑛

𝑆

𝑆 𝑆.

id𝑆 ×𝑖𝑤

𝜏

𝜋𝑧

pr𝑆

𝜌

𝜋𝑧

𝜑
𝜓

𝜑

𝜓

Remark 1.3.3. Split common étale neighbourhoods can be simpler to work with,

and will arise in our discussion of the Artin approximation theorem. Fortunately we

will see in Lemma 3.4.2 that all common étale neighbourhoods of the trivial pointed
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1 Stacks of étale germs

variety are (∞)-equivalent (and hence (𝑐)-equivalent, for any 𝑐) to a common étale

neighbourhood which is split.

Definition 1.3.4. Let ℳ(𝑐)
𝑛 be the stackification of

(︁
ℳ(𝑐)

𝑛

)︁
triv

in the étale topology.

When 𝑐 = ∞, we call ℳ(𝑐)
𝑛 the stack of étale germs of 𝑛-dimensional varieties. For

finite 𝑐, we call ℳ(𝑐)
𝑛 the stack of 𝑐th-order germs of 𝑛-dimensional varieties.

In fact we will find it convenient to work with the intermediate prestack ℳ̃(𝑐)
𝑛 ,

which lies in between
(︁
ℳ(𝑐)

𝑛

)︁
triv

and its stackification ℳ(𝑐)
𝑛 .

Definition 1.3.5. For 𝑐 ∈ N ∪ {∞}, let ℳ̃(𝑐)
𝑛 be the subprestack of ℳ(𝑐)

𝑛 sending a

test scheme 𝑆 to the subgroupoid ℳ̃(𝑐)
𝑛 (𝑆) of ℳ(𝑐)

𝑛 (𝑆) defined above. Its objects are

pointed 𝑛-dimensional varieties over 𝑆 and its morphisms are represented by common

étale neighbourhoods up to (𝑐)-equivalence.

We see that this gives a prestack whose stackification is ℳ(𝑐)
𝑛 : indeed, when con-

structing the stackification of
(︁
ℳ(𝑐)

𝑛

)︁
triv

explicitly, as in [1, Tag 02ZM], we must add

in locally defined objects, which include all of the additional objects of ℳ̃(𝑐)
𝑛 (𝑆); we

must also add in all of the locally defined morphisms between these new objects, and

hence in particular all of the morphisms of ℳ̃(𝑐)
𝑛 (𝑆). The next stage in constructing

the stackification is to identify all morphisms which agree locally; however, this has

already been done in ℳ̃(𝑐)
𝑛 (𝑆) by our definition of (𝑐)-equivalence. It follows that

we can view ℳ̃(𝑐)
𝑛 (𝑆) as a (non-full) sub-groupoid of ℳ(𝑐)

𝑛 (𝑆), and hence by the uni-

versal property, we obtain a map from the stackification of ℳ̃(𝑐)
𝑛 into ℳ(𝑐)

𝑛 . The

quasi-inverse to this map is induced by the obvious inclusion of
(︁
ℳ(𝑐)

𝑛

)︁
triv

into ℳ̃(𝑐)
𝑛 .

Remark 1.3.6. The crucial difference between the stack ℳ(𝑐)
𝑛 and the prestack ℳ̃(𝑐)

𝑛

(and the reason that it is simpler to work with ℳ̃(𝑐)
𝑛 ) is that the groupoid ℳ(𝑐)

𝑛 (𝑆)

contains isomorphisms represented by common étale neighbourhoods which are only

defined étale-locally over the base as in Remark 1.1.8.

1.4 Quasi-coherent sheaves on ℳ(𝑐)
𝑛

We will be interested in studying the categories of quasi-coherent sheaves on the

stacks ℳ(𝑐)
𝑛 for 𝑐 ∈ N ∪ {∞}. Since the categories of quasi-coherent sheaves on a

prestack and its stackification are equivalent, we have the following equivalences:

QCoh
(︀(︀
ℳ(𝑐)

𝑛

)︀
triv

)︀
≃ QCoh

(︀
ℳ(𝑐)

𝑛

)︀
≃ QCoh

(︂
ℳ̃(𝑐)

𝑛

)︂
.
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1.4 Quasi-coherent sheaves on ℳ(𝑐)
𝑛

We will find it convenient to work in the realisation of the category given by

QCoh

(︂
ℳ̃(𝑐)

𝑛

)︂
. (See Appendix A.2.1 for an overview of the theory of quasi-coherent

sheaves on prestacks. For more details, see Gaitsgory’s notes [14].) Concretely, an

object 𝑀 of QCoh

(︂
ℳ̃(𝑐)

𝑛

)︂
consists of a collection of quasi-coherent sheaves together

with coherences: for each map 𝑆 → ℳ̃(𝑐)
𝑛 (i.e. for each 𝑋 � 𝑆 smooth of relative

dimension 𝑛), we have an object 𝑀𝑋�𝑆 ∈ QCoh (𝑆). Moreover, we require com-

patibility under pullbacks in the following sense. Suppose that for 𝑖 = 1, 2 we have

𝑆𝑖
(𝜋𝑖,𝜎𝑖)−−−→ ℳ̃(𝑐)

𝑛 , two 𝑛-dimensional families, together with a map 𝑓 : 𝑆1 → 𝑆2 and a

commutative diagram of prestacks:

𝑆2 ℳ̃(𝑐)
𝑛 .

𝑆1

(𝜋2, 𝜎2)

𝑓

(𝜋
1
, 𝜎

1
)𝛼

Recall that in PreStk, commutativity of a diagram is a structure, not a property, in

this case amounting to an automorphism 𝛼 in ℳ̃(𝑐)
𝑛 (𝑆1) between the objects corre-

sponding to (𝜋1, 𝜎1) and (𝜋2, 𝜎2) ∘ 𝑓 , represented by a common étale neighbourhood

of the form

𝑉𝛼

𝑋1 𝑆1 ×𝑆2 𝑋2

𝑆1

𝑆1 𝑆1.

𝜋1𝜎1

𝜌𝛼

𝑓*𝜋2𝑓*𝜎2

𝜑𝛼 𝜓𝛼

𝜏𝛼

We require that in such a situation, we have an isomorphism

𝑀(𝑓, 𝛼) : 𝑓 * (𝑀𝑋2�𝑆2)
∼−→𝑀𝑋1�𝑆1

in QCoh (𝑆1). This isomorphism must be independent of the choice of representative

(𝑉𝛼, 𝜑𝛼, 𝜓𝛼) of the isomorphism 𝛼 in ℳ̃(𝑐)
𝑛 (𝑆1). We also require that these isomor-

phisms be compatible with compositions 𝑆1
𝑓−→ 𝑆2

𝑔−→ 𝑆3.
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2 Groups of automorphisms and their classifying stacks

1.5 Strict analogues, for the 𝒪-module setting

Let us introduce the following strict analogues, which will be important in the setting

of universal 𝒪-modules.

Definition 1.5.1. Fix 𝑐 ∈ N ∪ {∞}. Let
(︁
ℳpt,(𝑐)

𝑛

)︁
triv

be the prestack that sends a

test scheme 𝑆 to the groupoid whose only object is the trivial pointed 𝑛-dimensional

variety 𝜋 : 𝑆 × A𝑛 � 𝑆 : 𝑧, and whose automorphisms are given by strict common

étale neighbourhoods of 𝑆 × A𝑛 with itself, up to (𝑐)-equivalence.

Remark 1.5.2. In the case 𝑐 = ∞, one might be tempted to consider a strict version

of (∞)-equivalence, defined in the obvious way. It is straightforward to check that

two strict common étale neighbourhoods are (∞)-equivalent if and only if they are

strictly (∞)-equivalent, so in fact it is not necessary to introduce this latter notion.

Definition 1.5.3. Let ℳpt,(𝑐)
𝑛 be the stackification of

(︁
ℳpt,(𝑐)

𝑛

)︁
triv

in the étale topol-

ogy. When 𝑐 = ∞, we call ℳpt,(𝑐)
𝑛 the stack of pointed étale germs of 𝑛-dimensional

varieties ; when 𝑐 is finite, ℳpt,(𝑐)
𝑛 is the stack of pointed 𝑐th-order germs of 𝑛-

dimensional varieties.

As in the non-strict setting, we will also work with an intermediate prestack

ℳ̃pt,(𝑐)
𝑛 , lying in between the prestack

(︁
ℳpt,(𝑐)

𝑛

)︁
triv

and its stackification. Namely, for

a given test scheme 𝑆, an object of the groupoid ℳ̃pt,(𝑐)
𝑛 (𝑆) is a pointed 𝑛-dimensional

family over 𝑆, 𝜋 : 𝑋 � 𝑆 : 𝜎. Given two such pointed families, a morphism between

them is represented by a strict common étale neighbourhood (𝑉, 𝜑, 𝜓), modulo (𝑐)-

equivalence. Similarly to in the groupoid ℳ̃(𝑐)
𝑛 (𝑆), composition is given by pullback

and inverses are given by mirror-image diagrams.

The difference between the strict and non-strict definitions lies in whether we

require morphisms to preserve the distinguished points of the 𝑛-dimensional varieties

(in the strict setting), or allow infinitesimal translations (in the non-strict setting).

As we will see in section 5, this is what gives quasi-coherent sheaves on ℳpt,(𝑐)
𝑛 the

additional structure of an action of the sheaf of differential operators.

2 Groups of automorphisms and their classifying

stacks

In this section, we introduce certain groups 𝐺 and 𝐾 of automorphisms of the formal

disc. We begin in 2.1 by defining the group formal scheme 𝐺 and its finite-dimensional
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2.1 The group 𝐺 of continuous automorphisms of the formal disc

quotients 𝐺(𝑐); in 2.2 we introduce the reduced part 𝐾 = 𝐺red . It is a pro-algebraic

group, and contains a pro-unipotent subgroup 𝐾𝑢. In 2.3 we give some general defi-

nitions and facts regarding representations of group-valued prestacks and classifying

stacks, and in 2.4 we apply these ideas to the groups 𝐺 and 𝐾. We also begin the

comparison of the classifying stacks 𝐵𝐺 and 𝐵𝐾 with the stacks ℳ(∞)
𝑛 and ℳpt,(∞)

𝑛 ,

which will be the motivation for the next several sections.

2.1 The group 𝐺 of continuous automorphisms of the formal
disc

Definition 2.1.1. Let �̂�𝑛 = 𝑘[[𝑡1, . . . , 𝑡𝑛]], and let 𝐺 = Aut�̂�𝑛 be the ind-affine group

formal scheme of continuous automorphisms of �̂�𝑛. Explicitly, for 𝑆 = Spec(𝑅), 𝐺(𝑆)

is the group of automorphisms of the 𝑅-algebra 𝑅[[𝑡1, . . . , 𝑡𝑛]], continuous with respect

to the topology corresponding to the ideal m generated by (𝑡1, . . . , 𝑡𝑛).

A continuous homomorphism 𝜌 : 𝑅[[𝑡1, . . . , 𝑡𝑛]] → 𝑅[[𝑡1, . . . , 𝑡𝑛]] is determined

by its values on the topological generators 𝑡1, . . . , 𝑡𝑛. Given a multi-index 𝐽 =

(𝑗1, . . . , 𝑗𝑛) ∈ Z𝑛≥0, let us denote by 𝑟𝑘𝐽 the coefficient of 𝑡𝐽 = 𝑡𝑗11 · · · 𝑡𝑗𝑛𝑛 in the se-

ries 𝜌(𝑡𝑘) ∈ 𝑅[[𝑡1, . . . , 𝑡𝑛]]. For 𝑘′ ∈ {1, . . . , 𝑛}, let 𝑒𝑘′ = (0, . . . , 0, 1, 0, . . . , 0) be the

multi-index with 1 only in the 𝑘′th place. With this notation,

𝜌 : 𝑡𝑘 ↦→ 𝑟𝑘0 +
𝑛∑︁

𝑘′=1

𝑟𝑘𝑒𝑘′ 𝑡𝑘′ + higher order terms. (II.2)

The condition that this determines a continuous homomorphism is equivalent to re-

quiring each 𝑟𝑘0 to be a nilpotent element of 𝑅. Then the homomorphism 𝜌 determined

by the equations (II.2) is invertible precisely when the matrix (𝑟𝑘𝑒𝑘′ )𝑘,𝑘′ ∈ 𝑀𝑛(𝑅) is

invertible.

This allows us to describe the indscheme structure of 𝐺 explicitly:

𝐺 = colim
𝑁∈N

Spec
(︁
𝑘[𝑎𝑘𝐽 , (det (𝑎

𝑘
𝑒𝑘′
)𝑘,𝑘′)

−1]/((𝑎𝑘0)
𝑁)
)︁
.

Definition 2.1.2. Given 𝑐 ∈ N, we can also consider 𝐺(𝑐), the group formal scheme

of continuous automorphisms of �̂�𝑛/m
𝑐+1:

𝐺(𝑐) = colim
𝑁∈N

Spec
(︁
𝑘[𝑎𝑘𝐽 , (det (𝑎

𝑘
𝑒𝑘′
)𝑘,𝑘′)

−1]|𝐽 |≤𝑐/((𝑎
𝑘
0)
𝑁)
)︁
,

where

|𝐽 | ..=
𝑛∑︁

𝑖=1

𝑗𝑖.
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2 Groups of automorphisms and their classifying stacks

Then 𝐺(𝑐) is an indscheme of finite type and a quotient of 𝐺, and we can express

𝐺 as the limit

𝐺 = lim
𝑐∈N

𝐺(𝑐).

That is, 𝐺 is a pro-object in the category of ind-affine group formal schemes.

Example 2.1.3. It may be useful to keep in mind the notationally simpler one-

dimensional setting. When 𝑛 = 1, an automorphism 𝜌 : 𝑅[[𝑡]] → 𝑅[[𝑡]] is determined

by its value on the single generator 𝑡:

𝜌 : 𝑡 ↦→ 𝑟0 + 𝑟1𝑡+ 𝑟2𝑡
2 + . . . ,

where 𝑟0 ∈ Nil(𝑅) and 𝑟1 ∈ 𝑅×.

The indscheme 𝐺 is the colimit (of schemes of infinite type)

𝐺 = colim
𝑁∈N

Spec 𝑘[𝑎0, 𝑎1, 𝑎
−1
1 , 𝑎2, 𝑎3, . . .]/(𝑎

𝑁
0 ).

On the other hand, it is also the limit of the indschemes 𝐺(𝑐) of finite type, where

𝐺(𝑐) = colim
𝑁∈N

Spec 𝑘[𝑎0, 𝑎1, 𝑎
−1
1 , 𝑎2, 𝑎3, . . . , 𝑎𝑐]/(𝑎

𝑁
0 ).

The quotient maps 𝐺(𝑐) → 𝐺(𝑐−1) correspond to the inclusions

𝑘[𝑎0, 𝑎1, 𝑎
−1
1 , 𝑎2, 𝑎3, . . . , 𝑎𝑐−1]/(𝑎

𝑁
0 ) →˓ 𝑘[𝑎0, 𝑎1, 𝑎

−1
1 , 𝑎2, 𝑎3, . . . , 𝑎𝑐]/(𝑎

𝑁
0 )

𝑎𝑖 ↦→ 𝑎𝑖.

They are clearly smooth of dimension 1.

Note also that it is easy to see from this example that a continuous homomor-

phism 𝜌 : 𝑅[[𝑡]] → 𝑅[[𝑡]] always descends to give a homomorphism 𝜌(𝑐) : 𝑅[𝑡]/m𝑐+1 →
𝑅[𝑡]/m𝑐+1. Moreover, 𝜌 is invertible if and only if 𝜌(𝑐) is invertible for some (or equiv-

alently for all) 𝑐 ≥ 1, because this is a condition on the coefficients of the degree 0

and 1 terms only. This is true for 𝑛 > 1 as well, for the same reasons.

2.2 The reduced part 𝐾 = 𝐺red

Definition 2.2.1. Let 𝐾 = 𝐺red denote the reduced part of the indscheme 𝐺:

𝐾 = Spec 𝑘[𝑎𝑘𝐽 , (det (𝑎
𝑘
𝑒𝑘′
)𝑘,𝑘′)

−1]|𝐽 |>0.
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2.2 The reduced part 𝐾 = 𝐺red

It is an affine group scheme of infinite type. Geometrically, (Spec𝑅)-points of

𝐾 correspond to continuous automorphisms 𝜌 : 𝑅[[𝑡1, . . . , 𝑡𝑛]] → 𝑅[[𝑡1, . . . , 𝑡𝑛]] such

that the constant term of each series 𝜌(𝑡𝑘) is zero. We think of 𝐾 as parametrising

automorphisms of the formal disc Spf 𝑘[[𝑡1, . . . , 𝑡𝑛]] which fix the origin 0, whereas

the automorphisms parametrised by the larger group 𝐺 may involve infinitesimal

translations of 0.

We view 𝐾 as a pro-algebraic group: it has finite-dimensional quotients 𝐾(𝑐),

parametrising automorphisms of 𝑘[[𝑡1, . . . , 𝑡𝑛]]/m
𝑐 which preserve the origin.

Definition 2.2.2. Explicitly, 𝐾(𝑐) is the algebraic group

𝐾(𝑐) = Spec 𝑘[𝑎𝑘𝐽 , (det (𝑎
𝑘
𝑒𝑘′
)𝑘,𝑘′)

−1]0<|𝐽 |<𝑐+1,

where the group structure comes from composition of the automorphisms 𝜌.

Note that we have obvious maps

𝐾,𝐾𝑐 → 𝐺𝐿𝑛,

where the map on (Spec𝑅)-points sends an automorphism 𝜌 to the matrix

(𝑟𝑘𝑒𝑘′ )𝑘,𝑘′ ∈ 𝐺𝐿𝑛(𝑅),

in the notation of (II.2). These are homomorphisms of affine group schemes. (Notice

that we might try to define a similar map for the groups 𝐺,𝐺(𝑐), but that this no

longer respects the group structure.)

Definition 2.2.3. Let 𝐾𝑢 and 𝐾
(𝑐)
𝑢 denote the kernels of the homomorphisms of

group schemes 𝐾 → 𝐺𝐿𝑛 and 𝐾(𝑐) → 𝐺𝐿𝑛 respectively.

Then 𝐾
(𝑐)
𝑢 is a unipotent algebraic group, and 𝐾𝑢 = lim𝑐∈N𝐾

(𝑐)
𝑢 is a pro-unipotent

group. We can write

𝐾 = 𝐺𝐿𝑛 n𝐾𝑢, 𝐾(𝑐) = 𝐺𝐿𝑛 n𝐾(𝑐)
𝑢 ;

this will be helpful in section 4 in understanding the representation theory of 𝐾.

Example 2.2.4. Let us again consider the case 𝑛 = 1, where the notation is more

pleasant. We have

𝐾 = Spec 𝑘[𝑎1, 𝑎
−1
1 , 𝑎2, 𝑎3, . . .],

𝐾(𝑐) = Spec 𝑘[𝑎1, 𝑎
−1
1 , 𝑎2, 𝑎3, . . . , 𝑎𝑐].
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2 Groups of automorphisms and their classifying stacks

The maps 𝐾,𝐾(𝑐) → 𝐺𝐿1 = G𝑚 = Spec 𝑘[𝑥, 𝑥−1] are induced by the algebra homo-

morphisms given by

𝑥 ↦→ 𝑎1.

The unipotent groups are given by

𝐾𝑢 = Spec 𝑘[𝑎2, 𝑎3, . . .],

𝐾(𝑐)
𝑢 = Spec 𝑘[𝑎2, 𝑎3, . . . , 𝑎𝑐].

Let us consider the coalgebra structure on the algebra of functions 𝑘[𝑎2, 𝑎3, . . .], in-

duced by the composition of automorphisms 𝜌, 𝜎 ∈ 𝐾𝑢(𝑘). Suppose that

𝜌 : 𝑡 ↦→ 𝑡+ 𝑟2𝑡
2 + 𝑟3𝑡

3 + . . . ,

𝜎 : 𝑡 ↦→ 𝑡+ 𝑠2𝑡
2 + 𝑠3𝑡

3 + . . .

Then

𝜌 ∘ 𝜎 : 𝑡 ↦→
𝑡+ (𝑟2 + 𝑠2)𝑡

2 + (𝑟3 + 2𝑟2𝑠2 + 𝑠2)𝑡
3 + (𝑟4 + 3𝑟3𝑠2 + 𝑟2𝑠

2
2 + 2𝑟2𝑠3 + 𝑠4)𝑡

4 + . . .

From this we see that the comultiplication satisfies

𝑎2 ↦→ 𝑎2 ⊗ 1 + 1⊗ 𝑎2,

𝑎3 ↦→ 𝑎3 ⊗ 1 + 2𝑎2 ⊗ 𝑎2 + 1⊗ 𝑎3,

𝑎4 ↦→ 𝑎4 ⊗ 1 + 3𝑎3 ⊗ 𝑎2 + 𝑎2 ⊗ 𝑎22 + 2𝑎2 ⊗ 𝑎3 + 1⊗ 𝑎4,

and so on.

The action of G𝑚 on 𝐾𝑢 (and similarly on 𝐾
(𝑐)
𝑢 for any 𝑐) induces a grading on

the algebra of functions as follows: a 𝑘-point of G𝑚 is of the form 𝑧 : 𝑡 ↦→ 𝑧𝑡, for

𝑧 ∈ 𝑘×. Conjugating 𝜌 ∈ 𝐾𝑢(𝑘) by 𝑧 gives

𝑧 ∘ 𝜌 ∘ 𝑧−1 : 𝑡 ↦→ 𝑡+ 𝑧𝑟2𝑡
2 + 𝑧2𝑟3𝑡

3 + . . . ;

that is, the grading on 𝑘[𝑎2, 𝑎3, . . .] is given by deg(𝑎𝑗) = 𝑗 − 1.

Returning to the general setting (𝑛 ≥ 1), note that the diagonal inclusion G𝑚 →˓
𝐺𝐿𝑛 results in a grading of the algebra of functions 𝑘[𝑎𝑘𝐽 ]|𝐽 |>1 of 𝐾𝑢 (and again,

similarly for 𝐾
(𝑐)
𝑢 ): we have deg(𝑎𝑘𝐽) = |𝐽 | − 1. It will be important for us that the

grading is non-negative.
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2.3 Representations and classifying stacks

Definition 2.3.1. By a group-valued prestack, we mean a functor

𝐻 : (Schaff)op → Grp.

The ordinary prestack underlying 𝐻 is given by composing with the forgetful

functor Grp → Set and the inclusion Set → ∞−Grpd.

Let 𝐻 be any group-valued prestack. We wish to consider the category Rep(𝐻)

of representations of 𝐻:

Definition 2.3.2. A representation of 𝐻 on a 𝑘-vector space 𝑉 is a morphism of

group-valued functors

R : 𝐻 → 𝐺𝐿𝑉 ;

that is, for any 𝑆 = Spec𝑅 we have

R𝑅 : 𝐻(𝑆) → 𝐺𝐿(𝑉 ⊗𝑘 𝑅),

natural in 𝑅.

We can reformulate this definition in a more geometric manner as follows. Recall

that given a group 𝐻 we can define the prestack 𝐵𝐻triv classifying trivial principal

𝐻-bundles: for a test scheme 𝑆, 𝐵𝐻triv(𝑆) is a groupoid containing only one object,

the trivial bundle 𝑆 ×𝐻 → 𝑆. The automorphism group Aut𝐵𝐻triv(𝑆)(𝑆 ×𝐻 → 𝑆) is

the group 𝐻(𝑆).

Definition 2.3.3. The classifying stack 𝐵𝐻 of 𝐻 is the stackification of the prestack

𝐵𝐻triv in the étale topology.

Remark 2.3.4. If 𝐻 is an algebraic group, this is the usual classifying stack: that is,

𝑆-points of 𝐵𝐻 are principal 𝐻-bundles over 𝑆, and automorphisms are morphisms

of 𝐻-bundles.

Then we have that

Rep(𝐻) ≃ QCoh (𝐵𝐻triv) ≃ QCoh (𝐵𝐻) ,

where the second equivalence is due to the fact that QCoh (∙) is preserved by stacki-

fication.
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2 Groups of automorphisms and their classifying stacks

In the case that 𝐻 is an affine group scheme, say 𝐻 = Spec𝐴 with 𝐴 a Hopf

algebra, then the data of a representation of 𝐻 on a vector space 𝑉 is equivalent to

the structure of an 𝐴-comodule on 𝑉 :

𝑉 → 𝑉 ⊗𝑘 𝐴.

(See for example [31], Chapter VIII, Prop. 6.1.)

Observation 2.3.5. From this definition we can show that any representation 𝑉

of an affine group scheme is locally finite: that is, every vector 𝑣 ∈ 𝑉 is contained

in some finite-dimensional sub-representation. (For example, see [31], Chapter VIII,

Prop. 6.6.) This is not true of representations of more general group-valued prestacks,

as we will see in section 4.3.

Now suppose that 𝐻 is a pro-algebraic group, so that

𝐻 = lim
𝑖
𝐻𝑖,

where 𝐻𝑖 runs over all finite-dimensional quotients of 𝐻. (The example we have in

mind is of course the group 𝐾 of section 2.2.) If we forget for the moment about the

scheme structure on these groups, the pro-structure of 𝐻 gives it a topology: a base

for the open neighbourhoods of 1𝐻 is given by the kernels 𝑁𝑖 of the quotient maps

𝐻 � 𝐻𝑖.

We might be interested in restricting our attention to only those representations

of 𝐻 which are continuous with respect to this topology. If we give the vector space

𝑉 the discrete topology, this amounts to requiring that for each 𝑣 ∈ 𝑉 , the action

of 𝐻 on 𝑣 factors through one of the finite-dimensional quotients 𝐻𝑖, or equivalently,

that 𝑉 is the union of the subrepresentations 𝑉𝑖, where 𝑉𝑖 is the largest subspace of

𝑉 on which the action of 𝐻 factors through 𝐻𝑖 or on which the action of 𝑁𝑖 is trivial.

If 𝑉 is finite-dimensional to begin with, the group-valued prestack 𝐺𝐿𝑉 is also

a finite-dimensional algebraic group, and so this condition is automatic. Combining

this with Observation 2.3.5, we conclude that all representations of 𝐻 are necessarily

continuous with respect to the discrete topology on the underlying vector space. We

have proven the following:

Proposition 2.3.6. For 𝐻 = lim𝑖𝐻𝑖 a pro-algebraic group,

Rep(𝐻) ≃ colim
𝑖

Rep(𝐻𝑖),

where the colimit is taken in the ∞-category of cocomplete categories.
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Given a pro-algebraic group 𝐻 we can always write it as the limit of its finite-

dimensional quotients as above; however, as with our group 𝐾 = lim𝑐∈N𝐾
(𝑐) we

can often restrict our attention to a subset of these algebraic quotients. View the

collection of all finite-dimensional quotients 𝐻𝑖 = Spec𝐴𝑖 as a category ℐ, whose
morphisms are surjections compatible with the quotient maps from 𝐻, and suppose

that we have a subcategory 𝒥 →˓ ℐ such that

𝐻 ≃ lim
𝑗∈𝒥

𝐻𝑗.

Then for any 𝑖 ∈ ℐ there exists 𝑗 ∈ 𝒥 such that 𝐻𝑖 is a quotient of 𝐻𝑗: indeed, we

know that we have a surjection

lim
𝑗∈𝒥

𝐻𝑗 � 𝐻𝑖.

This amounts to an inclusion 𝐴𝑖 →˓
⋃︀
𝑗∈𝒥 𝐴𝑗. Since 𝐴𝑖 is finitely generated and 𝒥 op

is filtered, we can find 𝑗 ∈ 𝒥 such that 𝐴𝑖 →˓ 𝐴𝑗, which gives the desired surjection

𝐻𝑗 � 𝐻𝑖.

It follows that 𝐽op is cofinal in 𝐼op and in particular

Rep(𝐻) ≃ colim
𝑗∈𝒥 op

Rep(𝐻𝑗).

2.4 Application to 𝐺 and 𝐾

The following is immediate from the above discussion:

Rep(𝐾) QCoh (𝐵𝐾)

colim
𝑐∈N

Rep
(︀
𝐾(𝑐)

)︀
colim
𝑐∈𝐵𝑁

QCoh
(︀
𝐵𝐾(𝑐)

)︀
.

∼

∼

∼

∼

Now we would like to make a similar comparison between the categories Rep(𝐺) and

colim𝑐∈N Rep(𝐺
(𝑐)); we have the following:

Proposition 2.4.1. All representations of the group-valued prestack 𝐺 are continuous

with respect to the the topology induced by the pro-structure of 𝐺:

colim
𝑐∈N

Rep(𝐺(𝑐)) ∼−→ Rep(𝐺),

where the colimit is taken in the ∞-category of cocomplete categories.
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2 Groups of automorphisms and their classifying stacks

Proof. Let 𝑉 be a vector space and let

R : 𝐺→ 𝐺𝐿𝑉

be a representation of 𝐺 on 𝑉 . Let 𝑣 ∈ 𝑉 ; we want to show that the action of 𝐺

on 𝑣 factors through one of its finite-dimensional quotients 𝐺(𝑐), i.e. that there exists

some 𝑐 such that for every 𝑆 = Spec𝑅 the induced map

R𝑅,𝑣 : 𝐺(𝑆) → 𝑉 ⊗𝑘 𝑅

𝜌 ↦→ R𝑅(𝜌)(𝑣 ⊗ 1𝑅)

factors through the quotient 𝐺(𝑐)(𝑆).

This is equivalent to showing that the restriction of R𝑅,𝑣 to the kernel 𝑁𝑐(𝑆) of

the quotient map 𝐺(𝑆) � 𝐺(𝑐)(𝑆) is the constant map

𝑛 ↦→ 𝑣 ⊗ 1𝑅

for every 𝑆 = Spec𝑅.

However, the embedding 𝐾 →˓ 𝐺 allows us to view 𝑉 as a representation of 𝐾;

then by Proposition 2.3.6, there exists 𝑐 such that the restriction of R𝑅,𝑣 to 𝐾(𝑆)

factors through𝐾(𝑐)(𝑆) for every 𝑆 = Spec𝑅. This implies that the restriction ofR𝑅,𝑣

to ker(𝐾(𝑆) � 𝐾(𝑐)(𝑆)) is the constant map—but this kernel is exactly 𝑁𝑐(𝑆).

Observation 2.4.2. Fix a base scheme 𝑆 = Spec(𝑅) and suppose that we have a

common étale neighbourhood of the trivial family:

𝑉

𝑆 × A𝑛 𝑆 × A𝑛

𝑆.

𝜑 𝜓

Taking completions along the embeddings of 𝑆, we obtain isomorphisms over 𝑆

𝜑, 𝜓 : 𝑉 ∧
𝑆

∼−→ 𝑆 × Â𝑛,

and hence, composing, an isomorphism

𝜑 ∘ 𝜓−1 : 𝑆 × Â𝑛 → 𝑆 × Â𝑛,

or equivalently, a continuous automorphism of Spec(𝑅[[𝑡1, . . . , 𝑡𝑛]]), i.e. an element 𝜔𝑉

of 𝐺(𝑆). Notice that 𝜔𝑉 lies in 𝐾(𝑆) precisely if the common étale neighbourhood is

strict.
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Motivated by this observation we formulate the following:

Proposition 2.4.3. We have a natural morphism of prestacks:

𝐹 (∞) :
(︀
ℳ(∞)

𝑛

)︀
triv

−→ 𝐵𝐺triv.

Proof. On objects, we define 𝐹
(∞)
𝑆 (𝑆 × A𝑛 � 𝑆) ..= (𝑆 ×𝐺→ 𝑆).

On morphisms, we would like to set 𝐹
(∞)
𝑆 ([𝑉, 𝜑, 𝜓]) ..= 𝜔𝑉 as in the above discus-

sion. We need to show that this is well-defined and respects composition; for both of

these we will use that taking completions of morphisms respects composition.

First, suppose we have (𝑉, 𝜑, 𝜓), and 𝑓𝑋 : 𝑉 ′/𝑆 → 𝑉/𝑆 étale giving rise to a

second common étale neighbourhood (𝑉 ′, 𝜑 ∘ 𝑓𝑋 , 𝜓 ∘ 𝑓𝑋) similar to the first. Then we

have

𝜑 ∘ 𝑓𝑋 ∘ 𝜓 ∘ 𝑓𝑋
−1

= 𝜑 ∘ 𝑓𝑋 ∘ 𝑓𝑋
−1 ∘ 𝜓−1

= 𝜑 ∘ 𝜓−1,

and hence 𝜔𝑉 ′ = 𝜔𝑉 . Since this construction of pulling back along étale morphisms 𝑓𝑋

generates the relation of similarity, it follows that any two common étale neighbour-

hoods which are similar will give rise to the same isomorphism on the completions.

Since any two common étale neighbourhoods which are (∞)-equivalent are locally

similar, the resulting isomorphisms of completions are locally equal, and hence equal.

It follows that 𝐹
(∞)
𝑆 is well-defined.

Now suppose that we have morphisms A𝑛
𝑆/𝑆 → A𝑛

𝑆/𝑆 → A𝑛
𝑆/𝑆 represented by

two common étale neighbourhoods (𝑉𝑖/𝑆, 𝜑𝑖, 𝜓𝑖), 𝑖 = 1, 2. Their composition is rep-

resented by the pullback (𝑉1 ×A𝑛 𝑉2, 𝜑1 ∘ pr𝑉1 , 𝜓2 ∘ pr𝑉2), and we have

̂𝜑1 ∘ pr𝑉1 ∘ ̂𝜓2 ∘ pr𝑉2
−1

= 𝜑1 ∘ p̂r𝑉1 ∘ p̂r−1
𝑉2

∘ 𝜓−1
2

= 𝜑1 ∘ 𝜓−1
1 ∘ 𝜑2 ∘ 𝜓−1

2 .

Therefore 𝜔𝑉1×A𝑛𝑉2 = 𝜔𝑉2 ∘ 𝜔𝑉1 , and 𝐹 (∞)
𝑆 respects composition. (Note that the order

of composition in 𝐺(𝑆) is the opposite of that in Aut𝑆(𝑆 × Â𝑛).)

We also have the following:

Proposition 2.4.4. Let 𝑐 ∈ N. Then we have a natural morphism of prestacks

𝐹 (𝑐) :
(︀
ℳ(𝑐)

𝑛

)︀
triv

−→ 𝐵𝐺
(𝑐)
triv.
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Proof. This morphism is defined analogously to 𝐹 (∞); the proof that it is well-defined

on morphisms is immediate from the definition of (𝑐)-equivalence, and the proof that

it respects composition of morphisms is as above.

Restricting our attention to strict common étale neighbourhoods, we obtain the

following analogous result:

Proposition 2.4.5. For 𝑐 ∈ N, we have morphisms of prestacks

𝐹 ′(𝑐) :
(︀
ℳpt,(𝑐)

𝑛

)︀
triv

−→ 𝐵𝐾
(𝑐)
triv.

We also have a morphism

𝐹 ′ :
(︀
ℳpt,(∞)

𝑛

)︀
triv

−→ 𝐵𝐾triv.

Pulling back along the morphisms of Propositions 2.4.3 and 2.4.4 gives rise to

functors

𝐹 * : Rep(𝐺) → QCoh
(︀
ℳ(∞)

𝑛

)︀
,

𝐹 (𝑐),* : Rep(𝐺(𝑐)) → QCoh
(︀
ℳ(𝑐)

𝑛

)︀
.

In the subsequent sections, we study these functors. We will show that for finite

𝑐, 𝐹 (𝑐) is an equivalence of prestacks and hence 𝐹 (𝑐),* is an equivalence of categories.

On the other hand, we can show only that 𝐹 * is a fully faithful embedding, but we

give various characterisations of its essential image in remark 3.4.6 and section 6.

Remark 2.4.6 (Remark on Harish-Chandra pairs). Let g denote the Lie algebra

of 𝐺; it is equal to the Lie algebra Der �̂�𝑛 of 𝑘-linear derivations of �̂�𝑛. The pair

(g, 𝐾 = 𝐺red) forms a Harish-Chandra pair (see [4], 2.9.7): 𝐾 is an affine group

scheme; g is a Lie algebra with a structure of Tate vector space; we have a continuous

embedding Lie𝐾 →˓ g of Lie algebras with open image; and we have an action of 𝐾

on g which is compatible with the action of Lie𝐾 coming from the embedding.

Given a Harish-Chandra pair (g, 𝐾), we consider the category of (g, 𝐾)-modules:

these are algebraic (and hence, by our earlier discussion, discrete) representations 𝑉

of 𝐾 equipped with an action of g which is compatible with the induced action of

Lie𝐾. When 𝐾 = 𝐺red as in our setting, this category is equivalent to the category

of representations of 𝐺.

Thus, for 𝐺 the group of automorphisms of the formal disc, the data of a represen-

tation of 𝐺 on a vector space 𝑉 is equivalent to the data of a representation of 𝐾 on

𝑉 together with a compatible action of g = Der �̂�𝑛. This motivates one of the main
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results of this chapter: we will see that we can associate to a representation of 𝐾

and a smooth 𝑛-dimensional variety 𝑋 an 𝒪-module F on 𝑋. If our representation

is in addition a representation of 𝐺, this amounts to having a compatible action of

Der �̂�𝑛, which in turn gives rise to a 𝒟-module structure on F .

3 Relative Artin approximation

In this section, our goal is to show that for finite 𝑐 the morphisms 𝐹 (𝑐) and 𝐹 ′(𝑐) from

Propositions 2.4.4 and 2.4.5 are in fact isomorphisms of prestacks, and hence that we

have

𝐵𝐺(𝑐) ≃ ℳ(𝑐)
𝑛 , 𝐵𝐾(𝑐) ≃ ℳpt,(𝑐)

𝑛 .

It suffices to show that the group homomorphisms 𝐹
(𝑐)
𝑆 and 𝐹

′(𝑐)
𝑆 are bijective—that

is, given an automorphism of 𝑆 × Â𝑛 over 𝑆, we need to show that we can lift it to

a common étale neighbourhood modulo (𝑐)-equivalence; moreover we need to show

that if the automorphism preserves the zero section 𝑆 → 𝑆 × Â𝑛 then we can lift it

to a strict common étale neighbourhood; and finally we need to show that in both

cases the lifting is unique up to (𝑐)-equivalence.

Remark 3.0.7. When 𝑐 = ∞, the morphisms of prestacks are not isomorphisms: in-

deed, we will see that the corresponding group homomorphisms are injective, but not

surjective. We will be able to use our understanding of these group homomorphisms

to introduce yet another stack, the stack of formal germs of 𝑛-dimensional varieties,

which will be isomorphic to 𝐵𝐺. See remark 3.4.6.

In 3.1, we state the main result that we will need, which is a relative version of

Artin’s approximation theorem. The next two sections are devoted to the proof of

this result: in 3.2 we recall some important technical definitions and results, and

in 3.3 we apply them to prove our result. Finally, in 3.4 we show how the relative

version of Artin’s approximation theorem implies that the morphisms 𝐹 (𝑐) and 𝐹 ′(𝑐)

are isomorphisms.

3.1 Statement of the main result

In the case that 𝑆 = Spec 𝑘 is a point, the results that we need follow from a well-

known result of Artin:
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Theorem 3.1.1 (Corollary 2.6, [2]). Let 𝑋1, 𝑋2 be schemes of finite type over 𝑘, and

let 𝑥𝑖 ∈ 𝑋𝑖 be points. Let m𝑥1 denote the maximal ideal in the completed local ring
̂︀𝒪𝑋1,𝑥1, and suppose there is an isomorphism of the formal neighbourhoods

�̂� : (𝑋1)
∧
𝑥1

∼−→ (𝑋2)
∧
𝑥2

over 𝑘. Then 𝑋1 and 𝑋2 are étale locally isomorphic: i.e. there is a common étale

neighbourhood (𝑈, 𝑢) of (𝑋𝑖, 𝑥𝑖), 𝑖 = 1, 2, that is, a diagram

𝑈

𝑋1 𝑋2

𝜑 𝜓

with 𝜑, 𝜓 étale, such that 𝜑(𝑢) = 𝑥1 and 𝜓(𝑢) = 𝑥2.

Moreover, for any 𝑐 ∈ N, we can choose 𝜑 and 𝜓 such that the resulting maps of

completions satisfy

𝜓 ∘ 𝜑−1 ≡ �̂� (modulo m𝑐+1
𝑥1

).

We are interested in the relative setting: 𝜋𝑖 : 𝑋𝑖 � 𝑆 : 𝜎𝑖 (𝑖 = 1, 2) are pointed

𝑛-dimensional families, and we ask when an isomorphism of the formal completions

(𝑋𝑖)
∧
𝑆 can be lifted to an actual morphism of schemes, at least étale locally. We are

not able to prove a relative version of Theorem 3.1.1 in full generality; however, we

can show that it does hold when 𝑋1 is a product 𝑆 × 𝑌 for 𝑌 any 𝑛-dimensional

𝑘-variety, and 𝜎1 is a constant section. This suffices for the applications we have in

mind.

Therefore let us fix 𝑆 an affine scheme over 𝑘, and let 𝑌 be a smooth 𝑛-dimensional

variety over 𝑘, with 𝑦 ∈ 𝑌 some fixed point. Then we can form a pointed 𝑛-

dimensional family 𝜋1 : 𝑆 × 𝑌 � 𝑆 : 𝜎1, where 𝜋1 is the first projection, and

𝜎1 = id𝑆 ×𝑖𝑦 is induced by the inclusion of the point 𝑦 in 𝑌 . Let 𝑌 ..= 𝑌 ∧
𝑦 denote the

completion of 𝑌 at the point 𝑦, and note that (𝑆 × 𝑌 )∧𝑆 ≃ 𝑆 × 𝑌 .

Proposition 3.1.2 (Relative Artin Approximation). Let (𝜋2 : 𝑋2 � 𝑆 : 𝜎2) be any

pointed 𝑛-dimensional family, and suppose that we have an isomorphism �̂� : 𝑆×𝑌 ∼−→
(𝑋2)

∧
𝑆 preserving both the projections to 𝑆 and the embeddings of 𝑆:

𝑆 × 𝑌 (𝑋2)
∧
𝑆

𝑆.

∼
�̂�
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Then there exists some affine étale neighbourhood (𝑈, 𝑢)
𝜑−→ (𝑌, 𝑦) that gives a strict

split common étale neighbourhood of the 𝑆-families of 𝑛-dimensional varieties as fol-

lows:

𝑉

𝑆 × 𝑌 𝑋2

𝑆,

𝜑𝑆 𝜓𝑆

𝜌𝜏 (II.3)

where 𝑉 ⊂ 𝑆 × 𝑈 is a Zariski open subset containing 𝑆 × {𝑢}, 𝜑𝑆 is the restriction

of id𝑆 ×𝜑 to 𝑉 , and the section 𝜏 : 𝑆 →˓ 𝑉 is induced by the inclusion 𝑖𝑢 of the point

𝑢 in 𝑈 .

Furthermore, for any 𝑐 ∈ N this common étale neighbourhood can be chosen such

that when we take completions along the closed embeddings of 𝑆,

𝜓𝑆 ∘ 𝜑𝑆
−1 ≡ �̂� (modulo m𝑐+1

𝑆 ). (II.4)

(Here m𝑆 ⊂ 𝒪𝑋1 is the ideal sheaf corresponding to the closed embedding 𝜎1 : 𝑆 →˓
𝑋1.)

The proof is very similar to the original proof of Theorem 3.1.1 in [2]; however we

will give the generalisation explicitly below, in particular to demonstrate the equality

(II.4), which is only implicit in [2]. Both proofs rely on the notion of a functor locally

of finite presentation, which we introduce in the next section.

3.2 Preliminary material

Definition 3.2.1. Let 𝑌 be a scheme of finite type over 𝑘. A functor

𝐹 : (Sch/𝑌 )
op → Set

is said to be locally of finite presentation if it maps filtered limits of affine schemes

over 𝑌 to colimits of sets. That is, if 𝐼 is a filtered index category and {𝑌𝑖}𝑖∈𝐼 is a

diagram of affine schemes over 𝑌 , then

colim
𝑖∈𝐼

𝐹 (𝑌𝑖) ≃ 𝐹 (lim
𝑖∈𝐼

𝑌𝑖).

The following proposition gives a useful class of functors which are locally of finite

presentation:
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3 Relative Artin approximation

Proposition 3.2.2 (Proposition 2.3, [2]). Let

𝑌1 𝑌2

𝑍

𝑋

be a diagram of schemes over 𝑋 with 𝑍 quasi-compact and quasi-separated, and 𝑌𝑖 of

finite presentation over 𝑍 (𝑖 = 1, 2). Let Hom𝑍(𝑌1, 𝑌2) denote the functor:

(Sch/𝑋)
op → Set

𝑇 ↦→ Hom𝑍×𝑋𝑇 (𝑌1 ×𝑋 𝑇, 𝑌2 ×𝑋 𝑇 ).

This functor is locally of finite presentation.

Now we give a proposition illustrating the usefulness of functors locally of finite

presentation.

Proposition 3.2.3 (Corollary 2.2, [2]). Fix a base scheme 𝑌 over 𝑘, choose a point

𝑦 ∈ 𝑌 , and let m𝑦 denote the maximal ideal of the completed local ring ̂︀𝒪𝑌,𝑦. Let

𝐹 : (Sch/𝑌 )
op → Set

be a contravariant functor locally of finite presentation, and assume we have 𝜉 ∈
𝐹 (𝑌 ). Then for any 𝑐 ∈ N, there exists an étale neighbourhood (𝑈, 𝑢) of 𝑦 in 𝑌 , and

an element 𝜉′ ∈ 𝐹 (𝑈) such that

𝜉′ ≡ 𝜉 (modulo m𝑐+1
𝑦 ). (II.5)

Here the congruence (II.5) is interpreted as follows: since 𝑈 is an étale neighbour-

hood of 𝑌 , we have a canonical morphism

𝜖𝑈 : 𝑌 → 𝑈,

inducing a function

𝐹 (𝑈) → 𝐹 (𝑌 ).

The content of (II.5) is that the images of 𝜉′ and 𝜉 agree after applying the canonical

function

𝐹 (𝑌 ) → 𝐹 (𝑌 (𝑐)
𝑦 ),

where 𝑌
(𝑐)
𝑦 denotes the 𝑐th infinitesimal neighbourhood of 𝑦 in 𝑌 .

With this result in mind, we can prove Proposition 3.1.2.
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3.3 Proof of Proposition 3.1.2

Recalling the notation from the statement of the proposition, we define a functor

𝐹 :(Sch/𝑌 )
op → Set

𝑇 ↦→ Hom𝑆(𝑆 × 𝑇,𝑋2).

Note that

Hom𝑆(𝑆 × 𝑇,𝑋2) ≃ Hom𝑆×𝑇 (𝑆 × 𝑇,𝑋2 × 𝑇 )

≃ Hom(𝑆×𝑌 )×𝑌 𝑇 ((𝑆 × 𝑌 )×𝑌 𝑇, (𝑋2 × 𝑌 )×𝑌 𝑇 ) .

Therefore, applying Proposition 3.2.2 to the diagram

𝑆 × 𝑌 𝑋2 × 𝑌

𝑆 × 𝑌

𝑌,

we conclude that 𝐹 is locally of finite presentation.

In particular, 𝐹 (𝑌 ) = Hom𝑆(𝑆×𝑌 ,𝑋2), and we have an element 𝜉 ∈ 𝐹 (𝑌 ) given

by the composition:

𝑆 × 𝑌
�̂�−→ (𝑋2)

∧
𝑆

𝜖𝑋2−˓−→ 𝑋2.

Now we apply Proposition 3.2.3 and conclude that there exists an étale neighbour-

hood 𝜑 : (𝑈, 𝑢) → (𝑌, 𝑦) and an element 𝜉′ ∈ 𝐹 (𝑈) approximating 𝜉 modulo m𝑐+1
𝑦 .

The element 𝜉′ corresponds to a diagram of 𝑆-schemes:

𝑆 × 𝑈 𝑋2

𝑆.

𝜉′

We can find an open neighbourhood 𝑉 of 𝑆 × {𝑢} in 𝑆 × 𝑈 such that 𝜉′ is étale

on 𝑉 : indeed, we know that 𝜉′ induces an isomorphism (𝑆 × 𝑈)∧𝑆 ≃ 𝑆×𝑈∧
𝑢

∼−→ (𝑋2)
∧
𝑆

because it agrees with the isomorphism �̂� on the 𝑐th infinitesimal neighbourhood.

Therefore, for each 𝑠 ∈ 𝑆, 𝜉′ induces an isomorphism (𝑆 × 𝑈)∧(𝑠,𝑢)
∼−→ (𝑋2)

∧
(𝜉′(𝑠,𝑢)),

and so 𝜉′ must be étale in some neighbourhood of (𝑠, 𝑢), since 𝜉′ is locally of finite

presentation.

Having fixed such a neighbourhood 𝑉 , we have a candidate for the left side of the

diagram (II.3) immediately:
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𝑉

𝑆 × 𝑌

𝑆.

𝜑𝑆
=
(id𝑆

×𝜑
)|𝑉

Indeed, it is clear that 𝜑𝑆 is étale and respects the sections and the projections.

To complete the right side of the diagram, it remains to show that the restriction

𝜓𝑆 of 𝜉′ to 𝑉 commutes with the sections, i.e.

𝜉′ ∘ (id𝑆 ×𝑖𝑢) = 𝜎2.

Observe first that since (𝑈, 𝑢) is an étale neighbourhood of (𝑌, 𝑦) we have a canonical

morphism 𝜖𝑈 : 𝑌 → 𝑈 . Moreover, the fact that 𝜉′ ≡ 𝜉 (mod m𝑐+1) amounts to the

commutativity of the following diagram:

𝑆 × 𝑌 𝑆 × 𝑈

𝑆 × 𝑌
(𝑐)
𝑦 𝑋2

𝑆 × 𝑌

id𝑆
×𝜆𝑐

id𝑆 ×𝜖𝑈

𝜉′

id𝑆 ×𝜆𝑐 𝜉

Now the result follows easily, once we note that the inclusion 𝑖𝑢 : pt →˓ 𝑈 factors

through the inclusion of the point 𝑦 in its 𝑐th infinitesimal neighbourhood 𝑌
(𝑐)
𝑦 and

its formal neighbourhood 𝑌 via the map 𝜖𝑈 . Indeed, we have

𝜉′ ∘ (id𝑆 ×𝑖𝑢) = 𝜉′ ∘ (id𝑆 ×(𝜖𝑈 ∘ 𝜆𝑐)) ∘
(︀
id𝑆 ×𝑖(𝑐)𝑦

)︀

= 𝜉 ∘ (id𝑆 ×𝜆𝑐) ∘
(︀
id𝑆 ×𝑖(𝑐)𝑦

)︀

= 𝜉 ∘
(︁
id𝑆 ×𝑖𝑦

)︁

= 𝜖𝑋2 ∘ �̂� ∘ (id𝑆 ×𝑖𝑦)
= 𝜖𝑋2 ∘ �̂�2
= 𝜎2.

Finally, we have to check that 𝜓𝑆 ∘ 𝜑−1
𝑆 ≡ �̂�. Since 𝑉 is open in 𝑆 × 𝑈 , it suffices

to show that 𝜉′ ∘ (id𝑆 ×𝜑−1) ≡ �̂�. For this, we again use the compatibility of 𝜉′ and
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�̂�, which tells us that the following two compositions are equal:

𝑆 × 𝑌 (𝑐)
𝑦 → 𝑆 × 𝑌

id𝑆 ×𝜖𝑈−−−−→ 𝑆 × 𝑈
𝜉′−→ 𝑋2

and

𝑆 × 𝑌 (𝑐)
𝑦 → 𝑆 × 𝑌

�̂�−→ (𝑋2)
∧
𝑆

𝜖𝑋2−−→ 𝑋2.

Taking completions along 𝑆, we obtain

𝜉′ ∘ (id𝑆 ×𝜖𝑈) ≡ �̂� modulo m𝑐+1
𝑆 .

This completes the proof, because 𝜖𝑈 = 𝜑−1.

3.4 Applications of the relative Artin approximation theo-
rem

We shall need this theorem in the following two instances:

Corollary 3.4.1. 1. Suppose we have an automorphism of 𝑆 × Â𝑛 over 𝑆 which

does not necessarily preserve the section 𝑧:

𝑆 × Â𝑛 𝑆 × Â𝑛

𝑆.

∼
�̂�

Then for any 𝑐 ∈ N it can be lifted to a common étale neighbourhood

𝑉

𝑆 × A𝑛 𝑆 × A𝑛

𝑆

𝜑𝑆 𝜓𝑆

such that 𝜓
(𝑐)
𝑆 ∘ (𝜑(𝑐)

𝑆 )−1 = 𝛼(𝑐), as morphisms on the 𝑐th infinitesimal neighbour-

hoods.

2. Suppose we have an automorphism of 𝑆 × Â𝑛 preserving the section 𝑧:
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3 Relative Artin approximation

𝑆 × Â𝑛 𝑆 × Â𝑛

𝑆.

∼
�̂�

It can be lifted to a common étale neighbourhood as above which is also strict.

Proof. To prove the first part, we apply Proposition 3.1.2 to the following diagram:

𝑆 × Â𝑛 𝑆 × Â𝑛

𝑆

∼
�̂�

𝜋

𝑧

𝜋

𝑧2

where 𝑧2 = (id𝑆 ×𝜖Â𝑛)∘�̂�∘𝑧. The diagram commutes by construction, and Proposition

3.1.2 yields a strict common étale neighbourhood:

𝑉

𝑆 × A𝑛 𝑆 × A𝑛

𝑆

𝜑𝑆 𝜓𝑆

𝜋

𝑧

𝜋

𝑧2

𝜌𝜏

such that 𝜓
(𝑐)
𝑆 ∘ (𝜑

(𝑐)
𝑆 )−1 = 𝛼(𝑐). Since 𝜓𝑆 ∘ 𝜏 = 𝑧2 and 𝑧2 ∘ 𝜄𝑆 = 𝑧 ∘ 𝜄𝑆, this gives a

common étale neighbourhood of the trivial pointed 𝑛-dimensional family.

To prove the second part, notice that the additional assumption that �̂� preserves

the section is equivalent to the statement that 𝑧2 = 𝑧. It follows that the common

étale neighbourhood is strict, as required.

Applying Propositions 3.1.2, 3.2.2, and 3.2.3, we can also prove the following

useful results:

Lemma 3.4.2. Every common étale neighbourhood of the trivial pointed family over

𝑆 is (∞)-equivalent (and hence (𝑐)-equivalent for any 𝑐 ∈ N) to a split common étale

neighbourhood.

Proof. Let 𝜌 : 𝑉 � 𝑆 : 𝜏 be a pointed 𝑛-dimensional family with étale maps 𝜑, 𝜓 :

𝑉/𝑆 → (𝑆 × A𝑛)/𝑆 giving a common étale neighbourhood. Using classical results

on standard smooth and étale 𝑛-dimensional morphisms (see for example [30] 3.14),

we can show that for every 𝑠 ∈ 𝑆 there is a Zariski open neighbourhood 𝑇 of 𝑠 in 𝑆,
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3.4 Applications of the relative Artin approximation theorem

and an open neighbourhood 𝑈 of 𝜏(𝑠) ∈ 𝜌−1(𝑇 ) such that we have a commutative

diagram as follows, with 𝜆 étale:

𝑇 × A𝑛 𝑈 𝑉

𝑇 𝑇 𝑆.

𝜆

pr𝑇𝑧 𝜌|𝑈𝜏|𝑇 𝜌𝜏

By Proposition 3.1.2 we can lift �̂�−1 : 𝑇 × Â𝑛 → 𝑈 : that is, we can find (𝑊,𝑤)

étale over (A𝑛, 0) and 𝜆′ : (𝑇 ×𝑊 )/𝑇 → 𝑈/𝑇 . Moreover, 𝜆′ is étale on some open

neighbourhood 𝑉 ′ of 𝑇 × {𝑤}, and (𝑉 ′, 𝜑 ∘ 𝜆′|𝑉 ′ , 𝜓 ∘ 𝜆′|𝑉 ′) is a split common étale

neighbourhood, similar to the restriction of (𝑉, 𝜑, 𝜓) to 𝑇 .

Lemma 3.4.3. Let (𝑦, 𝑌 ) be a pointed 𝑛-dimensional variety, and 𝜋 : 𝑋 � 𝑆 : 𝜎

be a pointed 𝑛-dimensional family over 𝑆. Suppose that we have two morphisms

𝜑, 𝜓 : 𝑌 × 𝑆 → 𝑋 compatible with the projections, and compatible with the sections

on 𝑆red , such that 𝜑 = 𝜓 : 𝑆 × 𝑌 ∼−→ 𝑋∧
𝑆 .

Then there exists some 𝑓𝑋 : 𝑈 → 𝑌 étale such that 𝜑 ∘ (𝑓𝑋 , id𝑆) = 𝜓 ∘ (𝑓𝑋 , id𝑆).
In particular, the liftings provided by Corollary 3.4.1 are unique up to equivalence.

Proof. We apply Proposition 3.2.2 to the diagram

𝑌 × 𝑆 (𝑌 × 𝑆)×𝑋 (𝑌 × 𝑆)

(𝑌 × 𝑆)× (𝑌 × 𝑆)

𝑌

Δ (𝑝1, 𝑝2)

pr𝑌 𝑆𝑌 𝑆
1

and obtain that the functor

𝐹 : Schop
/𝑌 → Set

(𝑇/𝑌 ) ↦→ Hom𝑇×𝑌 (𝑌×𝑆×𝑌×𝑆) (𝑇 ×𝑌 (𝑌 × 𝑆), 𝑇 ×𝑌 (𝑌 × 𝑆)×𝑋 (𝑌 × 𝑆))

is locally of finite presentation. (Here Δ is the diagonal morphism, 𝑝1 and 𝑝2 are the

projections from (𝑌 × 𝑆)×𝑋 (𝑌 × 𝑆) to 𝑌 × 𝑆 satisfying 𝜑 ∘ 𝑝1 = 𝜓 ∘ 𝑝2, and pr𝑌 𝑆𝑌 𝑆1

is the projection onto the first 𝑌 factor.)

The fact that 𝜑 = 𝜓 implies that 𝜑 ∘ (𝜖𝑌 , id𝑆) = 𝜓 ∘ (𝜖𝑌 , id𝑆) as maps from 𝑌 × 𝑆

to 𝑋. Hence we obtain a map from 𝑌 ×𝑆 to (𝑌 ×𝑆)×𝑋 (𝑌 ×𝑆) over 𝑌 , which finally
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gives us a map 𝑌 × 𝑆 → 𝑌 ×𝑌 (𝑌 × 𝑆)×𝑋 (𝑌 × 𝑆) corresponding to an element 𝜉 of

𝐹 (𝑌 ).

Since 𝐹 is locally of finite presentation, Proposition 3.2.3 applies, and we obtain

an étale neighbourhood 𝑓𝑋 : (𝑈, 𝑢) → (𝑌, 𝑦) and an element 𝜉′ ∈ 𝐹 (𝑈) which agrees

with 𝜉 modulo m2
𝑦.

Now we remark that for any 𝑌 -scheme 𝑓 : 𝑇 → 𝑌 , 𝐹 (𝑇 ) is non-empty if and

only if 𝜑 ∘ (𝑓, id𝑆) = 𝜓 ∘ (𝑓, id𝑆) (and moreover, in that case 𝐹 (𝑇 ) consists of a single

point).

Indeed, 𝐹 (𝑇 ) is a subset of Hom (𝑇 × 𝑆, 𝑇 ×𝑌 (𝑌 × 𝑆)×𝑋 (𝑌 × 𝑆)). A map 𝛼 :

𝑇 × 𝑆 → 𝑇 ×𝑌 (𝑌 × 𝑆)×𝑋 (𝑌 × 𝑆) is given by three maps

𝛼1 : 𝑇 × 𝑆 → 𝑇

𝛼𝑖 : 𝑇 × 𝑆 → 𝑌 × 𝑆, 𝑖 = 2, 3,

satisfying

𝑓 ∘ 𝛼1 = pr𝑌 𝑆𝑌 ∘𝛼2;

𝜑 ∘ 𝛼2 = 𝜓 ∘ 𝛼3. (II.6)

This 𝛼 is an element of 𝐹 (𝑇 ) if and only if it is compatible with the maps 𝑇 × 𝑆 →
𝑇 ×𝑌 (𝑌 × 𝑆 × 𝑌 × 𝑆) and 𝑇 ×𝑌 (𝑌×𝑆)×𝑋 (𝑌 × 𝑆), or equivalently if and only if

𝛼1 = pr𝑇𝑆𝑇 ;

𝛼2 = (𝑓, id𝑆);

𝛼3 = (𝑓, id𝑆).

Therefore, the only possible candidate for an element of 𝐹 (𝑇 ) corresponds to the triple

(pr𝑇𝑆𝑇 , (𝑓, id𝑆), (𝑓, id𝑆)), which only gives a map 𝛼 in the case that the equations (II.6)

are satisfied. This amounts exactly to the condition 𝜑 ∘ (𝑓, id𝑆) = 𝜓 ∘ (𝑓, 𝑖𝑑𝑆).
It follows that the existence of 𝜉′ ∈ 𝐹 (𝑈) means that 𝑓𝑋 : 𝑈 → 𝑌 gives the desired

étale neighbourhood.

Combining Corollary 3.4.1 and Lemmas 3.4.2 and 3.4.3, we obtain

Proposition 3.4.4. For any affine base-scheme 𝑆 and any 𝑐 ∈ N ∪ {∞}, the group

homomorphisms

𝐹
(𝑐)
𝑆 : Aut(︁(︁ℳ(𝑐)

𝑛

)︁
triv

(𝑆)
)︁(𝑆 ×𝐺(𝑐) → 𝑆) → 𝐺(𝑐)(𝑆)

𝐹
′(𝑐)
𝑆 : Aut(︁(︁ℳpt,(𝑐)

𝑛

)︁
triv

(𝑆)
)︁(𝑆 ×𝐾(𝑐) → 𝑆) → 𝐾(𝑐)(𝑆)
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of Propositions 2.4.4 and 2.4.5 are injective.2 When 𝑐 is finite, the homomorphisms

are surjective as well.

Proof. For finite 𝑐, injectivity follows immediately from the definition of (𝑐)-equiva-

lence, and Corollary 3.4.1 shows that the homomorphisms are surjective.

Now let 𝑐 = ∞. Lemma 3.4.3 implies that the homomorphisms are injective when

restricted to the set of automorphisms represented by split common étale neighbour-

hoods. By Lemma 3.4.2, this implies that they are injective.

It follows that for 𝑐 ∈ N, 𝐹 (𝑐) and 𝐹 ′(𝑐) give equivalences of prestacks, and using

the uniqueness of stackification, we obtain the following:

Theorem 3.4.5. Let 𝑐 ∈ N. We have isomorphisms of stacks:

ℳ(𝑐)
𝑛

∼−→ 𝐵𝐺(𝑐)

ℳpt,(𝑐)
𝑛

∼−→ 𝐵𝐾(𝑐).

Remark 3.4.6. We also have morphisms

ℳ(∞)
𝑛 → 𝐵𝐺

ℳpt,(∞)
𝑛 → 𝐵𝐾,

but they are not isomorphisms. There are two approaches to modify the stacks

involved to obtain an equivalence: we can either enlarge the automorphism groups of

the stacks on the left hand side, or we can restrict the automorphism groups of those

on the right hand side.

1. Motivated by the above discussion, we see that we can define yet another stack

of germs, this one equivalent to the classifying stack 𝐵𝐺. It is the stackification

of the prestack (ℳ𝑛)triv which again sends a test scheme 𝑆 to a groupoid whose

only object is the trivial pointed 𝑛-dimensional family 𝑆 × A𝑛 � 𝑆. However,

we would like the morphisms of this groupoid to correspond to elements of

𝐺(𝑆), i.e. automorphisms �̂� of 𝑆 × Â𝑛. Proposition 3.1.2 tells us that we can

represent such an automorphism by a sequence of common étale neighbourhoods

{(𝑈𝑐, 𝜑𝑐, 𝜓𝑐)}∞𝑐=1 such that for each 𝑐,

𝜓
(𝑐)
𝑆 ∘ (𝜑(𝑐)

𝑆 )−1 = 𝛼(𝑐).

2By a slight abuse of notation, we understand 𝐾(∞) and 𝐺(∞) to mean 𝐾 and 𝐺 respec-
tively.

83



4 Groups of étale automorphisms and their representation theory

It follows that (𝑈𝑐, 𝜑𝑐, 𝜓𝑐) is uniquely determined up to (𝑐)-equivalence, i.e. as

a morphism in
(︁
ℳ(𝑐)

𝑛

)︁
triv

(𝑆). Moreover, the sequence {(𝑈𝑐, 𝜑𝑐, 𝜓𝑐)}∞𝑐=1 deter-

mines �̂�.

That is, we should define ℳ𝑛 to be

lim
𝑐∈N

ℳ(𝑐)
𝑛 .

We will call this the stack of formal germs of 𝑛-dimensional varieties. We can

similarly define

ℳpt
𝑛

..= lim
𝑐∈N

ℳpt,(𝑐)
𝑛 .

2. Let 𝐺ét be the group-valued prestack sending a test scheme 𝑆 to the image

of Aut(︁ℳ(∞)
𝑛

)︁
triv

(𝑆 × A𝑛 � 𝑆) in 𝐺(𝑆) under 𝐹𝑆: i.e. this is the group of all

automorphisms of the formal disc which can be lifted precisely to common étale

neighbourhoods. Then we have that

ℳ(∞)
𝑛

∼−→ 𝐵𝐺ét.

It follows from Corollary 3.4.1 that 𝐺ét is dense in 𝐺, and hence we will be

able to show that restriction from 𝐺 to 𝐺ét gives a fully faithful embedding

Res𝐺,𝐺ét : Rep(𝐺) →˓ Rep(𝐺ét) (see Corollary 4.4.3).

Similarly, we can define a sub-group 𝐾 ét of 𝐾 such that

ℳpt,(∞)
𝑛

∼−→ 𝐵𝐾 ét.

In section 4 we study the representation theory of these group-valued prestacks

𝐺ét and 𝐾 ét.

4 Groups of étale automorphisms and their repre-

sentation theory

This section is about the top rows of the main diagram (Figure 1), when 𝑐 = ∞. We

have the following stacks

ℳ(∞)
𝑛

∼−→ 𝐵𝐺ét →˓ 𝐵𝐺,

giving rise to the following categories

Rep(𝐺) → Rep(𝐺ét) ∼−→ QCoh
(︀
ℳ(∞)

𝑛

)︀
;
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the composition of the morphisms is the functor 𝐹 *. We see that in order to under-

stand the relationship between quasi-coherent sheaves on ℳ(∞)
𝑛 and representations

of 𝐺, it suffices to study the restriction functor Res𝐺,𝐺ét : Rep(𝐺) → Rep(𝐺ét). In

fact we will begin by working with the group 𝐾 and then applying our results to the

group 𝐺 as well.

In 4.1, we define some subgroups and submonoids of 𝐺,𝐺ét, 𝐾, and𝐾 ét. These will

be technically easier to work with than the full groups, as we will see in the subsequent

sections. In 4.2 we study the restriction functor Res𝐾,𝐾 ét , and show that it gives an

equivalence of the subcategories of finite-dimensional representations. Since 𝐾 is an

affine group scheme, all of its representations are locally finite, from which we conclude

that the functor Res𝐾,𝐾 ét is fully faithful, with essential image the subcategory of

locally finite representations of 𝐾 ét.

We do not know whether there are any representations of𝐾 ét which are not locally

finite, but in 4.3 we give an example of a pair 𝐻 ⊃ 𝐻 ′ of a pro-algebraic group 𝐻

containing a dense group-valued subprestack 𝐻 ′, such that 𝐻 ′ has representations

which are not locally finite, and hence do not extend to representations of 𝐻.

Finally, in 4.4 we study the restriction functor Res𝐺,𝐺ét : Rep(𝐺) → Rep(𝐺ét).

Analogously to 4.2 we show that it is fully faithful, and characterise its essential

image as those representations of 𝐺ét satisfying a suitable finiteness condition.

4.1 Unipotent subgroups and polynomial submonoids

Recall from definition 2.2.3 that the pro-unipotent group 𝐾𝑢 is the kernel of the

natural map

𝐾 → 𝐺𝐿𝑛;

analogously, we define the sub-group-valued-prestack 𝐾 ét
𝑢 of 𝐾 ét to be the kernel of

the the restriction of this map to 𝐾 ét. We have

𝐾 ét = 𝐺𝐿𝑛 n𝐾 ét
𝑢 ,

as group-valued prestacks.

Recall also that in the proof of Proposition 2.4.1 we defined for any 𝑐 a group-

valued prestack 𝑁𝑐 by setting 𝑁𝑐(𝑆) to be the kernel of the homomorphism

𝐺(𝑆) � 𝐺(𝑐)(𝑆).
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4 Groups of étale automorphisms and their representation theory

We noted then that 𝑁𝑐(𝑆) is also the kernel of the homomorphism

𝐾(𝑆) � 𝐾(𝑐)(𝑆);

now we remark in addition that it is contained in 𝐾 ét
𝑢 (𝑆), and is in fact also the kernel

of the maps

𝐾 ét(𝑆) � 𝐾(𝑐)(𝑆), 𝐾 ét
𝑢 � 𝐾(𝑐)

𝑢 (𝑆).

(That these maps are surjective is a consequence of Corollary 3.4.1.)

The prestack 𝑁𝑐 is an affine group scheme of infinite type.

Example 4.1.1. In the case 𝑛 = 1, 𝑁𝑐 parametrises automorphisms 𝜌 : 𝑅[[𝑡]] → 𝑅[[𝑡]]

of the form

𝜌 : 𝑡 ↦→ 𝑡+ 𝑟𝑐+1𝑡
𝑐+1 + 𝑟𝑐+2𝑡

𝑐+2 + . . . .

Definition 4.1.2. Consider for each Spec𝑅 the set𝑀(Spec𝑅) ⊂ 𝐾(Spec𝑅) of poly-

nomial automorphisms : these are automorphisms 𝜌 : 𝑅[[𝑡1, . . . , 𝑡𝑛]] → 𝑅[[𝑡1, . . . , 𝑡𝑛]]

such that for each 𝑘 = 1, . . . , 𝑛, 𝜌(𝑡𝑘) is a polynomial in the variables {𝑡𝑗} with no

constant term, rather than a power series. This defines a prestack 𝑀 →˓ 𝐾 ét →˓ 𝐾.

This is a monoid rather than a group-valued prestack, since it is not closed under

taking inverses; however, it is in some ways easier to work with than 𝐾 ét in that it is

an indscheme:

𝑀 = colim
𝛼∈N

𝑀𝛼,

where𝑀𝛼 classifies polynomial automorphisms of degree at most 𝛼. (Note that𝑀𝛼 is

a scheme, but is not even a monoid, since composing two polynomial automorphisms

of degree 𝛼 gives a polynomial automorphism of degree 𝛼2.)

Similarly, we have the unipotent version 𝑀𝑢 = colim𝛼∈N𝑀𝑢,𝛼, where

𝑀𝑢,𝛼 = Spec 𝑘[𝑎𝑘𝐽 ]1<|𝐽 |≤𝛼

classifies unipotent polynomial automorphisms of degree at most 𝛼. Although the

𝑀𝑢,𝛼 are not closed under composition, they are still closed under the action of

G𝑚 →˓ 𝐺𝐿𝑛 by conjugation, and hence each algebra 𝑘[𝑎𝑘𝐽 ]1<|𝐽 |≤𝛼 is still graded, with

deg(𝑎𝑘𝐽) = |𝐽 | − 1.

We also have a monoid of polynomial automorphisms 𝑀𝐺 in 𝐺:

𝑀𝐺 = colim
𝛼∈N

𝑀𝐺
𝛼 ,
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4.1 Unipotent subgroups and polynomial submonoids

where 𝑀𝐺
𝛼 parametrises polynomial automorphisms of the formal disc of degree at

most 𝛼, whose constant terms are nilpotent. It is itself an indscheme:

𝑀𝐺
𝛼 = colim

𝑁
𝑀𝐺

𝛼,𝑁 ,

where𝑀𝐺
𝛼,𝑁 parametrises only those polynomial automorphisms whose constant terms

all satisfy 𝑎𝑁 = 0. As a scheme,

𝑀𝐺
𝛼,𝑁 = Spec 𝑘[𝑎𝑘𝐽 ]|𝐽 |≤𝛼/((𝑎

𝑘
0)
𝑁).

Finally, notice that for any 𝑐, the group scheme 𝑁𝑐 also contains a monoid𝑀𝑁𝑐 =

colim𝛼≥𝑐+1𝑀
𝑁𝑐
𝛼 of polynomial automorphisms.

Having established this notation, we can prove the following:

Lemma 4.1.3. Let 𝐻 ∈ {𝐾,𝐾𝑢, 𝐺,𝑁𝑐}. Then the inclusion

𝐻 ét →˓ 𝐻

induces a map of sets

HomPreStk(𝐻,A1) → HomPreStk(𝐻
ét,A1).

This map is injective.

Moreover, the same is true of the restriction map

HomPreStk(𝐻 ×𝐻,A1) → HomPreStk(𝐻
ét ×𝐻 ét,A1).

Proof. The intuition behind this statement is that Artin’s approximation theorem

tells us that 𝐻 ét is dense in 𝐻. In order to give a rigorous proof it is useful to

restrict further to the monoid introduced above: this is still dense in 𝐻 and we can

exploit its indscheme structure to study its functions. It is clearly sufficient to show

that restriction from 𝐻 to the monoid, which we’ll denote by 𝑀𝐻 , (respectively from

𝐻 ×𝐻 to 𝑀𝐻 ×𝑀𝐻) is injective: if two maps agree on 𝐻 ét, they certainly agree on

𝑀𝐻 . We will carry out the proof for the case 𝐻 = 𝐺; the remaining cases are very

similar (and where different, simpler).

By the universal property of colimits, a map 𝜑 :𝑀𝐺 → A1 is given by a compatible

family of polynomials

(︀
𝑓𝛼,𝑁 ∈ 𝑘[𝑎𝑘𝐽 ]|𝐽 |≤𝛼/((𝑎

𝑘
0)
𝑁)
)︀
𝛼,𝑁

.
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4 Groups of étale automorphisms and their representation theory

For fixed 𝑁 , the compatibility between 𝑓𝛼,𝑁 is the following: if 𝛼1 > 𝛼2, we require

that the polynomial obtained from 𝑓𝛼1,𝑁 by setting 𝑎𝐾𝐽 = 0 for all 𝐽 with |𝐽 | > 𝛼2 be

equal to 𝑓𝛼2,𝑁 .

Similarly, a map 𝜓 : 𝐺→ A1 is defined by a compatible family of polynomials
(︁
𝑔𝑁 ∈ 𝑘[𝑎𝑘𝐽 ]𝐽∈Z𝑛

≥0
/((𝑎𝑘0)

𝑁)
)︁
𝑁
.

Let 𝜑1 = (𝑓 1
𝛼,𝑁) and 𝜑2 = (𝑓 2

𝛼,𝑁) be the restriction of two maps 𝜓1 = (𝑔1𝑁) and

𝜓2 = (𝑔2𝑁) to 𝑀 . For any 𝛼, the polynomial 𝑓 𝑖𝛼,𝑁 is obtained from 𝑔𝑖𝑁 by setting

𝑎𝑘𝐽 = 0 for all 𝐽 with |𝐽 | > 𝛼. It is clear that if 𝑓 1
𝛼,𝑁 = 𝑓 2

𝛼,𝑁 for every 𝛼, then

𝑔1𝑁 = 𝑔2𝑁 . That is, if 𝜑1 = 𝜑2, then 𝜓1 = 𝜓2, and so the restriction map is injective,

as required.

The argument for 𝐺ét ×𝐺ét →˓ 𝐺×𝐺 is similar.

4.2 Representations of 𝐾 ét

Theorem 4.2.1. Let 𝑉 be a finite-dimensional vector space, and let R : 𝐾 ét → 𝐺𝐿𝑉

be a representation of 𝐾 ét on 𝑉 . Then the natural transformation R extends uniquely

to a representation

R : 𝐾 → 𝐺𝐿𝑉 .

Equivalently, there exists some 𝑐 such that R factors through the finite-dimensional

quotient 𝐾(𝑐); then the extension R is defined via the quotient 𝐾 � 𝐾(𝑐).

Proof. Choose a basis {𝑣1, . . . , 𝑣𝑚} of 𝑉 such that the action of G𝑚 →˓ 𝐺𝐿𝑛 →˓ 𝐾 ét

is diagonal:

𝑧 ↦→

⎛
⎜⎜⎜⎝

𝑧𝑑1

𝑧𝑑2

. . .

𝑧𝑑𝑚

⎞
⎟⎟⎟⎠

with 𝑑1 ≤ 𝑑2 ≤ . . . ≤ 𝑑𝑚 an increasing sequence of integers.

Now consider the restriction of R to the monoid 𝑀𝑢 = colim𝛼𝑀𝑢,𝛼 →˓ 𝐾 ét
𝑢 , and

let R𝑖𝑗 denote the (𝑖, 𝑗)th matrix coefficient with respect to the basis {𝑣1, . . . , 𝑣𝑚}:

R𝑖𝑗 :𝑀𝑢 → A1.

As in the proof of Proposition 4.1.3, R𝑖𝑗 is given by an infinite family of polynomials

{︀
𝑓𝑖𝑗,𝛼 ∈ 𝑘[𝑎𝑘𝐽 ]1<|𝐽 |≤𝛼

}︀
𝛼
,
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satisfying the compatibility condition

𝑓𝑖𝑗,𝛼+1|𝑎𝑘𝐽≡0,|𝐽 |=𝛼+1 = 𝑓𝑖𝑗,𝛼.

Step 1 Let 𝛼0 = 𝑑𝑚−𝑑1+1. We will show that in fact the polynomials 𝑓𝑖𝑗,𝛼 depend

only on the variables {𝑎1, . . . , 𝑎𝛼0}. In particular,

𝑓𝑖𝑗,𝛼0+1 = 𝑓𝑖𝑗,𝛼0+2 = · · · ,

and the function R𝑖𝑗 is the restriction of a function R𝑖𝑗 : 𝐾𝑢 → A1, correspond-

ing to the polynomial

𝑓𝑖𝑗,𝛼0+1 ∈ 𝑘[𝑎𝑘𝐽 ]1<|𝐽 |.

To prove this claim, let 𝑧 ∈ G𝑚(𝑘) be an arbitrary 𝑘-point, and recall that

conjugation by 𝑧 gives maps

𝛾𝑧 :𝑀𝑢 →𝑀𝑢, 𝛾𝑧,𝛼 :𝑀𝑢,𝛼 →𝑀𝑢,𝛼,

or equivalently maps 𝛾♯𝑧 and 𝛾
♯
𝑧,𝛼 on the corresponding algebras of functions.

We know that for any 𝑘-algebra 𝑅 and for any 𝑚 ∈𝑀𝑢(Spec𝑅), we have

R(𝑧𝑚𝑧−1) = R(𝑧)R(𝑚)R(𝑧)−1.

In terms of matrix coefficients, this implies that

R𝑖𝑗 ∘ 𝛾𝑧 = 𝑧𝑑𝑖−𝑑𝑗R𝑖𝑗,

or equivalently that for every 𝛼,

𝛾♯𝑧,𝛼(𝑓𝑖𝑗,𝛼) = 𝑧𝑑𝑖−𝑑𝑗𝑓𝑖𝑗,𝛼.

It follows that 𝑓𝑖𝑗,𝛼 is homogeneous of degree 𝑑𝑖− 𝑑𝑗, and hence cannot depend

on any variable 𝑎𝑘𝐽 with |𝐽 | > 𝑑𝑖 − 𝑑𝑗 + 1.

Allowing (𝑖, 𝑗) to vary, we obtain the global bound 𝛼0 = 𝑑𝑚 − 𝑑1 + 1 =

max {𝑑𝑖 − 𝑑𝑗 + 1} on the degree of the variables appearing in the matrix co-

efficients of R.

Step 2 We have shown that each matrix coefficient extends to a function on 𝐾𝑢, but

it is not a priori clear that these assemble to give a representation R of 𝐾𝑢,

which in turn extends to all of 𝐾. We show this now.

By Step 1 and Lemma 4.1.3, if we take 𝑐 > 𝛼0, the restriction of R to 𝑁𝑐 is

constant. That is, 𝑁𝑐 is in the kernel of the representation R, and hence we

have a factorisation
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4 Groups of étale automorphisms and their representation theory

𝐾 ét 𝐺𝐿𝑉 .

𝐾(𝑐)

R

R(𝑐)

So we can define an extension of R : 𝐾 ét → 𝐺𝐿𝑉 to all of 𝐾 by defining R to

be the composition

𝐾 � 𝐾(𝑐) → 𝐺𝐿𝑉 .

By applying Lemma 4.1.3 to each of the matrix coefficients of R, we see that

this extension is unique.

Corollary 4.2.2. The restriction functor

Res𝐾,𝐾 ét : Rep(𝐾) → Rep(𝐾 ét)

is fully faithful. Its essential image is the full subcategory Repl.f.(𝐾 ét) of locally finite

representations of 𝐾 ét.

Proof. Let (𝑉,R) and (𝑊,S) be two representations of 𝐾, and let (𝑉,R), (𝑊,S)

denote their image in Rep(𝐾 ét). We consider the map

Hom𝐾(𝑉,𝑊 ) → Hom𝐾 ét(𝑉,𝑊 ).

It is clear that this is injective. To see that it is surjective, notice that a map 𝑉 → 𝑊

compatible with R and S is necessarily compatible with the extensions R and S of

the representations to 𝐾: this amounts to the fact that for sufficiently large 𝑐, we

have a commutative diagram

𝐾(𝑐) 𝐺𝐿𝑉

𝐺𝐿𝑊 End(𝑉,𝑊 ).

R(𝑐)

S(𝑐)

So Res𝐾,𝐾 ét is fully faithful as claimed.

To identify the essential image, first recall that because 𝐾 is an affine group

scheme, all of its representations are locally finite: any representation 𝑉 can be
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written as a union of finite-dimensional representations. This clearly still gives a

decomposition of 𝑉 when we restrict to the action of 𝐾 ét, and so the essential image

is a subcategory of Repl.f.(𝐾 ét).

On the other hand, suppose that (𝑉,R) ∈ Repl.f.(𝐾 ét). Then we can write 𝑉 =⋃︀
𝑖 𝑉𝑖, where 𝑉𝑖 ⊂ 𝑉 is a finite-dimensional subrepresentation of 𝐾 ét. Let R𝑖 : 𝐾

ét →
𝐺𝐿𝑉𝑖 denote the restriction of R to the subspace 𝑉𝑖. Since 𝑉𝑖 is finite-dimensional,

Theorem 4.2.1 provides us with a unique extension of R𝑖:

R𝑖 : 𝐾 → 𝐺𝐿𝑉𝑖 .

The uniqueness of these extensions means that they agree on intersections 𝑉𝑖 ∩ 𝑉𝑗,

and hence give a representation

R : 𝐾 → 𝐺𝐿𝑉 .

By construction, Res𝐾,𝐾 ét(𝑉,R) = (𝑉,R) and hence (𝑉,R) is indeed in the essential

image of Res𝐾,𝐾 ét .

Remark 4.2.3. At the time of writing, we do not know whether there exist any

representations of𝐾 ét which are not locally finite. If there are no such representations,

then the functor

Res𝐾,𝐾 ét : Rep(𝐾) → Rep(𝐾 ét)

is an equivalence.

4.3 Non-locally-finite representations

In this section, we work in a similar set-up to show that it is possible to have a

group-valued prestack which is dense in a pro-algebraic group and which still has

representations which are not locally finite. This means that if the functor Res𝐾,𝐾 ét

is to be an equivalence, and all representations of 𝐾 ét are locally finite, it is a property

very particular to these group-valued prestacks.

Consider A∞ = colim𝑖∈N A𝑖 →˓ A∞ = lim𝑖∈N A𝑖, viewed as additive groups in the

obvious way: for 𝑆 = Spec𝑅, A∞(𝑆) is the set of finite sequences in 𝑅, while A∞(𝑆)

is the set of infinite sequences, both equipped with term-wise addition.

Just as in the situation of 𝐾 ét →˓ 𝐾 the maps from the subgroup to the finite-

dimensional quotients of the pro-group are all surjective: we have

A∞ � A𝑐,
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corresponding to truncating the sequences at the 𝑐th term. Restriction of functions

from A∞ to A∞ is still injective, by the same argument as in the proof of Lemma

4.1.3.

Now consider the regular representation of A∞: this is the infinite-dimensional

vector space

𝑉 = Hom(A∞,A1)

= lim
𝑛∈N

(𝑘[𝑡1, . . . , 𝑡𝑛]),

with the action of A∞ given by precomposition with the addition map. Consider the

element 𝑣 ∈ 𝑉 given by the infinite family of polynomials

𝑓𝑛 =
𝑛∑︁

𝑗=1

𝑗∏︁

𝑖=1

𝑡𝑖 ∈ 𝑘[𝑡1, . . . , 𝑡𝑛].

Then the subspace generated by 𝑣 ∈ 𝑉 under the action of A∞(𝑘) is infinite-

dimensional. For example, if e𝑖0 ∈ A∞(𝑘) is the sequence with 1 in the 𝑖0th position

and 0 everywhere else, then e𝑖0 .𝑣 is given by the infinite sequence of polynomials

𝑛∑︁

𝑗=1

𝑗∏︁

𝑖=1
𝑖 ̸=𝑖0

𝑡𝑖,

and so the e𝑖0 .𝑣 are linearly independent as 𝑖0 varies. Hence the representation 𝑉 is

not locally finite.

We conclude that

Repl.f.(A∞) ( Rep(A∞).

On the other hand, there even exist finite-dimensional representations of A∞ which

do not extend to A∞, which cannot happen for the case of𝐾 ét →˓ 𝐾. Indeed, consider

the two-dimensional unipotent representation corresponding to the assignment

(𝑥𝑖)𝑖 ↦→

⎛
⎝ 1

∑︁

𝑖

𝑥𝑖

0 1

⎞
⎠ .

It cannot be extended to A∞.
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4.4 Representations of 𝐺ét

In this subsection, we compare the representations of𝐺 to those of𝐺ét. We distinguish

the category Rep𝐾
ét-l.f.(𝐺ét) of representations of 𝐺ét which are locally finite when

viewed as representations of 𝐾 ét via the inclusion

𝐾 ét →˓ 𝐺ét.

Definition 4.4.1. We shall refer to such representations as 𝐾 ét-locally-finite repre-

sentations of 𝐺ét.

Proposition 4.4.2. Let (𝑉,R) ∈ Rep𝐾
ét-l.f.(𝐺ét) where 𝑉 is a vector space and R :

𝐺ét → 𝐺𝐿𝑉 . Then R extends uniquely to a morphism

R : 𝐺→ 𝐺𝐿𝑉

of group-valued prestacks.

Proof. Let S : 𝐾 ét → 𝑉 be the composition of R with the inclusion 𝐾 ét →˓ 𝐺ét.

Then (𝑉,S) is a locally finite representation of 𝐾 ét, and hence extends uniquely to a

representation S : 𝐾 → 𝐺𝐿𝑉 by Corollary 4.2.2.

Consider the following diagram of group-valued prestacks:

𝐾 ét 𝐾

𝐺ét 𝐺

𝐺𝐿𝑉 .R

S

R

We wish to define the group homomorphism R completing this diagram, and to show

that it is unique.

If there is to be a function R which respects the group structures as in the above

diagram, it must satisfy

R(𝑥𝑘) = R(𝑥)S(𝑘) (II.7)

for every 𝑘-algebra 𝑅 and for all 𝑅-points 𝑥 ∈ 𝐺ét(Spec𝑅), 𝑘 ∈ 𝐾(Spec𝑅). Notice

that the map

𝐺ét ×𝐾 → 𝐺
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4 Groups of étale automorphisms and their representation theory

given by composition of automorphisms (i.e. multiplication inside 𝐺) is surjective

on (Spec𝑅)-points: every automorphism can be written as the composition of one

whose constant terms are zero and an étale (and in fact polynomial) automorphism.

It follows that equation (II.7) determines R uniquely, if it exists. We need to prove

that the assignment

𝑥𝑘 ↦→ R(𝑥)S(𝑘)

gives a well-defined function 𝐺(Spec𝑅) → 𝐺𝐿(𝑉 ⊗𝑘 𝑅), and moreover that this is

functorial in the 𝑘-algebra 𝑅.

For the first point, suppose that

𝑥𝑘 = 𝑥′𝑘′,

for some 𝑥, 𝑥′ ∈ 𝐺ét(Spec𝑅), 𝑘, 𝑘′ ∈ 𝐾(Spec𝑅). Then (𝑥′)−1𝑥 = 𝑘′𝑘−1, and this is

an element of 𝐾 ét(Spec𝑅), so that

R(𝑥′)−1R(𝑥) = S(𝑥′)−1S(𝑥) = S(𝑘′)S(𝑘)−1 = S(𝑘′)S(𝑘)−1,

and hence

R(𝑥)S(𝑘) = R(𝑥′)S(𝑘′),

as required.

To show functoriality, let 𝑓 : 𝑅 → 𝑅′ be a homomorphism of 𝑘-algebras, and

let 𝑔 ∈ 𝐺(Spec𝑅) be an 𝑅-point, with 𝑔′ its image in 𝐺(Spec𝑅′). We choose 𝑥 ∈
𝐺ét(Spec𝑅) and 𝑘 ∈ 𝐾(Spec𝑅) such that 𝑔 = 𝑥𝑘; then 𝑅(𝑔) ..= R(𝑥)S(𝑘). Letting

𝑥′ ∈ 𝐺ét(Spec𝑅′) and 𝑘′ ∈ 𝐾(Spec𝑅′) be the images of 𝑥 and 𝑘 respectively, we see

that 𝑔′ = 𝑥′𝑘′, and hence that R(𝑔′) = R(𝑥′)S(𝑘′). It is clear that this is equal to the

image of R(𝑔) in 𝐺𝐿(𝑉 ⊗𝑘 𝑅
′).

We conclude that there is a unique morphism of prestacks R : 𝐺→ 𝐺𝐿𝑉 making

the above diagram commute. It remains to show that this morphism respects the

group structures. That is, we need to show that the following diagram commutes:

𝐺×𝐺 𝐺

𝐺𝐿𝑉 ×𝐺𝐿𝑉 𝐺𝐿𝑉 .

𝑚𝐺

R×R R

𝑚𝐺𝐿𝑉
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Fix a (possibly infinite) basis {𝑣𝑖}𝑖∈𝐼 for 𝑉 , and for any pair (𝑖, 𝑗) ∈ 𝐼 × 𝐼 define

the projection

𝜋𝑖𝑗 : 𝐺𝐿𝑉 → A1

in the obvious way. To show that 𝑚𝐺𝐿𝑉
∘R = (R×R) ∘𝑚𝐺, it suffices to show that

𝜋𝑖𝑗 ∘𝑚𝐺𝐿𝑉
∘R = 𝜋𝑖𝑗 ∘ (R×R) ∘𝑚𝐺 : 𝐺×𝐺→ A1

for every pair (𝑖, 𝑗). By Lemma 4.1.3, it suffices to show that these functions agree

when restricted to 𝐺ét × 𝐺ét; but this is clear because the restriction of R to 𝐺ét is

the homomorphism R.

We have the following analogue to Corollary 4.2.2:

Corollary 4.4.3. The restriction functor

Res𝐺,𝐺ét : Rep(𝐺) → Rep(𝐺ét)

is fully faithful, with essential image Rep𝐾
ét-l.f.(𝐺ét).

Proof. The only part that is not immediate is the surjectivity of the maps of hom-

spaces. For 𝑡 = 1, 2, let (𝑉𝑡,R𝑡) be representations of 𝐺, with (𝑉𝑡,R𝑡) the restrictions

to 𝐺ét. Suppose that we have a linear map 𝑓 : 𝑉1 → 𝑉2 compatible with the maps

R𝑡; then we need to show that it is also compatible with R𝑡. That is, we need to

show that the following diagram commutes:

𝐺 𝐺𝐿𝑉1

𝐺𝐿𝑉2 End(𝑉1, 𝑉2).

R1

R2

This is similar to the argument in the last part of the proof of Proposition 4.4.2. Fix

bases {𝑣𝑖}𝑖∈𝐼 and {𝑤𝑗}𝑗∈𝐽 for 𝑉1 and 𝑉2; then it suffices to show that the diagram

commutes after composing with the (𝑖, 𝑗)th projection End(𝑉1, 𝑉2) → A1 for every

(𝑖, 𝑗) ∈ 𝐼 ×𝐽 . But then by Lemma 4.1.3 once more, it is enough to show that each of

the resulting diagrams commutes after pre-composing with the inclusion 𝐺ét →˓ 𝐺,

and this is true by our assumption on 𝑓 .
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5 Universal modules

In this section, we finally begin our analysis of universal 𝒟-modules. We will see

that they are equivalent to quasi-coherent sheaves on the stack ℳ(∞)
𝑛 of étale germs.

Similarly, we will see that universal 𝒪-modules are just quasi-coherent sheaves on the

stack ℳpt,(∞)
𝑛 . We begin by recalling the definitions of universal modules, given by

Beilinson and Drinfeld (see [4] 2.9.9); in 5.1, 5.2, and 5.3 we prove that the category

U 𝒟
𝑛 of universal 𝒟-modules of dimension 𝑛 is equivalent to QCoh

(︁
ℳ(∞)

𝑛

)︁
. In 5.4

we discuss the corresponding equivalence in the case of universal 𝒪-modules.

Definition 5.0.4. A universal 𝒪-module F of dimension 𝑛 consists of the following

data:

1. For each smooth family 𝑋
𝜋−→ 𝑆 of relative dimension 𝑛, we have an 𝒪𝑋-module

F𝑋/𝑆 ∈ QCoh (𝑋).

2. For each fibrewise étale morphism 𝑓 = (𝑓𝑋 , 𝑓𝑆) : (𝑋/𝑆) → (𝑋 ′/𝑆 ′) of smooth

𝑛-dimensional families, we have an isomorphism

F (𝑓) : F𝑋/𝑆
∼−→ (𝑓𝑋)

*F𝑋′/𝑆′

of 𝒪𝑋-modules.

These isomorphisms are required to be compatible with composition in the following

sense. Suppose we are given three smooth 𝑛-dimensional families with fibrewise étale

morphisms between them:

𝑋 𝑋 ′ 𝑋 ′′

𝑆 𝑆 ′ 𝑆 ′′.

𝑓𝑋

𝜋

𝑔𝑋

𝜋′ 𝜋′′

𝑓𝑆 𝑔𝑆

We require the following diagram of isomorphisms to commute:

F𝑋/𝑆 𝑓 *
𝑋F𝑋′/𝑆′

(𝑔𝑋 ∘ 𝑓𝑋)*F𝑋′′/𝑆′′ 𝑓 *
𝑋𝑔

*
𝑋F𝑋′′/𝑆′′ .

F (𝑓)

F (𝑔 ∘ 𝑓) 𝑓*𝑋F (𝑔)

∼
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5 Universal modules

A morphism 𝜑 : F → G of universal 𝒪-modules is a collection of morphisms

𝜑𝑋/𝑆 : F𝑋/𝑆 → G𝑋/𝑆,

indexed by 𝑛-dimensional families, compatible with the structure isomorphisms. That

is, for any fibrewise étale morphism 𝑓 = (𝑓𝑋 , 𝑓𝑆) : (𝑋
′/𝑆 ′) → (𝑋/𝑆), the following

diagram should commute:

F𝑋/𝑆 𝑓 *
𝑋F𝑋′/𝑆′

G𝑋/𝑆 𝑓 *
𝑋G𝑋′/𝑆′ .

∼

𝜑𝑋/𝑆 𝑓*𝑋𝜑𝑋′/𝑆′

∼

In this way we obtain a category U 𝒪
𝑛 of universal 𝒪-modules of dimension 𝑛.

Similarly, we can define the category U 𝒟
𝑛 of universal 𝒟-modules of dimension 𝑛:

Definition 5.0.5. A universal 𝒟-module of dimension 𝑛 is a rule F which assigns:

1. to each smooth 𝑋 → 𝑆 of relative dimension 𝑛 a left 𝒟𝑋/𝑆-module F (𝑋/𝑆);

2. to each fibrewise étale morphism 𝑓 = (𝑓𝑋 , 𝑓𝑆) : (𝑋/𝑆) → (𝑋 ′/𝑆 ′) of smooth

𝑛-dimensional families, an isomorphism

F (𝑓) : F (𝑋/𝑆) ∼−→ 𝑓 *F (𝑋 ′/𝑆 ′),

in a way compatible with composition.

Let us be a little more precise. The category𝒟(𝑋/𝑆) is (by definition) the category

of quasi-coherent sheaves on (𝑋/𝑆)dR, where (𝑋/𝑆)dR is the following fibre product:

(𝑋/𝑆)dR 𝑋dR

𝑆 𝑆dR

𝜋dR

𝑝dR,𝑆

(Recall that we associate to any prestack 𝒴 its de Rham prestack 𝒴dR:

𝒴dR : 𝑇 ↦→ 𝒴dR(𝑇 ) ..= 𝒴(𝑇red).

Then we define the category of left 𝒟-modules on 𝒴 to be the category QCoh (𝒴dR).

The forgetful functor from 𝒟-modules to 𝒪-modules is given by pullback along the
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natural map 𝑝dR,𝒴 : 𝒴 → 𝒴dR. See Appendix A.2.3 for an overview, or see [18]

for more details, as well as the full definition in the (∞, 1)-categorical and derived

setting.)

This means that the object F (𝑋/𝑆) is given by a collection of objects

F (𝑋/𝑆)𝑇→(𝑋/𝑆)dR ∈ QCoh (𝑇 )

indexed by affine schemes 𝑇 and morphisms 𝑇 → (𝑋/𝑆)dR, along with isomorphisms

describing compatibility with pullbacks.

Recall from the proof of Proposition I.2.5.6 that if we have a fibrewise étale mor-

phism of 𝑛-dimensional families 𝑓 = (𝑓𝑋 , 𝑓𝑆) : (𝑋/𝑆) → (𝑋 ′/𝑆 ′), we obtain a mor-

phism 𝑓𝑋/𝑆 : (𝑋/𝑆)dR → (𝑋 ′/𝑆 ′)dR as follows:

(𝑋/𝑆)dR 𝑋dR

(𝑋 ′/𝑆 ′)dR 𝑋 ′
dR

𝑆

𝑆 ′ 𝑆 ′
dR.

𝑓𝑋,dR

𝑓𝑆

𝜋′
dR

𝑝dR,𝑆

𝑓𝑋/𝑆

Then the compatibility isomorphism F (𝑓) associated to F is an isomorphism be-

tween F (𝑋/𝑆) and 𝑓 *
𝑋/𝑆F (𝑋 ′/𝑆 ′) in QCoh ((𝑋/𝑆)dR).

Notation 5.0.6. We will always use the subscript ∙𝑋/𝑆 to denote the morphism

of relative de Rham prestacks induced by a fibrewise étale morphism between two

smooth families, even when neither of the smooth families involved is actually denoted

by 𝑋/𝑆.

Remark 5.0.7. At this stage, the reader may wonder why we have chosen to use left

relative 𝒟-modules, rather than right, which is the more usual category in which to

work. (See for example the discussion of the category IndCoh ((𝑋/𝑆)dR) of relative

crystals in [20], part III, chapter 4, section 3.3.) We have several reasons for this

choice.

1. We wish, at least for the moment, to remain consistent with the definition of

universal 𝒟-module given by Beilinson and Drinfeld.
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2. Also for the moment, we wish to work with abelian categories rather than DG-

categories; the !-pullback functors needed in the definition of the category of

ind-coherent sheaves on a prestack are inherently derived.

3. Suppose for the sake of argument that we are working with DG-categories rather

than abelian categories. As will be seen in the following sections, we are going

to compare universal 𝒟-modules to sheaves on the stack ℳ(∞)
𝑛 . We will see

that, given a universal 𝒟-module F and a map 𝑆 → ℳ(∞)
𝑛 corresponding to

a pointed family 𝜋 : 𝑋 � 𝑆 : 𝜎, we pull back the 𝒟-module F (𝑋/𝑆) by the

section 𝜎, thus obtaining a 𝒟-module on 𝑆. These should be compatible with

pullback along maps 𝑆 → 𝑆 ′.

If we try to work with right 𝒟-modules, we should obtain a family of ind-

coherent sheaves on 𝑆, compatible under !-pullback, and we might be tempted

to call this an ind-coherent sheaf on ℳ(∞)
𝑛 . However, at this stage we run into

technical difficulties. The category IndCoh (𝑆) is only well-behaved for schemes

𝑆 of finite type—for example, the pull-back 𝑓 ! is defined only for morphisms of

finite type.

As a consequence, the category IndCoh (𝒴) is defined only for prestacks which

are locally of finite type. (See [15] 1.3.9 for the definition of prestacks locally of

finite type (or l.f.t.), and [17] 10.1 for the definition of IndCoh (𝒴)—or, for an

overview, see Appendix A.1 and A.2.2.) The reason that the definition works

for an l.f.t. prestack 𝒴 is that such a prestack is determined by its 𝑆-points for

𝑆 of finite type. Our problems arise because the stack ℳ(∞)
𝑛 is not l.f.t.

On the other hand, QCoh (𝒴) is defined for any prestack, so we do not have the

same difficulties when working with left 𝒟-modules.

4. One might have the intuition that the structure of a universal 𝒟-module is

determined by its behaviour associated to the trivial pointed neighbourhood

A𝑛 � pt, or perhaps at worst A𝑛 × A𝑚 � A𝑚 and to common étale neigh-

bourhoods of this neighbourhood, and consequently that it should be enough

to consider base schemes of finite type. However, in order to make this intuition

more rigorous, we will need to formulate the notion of a convergent universal

𝒟-module, which we will do in section 6. We will see then that we can construct

sheaves corresponding to convergent universal 𝒟-modules from quasi-coherent

sheaves on the stacks ℳ(𝑐)
𝑛 or equivalently 𝐵𝐺(𝑐). Since these stacks are l.f.t.,
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it is possible to formulate an ind-coherent version as well as a quasi-coherent

version, in the DG setting. We will discuss this more in 7.3.

Theorem 5.0.8. The category U 𝒟
𝑛 of universal 𝒟-modules of dimension 𝑛 is equiv-

alent to the category of quasi-coherent sheaves on ℳ(∞)
𝑛 .

Proof. Recall that it suffices to show that QCoh

(︂
ℳ̃(∞)

𝑛

)︂
≃ U 𝒟

𝑛 . The idea behind the

proof is quite simple, but there are many technical details to be checked. We proceed

by defining functors in both directions and checking that they are quasi-inverse to

each other.

5.1 From universal 𝒟-modules to quasi-coherent sheaves

First we define the functor 𝜃 : U 𝒟
𝑛 → QCoh

(︂
ℳ̃(∞)

𝑛

)︂
. Given a universal 𝒟-module

F , we wish to define a quasi-coherent sheaf 𝜃(F ) on ℳ̃(∞)
𝑛 . That is, given any 𝑆

and any morphism (𝜋, 𝜎) : 𝑆 → ℳ̃(∞)
𝑛 representing a pointed 𝑛-dimensional family

(𝜋 : 𝑋 � 𝑆 : 𝜎), we need to define a quasi-coherent sheaf 𝜃(F )𝑋�𝑆 on 𝑆. We have

F (𝑋/𝑆) ∈ QCoh ((𝑋/𝑆)dR), and 𝜎 : 𝑆 → 𝑋 induces a section 𝜎 : 𝑆 → (𝑋/𝑆)dR, so

we simply set

𝜃(F )𝑋�𝑆
..= 𝜎*F (𝑋/𝑆).

(We adopt the convention of denoting the map into the relative de Rham stack

induced by a section by ∙.) Next we need to define the compatibility isomorphisms.

Suppose we have a commutative diagram in PreStk of schemes mapping to ℳ̃(∞)
𝑛 :

𝑉𝛼

𝑆2 ℳ̃(∞)
𝑛 𝑋1 𝑆1 ×𝑆2 𝑋2 𝑋2

𝑆1

𝑆1 𝑆1 𝑆1 𝑆2.

(𝜋2, 𝜎2)

𝑓
(𝜋1, 𝜎1)

𝛼

𝜋1𝜎1

𝜌𝛼𝜏𝛼

𝑓*𝜋2𝑓*𝜎2

𝜑𝛼 𝜓𝛼

𝜋2𝜎2

pr𝑋2

𝑓

We need to specify an isomorphism

𝜃(F )(𝑓, 𝛼) : 𝑓 * (𝜃(F )𝑋2�𝑆2)
∼−→ 𝜃(F )𝑋1�𝑆1 ;

100



5.1 From universal 𝒟-modules to quasi-coherent sheaves

it arises naturally from the universality of F . Indeed, from the definition of F we

have isomorphisms

F (𝜑𝛼, id𝑆1) :F (𝑉𝛼/𝑆1) ∼−→ (𝜑𝛼, id𝑆1)
*
𝑋/𝑆 F (𝑋1/𝑆1) ;

F (pr𝑋2
∘𝜓𝛼, 𝑓) :F (𝑉𝛼/𝑆1) ∼−→

(︀
pr𝑋2

∘𝜓𝛼, 𝑓
)︀*
𝑋/𝑆

F (𝑋2/𝑆2) .

Note that (𝜑𝛼, id𝑆1)𝑋/𝑆 ∘ 𝜏𝛼 = 𝜎1 and (pr𝑥2 ∘𝜓𝛼, 𝑓)𝑋/𝑆 ∘ 𝜏𝛼 = 𝜎2 ∘ 𝑓 , so that setting

𝜃(F )(𝑓, 𝛼) ..= 𝜏𝛼
* (︀F (𝜑𝛼, id𝑆1) ∘ F (pr𝑋2

∘𝜓𝛼, 𝑓)−1
)︀
,

we obtain an isomorphism

𝑓 *𝜎2
*F (𝑋2/𝑆2) ∼−→ 𝜎1

*F (𝑋1/𝑆1),

as required.

Let us now check that 𝜃(F )(𝑓, 𝛼) is independent of the choice of common étale

neighbourhood (𝑉𝛼, 𝜑𝛼, 𝜓𝛼) taken to represent the isomorphism 𝛼 between (𝑋1 � 𝑆1)

and (𝑆1 ×𝑆2 𝑋2 � 𝑆1) in ℳ̃(∞)
𝑛 (𝑆1). It suffices to show that if (𝑉𝛼, 𝜑𝛼, 𝜓𝛼) and

(𝑉 ′
𝛼, 𝜑

′
𝛼, 𝜓

′
𝛼) are (∞)-equivalent common étale neighbourhoods, then

𝜏 *
(︀
F (𝜑𝛼, id𝑆1) ∘ F (𝜓𝛼, id𝑆1)

−1
)︀
= 𝜏 *

(︀
F (𝜑′

𝛼, id𝑆1) ∘ F (𝜓′
𝛼, id𝑆1)

−1
)︀

as morphisms of quasi-coherent sheaves on 𝑆1. It is enough to show that they agree

on an open cover of 𝑆1, and hence we can assume that (𝑉𝛼, 𝜑𝛼, 𝜓𝛼) and (𝑉 ′
𝛼, 𝜑

′
𝛼, 𝜓

′
𝛼)

are in fact similar. Finally, we can assume that 𝜑′
𝛼 = 𝜑𝛼 ∘ 𝑔 and 𝜓′

𝛼 = 𝜓𝛼 ∘ 𝑔 for some

𝑔 : 𝑉 ′/𝑆1 → 𝑉/𝑆1 étale and compatible with the sections on 𝑆1,red . This is because

this relation generates the equivalence relation of similarity.

In this case, using the compatibility of F (∙) with respect to composition, we have

𝜏 ′
* (︀

F (𝜑𝛼 ∘ 𝑔, id𝑆1) ∘ F (𝜓𝛼 ∘ 𝑔, id𝑆1)
−1
)︀

= 𝜏 ′
*
(︁(︀
𝑔*𝑋/𝑆F (𝜑𝛼, id𝑆1) ∘ F (𝑔, id𝑆1)

)︀
∘
(︀
𝑔*𝑋/𝑆F (𝜓𝛼, id𝑆1) ∘ F (𝑔, id𝑆1)

)︀−1
)︁

= 𝜏 ′
* (︀
𝑔*𝑋/𝑆F (𝜑𝛼, id𝑆1) ∘ 𝑔*𝑋/𝑆F (𝜓𝛼, id𝑆1)

−1
)︀

= 𝜏 *
(︀
F (𝜑𝛼, id𝑆1) ∘ F (𝜓𝛼, id𝑆1)

−1
)︀
,

and so the assignment (𝑓, [(𝑉𝛼, 𝜑𝛼, 𝜓𝛼)]) ↦→ 𝜃(F )(𝑓, 𝛼) is well-defined with respect to

the (∞)-equivalence relation on common étale neighbourhoods.

Remark 5.1.1. Note that in general this assignment is not well-defined with respect

to (𝑐)-equivalence for any finite 𝑐. We will return to this point in section 6.

101



5 Universal modules

One can also check that the 𝜃(F )(𝑓, 𝛼) are compatible under composition, and

hence 𝜃(F ) is indeed an object of QCoh

(︂
ℳ̃(∞)

𝑛

)︂
. See Appendix C for the details of

the proof.

The definition of 𝜃 on morphisms is straightforward: given a morphism 𝐹 : F → G

of universal 𝒟-modules, the morphism 𝜃(𝐹 ) : 𝜃(F ) → 𝜃(G ) of quasi-coherent sheaves

is given by 𝜃(𝐹 )𝑋�𝑆
..= 𝜎*(𝐹 (𝑋/𝑆)) :

𝜃(F )𝑋�𝑆 = 𝜎*(F (𝑋/𝑆)) −→ 𝜃(G )𝑋�𝑆 = 𝜎*(G (𝑋/𝑆)).

This completes the construction of the functor

𝜃 : U 𝒟
𝑛 → QCoh

(︂
ℳ̃(∞)

𝑛

)︂
.

5.2 From quasi-coherent sheaves to universal 𝒟-modules

Now we will construct the quasi-inverse functor

Ψ : QCoh

(︂
ℳ̃(∞)

𝑛

)︂
→ U 𝒟

𝑛 .

Let 𝑀 ∈ QCoh

(︂
ℳ̃(∞)

𝑛

)︂
, and let 𝑋 → 𝑆 be smooth of relative dimension 𝑛. We

need to define an object Ψ(𝑀)(𝑋/𝑆) ∈ QCoh ((𝑋/𝑆)dR). More precisely, for any

𝑇 → (𝑋/𝑆)dR, we need to define Ψ(𝑀)(𝑋/𝑆)𝑇→(𝑋/𝑆)dR , together with isomorphisms

describing the compatibility with pullbacks.

By definition of (𝑋/𝑆)dR, a morphism 𝑇 → (𝑋/𝑆)dR is given by a pair of mor-

phisms (𝑔, ℎ) as in the following commutative diagram:

𝑇red 𝑋

𝑇 𝑆.

𝑔

𝜋

ℎ

𝜄𝑇

To define an object of QCoh (𝑇 ) using 𝑀 , we need an object of ℳ̃(∞)
𝑛 (𝑇 ), i.e. a

pointed 𝑛-dimensional family over 𝑇 . An obvious candidate is 𝑇 ×𝑆 𝑋, which is

smooth of dimension 𝑛 over 𝑇 . To define a section, note that we can define 𝜎∘ ..=

(𝜄𝑇 , 𝑔) : 𝑇red → 𝑇 ×𝑆 𝑋. Then we have the following commutative diagram:
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𝑇red 𝑇 ×𝑆 𝑋

𝑇 𝑇

𝜎∘

𝜄𝑇
𝜎

where formal smoothness of 𝑇 ×𝑆 𝑋 → 𝑇 allows us to lift 𝜎∘ to a section 𝜎. This

gives us an object of ℳ̃(∞)
𝑛 (𝑇 ).

Of course, 𝜎 is not unique, but any other choice 𝜎′ of lifting will yield an object of

ℳ̃(∞)
𝑛 (𝑇 ) canonically isomorphic to the original one. Indeed, we have the following

common étale neighbourhood:

𝑇 ×𝑆 𝑋

𝑇 ×𝑆 𝑋 𝑇 ×𝑆 𝑋

𝑇

𝑇 𝑇.

𝜎 𝜎′

𝜎

Hence up to a canonical isomorphism, we obtain 𝑀𝑇×𝑆𝑋�𝑇 ∈ QCoh (𝑇 ), and we

define

Ψ(𝑀)(𝑋/𝑆)𝑇→(𝑋/𝑆)dR
..=𝑀𝑇×𝑆𝑋�𝑇 .

To complete the construction of Ψ(𝑀)(𝑋/𝑆) ∈ QCoh ((𝑋/𝑆)dR), we need to

specify the compatibilities under pullback. Assume we have a commutative diagram

in PreStk:

𝑇2 (𝑋/𝑆)dR

𝑇1

(𝑔2, ℎ2)

𝑓

(𝑔1
, ℎ

1
)

i.e. (𝑔1, ℎ1) = 𝑓 *(𝑔2, ℎ2) = (𝑔2 ∘ 𝑓red , ℎ2 ∘ 𝑓). We need to exhibit an isomorphism

𝑓 * (︀Ψ(𝑀)(𝑋/𝑆)𝑇2→(𝑋/𝑆)dR

)︀
∼−→ Ψ(𝑀)(𝑋/𝑆)𝑇1→(𝑋/𝑆)dR

or equivalently 𝑓 *𝑀𝑇2×𝑆𝑋�𝑇2
∼−→𝑀𝑇1×𝑆𝑋�𝑇1 . To do this, it suffices to show that the

following diagram commutes canonically in PreStk:
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5 Universal modules

𝑇2 ℳ̃(∞)
𝑛

𝑇1

(pr𝑇2
, 𝜎2)

𝑓

(p
r 𝑇1
, 𝜎

1
)

i.e. to exhibit a canonical (up to (∞)-equivalence) common étale neighbourhood

between 𝑇1 ×𝑆 𝑋 � 𝑇1 and 𝑇1 ×𝑇2 (𝑇2 ×𝑆 𝑋) � 𝑇1. The obvious candidate is

𝑇1 ×𝑆 𝑋

𝑇1 ×𝑆 𝑋 𝑇1 ×𝑇2 (𝑇2 ×𝑆 𝑋)

𝑇1

𝑇1 𝑇1.

𝜎1 𝑓*𝜎2

∼

𝜎1

(II.8)

The (reduced) commmutativity of this diagram follows from noting that 𝜎1 ∘ 𝜄𝑇1 =

(𝜄𝑇1 , 𝑔1) and 𝑓
*𝜎2 ∘ 𝜄𝑇1 = (𝜄𝑇1 , 𝑔2 ∘ 𝑓red) as maps (𝑇1)red → 𝑇1 ×𝑆 𝑋.

This yields the desired isomorphism3

𝑀(𝑓, 𝑇1 ×𝑆 𝑋) : 𝑓 *𝑀𝑇2×𝑆𝑋�𝑇2
∼−→𝑀𝑇1×𝑆𝑋�𝑇1 ,

and the compatibility of these isomorphisms comes from the structure of 𝑀 . Indeed,

suppose we have the following commutative diagram

𝑇3

𝑇2 (𝑋/𝑆)dR.

𝑇1

𝑓1

𝑓2

(𝑔3 , ℎ3)

(𝑔2, ℎ2)

(𝑔1
, ℎ1

)

Then we need to show that the isomorphism 𝑓 *
1 𝑓

*
2𝑀𝑇3×𝑆𝑋�𝑇3

∼−→𝑀𝑇1×𝑆𝑋�𝑇1 is equal

to the composition

𝑓 *
1 𝑓

*
2𝑀𝑇3×𝑆𝑋�𝑇3

∼−→ 𝑓 *
1𝑀𝑇2×𝑆𝑋�𝑇2

∼−→𝑀𝑇1×𝑆𝑋�𝑇1 .

3Here and in the following we suppress the étale morphisms and write simply (𝑇1×𝑆 𝑋)
for the common étale neighbourhood (II.8).
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5.2 From quasi-coherent sheaves to universal 𝒟-modules

That is, we need to prove that

𝑀(𝑓, 𝑇1 ×𝑆 𝑋 � 𝑇1) ∘ 𝑓 *
1𝑀(𝑓2, 𝑇2 ×𝑆 𝑋 � 𝑇2) =𝑀(𝑓2 ∘ 𝑓1, 𝑇1 ×𝑆 𝑋 � 𝑇1).

This follows from the compatibility of 𝑀 with respect to pullbacks, and the fact that

the composition of the morphisms represented by the common étale neighbourhoods

given by (𝑇1×𝑆𝑋) and (𝑇2×𝑆𝑋) is represented by the common étale neighbourhood

(𝑇1 ×𝑆 𝑋) between (𝑇1 ×𝑆 𝑋 � 𝑇1) and (𝑓2 ∘ 𝑓1)* (𝑇3 ×𝑆 𝑋 � 𝑇3).

Therefore Ψ(𝑀)(𝑋/𝑆) ∈ QCoh ((𝑋/𝑆)dR), as claimed.

Finally, to show that Ψ(𝑀) ∈ U 𝒟
𝑛 we need to define the isomorphisms Ψ(𝑀)(𝑓)

associated to fibrewise étale morphisms 𝑓 = (𝑓𝑋 , 𝑓𝑆) : (𝑋/𝑆) → (𝑋 ′/𝑆 ′). We need

to define an isomorphism Ψ(𝑀)(𝑋/𝑆) ∼−→ 𝑓 *
𝑋/𝑆Ψ(𝑀)(𝑋 ′/𝑆 ′) of sheaves on (𝑋/𝑆)dR,

i.e. a compatible family of isomorphisms

Ψ(𝑀)(𝑋/𝑆)𝑇→(𝑋/𝑆)dR
∼−→
(︀
𝑓 *
𝑋/𝑆Ψ(𝑀)(𝑋 ′/𝑆 ′)

)︀
𝑇→(𝑋/𝑆)dR

(II.9)

for each 𝑇 → (𝑋/𝑆)dR.

Let 𝑇 → (𝑋/𝑆)dR be the morphism corresponding to the pair (𝑔 : 𝑇red → 𝑋, ℎ :

𝑇 → 𝑆). Unwinding the definitions, we see that

(︀
𝑓 *
𝑋/𝑆Ψ(𝑀)(𝑋 ′/𝑆 ′)

)︀
𝑇→(𝑋/𝑆)dR

= Ψ(𝑀)(𝑋 ′/𝑆 ′)𝑇→(𝑋′/𝑆′)dR

where the morphism 𝑇 → (𝑋 ′/𝑆 ′)dR corresponds to the pair (𝑓𝑋 ∘ 𝑔, 𝑓𝑆 ∘ ℎ). So we

can rewrite (II.9) as

𝑀𝑇×𝑆𝑋�𝑇
∼−→𝑀𝑇×𝑆′𝑋′�𝑇 .

To define such an isomorphism, it suffices to exhibit an isomorphism of the

corresponding objects in ℳ̃(∞)
𝑛 (𝑇 ), i.e. a common étale neighbourhood between

(𝑇 ×𝑆 𝑋 � 𝑇 ) and (𝑇 ×𝑆′ 𝑋 ′ � 𝑇 ). We can take the following representative:

𝑇 ×𝑆 𝑋

𝑇 ×𝑆 𝑋 𝑇 ×𝑆′ 𝑋 ′

𝑇

𝑇 𝑇.

𝜎 𝜎′

(id
𝑇 , 𝑓𝑋 )

𝜎
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The reduced commutativity of the right side of the diagram follows from noting that

𝜎 ∘ 𝜄𝑇 = (𝜄𝑇 , 𝑔) while 𝜎
′ ∘ 𝜄𝑇 = (𝜄𝑇 , 𝑓𝑋 ∘ 𝑔).

Because of the structure of 𝑀 , these isomorphisms are compatible with pullback

along maps 𝑇 ′ → 𝑇 , and hence give the desired isomorphism

Ψ(𝑀)(𝑓) : Ψ(𝑀)(𝑋/𝑆) ∼−→ 𝑓 *
𝑋/𝑆Ψ(𝑀)(𝑋 ′/𝑆 ′).

Indeed, this compatibility with pullbacks amounts to the commutativity of the

following diagram:

𝑓 * (𝑀𝑇2×𝑆𝑋�𝑇2) 𝑓 * (︀𝑀𝑇2×𝑆′𝑋′�𝑇2

)︀

𝑀𝑇1×𝑆𝑋�𝑇1 𝑀𝑇1×𝑆′𝑋′�𝑇1 .

𝑓*
(︀
𝑀(id𝑇2 , 𝑇1 ×𝑆 𝑋)

)︀

𝑀(𝑓, 𝑇1 ×𝑆 𝑋) 𝑀(𝑓, 𝑇1 ×𝑆′ 𝑋′)

𝑀(id𝑇1
, 𝑇1 ×𝑆′ 𝑋′)

In turn, the maps Ψ(𝑀)(𝑓) are themselves compatible with composition: this

amounts to the fact that given any two fibrewise étale morphisms 𝑋/𝑆 → 𝑋 ′/𝑆 ′ →
𝑋 ′′/𝑆 ′′ and any 𝑇 → (𝑋/𝑆)dR, we have

𝑀 (id𝑇 , 𝑇 ×𝑆′ 𝑋 ′) ∘𝑀 (id𝑇 , 𝑇 ×𝑆 𝑋) =𝑀 (id𝑇 , 𝑇 ×𝑆 𝑋) ,

where 𝑇 ×𝑆 𝑋 represents a morphism from 𝑇 ×𝑆 𝑋/𝑇 to 𝑇 ×𝑆′ 𝑋 ′/𝑇 in the first

instance and from 𝑇 ×𝑆 𝑋/𝑇 to 𝑇 ×𝑆′′ 𝑋 ′′/𝑇 in the second, and 𝑇 ×𝑆′ 𝑋 ′ represents

a morphism from 𝑇 ×𝑆′ 𝑋 ′/𝑇 to 𝑇 ×𝑆′′ 𝑋 ′′/𝑇 . We conclude that Ψ(𝑀) is indeed a

universal 𝒟-module.

The definition of Ψ on morphisms of QCoh

(︂
ℳ̃(∞)

𝑛

)︂
is clear: a morphism 𝐹 :

𝑀 → 𝑁 of quasi-coherent sheaves on ℳ̃(∞)
𝑛 amounts to a compatible family of

morphisms 𝐹𝑋�𝑆 : 𝑀𝑋�𝑆 → 𝑁𝑋�𝑆 ∈ QCoh (𝑆) indexed by morphisms 𝑆 → ℳ̃(∞)
𝑛 .

Then we define Ψ(𝐹 ) : Ψ(𝑀) → Ψ(𝑁) by setting

Ψ(𝐹 )(𝑋/𝑆)𝑇→(𝑋/𝑆)dR :𝑀𝑇×𝑆𝑋�𝑇 → 𝑁𝑇×𝑆𝑋�𝑇

to be equal to 𝐹𝑇×𝑆𝑋�𝑇 . It is not hard to see that this definition is compatible with

pullback by morphisms 𝑇 ′ → 𝑇 as well as with the structure morphisms Ψ(𝑀)(𝑓)

and Ψ(𝑁)(𝑓) corresponding to fibrewise étale morphisms 𝑓 = (𝑓𝑋 , 𝑓𝑆) : 𝑋 ′/𝑆 ′ →
𝑋/𝑆. It is also immediate that Ψ(𝐹 ∘ 𝐺) = Ψ(𝐹 ) ∘ Ψ(𝐺), and so Ψ gives a functor

QCoh

(︂
ℳ̃(∞)

𝑛

)︂
→ U 𝒟

𝑛 .
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5.3 Compatibility of 𝜃 and Ψ

It remains to check that 𝜃 and Ψ are indeed quasi-inverse. First suppose that we have

𝑀 ∈ QCoh

(︂
ℳ̃(∞)

𝑛

)︂
and consider 𝜃 ∘ Ψ(𝑀) ∈ QCoh

(︂
ℳ̃(∞)

𝑛

)︂
. For (𝜋 : 𝑋 � 𝑆 :

𝜎) ∈ ℳ̃(∞)
𝑛 , we have

(𝜃 ∘Ψ(𝑀))𝑋�𝑆 = 𝜎*Ψ(𝑀)(𝑋/𝑆).

Here 𝜎 : 𝑆 → (𝑋/𝑆)dR corresponds by definition to the pair (𝜎 ∘ 𝜄𝑆, id𝑆), so it follows

that

𝜎*Ψ(𝑀)(𝑋/𝑆) =𝑀𝑆×𝑆𝑋�𝑆,

and (𝑆 ×𝑆 𝑋 � 𝑆) ≃ (𝑋 � 𝑆). Therefore

(𝜃 ∘Ψ(𝑀))𝑋�𝑆 ≃𝑀𝑋�𝑆,

which gives the natural isomorphism between 𝜃 ∘Ψ and Id
QCoh

(︂
ℳ̃(∞)

𝑛

)︂.
Conversely, let F ∈ U 𝒟

𝑛 and consider Ψ ∘ 𝜃(F ). Take 𝜋 : 𝑋 → 𝑆 smooth of

dimension 𝑛 and 𝑇 → (𝑋/𝑆)dR corresponding to a compatible pair of morphisms

(𝑔 : 𝑇red → 𝑋, ℎ : 𝑇 → 𝑆). Then

(Ψ ∘ 𝜃(F )) (𝑋/𝑆)𝑇→(𝑋/𝑆)dR = 𝜃(F )pr𝑇 :𝑇×𝑆𝑋�𝑇 :𝜎

= 𝜎* (F (𝑇 ×𝑆 𝑋/𝑇 )) ,

where 𝜎 is a section 𝑇 → 𝑇×𝑆𝑋 such that 𝜎∘𝜄𝑇 = (id𝑇 , 𝑔). Notice that 𝑓 ..= (pr𝑋 , ℎ)

gives a fibrewise étale map (𝑇 ×𝑆 𝑋)/𝑇 → (𝑋/𝑆), so that we have

F (𝑓) : F (𝑇 ×𝑆 𝑋/𝑇 ) ∼−→ 𝑓 *
𝑋/𝑆F (𝑋/𝑆).

Finally, unwinding the definitions of 𝑓𝑋/𝑆 and 𝜎 shows that 𝑓𝑋/𝑆 ∘ 𝜎 : 𝑇 → (𝑋/𝑆)dR

agrees with (𝑔, ℎ); hence we have

𝜎* (F (𝑇 ×𝑆 𝑋/𝑇 )) ≃ 𝜎*𝑓 *
𝑋/𝑆F (𝑋/𝑆)

≃ F (𝑋/𝑆)𝑇→(𝑋/𝑆)dR

as required. These isomorphisms gives the desired natural isomorphisms between

Ψ ∘ 𝜃 and IdU 𝒟
𝑛
. The proof is complete.
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5.4 The 𝒪-module setting

We have an analogous result in the case of universal 𝒪 modules:

Theorem 5.4.1. The category U 𝒪
𝑛 of universal 𝒪-modules of dimension 𝑛 is equiv-

alent to the category QCoh

(︂
ℳ̃pt,(∞)

𝑛

)︂
and hence to the category QCoh

(︁
ℳpt,(∞)

𝑛

)︁
.

Proof. The idea behind the proof is similar to the case of universal 𝒟-modules: we

proceed by defining functors in both directions and checking that they are quasi-

inverse to each other. In brief, we have

𝜃 : U 𝒪
𝑛 → QCoh

(︂
ℳ̃pt,(∞)

𝑛

)︂
(II.10)

F ↦→
(︀
(𝜋 : 𝑋 � 𝑆 : 𝜎) ↦→ 𝜎*(F𝑋/𝑆)

)︀
;

Ψ : QCoh

(︂
ℳ̃pt,(∞)

𝑛

)︂
→ U 𝒪

𝑛 (II.11)

𝑀 ↦→
(︀
(𝑋 → 𝑆) ↦→𝑀pr1:𝑋×𝑆𝑋�𝑋:Δ

)︀
.

We refrain from spelling out the details—the definitions and arguments are along the

same lines as those used in the proof of Theorem 5.0.8, but simpler.

6 Convergent and ind-finite universal modules

So far, we have identified the category of universal 𝒟-modules with the category

of representations of the group-valued prestack 𝐺ét. Furthermore, we have identified

Rep(𝐺) as a full subcategory of Rep(𝐺ét). In this section, we study the corresponding

full subcategory of U 𝒟
𝑛 .

We have two approaches: in 6.1 we take the first approach, via the description

of Rep(𝐺) as colim𝑐∈N Rep(𝐺
(𝑐)), as in Proposition 2.4.1. The second method uses

the characterisation of representations of 𝐺 as those representations of 𝐺ét which are

locally finite when viewed as representations of 𝐾 ét, as in Corollary 4.4.3. We discuss

this in 6.2 and 6.3. Comparing the results obtained from each of these approaches

allows us to provide two characterisations of those universal 𝒟-modules which lie in

the essential image of Rep(𝐺) under the equivalence Rep(𝐺ét) ∼−→ U 𝒟
𝑛 . We will call

these the convergent universal 𝒟-modules.
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6.1 Convergent universal modules

6.1 Convergent universal modules

Recall the stack of formal germs introduced in Remark 3.4.6:

ℳ𝑛
..= lim

𝑐∈N
ℳ(𝑐)

𝑛 .

Combining the results of Proposition 2.4.1, Corollary 4.4.3, and Theorem 5.0.8, we

obtain the following diagram:

Rep(𝐺ét) QCoh
(︁
ℳ(∞)

𝑛

)︁
U 𝒟
𝑛

Rep(𝐺) QCoh (ℳ𝑛)

colim
𝑐∈N

Rep(𝐺(𝑐)) colim
𝑐∈N

QCoh
(︁
ℳ(𝑐)

𝑛

)︁

Rep(𝐺(𝑐)) QCoh
(︁
ℳ(𝑐)

𝑛

)︁

∼ ∼

∼

∼

∼

∼

∼
Ψ

Since our goal is to identify Rep(𝐺) with a category of universal 𝒟-modules, we

must now study the essential image of QCoh
(︁
ℳ(𝑐)

𝑛

)︁
under Ψ for each 𝑐 ∈ N.

Suppose that 𝑀 ∈ QCoh
(︁
ℳ(𝑐)

𝑛

)︁
→˓ QCoh

(︁
ℳ(∞)

𝑛

)︁
. Then we know that 𝑀

consists of the data of a sheaf

𝑀𝑋�𝑆 ∈ QCoh (𝑆)

for each object (𝑋 � 𝑆) ∈ ℳ̃(∞)
𝑛 , together with isomorphisms

𝑀(𝑓, 𝛼) : 𝑓 *𝑀𝑋′�𝑆′ ∼−→𝑀𝑋�𝑆 ∈ QCoh (𝑆) ,

for any commutative diagram in PreStk of the form

𝑉𝛼

𝑆2 ℳ̃(∞)
𝑛 𝑋1 𝑆1 ×𝑆2 𝑋2 𝑋2

𝑆1

𝑆1 𝑆1 𝑆1 𝑆2.

(𝜋2, 𝜎2)

𝑓
(𝜋1, 𝜎1)

𝛼

𝜋1𝜎1

𝜌𝛼𝜏𝛼

𝑓*𝜋2𝑓*𝜎2

𝜑𝛼 𝜓𝛼

𝜋2𝜎2

pr𝑋2

𝑓
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6 Convergent and ind-finite universal modules

The fact that 𝑀 is an object of QCoh

(︂
ℳ̃(𝑐)

𝑛

)︂
amounts to the condition that

𝑀(𝑓, 𝛼) = 𝑀(𝑓, 𝛼′) whenever any representatives of 𝛼 and 𝛼′ are (𝑐)-equivalent

(c.f. Remark 5.1.1). Let us consider the implications of this condition for the corre-

sponding universal 𝒟-module Ψ(𝑀). Suppose that we have two étale maps 𝑓1, 𝑓2 of

𝑛-dimensional families over some base scheme 𝑆

𝑋 𝑋 ′

𝑆 𝑆,

𝑓𝑖

𝜎 𝜎′

inducing the same isomorphism of the 𝑐th infinitesimal neighbourhoods of 𝑆 in 𝑋

and 𝑋 ′:

𝑓
(𝑐)
1 = 𝑓

(𝑐)
2 : 𝑋

(𝑐)
𝑆

∼−→ 𝑋
′(𝑐)
𝑆 .

Then we obtain isomorphisms

Ψ(𝑀)(𝑓𝑖) : Ψ(𝑀)(𝑋/𝑆) ∼−→ 𝑓 *
𝑖,𝑋/𝑆Ψ(𝑀)(𝑋 ′/𝑆) ∈ QCoh ((𝑋/𝑆)dR) , 𝑖 = 1, 2,

and pulling back along 𝜎 : 𝑆 → (𝑋/𝑆)dR yields maps

𝜎*Ψ(𝑀)(𝑓𝑖) : 𝜎
*Ψ(𝑀)(𝑋/𝑆) ∼−→ 𝜎*𝑓 *

𝑖,𝑋/𝑆Ψ(𝑀)(𝑋 ′/𝑆) ∈ QCoh (𝑆) , 𝑖 = 1, 2.

Note that 𝑓1,𝑋/𝑆 ∘𝜎 = 𝜎′ = 𝑓2,𝑋/𝑆 ∘𝜎, and so the maps 𝜎*Ψ(𝑀)(𝑓𝑖) are maps between

the same sheaves on 𝑆. From the definition of Ψ(𝑀), we identify

𝜎*Ψ(𝑀)(𝑋/𝑆) =𝑀𝑋�𝑆; 𝜎′*Ψ(𝑀)(𝑋 ′/𝑆′) =𝑀𝑋′�𝑆,

and we see that for 𝑖 = 1, 2 the map 𝜎*Ψ(𝑀)(𝑓𝑖) is given by the structure isomorphism

𝑀(id𝑆, 𝛼𝑖) of M, where 𝛼𝑖 is the isomorphism in ℳ̃(∞)
𝑛 represented by the common

étale neighbourhood

𝑋

𝑋 𝑋 ′

𝑆.

id𝑋 𝑓𝑖
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6.1 Convergent universal modules

Since these two common étale neighbourhoods are (𝑐)-equivalent, it follows that

𝑀(id𝑆, 𝛼1) =𝑀(id𝑆, 𝛼2).

Motivated by this observation, we formulate the following definition:

Definition 6.1.1. A universal 𝒟-module F is of 𝑐th order if whenever we have two

étale morphisms 𝑓1, 𝑓2 of 𝑛-dimensional families over 𝑆

𝑋 𝑋 ′

𝑆 𝑆

𝑓𝑖

𝜎 𝜎′

such that

𝑓
(𝑐)
1 = 𝑓

(𝑐)
2 : 𝑋

(𝑐)
𝑆

∼−→ 𝑋
′(𝑐)
𝑆 ,

then we have that

𝜎*F (𝑓1) = 𝜎*F (𝑓2) : 𝜎
*F𝑋/𝑆

∼−→ 𝜎′*F𝑋′/𝑆.

We let U 𝒟,(𝑐)
𝑛 denote the full subcategory of U 𝒟

𝑛 whose objects are the universal

𝒟-modules of 𝑐th order.

Proposition 6.1.2. The functor Ψ : QCoh

(︂
ℳ̃(∞)

𝑛

)︂
∼−→ U 𝒟

𝑛 restricts to an equiva-

lence

Ψ(𝑐) : QCoh

(︂
ℳ̃(𝑐)

𝑛

)︂
∼−→ U 𝒟,(𝑐)

𝑛 .

Proof. By the above discussion, the restriction Ψ(𝑐) of Ψ to QCoh

(︂
ℳ̃(𝑐)

𝑛

)︂
is a fully

faithful embedding into U 𝒟,(𝑐)
𝑛 . To complete the proof, it suffices to show that the

functor 𝜃 : U 𝒟
𝑛

∼−→ QCoh

(︂
ℳ̃(∞)

𝑛

)︂
restricts to a functor

𝜃(𝑐) : U 𝒟,(𝑐)
𝑛 → QCoh

(︂
ℳ̃(𝑐)

𝑛

)︂
.

So let us assume that F ∈ U 𝒟,(𝑐)
𝑛 , and consider the quasi-coherent sheaf 𝜃(F ) ∈

QCoh

(︂
ℳ̃(∞)

𝑛

)︂
. Suppose that we have a diagram in PreStk of the form:
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6 Convergent and ind-finite universal modules

𝑆 ′ ℳ̃(∞)
𝑛 .

𝑆

(𝜋′, 𝜎′)

𝑓

(𝜋
, 𝜎
)

Assume in addition that we have two isomorphisms

𝛼𝑖 ∈ Hom
ℳ̃(∞)

𝑛 (𝑆)
((𝜋, 𝜎), (𝜋′, 𝜎′) ∘ 𝑓)

which make this diagram commute, and which are (𝑐)-equivalent, although not neces-

sarily (∞)-equivalent. In order to show that 𝜃(F ) is a quasi-coherent sheaf on ℳ̃(𝑐)
𝑛 ,

we need to show that the structure isomorphisms 𝜃(F )(𝑓, 𝛼𝑖) agree with each other.

Let us choose representatives of the isomorphisms 𝛼𝑖 as follows:

𝑉𝑖

𝑋 𝑆 ×𝑆′ 𝑋 ′ 𝑋 ′

𝑆

𝑆 𝑆 𝑆 ′.

𝜌𝑖

𝜑𝑖 𝜓𝑖

𝑓

𝜏𝑖

Then it suffices to show that

𝜏1
* (︀F (𝜑1, id𝑆) ∘ F (𝜓1, id𝑆)

−1
)︀
= 𝜏2

* (︀F (𝜑2, id𝑆) ∘ F (𝜓2, id𝑆)
−1
)︀
.

Equivalently, we can compose the representatives of 𝛼1 and 𝛼−1
2 to obtain a com-

mon étale neighbourhood which we’ll call 𝛼12:

𝑉1 ×𝑆×𝑆′𝑋′ 𝑉2

𝑉1 𝑉2

𝑋1 𝑆 ×𝑆′ 𝑋 ′ 𝑆 𝑋1

𝑆 𝑆

𝑆 𝑆 𝑆.

𝜏12
𝜑1 𝜓1

pr𝑉1
pr𝑉2

𝜓2

𝜑2
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6.1 Convergent universal modules

Now we need to show that

𝜏12
* (︀F (𝜑1 ∘ pr𝑉1 , id𝑆) ∘ F (𝜑2 ∘ pr𝑉2 , id𝑆)−1

)︀
= id𝜏*F (𝑋/𝑆) .

We can use the fact that F is of 𝑐th order: it suffices to show that 𝛼12 is (𝑐)-equivalent

to the identity. But of course

(︀
𝜑1 ∘ pr𝑉1

)︀(𝑐) ∘
(︁(︀
𝜑2 ∘ pr𝑉2

)︀(𝑐))︁−1

= 𝜑
(𝑐)
1 ∘ pr(𝑐)𝑉1 ∘

(︁
pr

(𝑐)
𝑉2

)︁−1

∘
(︁
𝜑
(𝑐)
2

)︁−1

= 𝜑
(𝑐)
1 ∘

(︁
𝜓

(𝑐)
1

)︁−1

∘ 𝜓(𝑐)
2 ∘

(︁
𝜑
(𝑐)
2

)︁−1

= id
𝑋

(𝑐)
𝑆
.

So 𝜃(F ) is indeed an object of the subcategory QCoh

(︂
ℳ̃(𝑐)

𝑛

)︂
, and the proof is

complete.

The following is immediate:

Corollary 6.1.3. We have an equivalence of categories

U 𝒟,(𝑐)
𝑛 ≃ Rep(𝐺(𝑐)).

We have the following nested sequence of subcategories of U 𝒟
𝑛 :

. . . →˓ U 𝒟,(𝑐)
𝑛 →˓ U 𝒟,(𝑐+1)

𝑛 →˓ . . . →˓ U 𝒟
𝑛 .

Definition 6.1.4. Let

U 𝒟,conv
𝑛

..= colim
𝑐∈N

U 𝒟,(𝑐)
𝑛 .

It is a full subcatgory of U 𝒟
𝑛 . An object of U 𝒟,conv

𝑛 will be called a convergent

universal 𝒟-module of dimension 𝑛.

Corollary 6.1.5. The essential image of colim𝑐∈N QCoh
(︁
ℳ(𝑐)

𝑛

)︁
in U 𝒟

𝑛 is U 𝒟,conv
𝑛 .

We have an equivalence of categories

Rep(𝐺) ∼−→ U 𝒟,conv
𝑛 .

We can similarly define the category U 𝒪,(𝑐)
𝑛 of 𝑐th-order universal 𝒪-modules and

can show that

U 𝒪,(𝑐)
𝑛 ≃ QCoh

(︀
ℳpt,(𝑐)

𝑛

)︀

for any 𝑐 ∈ N. Letting U 𝒪,conv
𝑛

..= colim𝑐∈N U 𝒪,(𝑐)
𝑛 , we obtain the following:

Proposition 6.1.6. We have an equivalence of categories

Rep(𝐾) ∼−→ U 𝒪,conv
𝑛 .
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6 Convergent and ind-finite universal modules

6.2 Ind-finite universal 𝒪-modules

In this subsection, we take a different approach, beginning with the identification

Rep(𝐺) ∼−→ Rep𝐾 ét-l.f.(𝐺
ét).

As has generally been the case when working with the groups 𝐺ét and 𝐾 ét, we will

begin by studying the picture for 𝐾 ét, and then extend our results to 𝐺ét.

Our first step is to identify the subcategory of QCoh
(︁
ℳpt,(∞)

𝑛

)︁
corresponding to

the locally finite representations of 𝐾. First notice that a representation 𝑉 of 𝐾 ét is

finite-dimensional if and only if the corresponding sheaf𝑀 on QCoh
(︀
BKét

)︀
and hence

on QCoh
(︁
ℳpt,(∞)

𝑛

)︁
is of finite type: that is, for every 𝑆 = Spec𝑅 → BKét ≃ ℳpt,(∞)

𝑛 ,

the corresponding sheaf 𝑀𝑆 ∈ QCoh (𝑆) is of finite type.

Remark 6.2.1. This is equivalent to requiring the sheaf 𝑀𝑆 to be of finite presen-

tation, and in fact to be locally free. This follows from three facts: these properties

are all equivalent for QCoh (pt) ≃ Vect; they are preserved by pullback; and every

morphism 𝑆 →
(︁
ℳpt,(∞)

𝑛

)︁
triv

factors through 𝑆 → pt.

However, it is not equivalent to requiring the sheaf 𝑀𝑆 to be coherent, because

coherence is not preserved under arbitrary pullbacks. For example, if 𝑉 = 𝑘 is the

trivial representation, with 𝑀 the corresponding sheaf on 𝑆, then 𝑀𝑆 = 𝑅 for every

𝑆 = Spec𝑅. If 𝑅 is a 𝑘-algebra which is not coherent as an 𝑅-module, then 𝑀𝑆 is

finitely generated, but it is not coherent.

It follows that the essential image of Repl.f.(𝐾 ét) in QCoh
(︁
ℳpt,(∞)

𝑛

)︁
is the full

subcategory generated by those sheaves 𝑀 ∈ QCoh
(︁
ℳpt,(∞)

𝑛

)︁
which can be written

as a union 𝑀 =
⋃︀
𝑖𝑀𝑖 of sheaves 𝑀𝑖 of finite type.

Definition 6.2.2. Let 𝒴 be a prestack, and 𝑀 ∈ QCoh (𝒴) be a sheaf that can be

written as the colimit of its subsheaves of finite type. Then we say that 𝑀 is of

ind-finite type. We denote the full subcategory of ind-finite sheaves by QCohi.f. (𝒴).

Of course, for any sheaf 𝑀 ∈ QCoh (𝒴) and for any 𝑆 = Spec𝑅, we can always

write 𝑀𝑆 as a union of finitely generated subsheaves; however, this cannot always

be done in a way compatibly with all pullbacks and automorphisms of 𝑆-points of

QCoh (𝒴).

Example 6.2.3. Recall the notation of section 4.3. Let 𝒴 = 𝐵A∞, and let 𝑀 ∈
QCoh (𝒴) be the sheaf corresponding to the regular representation 𝑉 . Then𝑀 is not

an object of QCohi.f. (𝒴).

114



6.3 Ind-finite universal 𝒟-modules

We do not know if QCohi.f.
(︁
ℳpt,(∞)

𝑛

)︁
is equal to QCoh

(︁
ℳpt,(∞)

𝑛

)︁
, or if it is a

proper subcategory. By construction, this question is equivalent to the question of

whether Repl.f.(𝐾 ét) is a proper subcategory of Rep(𝐾 ét).

Now we can study the essential image of QCohi.f.
(︁
ℳpt,(∞)

𝑛

)︁
in U 𝒪

𝑛 . It is the full

subcategory whose objects are those universal 𝒪-modules which can be written as a

union of their submodules of finite type:

F =
⋃︁

𝑖

F𝑖,

where F𝑖 ∈ U 𝒪
𝑛 is such that for any 𝑋/𝑆 smooth of dimension 𝑛, F𝑖,𝑋/𝑆 ∈ QCoh (𝑋)

is of finite type. This is equivalent to requiring F𝑖,𝑋/𝑆 to be locally free of finite rank:

this is because the translation-invariance of F ensures that F𝑖,𝑋/𝑆 is of constant rank.

Definition 6.2.4. If F is a universal 𝒪-module satisfying this condition, then we

shall say that F is a universal𝒪-module of ind-finite type. We denote the subcategory

of universal 𝒪-modules of ind-finite type by U 𝒪,i.f.
𝑛 .

The following result is clear by definition:

Proposition 6.2.5. The equivalence Rep(𝐾 ét) ∼−→ U 𝒪
𝑛 restricts to give an equiva-

lence of categories

Rep(𝐾) ∼−→ U 𝒪,i.f.
𝑛 .

6.3 Ind-finite universal 𝒟-modules

Similarly, it is clear that the essential image in QCoh
(︁
ℳ(∞)

𝑛

)︁
of Rep𝐺 is the sub-

category of sheaves 𝑀 ∈ QCoh
(︁
ℳ(∞)

𝑛

)︁
such that the pullback of 𝑀 along the map

ℳpt,(∞)
𝑛 → ℳ(∞)

𝑛

is of ind-finite type. We denote this category by

QCoh
(︀
ℳ(∞)

𝑛

)︀
ℳpt,(∞)

𝑛 -i.f.
→˓ QCoh

(︀
ℳ(∞)

𝑛

)︀
.

Again, we do not know whether this is in fact a proper subcategory.

We can again characterise the image of this subcategory in U 𝒟
𝑛 :

Definition 6.3.1. A universal 𝒟-module F is of ind-finite type if it is of ind-finite

type when regarded as a universal 𝒪-module. We denote the full subcategory of

universal 𝒟-modules of ind-finite type by U 𝒟,i.f.
𝑛 .
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Remark 6.3.2. Let us emphasise that the decomposition of F into subsheaves of

finite type only needs to respect the 𝒪-module structures; we do not expect the

subsheaves F𝑖 ⊂ F to be sub-𝒟-modules of F .

Proposition 6.3.3. The equivalence Rep(𝐺ét) ∼−→ U 𝒟
𝑛 restricts to an equivalence of

subcategories

Rep(𝐺) ∼−→ U 𝒟,i.f.
𝑛 .

Combining this with our previous results (essentially, travelling to the left and

then back again to the right along the middle two rows of the main diagram in Figure

1), we deduce the following:

Proposition 6.3.4. A universal 𝒪- or 𝒟-module is of ind-finite type if and only if

it is convergent.

Our proposal is that these categories of convergent universal modules, rather than

the full categories of universal modules as defined in [4], are the more natural cate-

gories with which to work. Of course, we do not know if in fact the categories are

equivalent.

7 Remarks on ∞-categories

In this section, we extend our results to the ∞-categories of representations and

universal modules. In fact, none of these categories are previously well-established in

the literature, so we have some freedom to choose our definitions to allow our results

to extend. We will provide some justification of our choices as we proceed, but the

very fact that our results extend so naturally is in itself a good defence for these

definitions.

The motivation for working with ∞-categories rather than ordinary categories is

the following. Recall that we are interested in the study of universal chiral algebras

of dimension 𝑛, under the hypothesis that these give the correct notion of an 𝑛-

dimensional vertex algebra. In particular, a universal chiral algebra of dimension 𝑛

is a universal 𝒟-module. Although the (ordinary) categories of universal 𝒟-modules

and representations of 𝐺 may be interesting in their own right, if we wish to work

with universal chiral algebras of dimension two or higher, we immediately see that it

is necessary to work in the derived setting. For example, if we insist on remaining in

the abelian categories, the definitions of universal chiral algebras and Lie ⋆ algebras

(as in [9]) become equivalent.
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7.1 Conventions

Henceforth all categories of sheaves, modules, vector spaces, and 𝒟-modules will be

assumed to be the (∞, 1)-categories, unless otherwise specified. We shall appropriate

notation established earlier in the chapter for abelian categories without further deco-

ration by symbols such as “d.g.” or “∞”; when we wish to refer to the abelian hearts

of these categories, we shall indicate it with a superscript ♡. When we say “cate-

gory”, we mean cocomplete (∞, 1)-category; it is in this sense that we take colimits,

for example.

7.2 ∞-categories of universal modules and representations

We can begin by näıvely extending the definition of a universal 𝒟-module (and

similarly a universal 𝒪-module), repeating the definition 5.0.5 in the setting of ∞-

categories. (We will carry this out explicitly for 𝑐th-order 𝒟-modules in 7.3.) The

functors 𝜃 and Ψ of Theorem 5.0.8 admit ∞-categorical extensions, and provide an

equivalence between the categories QCoh
(︁
ℳ(∞)

𝑛

)︁
and U 𝒟

𝑛 . The equivalence be-

tween ℳ(∞)
𝑛 and 𝐵𝐺ét is purely geometric, valid before considering categories or

∞-categories of sheaves, and hence we still have the equivalence

QCoh
(︀
𝐵𝐺ét

)︀
≃ QCoh

(︀
ℳ(∞)

𝑛

)︀
.

In fact, apart from the first column, the entire content of the main diagram lifts

immediately from Cat to DGCat with no serious modifications.

However, it is not immediately clear what we should take for the ∞-category of

representations of our groups. For an algebraic group 𝐻, we take

Rep(𝐻) ..= QCoh (𝐵𝐻) ,

as in e.g. 6.4.3, [7]. Since 𝐵𝐻 is a smooth Artin stack, we can show that

ϒ𝐵𝐻 : QCoh (𝐵𝐻) → IndCoh (𝐵𝐻)

is an equivalence of categories, so we could also have defined

Rep(𝐻) = IndCoh (𝐵𝐻) .

Recall that the functors ϒ intertwine the *-pullback on QCoh (∙) with the !-pullback

on IndCoh (∙).
On the other hand, given a pro-algebraic group 𝐻, we can consider the category

QCoh (𝐵𝐻), but the category IndCoh (𝐵𝐻) is not defined, because the stack 𝐵𝐻 is
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not locally of finite type. It can, however, be written as the limit of stacks which

are locally of finite type, and this leads us to a second potential definition for the

category of representations.

More precisely, recall that if we write 𝐻 = lim𝑖𝐻𝑖, with 𝐻𝑖 finite-dimensional

quotients, and all maps 𝐻𝑖 → 𝐻𝑗 smooth surjections of algebraic groups, then by

Proposition 2.3.6

Rep♡(𝐻) ≃ colim
𝑖

Rep♡(𝐻𝑖).

Motivated by this fact, it is natural to consider the category

colim
𝑖

Rep(𝐻𝑖) = colim
𝑖

QCoh*(𝐵𝐻𝑖) ≃ colim
𝑖

IndCoh!(𝐵𝐻𝑖),

and unlike in the abelian categories, this category is not all of QCoh (𝐵𝐻). In-

stead, we think of QCoh (𝐵𝐻) as the DG-category of representations of 𝐻, and

colim𝑖Rep(𝐻𝑖) as the subcategory of representations of 𝐻 which are locally finite. In

the ∞-categorical setting, this condition is not automatically satisfied, but it is one

which we are happy to impose. In other words, we set

Rep(𝐻) ..= colim
𝑖

Rep(𝐻𝑖).

Similarly, for a group formal scheme that can be written as 𝐿 = lim𝑖 𝐿𝑖 (such

as the group 𝐺 of automorphisms of the formal disc) with 𝐻 = 𝐿red = lim𝑖 𝐿𝑖,red a

pro-algebraic group, we set

Rep(𝐿) ..= colim
𝑖

Rep(𝐿𝑖).

Although the 𝐿𝑖 are themselves indschemes, they are of finite type, and hence 𝐵𝐿𝑖

is locally of finite type and Rep(𝐿𝑖) is given by QCoh (𝐵𝐿𝑖) ≃ IndCoh (𝐵𝐿𝑖).

We do not know how to define a corresponding category for an arbitrary group-

valued prestack. In the case of 𝐺ét and 𝐾 ét, for example, the stacks 𝐵𝐺ét and 𝐵𝐾 ét

seem to be quite intractable. Fortunately the relative Artin approximation theorem

and its corollaries from section 3.4 allow us to approximate these stacks using the

stacks 𝐵𝐺(𝑐) and 𝐵𝐻(𝑐), which are easier to work with. By restricting our attention

to representations which are sufficiently finite-dimensional in flavour, we can avoid

working with the stacks 𝐵𝐺ét and 𝐵𝐾 ét entirely. The cost, however, is that the

corresponding categories of representations do not correspond to the categories of

arbitrary universal modules, but only those of convergent universal modules. In fact,

though, we view this as an advantage rather than a cost.
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As a consequence of this discussion, we shall henceforth ignore the back two rows

of the main diagram, and shall only work with the front part of the diagram, which

can be described entirely using stacks which are locally of finite type. Thus far, we

have the following:

Rep(𝐺)

colim
𝑐∈N

Rep
(︀
𝐺(𝑐)

)︀
colim
𝑐∈N

QCoh
(︀
𝐵𝐺(𝑐)

)︀
colim
𝑐∈N

QCoh
(︀
ℳ(𝑐)

𝑛

)︀

Rep
(︀
𝐺(𝑐)

)︀
QCoh

(︀
𝐵𝐺(𝑐)

)︀
QCoh

(︁
ℳ(𝑐)

𝑛

)︁
.

∼

∼

Recall the discussion in remark 5.0.7 on the use of the categories QCoh (∙) as

compared to IndCoh (∙). At that stage, we defended the use of QCoh ((𝑋/𝑆)dR),

corresponding to relative left𝒟-modules, rather than its more well-studied and better-

behaved counterpart IndCoh ((𝑋/𝑆)dR), corresponding to relative right 𝒟-modules.

Our reasons were threefold: we wished to remain consistent with the definitions of

Beilinson and Drinfeld and to work with abelian categories rather than ∞-categories,

and moreover we needed to work with prestacks which were not locally of finite type,

and so we could not rely on the theory of ind-coherent sheaves.

Indeed, all of the stacks appearing in the back rows of the main diagram from

Figure 1 are of infinite type and hence not well-suited to being studied using the

theory of ind-coherent sheaves—but by restricting our attention to the category of

convergent universal 𝒟-modules, as we have just decided to do, we can avoid using

these stacks, instead using only the stacks in the front rows of the diagram, which are

locally of finite type. In particular, we can work with ind-coherent sheaves on these

prestacks.

Furthermore, we argued that the correct notion of universal 𝒟-module should

include the convergence condition, regardless of whether it agrees with the definition

given by Beilinson and Drinfeld even in the abelian setting. In other words, our three

motivations for working with quasi-coherent rather than ind-coherent sheaves have

disappeared, and consequently we now feel free to use the better-behaved theory of

ind-coherent sheaves in the ∞-categorical setting and to define an ∞-category which

will correspond to universal right 𝒟-modules.

By taking ind-coherent sheaves rather than quasi-coherent sheaves at each stage,

we obtain the “right 𝒟-module” version of the above diagram. However, note that
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7 Remarks on ∞-categories

each of the stacks appearing in the diagram is (equivalent to) a smooth Artin stack,

so that the categories of quasi-coherent sheaves and ind-coherent sheaves are in fact

equivalent via the funtors ϒ. In other words, the diagrams are actually equivalent,

termwise, and the functors ϒ between the terms intertwine the morphisms of the

diagram as well.

7.3 ∞-categories of convergent universal modules

We have (equivalent) categories

colim
𝑐∈N

QCoh
(︀
ℳ(𝑐)

𝑛

)︀
,

colim
𝑐∈N

IndCoh
(︀
ℳ(𝑐)

𝑛

)︀

which should, formally, correspond to categories of universal left and right 𝒟-modules,

but which in flavour belong to the third column of the main diagram from Figure 1.

In order to give an equivalent description of these categories in the language of the

fourth column, of “universal modules”, we must apply a construction analogous to

that of the functor Ψ. We first study the ∞-categorical analogue of universal right

𝒟-modules of 𝑐th order; that is, we apply a version of the functor Ψ to the category

IndCoh
(︁
ℳ(𝑐)

𝑛

)︁
. (The QCoh

(︁
ℳ(𝑐)

𝑛

)︁
setting is completely analogous.) We do this

here only informally, as the full technical definition is no more enlightening.

Given an object 𝑀 ∈ IndCoh
(︁
ℳ(𝑐)

𝑛

)︁
, we begin to argue as in the proof of Theo-

rem 5.0.8 in subsection 5.2 and obtain the following data:

1. For any 𝑋 → 𝑆 smooth of dimension 𝑛 with 𝑆 a scheme of finite type, we have

F (𝑋/𝑆) ∈ IndCoh ((𝑋/𝑆)dR) ,

given by the compatible family

{︀
F (𝑋/𝑆)𝑇→(𝑋/𝑆)dR

..=𝑀𝑇×𝑆𝑋�𝑇 ∈ IndCoh (𝑇 )
}︀
𝑇∈Sch/(𝑋/𝑆)dR

.

2. For any any pair (𝑋/𝑆), (𝑋 ′, 𝑆 ′) of smooth 𝑛-dimensional families, and for any

fibrewise étale morphism 𝑓 : (𝑋/𝑆) → (𝑋 ′/𝑆 ′), an isomorphism

F (𝑓) : F𝑋/𝑆
∼−→ 𝑓 !

𝑋/𝑆F𝑋′/𝑆′

in IndCoh ((𝑋/𝑆)dR), defined for each 𝑇 -point 𝑇 → (𝑋/𝑆)dR to be equal to the

compatibility isomorphism

𝑀𝑇×𝑆𝑋�𝑇
∼−→𝑀𝑇×𝑆′𝑋′�𝑇 ∈ IndCoh (𝑇 ) .
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7.3 ∞-categories of convergent universal modules

The fact that 𝑀 depends only on morphisms in ℳ(𝑐)
𝑛 (𝑇 ) (as compared to in

ℳ(∞)
𝑛 (𝑇 )) tells us that for any sections 𝜎 : 𝑆 → 𝑋, 𝜎 : 𝑆 ′ → 𝑋 ′ compatible

with 𝑓 on the level of 𝑆 ′
red , the map

𝜎!F (𝑓) : 𝜎!F (𝑋/𝑆) ∼−→ 𝜎′!F (𝑋 ′/𝑆 ′)

depends only on the restriction of 𝑓 to the 𝑐th infinitesimal neighbourhood of

𝑆 →˓ 𝑋.

In subsection 5.2 we then showed that the isomorphisms F (𝑓) were compatible

with composition. Since we are now working in ∞-categories, this compatibility is

now a structure rather than a condition, and so we obtain additional data. The first

few stages look like this:

3. Given three smooth families with fibrewise maps between them

(𝑋/𝑆)
𝑓−→ (𝑋 ′/𝑆 ′)

𝑔−→ (𝑋 ′′/𝑆 ′′),

we have a natural isomorphism

𝑎𝑓,𝑔 : 𝑓
!
𝑋/𝑆F (𝑔) ∘ F (𝑓) ⇒ F (𝑔 ∘ 𝑓)

of isomorphisms F (𝑋/𝑆) → (𝑔 ∘ 𝑓)!F (𝑋 ′′/𝑆 ′′). (Note that we have omitted

from our notation the canonical isomorphism (𝑔 ∘ 𝑓)! ⇒ 𝑓 ! ∘ 𝑔!.)
This natural isomorphism is defined for each 𝑇 -point 𝑇 → (𝑋/𝑆)dR to be the

natural transformation between the two maps

𝑀𝑇×𝑆𝑋�𝑇 →𝑀𝑇×𝑆′𝑋′�𝑇 →𝑀𝑇×𝑆′′𝑋′′�𝑇

and

𝑀𝑇×𝑆𝑋�𝑇 →𝑀𝑇×𝑆′′𝑋′′�𝑇 ,

which comes from the structure of 𝑀 as an object of IndCoh
(︁
ℳ(𝑐)

𝑛

)︁
.

4. Given four smooth families with fibrewise maps between them

(𝑋/𝑆)
𝑓−→ (𝑋 ′/𝑆 ′)

𝑔−→ (𝑋 ′′/𝑆 ′′)
ℎ−→ (𝑋 ′′′/𝑆 ′′′),

the data of (3) gives us two natural isomorphisms between the maps

𝑓 !𝑔!F (ℎ) ∘ 𝑓 !F (𝑔) ∘ F (𝑓) and F (ℎ ∘ 𝑔 ∘ 𝑓)

as follows:
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7 Remarks on ∞-categories

𝑓 !𝑔!F (ℎ) ∘ 𝑓 !F (𝑔) ∘ F (𝑓) 𝑓 !𝑔!F (ℎ) ∘ F (𝑔 ∘ 𝑓)

𝑓 !F (ℎ ∘ 𝑔) ∘ F (𝑓) F (ℎ ∘ 𝑔 ∘ 𝑓)

𝑎𝑓,𝑔

𝑎𝑔∘𝑓,ℎ𝑎𝑔,ℎ

𝑎𝑓,ℎ∘𝑔

There is a 3-morphism 𝑏𝑓,𝑔,ℎ making this diagram commute.

5. . . . and so on . . .

Definition 7.3.1. A collection F = ({F (𝑋/𝑆)}, {F (𝑓)}, {𝑎𝑓,𝑔}, {𝑏𝑓,𝑔,ℎ}, . . .) as

above will be called a universal right 𝒟-module of 𝑐th order. Such objects form

an ∞-category 𝑟U 𝒟,(𝑐)
𝑛 , equivalent by construction to the category IndCoh

(︁
ℳ(𝑐)

𝑛

)︁
.

Definition 7.3.2. The ∞-category of convergent universal right 𝒟-modules is by

definition the colimit

𝑟U 𝒟,conv
𝑛

..= colim
𝑐∈N

𝑟U 𝒟,(𝑐)
𝑛 .

We think of an object of 𝑟U 𝒟,conv
𝑛 as a family

F = ({F (𝑋/𝑆)}, {F (𝑓)}, {𝑎𝑓,𝑔}, {𝑏𝑓,𝑔,ℎ}, . . .)

as in the above description, except with the condition in (2) pertaining to (𝑐)-

equivalence for morphisms omitted; instead, we assume that F has an exhaustive

filtration by subobjects F (𝑐), where for each 𝑐, F (𝑐) does satisfy the condition in (2).

Remark 7.3.3. Of course, it is impossible to specify such an object completely in this

manner. However, this description in terms of families of sheaves has a significantly

more geometric feel than that of the category of representations of 𝐺. This is a

particular aspect of the difference between the study of vertex algebras (living on

the same side of the story as Rep(𝐺)) and the study of chiral algebras (living on the

geometric side).

We have, immediately, the following diagram (with equivalences along the rows):

Rep(𝐺) 𝑟U 𝒟,conv
𝑛

colim
𝑐∈N

Rep
(︁
𝐺(𝑐)

)︁
colim
𝑐∈N

IndCoh
(︁
𝐵𝐺(𝑐)

)︁
colim
𝑐∈N

IndCoh
(︁
ℳ(𝑐)

𝑛

)︁
colim
𝑐∈N

𝑟U 𝒟,(𝑐)
𝑛

Rep
(︁
𝐺(𝑐)

)︁
IndCoh

(︁
𝐵𝐺(𝑐)

)︁
IndCoh

(︁
ℳ(𝑐)

𝑛

)︁
𝑟U

𝒟,(𝑐)
𝑛 .
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7.4 An example: 𝒜𝑋/𝑆

We have a completely analogous diagram for convergent universal left 𝒟-modules,

using quasi-coherent sheaves. Because all of the categories in the first three columns

are equivalent whether we use IndCoh (∙) or QCoh (∙), we deduce that the categories
of universal right and left 𝒟-modules are equivalent as well.

This is somewhat surprising: we do not have, in general, that the categories

QCoh ((𝑋/𝑆)dR) and IndCoh ((𝑋/𝑆)dR) are equivalent. We can only say that

ϒ(𝑋/𝑆)dR : QCoh ((𝑋/𝑆)dR) → IndCoh ((𝑋/𝑆)dR)

is a fully faithful embedding. However, as a consequence of the convergence condition,

we can see that any universal family (𝑋/𝑆) ↦→ F (𝑋/𝑆) ∈ IndCoh ((𝑋/𝑆)dR) will

actually take values in the essential image of these functors ϒ. Consequently, the

categories of convergent universal right and left 𝒟-modules are in fact canonically

equivalent.

A final remark on the convergence condition is the following: even in the right 𝒟-

modules setting, where we do work with ind-coherent sheaves, we still do not obtain a

category whose objects are all compatible families of ind-coherent sheaves (or relative

right 𝒟-modules) indexed by smooth 𝑛-dimensional families 𝑋/𝑆. Instead, what we

obtain is, informally, closer to the ind-completion of a category of universal families

of coherent sheaves. This is close in spirit to the description of convergent universal

𝒟-modules as ind-finite families of modules from section 6.3.

7.4 An example: 𝒜𝑋/𝑆

Recall from Proposition I.2.5.6 that the assignment

𝒜 : 𝑋/𝑆 ↦→ 𝒜𝑋/𝑆
..= (𝑔𝑋/𝑆)*𝜔H ilb𝑋/𝑆

∈ 𝒟(𝑋/𝑆)

is compatible with pullback by étale morphisms. We claim now that it gives a con-

vergent universal (right) 𝒟-module of any fixed dimension 𝑛.

Fix 𝑐 ∈ N, and consider the assignment

𝑋/𝑆 ↦→ 𝒜(𝑐)
𝑋/𝑆

..=
(︁
𝑔≤𝑐𝑋/𝑆

)︁
*
𝜔H ilb≤𝑐

𝑋/𝑆
,

where H ilb≤𝑐𝑋/𝑆 is the union

𝑐⨆︁

𝑘=0

H ilb𝑘𝑋/𝑆,

and 𝑔≤𝑐𝑋/𝑆 is the restriction of 𝑔𝑋/𝑆 to H ilb≤𝑐𝑋/𝑆.
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It is clear that the isomorphisms 𝒜(𝜙) of Proposition I.2.5.6 restrict to give iso-

morphisms of the submodules 𝒜(𝑐)
∙ →˓ 𝒜∙. It is also clear that 𝒜∙ = colim𝑐∈N 𝒜(𝑐)

∙ , so

in order to show that 𝒜 is a convergent universal 𝒟-module, it suffices to show that

each 𝒜(𝑐) is a universal 𝒟-module of 𝑐th order. This follows from observation I.2.5.8:

we noted that the isomorphisms

H ilb≤𝑐𝑋/𝑆
∼−→ 𝑋 ×𝑋′ H ilb≤𝑐𝑋′/𝑆

near a point 𝑥 ∈ 𝑋 depend only on the restriction of 𝜙𝑋 to the 𝑐th infinitesimal

neighbourhood of 𝑥. It follows that the same is true of the corresponding morphism

𝒜(𝑐)(𝜙) of 𝒟-modules.

Now we begin the identification of the universal 𝒟-module 𝒜(𝑐) as a representation

of 𝐺(𝑐). Let us first determine the underlying complex of vector spaces 𝑉 (𝑐) ∈ Vect.

The universal 𝒟-module 𝒜(𝑐) determines an ind-coherent sheaf𝑀 (𝑐) on the stackℳ(𝑐)
𝑛

given by

(𝜋 : 𝑋 � 𝑆 : 𝜎) ↦→𝑀
(𝑐)
𝑋�𝑆

..= 𝜎!𝒜(𝑐)
𝑋/𝑆.

In turn, 𝑀 (𝑐) gives rise to a sheaf on the stack 𝐵𝐺(𝑐), or equivalently on the

prestack 𝐵𝐺
(𝑐)
triv, and hence corresponds to a representation of 𝐺(𝑐) with underlying

vector space 𝑉 (𝑐) ..=𝑀
pt→𝐵𝐺

(𝑐)
triv

.

Here the map pt → 𝐵𝐺
(𝑐)
triv corresponds to the trivial principal 𝐺(𝑐)-bundle given

by 𝐺(𝑐) → pt. Under the equivalence of 𝐵𝐺(𝑐) and ℳ(𝑐)
𝑛 , it corresponds to the map

pt → ℳ(𝑐)
𝑛 given by the trivial 𝑛-dimensional family

𝜋 : A𝑛 � pt : 𝑧.

In other words, 𝑉 (𝑐) = 𝑧!𝒜(𝑐)
A𝑛/pt = 𝑧!(𝑓A𝑛)*𝜔H ilb≤𝑐

A𝑛
. We have the following Carte-

sian diagram:

(︀
Hilb≤𝑐

A𝑛,0

)︀
dR

(︀
H ilb≤𝑐A𝑛

)︀
dR

pt A𝑛
dR.

𝑧′

𝑝(︁
Hilb

≤𝑐
A𝑛

)︁
dR

(𝑓≤𝑐
A𝑛 )dR = 𝑔≤𝑐

A𝑛/pt

𝑧 = 𝑧dR

By base-change, we have

𝑉 (𝑐) ≃ (𝑝(H ilb≤𝑐
A𝑛)dR

)*(𝑧
′)!𝜔H ilb≤𝑐

A𝑛

≃ H∙(Hilb
≤𝑐
A𝑛,0).
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Here HilbA𝑛,0 is the punctual Hilbert scheme, parametrising closed subschemes

supported at the origin. For example, when 𝑛 = 2, each component HilbA𝑛,0 is an

irreducible variety, of dimension 𝑐− 1 (for 𝑐 ≥ 1.) In that case we have

𝐻*(HilbA2,0) = Sym(𝑘[𝑡]),

where by 𝐻* we mean the homology of the complex H∙.

Then it is easy to see from the proof of Proposition I.2.5.6 that the action of 𝐺(𝑐) on

𝑉 (𝑐) = H∙(Hilb
≤𝑐
A𝑛,0) is induced from the action of 𝐺(𝑐) on the variety Hilb≤𝑐

A𝑛,0. Recall

that 𝑉 (𝑐) is the complex of vector spaces used to compute the homology, but that

we haven’t actually taken homology yet. If we do, it is straightforward to show (for

example by modifying the proof of Proposition 6.4 of [6] to the setting of ind-affine

group formal schemes) that the action of 𝐺(𝑐) will be trivial: 𝐺(𝑐) is connected, so the

action of 𝐺(𝑐) on the variety Hilb≤𝑐
A𝑛,0 induces the trivial action on homology. Since

we are interested in the action of 𝐺(𝑐) on the complex 𝑉 (𝑐) before taking homology,

we must be slightly more careful. We sketch an argument below.

Let us begin by giving some general background on the DG-category Rep(𝐻) of

representations of 𝐻, an algebraic group or ind-affine group formal scheme of finite

type. (In particular, we could take 𝐻 to be 𝐾(𝑐) or 𝐺(𝑐).)

Let the identity of the group be denoted by

𝑒𝐻 : {1} → 𝐻,

and let 𝐻∧
𝑒 denote the completion of 𝐻 along this map. We have a exact sequence of

group-valued functors

1 → 𝐻∧
𝑒 → 𝐻 → 𝐻dR → 1,

inducing maps of the classifying stacks which give a Cartesian diagram

𝐵𝐻∧
𝑒 pt

𝐵𝐻 𝐵𝐻dR.

𝛼

𝛽

This allows us to identify the DG-category Rep(𝐻dR) ..= IndCoh (𝐻dR) with the

category of pairs (F , 𝑡), where F ∈ IndCoh (𝐻) is a representation of 𝐻, and 𝑡 is a

trivialisation of F when viewed as a representation of h. That is, Rep(𝐻dR) is the

category of infinitesimally trivial representations of 𝐻.
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Let us emphasise that since we are working the DG-setting, the data of a triv-

ialisation is indeed data, not simply a condition on the sheaf F . More precisely,

let 𝐿 be an arbitrary group-valued prestack satisfying the above conditions. Then a

trivialisation of G ∈ Rep(𝐿) = IndCoh (𝐵𝐿) is an isomorphism

𝑡 : F → (𝑝𝐵𝐿)
!(𝐵𝑒𝐿)

!G ∈ IndCoh (𝐵𝑒𝐿) ,

where 𝐵𝑒𝐿 : pt = 𝐵{1} → 𝐵𝐿 and 𝑝𝐵𝐿 : 𝐵𝐿 → pt are the obvious maps. In this

language, we have

Rep(𝐻dR) ≃
{︂
(F , 𝑡)

⃒⃒
⃒⃒ F ∈ IndCoh (𝐵𝐻) ,
𝑡 : 𝛼!F ∼−→ (𝑝𝐵𝐻∧

𝑒
)!(𝐵𝑒𝐻∧

𝑒
)!𝛼!F ∈ IndCoh (𝐵𝐻∧

𝑒 )

}︂
.

Claim 7.4.1. Suppose 𝐻 is a connected algebraic group.

1. If F ∈ IndCoh (𝐵𝐻), then all trivialisations of F are canonically isomorphic.

2. Suppose 𝐻 is the semi-direct product of a unipotent group by a semi-simple

group. Then 𝛼! : IndCoh (𝐵𝐻) → IndCoh (𝐵𝐻∧
𝑒 ) is fully faithful.

Remarks on the proof.

1. See 20.8, [11] for a discussion related to the first part of the claim. Frenkel

and Gaitsgory use the language of weakly and strongly 𝐻-equivariant objects

of Vect, rather than working with sheaves on 𝐵𝐻 and 𝐵𝐻dR.

2. We do not know in what generality the second part of the claim holds, although

we suspect that some results are known already to experts. The statement is

that the natural map

Rep(𝐻) → Rep(h)

is fully faithful, or equivalently that given two representations 𝑉,𝑊 of 𝐻 the

natural map

Ext∙𝐻(𝑉,𝑊 ) → Ext∙h(𝑉,𝑊 )

is an equivalence. For the abelian categories, this is known, but since the DG-

categories Rep(𝐻) and Rep(h) are not simply the DG versions of their hearts,

we cannot extend the result immediately.

On the other hand, if we assume that the connected group 𝐻 is a semi-simple or

unipotent algebraic group, we have Rep♡
f.d.(𝐻) ∼−→ Rep♡

f.d(h). We can use this to-

gether with the fact that Rep(𝐻) and Rep(h) are subcategories of 𝐷(Rep♡(𝐻))

and 𝐷(Rep♡(h)) to obtain our result.
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Then we can extend to the case where 𝐻 is a semi-direct product of a semi-

simple and a unipotent algebraic group. The case that we are interested in

is the group 𝐾(𝑐) = 𝐺𝐿𝑛 n 𝐾
(𝑐)
𝑢 , which is not quite of this form; however, at

least we will be able to use these results to study the action of its subgroup

𝑆𝐿𝑛 n𝐾
(𝑐)
𝑢 .

Notice that 𝛼 ∘ 𝐵𝑒𝐻∧
𝑒
∘ 𝑝𝐵𝐻∧

𝑒
= 𝐵𝑒𝐻 ∘ 𝑝𝐵𝐻 ∘ 𝛼. Then it follows from Claim 7.4.1

that for 𝐻 satisfying the conditions of the claim

Rep(𝐻dR) ≃
{︂
(F , 𝑠)

⃒⃒
⃒⃒ F ∈ IndCoh (𝐵𝐻) ,
𝑠 : F ∼−→ (𝑝𝐵𝐻)

!(𝐵𝑒𝐻)
!F ∈ IndCoh (𝐵𝐻)

}︂

≃ {F ∈ IndCoh (𝐵𝐻) | there exists a trivialisation of F } .

That is, the infinitesimally trivial representations of 𝐻 are just the trivial represen-

tations of 𝐻.

To see how this applies to our situation, note the following: suppose 𝐻 acts on a

proper scheme 𝑌 . The induced action on H∙(𝑌 ) = (𝑝𝑌 )!𝜔𝑌 = (𝑝𝑌 )*𝜔𝑌 is encoded in

the sheaf 𝛾*𝜔𝑌/𝐻 ∈ 𝒟(𝐵𝐻) = IndCoh (𝐵𝐻dR), where 𝛾 is the map in the following

Cartesian diagram:

𝑌 pt

𝑌/𝐻 𝐵𝐻.

𝜋

𝑝𝑌

𝐵𝑒𝐻

𝛾

Indeed, by base-change, the underlying vector space is

(𝐵𝑒𝐻)
!(𝛾)*𝜔(𝑌/𝐻) = (𝑝𝑌 )*𝜔𝑌 .

To view 𝛾*𝜔𝑌/𝐻 as a representation of 𝐻 rather than𝐻dR, we pull back by the map

𝛽 : 𝐵𝐻 → 𝐵𝐻dR. In the language of 𝒟-module theory, this amounts to forgetting

the 𝒟-module structure; in the language of infinitesimally trivial representations, it

amounts to forgetting the trivialisation of the h action. Either way, we see that if 𝐻

is a connected algebraic group satifying the conditions of Claim 7.4.1 (2), the induced

representation on H∙(𝑌 ) is equipped with a canonical trivialisation.

We conclude that because the action of 𝐾(𝑐) = 𝐺𝐿𝑛 n𝐾
(𝑐)
𝑢 on the complex 𝑉 (𝑐)

is induced by the action on the variety 𝑌 = Hilb≤𝑐
A𝑛,0, the restriction of this action to
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7 Remarks on ∞-categories

𝑆𝐿𝑛n𝐾(𝑐)
𝑢 is trivial. To further deduce that the action of 𝑆𝐿𝑛n𝐺(𝑐)

𝑢 on 𝑉 (𝑐) is trivial,

we note that the above arguments show that it is infinitesimally trivial. Hence 𝑉 (𝑐)

is trivial as a (Lie(𝑆𝐿𝑛 n𝐺
(𝑐)
𝑢 ), 𝑆𝐿𝑛 n𝐾

(𝑐)
𝑢 )-module, and thus as a representation of

𝑆𝐿𝑛 n𝐺
(𝑐)
𝑢 .

Finally, we deduce that 𝑉 =
⋃︀
𝑐∈N 𝑉

(𝑐) is (canonically) trivial as a representation

of 𝑆𝐿𝑛 n𝐺
(𝑐)
𝑢 . Therefore, in order to identify 𝑉 as a representation of 𝐺, it remains

to determine the action of G𝑚 on the complexes 𝑉 (𝑐). At the time of writing, the

author can say nothing about this action for general 𝑛 and general 𝑐 before taking

homology.
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Appendix A

Preliminaries: the geometry of
prestacks

In this section, we collect together some necessary definitions and results on the

geometry of prestacks.

We work in classical, rather than derived, algebraic geometry.1 In particular, we

work with the category Sch of schemes over 𝑘, and its full subcategory SchAff ≃ 𝑘-algop

of 𝑘-algebras. We will be interested in the ∞-category of prestacks, which are simply

functors:

PreStk ..= Fun
(︀
(SchAff)op,∞-Grpd

)︀
.

We view prestacks as geometric objects, rather than just as categorical gadgets:

they are generalisations of more familiar objects from algebraic geometry (including

schemes, formal schemes, and stacks), and we can study them using the tools of

classical algebraic geometry as well, by defining categories of sheaves and 𝒟-modules

on them. There are for us two main advantages of working in the generality of the

category of prestacks: first is that it is cocomplete, that is, we can take arbitrary

small colimits. The second is that working with ∞-groupoids rather than sets allows

us to encompass the study of stacks. Let us now discuss these ideas briefly.

1That is, we work with ordinary schemes and algebras, rather than their DG generali-
sations, and we work with the category of classical prestacks, which Gaitsgory et al. often
denote by ≤0PreStk or clPreStk. Although all of the definitions and results in this section
follow their work, we have simplified the exposition to leave out the technicalities necessary
for the DG setting.
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1 Special classes of prestacks

1.1 Schemes

First, we view schemes as particular examples of prestacks via the Yoneda embedding:

a scheme 𝑋 gives rise to a functor, which we will also denote by 𝑋, in the following

way:

(SchAff)op → Set ⊂ ∞-Grpd

𝑆 → 𝑋(𝑆) ..= HomSch(𝑆,𝑋).

If a prestack 𝒴 is equivalent to the functor defined by a scheme 𝑋, we say that 𝒴 is

representable by the scheme 𝑋. Even if 𝒴 is not representable, for any affine scheme

𝑆 we have a canonical identification between the groupoid 𝒴(𝑆), and the groupoid of

maps of prestacks 𝑆 → 𝒴 . We call these the 𝑆-points of 𝒴 .

Definition 1.1.1. Let 𝐹 : 𝒴1 → 𝒴2 be a morphism of prestacks. We say that 𝐹 is

schematic if for any base scheme 𝑆 and any 𝑆-point 𝑓 ∈ 𝒴2(𝑆), the pullback 𝑆×𝒴2 𝒴1

is representable. We say that 𝐹 is a closed embedding (resp. separated, proper, etc.)

if it is schematic and in addition the projection maps

𝑆 ×𝒴2 𝒴1 → 𝑆

are closed embeddings (resp. separated, proper, etc. maps) of schemes.

1.2 Indschemes

A particular class of prestacks that we will find it easy to work with is the class of

indschemes. For example, we will see that it is much easier to work with 𝒟-modules

over indschemes than over arbitrary prestacks.

Definition 1.2.1. Let 𝒴 be a prestack such that

𝒴 ≃ colim
𝐼∈𝒮

𝑍(𝐼),

where 𝒮 is a filtered category, and 𝑍 : 𝒮 → Schf.t. is a functor such that for all

𝛼 : 𝐽 → 𝐼 ∈ 𝒮, the morphism

𝑍(𝛼) : 𝑍(𝐽) → 𝑍(𝐼)

is a closed embedding of schemes of finite type. Then 𝒴 is an indscheme; we may also

say that 𝒴 is ind-representable. We denote by IndSch the full subcategory of PreStk

whose objects are indschemes.
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1.3 Pseudo-indschemes

Example 1.2.2. Familiar examples of indschemes are given by schemes of infinite

type and formal completions of schemes.

Definition 1.2.3. Let 𝐹 : 𝒴1 → 𝒴2 be a morphism of prestacks. We say that 𝐹

is indschematic if for any scheme 𝑆 mapping to 𝒴2, the pullback 𝑆 ×𝒴2 𝒴1 is an

indscheme.

Example 1.2.4. Any morphism between indschemes is indschematic. This uses the

fact that indschemes are given by colimits over filtered index categories.

So suppose that 𝐹 : 𝒴1 → 𝒴2 is a morphism of indschemes, and consider 𝑆 ∈
Sch/𝒴2 . Then we can write

𝑆 ×𝒴2 𝒴1 ≃ colim
𝐼∈𝒮

𝑍(𝐼) (A.1)

for some filtered 𝒮 and functor 𝑍, and we have tautological maps 𝑍(𝐼) → 𝑆 ×𝒴2 𝒴1

for each 𝐼 ∈ 𝒮. Composition with the projection yields maps

𝑍(𝐼) → 𝑆 ×𝒴2 𝒴1 → 𝑆.

Definition 1.2.5. We say that 𝐹 as above is ind-proper (resp. ind-closed) if for

every 𝑆 ∈ Sch/𝒴2 and for every presentation as in (A.1), all of the maps 𝑍(𝐼) → 𝑆

are proper (resp. closed).

Remark 1.2.6. There is a more general definition of an ind-proper or ind-closed

morphism of general prestacks (see for example section 1.1 of [16]), but we will not

need it.

1.3 Pseudo-indschemes

Definition 1.3.1. Let 𝒴 be a prestack such that

𝒴 ≃ colim
𝐼∈𝒮

𝑍(𝐼), (A.2)

where now 𝒮 is an arbitrary index category (not necessarily filtered) and the functor

𝑍 has image in IndSch. Whereas in the definition of an indscheme we required

morphisms 𝛼 in 𝒮 to be mapped to closed embeddings of schemes, we now require

that 𝑍(𝛼) be an ind-proper morphism of indschemes.

Then we say that 𝒴 is a pseudo-indscheme.

Example 1.3.2. Our first example of a pseudo-indscheme will be the Ran space of

a separated scheme 𝑋. See I.1.1.

131



1 Special classes of prestacks

Remark 1.3.3. Every pseudo-indscheme 𝒴 can in fact be expressed as a (not neces-

sarily filtered) colimit of schemes, simply by expanding a colimit expression of each

indscheme in the presentation (A.2) of 𝒴 , so that we could have given a definition

of pseudo-indschemes without referring to indschemes. However, many of the many

of the pseudo-indschemes that we use in this thesis will be defined as colimits of

indschemes, so it is convenient for us to work with the definition given above.

There are several good properties that are satisfied by indschemes which are not

satisfied by pseudo-indschemes, arising from the fact that filtered colimits are much

better behaved than arbitrary colimits. For example:

1. A functor which is ind-representable always takes values in Set ⊂ ∞-Grpd; this

is not true of a functor representable by a pseudo-indscheme.

2. As mentioned in example 1.2.4, a morphism between two indschemes is always

indschematic. By contrast, there is in general no nice expression for the pullback

of a morphism between two pseudo-indschemes, because arbitrary colimits do

not commute with finite limits.

However, it is still possible to study pseudo-indschemes because they have rea-

sonable categories of 𝒟-modules. This is roughly because the ind-proper morphisms

𝑍(𝛼) : 𝑍(𝐽) → 𝑍(𝐼) in the colimit expression (A.2) induce well-behaved pushforward

and pullback functors between the categories of 𝒟-modules on 𝑍(𝐼) and 𝑍(𝐽).

1.4 Stacks

We will mostly be interested in étale stacks, i.e. prestacks satisfying descent in the

étale topology. Let us be a little more precise. Suppose that 𝒴 is a prestack, 𝑇 is an

affine scheme, and

𝑓 : 𝑆 → 𝑇 ∈ SchAff

is an étale cover.

Then we form the Čech nerve 𝑆∙/𝑇 :

· · ·𝑆 ×𝑇 𝑆 ×𝑇 𝑆 𝑆 ×𝑇 𝑆 𝑆,

and consider the corresponding cosimplicial object 𝒴(𝑆∙/𝑇 ). We have a canonical

map

𝒴(𝑇 ) → Tot(𝒴(𝑆∙/𝑇 )),
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1.5 Prestacks locally of finite type

and we say that 𝒴 satisfies étale descent if this map is an equivalence of ∞-groupoids

for every 𝑇 and étale cover 𝑓 : 𝑆 → 𝑇 as above.

Example 1.4.1. Every indscheme satisfies étale descent; this is because the finite

limits in the Čech nerve commute with the filtered colimits in the presentation of the

indscheme. On the other hand, not all pseudo-indschemes are stacks.

Given any prestack 𝒴 , there exists a unique (up to equivalence) stack 𝒴+ and a

morphism 𝐹 : 𝒴 → 𝒴+ of prestacks such that any morphism from 𝒴 to another stack

𝒵 factors uniquely (again up to equivalence) through 𝒴 → 𝒴+.

Definition 1.4.2. We call 𝒴+ the (étale) stackification of 𝒴 .

We will use this notion many times, in particular in constructing stacks of étale

germs of varieties. An explicit construction of the stackification is given in Lemma

8.8.1 of [1] for prestacks with values in Grpd (as compared to ∞-Grpd).

1.5 Prestacks locally of finite type

In order to define certain categories of ind-coherent sheaves and 𝒟-modules on our

prestacks (following Gaitsgory and Rozenblyum), we will find it necessary to impose

the following finiteness condition:

Definition 1.5.1 (1.3.2, [15]). A prestack 𝒴 is locally of finite type if it is the left

Kan extension of its own restriction along the embedding

SchAff
f.t. →˓ SchAff.

That is, we have a functor

Res : Fun
(︀
(SchAff)op,∞-Grpd

)︀
→ Fun

(︀
(SchAff

f.t.)
op,∞-Grpd

)︀
,

given by restriction. It has a left adjoint

LKE : Fun
(︀
(SchAff

f.t.)
op,∞-Grpd

)︀
→ Fun

(︀
(SchAff)op,∞-Grpd

)︀
,

and 𝒴 is locally of finite type if the natural map

LKE(Res(𝒴)) → 𝒴

is an equivalence.

The functor LKE is a fully faithful embedding, so that we can equivalently define

the ∞-category PreStkl.f.t. of locally finite-type prestacks to be the ∞-category of

functors

Fun
(︀
(SchAff

f.t.)
op,∞-Grpd

)︀
.
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2 Sheaves on prestacks

We will be interested in studying categories (and (∞, 1)-categories, or rather DG-

categories) of sheaves on prestacks: in particular, we wish to define categories of

quasi-coherent and ind-coherent sheaves, and of 𝒟-modules. The theory has been

developed by Gaitsgory and Rozenblyum in a series of papers and notes—here we

attempt only to give the most important definitions and ideas used in this thesis. In

the following, we will give definitions and results for ∞-categories, and will mention

explicitly (for example, by decorating the category with a ♡) when results apply

specifically to the abelian hearts.

2.1 Quasi-coherent sheaves

Let 𝒴 be an arbitrary prestack, and consider the category SchAff
/𝒴 of affine schemes

equipped with a map to 𝒴 . We view QCoh (∙) as a functor on this category:

(SchAff
/𝒴 )

op → DGCatsym.mon.

(𝑆 → 𝒴) ↦→ QCoh (𝑆)

(𝑓 : 𝑆 → 𝑇 ) ↦→ (𝑓 * : QCoh (𝑇 ) → QCoh (𝑆)).

Definition 2.1.1. The symmetric monoidal DG-category of quasi-coherent sheaves

on 𝒴 is given by the limit

QCoh (𝒴) ..= lim
𝑆∈(SchAff

/𝒴 )op
QCoh (𝑆) .

That is, we think of a quasi-coherent sheaf 𝑀 on 𝒴 as the following collection of

data:

1. For each 𝑓 : 𝑆 → 𝒴 , a quasi-coherent sheaf

𝑓 *𝑀 ∈ QCoh (𝑆) .

2. For each morphism 𝑔 : 𝑆1 → 𝑆2 of affine schemes over 𝒴 , an isomorphism

𝑀(𝑔) : 𝑔*(𝑓 *
2𝑀) ∼−→ 𝑓 *

1𝑀 ∈ QCoh (𝑆1) .

3. Higher coherence data: for example, given a diagram of schemes over 𝒴 ,

𝑆1
𝑔1−→ 𝑆2

𝑔2−→ 𝑆3,
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2.1 Quasi-coherent sheaves

we obtain two isomorphisms in QCoh (𝑆1):

𝑔*1 ∘ 𝑔*2(𝑓 *
3𝑀) ≃ (𝑔2 ∘ 𝑔1)*(𝑓 *

3𝑀)
𝑀(𝑔2∘𝑔1)−−−−−→ 𝑓 *

1𝑀 ;

𝑔*1 ∘ 𝑔*2(𝑓 *
3𝑀)

𝑔*1𝑀(𝑔2)−−−−−→ 𝑔*1(𝑓
*
2𝑀)

𝑀(𝑔1)−−−→ 𝑓 *
1𝑀.

We have a natural isomorphism 𝑀(𝑔2 ∘ 𝑔1) ⇒𝑀(𝑔1) ∘ 𝑔*1𝑀(𝑔2).

We also have higher coherence isomorphisms for repeated compositions.

Definition 2.1.2. Let 𝐹 : 𝒴1 → 𝒴2 be a morphism of prestacks. Then we define the

pullback functor of 𝐹

𝐹 * : QCoh (𝒴2) → QCoh (𝒴1)

using the universal property of limits: it suffices to define a compatible family of

functors QCoh (𝒴2) → QCoh (𝑆) for 𝑆 ∈ SchAff
/𝒴1

. Given 𝑆 → 𝒴1, we compose with

the morphism 𝐹 to obtain 𝑆 → 𝒴2, and then we take the tautological projection

QCoh (𝒴2) → QCoh (𝑆). It is easy to see that these functors are compatible.

In terms of the description of a sheaf 𝑀 on 𝒴2 as the family (𝑓 *𝑀,𝑀(𝑔)), we can

describe 𝐹 *𝑀 explicitly as well: given 𝑓 : 𝑆 → 𝒴1, we need to specify 𝑓 *(𝐹 *𝑀) ∈
QCoh (𝑆). It is just (𝐹 ∘ 𝑓)*𝑀 .

We have the following three convenient properties of quasi-coherent sheaves. The

first two results simplify computations when working with prestacks which are ind-

schemes or locally of finite type:

Lemma 2.1.3 (2.1.2 [19]). Let

𝒴 ≃ colim
𝐼∈𝒮

𝑍(𝐼)

be an indscheme. Then the tautological maps 𝑍(𝐼) → 𝒴 induce functors

QCoh (𝒴) → QCoh (𝑍(𝐼))

and hence a functor

QCoh (𝒴) → lim
𝐼∈𝒮op

QCoh (𝑍(𝐼)) .

This functor is an equivalence.
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2 Sheaves on prestacks

Lemma 2.1.4 (Lemma 1.2.7, [14]). Let 𝒴 be a prestack locally of finite type. There

is a natural map

QCoh (𝒴) → lim
𝑆∈(SchAff

f.t. )
op

QCoh (𝑆) ;

it is an equivalence.

The third result tells us that, from the perspective of quasi-coherent sheaves, the

geometry of a prestack depends only on its stackification:

Lemma 2.1.5 (Corollary 1.3.6, [14]). Let 𝒴 be a prestack. Then the canonical map

𝒴 → 𝒴+ induces an equivalence

QCoh
(︀
𝒴+
)︀

∼−→ QCoh (𝒴) .

We will use this result in our discussion of universal 𝒟-modules and quasi-coherent

sheaves on the stack of étale germs.

There is a natural 𝑡-structure on QCoh (𝒴) induced by requiring the projections

QCoh (𝒴) → QCoh (𝑆)

to be exact. Notice that the functors 𝑓 * : QCoh (𝑇 ) → QCoh (𝑆) in the limit diagram

are exact. It follows that the heart QCoh (𝒴)♡ can therefore be identified with the

limit (over cocomplete abelian categories) of the abelian categories QCoh (𝑆)♡.

It also follows that the functors

𝐹 * : QCoh (𝒴2) → QCoh (𝒴1)

are also exact, and hence induce the expected functors at the level of abelian hearts.

The results in Lemmas 2.1.4 and 2.1.5 hold also for the abelian categories.

2.2 Ind-coherent sheaves

In fact, it turns out that for many purposes, the category of ind-coherent sheaves is

a better-behaved alternative to the category of quasi-coherent sheaves. A significant

advantage of working with ind-coherent sheaves is that we can define continuous

pullback functors 𝑓 !; we will see that especially when working with indschemes and

pseudo-indschemes this gives us a much better handle on the corresponding categories

of sheaves.

On the other hand, a disadvantage of the category of ind-coherent sheaves is that

it cannot be defined for arbitrary prestacks, and is only well-behaved for schemes and

prestacks which are (locally) of finite type. Hence in this section we work with the

categories Schf.t. and PreStkl.f.t..
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2.2 Ind-coherent sheaves

Definition 2.2.1. Let 𝑆 ∈ Schf.t.. Consider the full subcategory Coh (𝑆) ⊂ QCoh (𝑆)

of coherent sheaves (that is, those 𝑀 ∈ QCoh (𝑆) which have bounded cohomology,

finitely generated over 𝒪𝑆). We define the category of ind-coherent sheaves on 𝑆 to

be the ind-completion of Coh (𝑆):

IndCoh (𝑆) ..= Ind(Coh (𝑆)).

More precisely, IndCoh (𝑆) is a cocomplete compactly generated DG-category

equipped with a fully faithful and continuous functor Coh (𝑆) → IndCoh (𝑆), which

is universal for continuous functors from Coh (𝑆) to cocomplete categories 𝒞. Con-

cretely, objects of IndCoh (𝑆) are formal filtered colimits colim𝑖∈𝐼 𝑥𝑖 of objects in

Coh (𝑆). Morphisms are uniquely determined by requiring that objects of Coh (𝑆)

become compact in IndCoh (𝑆):

HomIndCoh(𝑆)(colim
𝑖∈𝐼

𝑥𝑖, colim
𝑗∈𝐽

𝑦𝑗) ≃ lim
𝑖∈𝐼op

HomIndCoh(𝑆)(𝑥𝑖, colim
𝑗∈𝐽

𝑦𝑗)

≃ lim
𝑖∈𝐼op

colim
𝑗∈𝐽

HomIndCoh(𝑆)(𝑥𝑖, 𝑦𝑗) ≃ lim
𝑖∈𝐼op

colim
𝑗∈𝐽

HomCoh(𝑆)(𝑥𝑖, 𝑦𝑗).

The embedding Coh (𝑆) →˓ QCoh (𝑆) gives rise to a canonical functor

Ψ𝑆 : IndCoh (𝑆) → QCoh (𝑆) .

There is a canonical 𝑡-structure on IndCoh (𝑆) induced by the 𝑡-structure on

Coh (𝑆); it follows from the fact that the 𝑡-structure on QCoh (𝑆) is compatible with

the 𝑡-structure on Coh (𝑆) and with filtered colimits that the functor Ψ𝑆 is 𝑡-exact.

The functor Ψ𝑆 satisfies the following additional properties:2

Lemma 2.2.2. 1. (Lemma 1.1.6 and Proposition 1.6.4, [17].) The scheme 𝑆 is

smooth if and only if Ψ𝑆 is an equivalence.

2. (Proposition 1.2.4, [17].) For every 𝑛, the induced functor

Ψ𝑆 : IndCoh (𝑆)≥𝑛 → QCoh (𝑆)≥𝑛

is an equivalence. In particular, we have an equivalence of the abelian hearts

Ψ𝑆 : IndCoh (𝑆)♡ ∼−→ QCoh (𝑆)♡

for any 𝑆 of finite type.

3. (Proposition 1.5.3, [17].) The functor Ψ𝑆 admits a fully faithful left adjoint Ξ𝑆.

Let us now consider how maps 𝑓 : 𝑆 → 𝑇 of schemes of finite type induce functors

between the categories IndCoh (𝑆) and IndCoh (𝑇 ).

2Let us emphasise again that in this thesis we are working only with classical schemes,
rather than DG-schemes.
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2 Sheaves on prestacks

2.2.1 The (IndCoh, *)-pushforward

First, given any 𝑆, 𝑇 ∈ Schf.t. and any 𝑓 : 𝑆 → 𝑇 , there is a unique continuous functor

𝑓 IndCoh
* : IndCoh (𝑆) → IndCoh (𝑇 ) ,

induced by the composition

Coh (𝑆)
Ψ𝑆−→ QCoh (𝑆)

𝑓*−→ QCoh (𝑇 )+ ∼−→ IndCoh (𝑇 )+ .

(Here 𝒞+ is our notation for the full subcategory of objects living in 𝒞≥𝑛 for some 𝑛.

The equivalence IndCoh (𝑇 )+ ∼−→ QCoh (𝑇 )+ is given by Ψ𝑇 .)

We have the following properties, by construction:

Lemma 2.2.3 (Propositions 3.1.1 and 3.6.7, [17]). The functor 𝑓 IndCoh
* is left 𝑡-exact,

and is compatible with the pushforward functor 𝑓* : QCoh (𝑆) → QCoh (𝑇 ) of quasi-

coherent sheaves:

𝑓* ∘Ψ𝑆 ≃ Ψ𝑇 ∘ 𝑓 IndCoh
* and Ξ𝑇 ∘ 𝑓* ≃ 𝑓 IndCoh

* ∘ Ξ𝑆.

We can also show the following:

Lemma 2.2.4 (Proposition 3.2.4, [17]). The assignment

𝑆 ↦→ IndCoh (𝑆)

(𝑓 : 𝑆 → 𝑇 ) ↦→ (𝑓 IndCoh
* : IndCoh (𝑆) → IndCoh (𝑇 ))

gives rise to a functor

IndCoh : Schf.t. → DGCatcont.

Moreover, the assignment

𝑆 ↦→ Ψ𝑆 : IndCoh (𝑆) → QCoh (𝑆)

extends to a natural transformation

IndCoh (𝑆) → QCoh (𝑆) .
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2.2 Ind-coherent sheaves

2.2.2 The (IndCoh, *)-pullback

Let us again consider 𝑓 : 𝑆 → 𝑇 a morphism of schemes of finite type. Then

𝑓 * : QCoh (𝑇 ) → QCoh (𝑆) maps coherent sheaves to coherent sheaves, and hence

there is a morphism

𝑓 IndCoh,* : IndCoh (𝑇 ) → IndCoh (𝑆)

induced by the following composition:

Coh (𝑇 )
𝑓*−→ Coh (𝑆) →˓ QCoh (𝑆)+ ∼−→ IndCoh (𝑆)+ .

It satisfies the following properties:

Lemma 2.2.5. 1. (Propositions 3.5.4 and 3.5.11, [17].) The functors 𝑓 * and

𝑓 IndCoh,* are compatible under the functors Ψ and Ξ:

𝑓 * ∘Ψ𝑇 ≃ Ψ𝑆 ∘ 𝑓 IndCoh,* and 𝑓 IndCoh,* ∘ Ξ𝑇 ≃ Ξ𝑆 ∘ 𝑓 *.

2. (Corollary 3.5.6, [17].) The assignment

𝑆 ↦→ IndCoh (𝑆)

(𝑓 : 𝑆 → 𝑇 ) ↦→ (𝑓 IndCoh,* : IndCoh (𝑇 ) → IndCoh (𝑆))

upgrades to a functor

IndCoh* : Schopf.t. → DGCatcont.

Furthermore, the assignment

𝑆 ↦→ Ψ𝑆 : IndCoh (𝑆) → QCoh (𝑆)

upgrades to a natural transformation

Ψ : IndCoh* → QCoh*Schf.t. .

3. (Lemma 3.5.8, [17].) The functor 𝑓 IndCoh,* is left adjoint to the functor 𝑓 IndCoh
* .
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2 Sheaves on prestacks

2.2.3 The !-pullback

We will now define the !-pullback functor for morphisms between schemes of finite

type. We can define it directly for 𝑓 : 𝑆 → 𝑇 proper; the construction for more

general 𝑓 is much more involved.

First assume that 𝑓 is proper. We can show (see Lemma 3.3.5 and Corollary

3.3.6, [17]) that the functors

𝑓* : QCoh (𝑆) → QCoh (𝑇 )

𝑓 IndCoh
* : IndCoh (𝑆) → IndCoh (𝑇 )

both send Coh (𝑆) to Coh (𝑇 )—so 𝑓 IndCoh
* sends compact objects of IndCoh (𝑆) to

compact objects. It follows that its right adjoint

𝑓 ! : IndCoh (𝑇 ) → IndCoh (𝑆)

is continuous. (Note that this is not necessarily true of the right adjoint 𝑓QCoh,! :

QCoh (𝑇 ) → QCoh (𝑆) of 𝑓*.)

Lemma 2.2.6 (Corollary 3.3.9, [17]). The assignment

𝑆 ↦→ IndCoh (𝑆)

(𝑓 : 𝑆 → 𝑇 ) ↦→ (𝑓 ! : IndCoh (𝑇 ) → IndCoh (𝑆))

upgrades to a functor

IndCoh! : Schopf.t.,proper → DGCatcont.

(Here Schf.t.,proper is the category of schemes of finite type with proper morphisms

between them.)

Fact 2.2.7. The functors 𝑓 ! and 𝑓QCoh,! are compatible under the functors Ψ when

restricted to IndCoh (𝑇 )+, but not in general on all of IndCoh (𝑇 ). See Lemma 3.4.4

and remark 3.4.5 of [17] for a proof and a counterexample, respectively.

In order to define the !-pullback of a more general morphism 𝑓 : 𝑆 → 𝑇 of schemes

of finite type, we introduce an (∞, 2)-category 𝒞 as follows:

∙ Objects of 𝒞 are schemes 𝑆 of finite type.

∙ 1-morphisms 𝑆1 → 𝑆2 are diagrams of the form
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2.2 Ind-coherent sheaves

𝑆1,2 𝑆1

𝑆2.

𝑔

𝑓

∙ 2-morphisms (𝑓, 𝑆1,2, 𝑔) → (𝑓 ′, 𝑆 ′
1,2, 𝑔

′) are given by proper maps ℎ : 𝑆1,2 → 𝑆 ′
1,2

such that the following diagram commutes:

𝑆1,2 𝑆1

𝑆2 𝑆 ′
1,2.

𝑔

𝑓

𝑓 ′

𝑔′
ℎ

Of course, we can also view 𝒞 as an (∞, 1)-category by considering only those

2-morphisms such that ℎ is an isomorphism.

It is easy to see that we have faithful (but not full) functors

Schf.t. →˓ 𝒞
Schop

f.t. →˓ 𝒞

given as the identity on objects and by sending a morphism 𝑓 : 𝑆 → 𝑇 to the

morphism (𝑓, 𝑆, id𝑆) and (id𝑆, 𝑆, 𝑔) respectively. The important result is the following:

Theorem 2.2.8 (Theorem 5.2.2, [17]). There exists a canonically defined functor of

(∞, 1)-categories

IndCoh𝒞 : 𝒞 → DGCatcont

such that

1. The restriction of IndCoh𝒞 to Schf.t. is canonically isomorphic to the functor

IndCohSchf.t. of Lemma 2.2.4.

2. The restriction of IndCoh𝒞 to Schopf.t.,proper is canonically isomorphic to the func-

tor IndCoh! of Lemma 2.2.6.

3. The restriction of IndCoh𝒞 to Schopf.t.,open is canonically isomorphic to the functor

IndCoh* of Lemma 2.2.5.
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2 Sheaves on prestacks

In particular, the restriction of IndCoh𝒞 to Schf.t.
op gives a functor

IndCoh!
Schf.t.

: Schop
f.t. → DGCatcont,

satisfying the following properties:

1. For 𝑆 ∈ Schf.t., IndCoh
!
Schf.t.

(𝑆) ≃ IndCoh (𝑆).

2. For 𝑓 : 𝑆 → 𝑇 a proper map of schemes of finite type,

IndCoh!
Schf.t.

(𝑓) ≃ 𝑓 !.

In particular, it is right adjoint to 𝑓 IndCoh
* .

3. For 𝑗 : 𝑆 → 𝑇 an open embedding of schemes of finite type,

IndCoh!
Schf.t.

(𝑗) ≃ 𝑗IndCoh,*.

Notation 2.2.9. We shall write 𝑓 ! ..= IndCoh!
Schf.t.

(𝑓) for any morphism 𝑓 : 𝑆 → 𝑇

of schemes of finite type.

We have base-change formulas relating the pushforward and pullback functors:

let 𝑆, 𝑇, 𝑇 ′ ∈ Schf.t., and consider the Cartesian diagram of DG-schemes. 3

𝑆 ′ 𝑆

𝑇 ′ 𝑇.

𝑔′

𝑓 ′ 𝑓

𝑔

Proposition 2.2.10. 1. (Proposition 5.2.5, [17].) There is an equivalence

𝑔! ∘ 𝑓 IndCoh
* ≃ (𝑓 ′)IndCoh

* ∘ (𝑔′)!

2. (Lemma 3.6.9, [17].) The natural transformation

𝑓 IndCoh,* ∘ 𝑔IndCoh
*

∼−→ (𝑔′)IndCoh
* ∘ (𝑓 ′)IndCoh,*

is an equivalence.

3. (Proposition 7.1.6, [17].) The natural transformation

(𝑓 ′)IndCoh,* ∘ 𝑔! → (𝑔′)! ∘ 𝑓 IndCoh,*

induced by the base-change equivalence in (1) is an equivalence.

3This is the one occasion in these notes where we need to work with DG-schemes. How-
ever, we will in fact only use these results when working with 𝒟-modules, and as we will see
in 2.3.5 in that case it suffices to consider the ordinary fibre product of classical schemes or
prestacks.
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2.2 Ind-coherent sheaves

2.2.4 Monoidal structures and the dualising sheaf

Recall that QCoh (𝑆) has a natural symmetric monoidal structure. It turns out that

IndCoh (𝑆) is naturally a module over QCoh (𝑆): the action

QCoh (𝑆)⊗ IndCoh (𝑆) → IndCoh (𝑆)

is induced by the action of QCoh (𝑆)perf on Coh (𝑆), which is just given by the ordinary

(derived) tensor product of sheaves. (See 1.4, [17].) We use the notation

(E ,F ) ∈ QCoh (𝑆)⊗ IndCoh (𝑆) ↦→ E ⊗ F ∈ IndCoh (𝑆) .

We have two projection formulas:

Lemma 2.2.11. Let 𝑓 : 𝑆 → 𝑇 be a morphism of schemes of finite type.

1. (Proposition 3.1.3, [17].) Suppose that we have E𝑇 ∈ QCoh (𝑇 ) and F𝑆 ∈
IndCoh (𝑆). Then

E𝑇 ⊗ 𝑓 IndCoh
* (F𝑆) ≃ 𝑓 IndCoh

* (𝑓 *(E𝑇 )⊗ F𝑆).

2. (Proposition 3.6.11, [17].) Suppose that we have E𝑆 ∈ QCoh (𝑆) and F𝑇 ∈
QCoh (𝑇 ). Then

𝑓*(E𝑆)⊗ F𝑇 ≃ 𝑓 IndCoh
* (E𝑆 ⊗ 𝑓 IndCoh,*F𝑇 ).

In fact, the symmetric monoidal structure on QCoh (𝑆) induces a symmetric

monoidal structure on IndCoh (𝑆) as well (see 5.6.7, [17]): first, we define an ex-

ternal tensor product

IndCoh (𝑆)⊗ IndCoh (𝑇 )
�−→ IndCoh (𝑆 × 𝑇 ) ,

using the observation that the composition

IndCoh (𝑆)⊗ IndCoh (𝑇 )
Ψ𝑆⊗Ψ𝑇−−−−→ QCoh (𝑆)⊗Ψ𝑇

�−→ QCoh (𝑆 × 𝑇 )

takes compact objects in IndCoh (𝑆)⊗ IndCoh (𝑇 ) to Coh (𝑆 × 𝑇 ). Then we have the

following:

Lemma 2.2.12 (Proposition 4.6.2, [17]). The external tensor product gives an equiv-

alence

IndCoh (𝑆)⊗ IndCoh (𝑇 )
�−→ IndCoh (𝑆 × 𝑇 ) .
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2 Sheaves on prestacks

Now the monoidal operation on IndCoh (𝑆) is given by the composition

IndCoh (𝑆)⊗ IndCoh (𝑆)
�−→ IndCoh (𝑆 × 𝑆)

Δ!

−→ IndCoh (𝑆) .

We use the notation

(E ,F ) ∈ IndCoh (𝑆)⊗ IndCoh (𝑆) ↦→ E ⊗! F ∈ IndCoh (𝑆) .

The unit in this symmetric monoidal category is the object

𝑝!𝑆(𝑘) ∈ IndCoh (𝑆) ,

where 𝑝𝑆 : 𝑆 → pt = Spec 𝑘 is the projection to the point, and

𝑘 ∈ IndCoh (pt) ≃ Vect

is the complex with the field 𝑘 concentrated in degree 0.

Definition 2.2.13. We denote this object by 𝜔𝑆 ..= 𝑝!𝑆(𝑘), and call it the dualising

sheaf.

The symmetric monoidal structure on IndCoh (𝑆) is compatible with the action

of QCoh (𝑆) in the following sense: suppose we have E ∈ QCoh (𝑆) and F1,F2 ∈
IndCoh (𝑆). Then we have canonical isomorphisms

E ⊗ (F1 ⊗! F2) ≃ (E ⊗ F1)⊗! F2 ≃ F1 ⊗! (E ⊗ F2).

Lemma 2.2.14 (Corollaries 5.7.4 and 9.3.3, [17]). We have a symmetric monoidal

functor

ϒ𝑆 : QCoh (𝑆) → IndCoh (𝑆)

given by

E ↦→ E ⊗ 𝜔𝑆.

It intertwines the *-pullback functors for quasi-coherent sheaves with the !-pullback

functors for ind-coherent sheaves:

𝑓 ! ∘ϒ𝑇 ≃ ϒ𝑆 ∘ 𝑓 *.

It sends compact objects to compact objects and is fully faithful. It is an equivalence

if 𝑆 is smooth.

In particular, the dualising sheaf 𝜔𝑆 = ϒ𝑆(𝒪𝑆) is compact.

144



2.2 Ind-coherent sheaves

2.2.5 Ind-coherent sheaves on prestacks locally of finite type

We extend the definition of IndCoh from schemes of finite type to prestacks 𝒴 locally

of finite type using the functor IndCoh!
Schf.t.

as follows:

IndCoh (𝒴) ..= lim
𝑆∈((SchAff

f.t.)/𝒴)
op
IndCoh (𝑆) .

That is, an object 𝑀 of IndCoh (𝒴) is given by a family
{︀
𝑦!𝑀 ∈ IndCoh (𝑆)

}︀
𝑦:𝑆→𝒴 ,

together with compatibility isomorphisms

𝑀(𝑓) : 𝑓 !𝑦!2𝑀
∼−→ 𝑦!1𝑀

for any 𝑓 : (𝑆1
𝑦1−→ 𝒴) → (𝑆2

𝑦2−→ 𝒴) in (SchAff
f.t.)/𝒴 . We also have higher coherence

data.

Given a morphism 𝐹 : 𝒴1 → 𝒴2 ∈ PreStkl.f.t., there is a natural morphism 𝐹 ! :

IndCoh (𝒴2) → IndCoh (𝒴1) defined as in the construction of 𝑓 * : QCoh (𝒴2) →
QCoh (𝒴1). We cannot define the *-pushforward 𝐹* in general, but it is defined for

𝐹 schematic and quasi-compact; when 𝐹 is schematic and proper, 𝐹* is left adjoint

to 𝐹 !.

In particular, we have 𝜔𝒴
..= 𝑝!𝒴(𝑘), where 𝑝𝒴 : 𝒴 → pt. We call this the dualising

sheaf of 𝒴 . The category IndCoh (𝒴) has a symmetric monoidal structure induced

from the symmetric monoidal structures on IndCoh (𝑆), and 𝜔𝒴 is the unit.

The base-change and projection formulas given in Lemmas 2.2.10 and 2.2.11 con-

tinue to hold for ind-coherent sheaves on prestacks locally of finite type.

The functors ϒ𝑆 : QCoh (𝑆) → IndCoh (𝑆) give rise to a monoidal functor

ϒ𝒴 : QCoh (𝒴) → IndCoh (𝒴)

F ↦→ F ⊗ 𝜔𝒴 .

Lemma 2.2.15 (Lemma 10.3.4, [17]). The functor ϒ𝒴 is fully faithful.

Lemma 2.2.16 (Theorem 10.1.1, [19]). Let 𝒴 be an indscheme which can be expressed

as a colimit

𝒴 ≃ colim
𝐼∈𝒮

𝑍(𝐼)

where the index category 𝒮 is equivalent to the poset N. Suppose that 𝒴 is formally

smooth and locally of finite type. Then the functor

ϒ𝒴 : QCoh (𝒴) → IndCoh (𝒴)

is an equivalence.
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2.3 𝒟-modules

We approach the study of 𝒟-modules from the perspective of crystals, following Gaits-

gory and Rozenblyum.

Definition 2.3.1. Given a prestack 𝒴 , we define its de Rham prestack 𝒴dR to be the

functor

𝑆 ↦→ 𝒴(𝑆red),

where 𝑆red is the underlying reduced scheme of 𝑆.

There is a natural map of prestacks

𝒴 → 𝒴dR

(𝑆 → 𝒴) ↦→ (𝑆red →˓ 𝑆 → 𝒴).

We denote this map by 𝑝dR,𝒴 .

Proposition 2.3.2 (Proposition 1.1.4, [20] III.4). If 𝒴 is locally of finite type, so is

𝒴dR.

A map 𝐹 : 𝒴1 → 𝒴2 of prestacks induces a map 𝐹dR : 𝒴1,dR → 𝒴2,dR in the obvious

way, and the assignment 𝒴 ↦→ 𝒴dR extends to a functor dR : PreStk → DGCatcont.

2.3.1 Right 𝒟-modules

Definition 2.3.3 (Section 1.2, [20] III.4). Let 𝒴 ∈ PreStkl.f.t.. The category of right

crystals is by definition

Crys(𝒴dR) ..= IndCoh (𝒴dR) .

Given a morphism 𝐹 : 𝒴1 → 𝒴2 in PreStkl.f.t. we obtain a morphism

𝐹dR : 𝒴1,dR → 𝒴2,dR,

and consequently can form

𝐹 !
dR : IndCoh (𝒴2,dR) → IndCoh (𝒴1,dR) .

We denote this functor by

𝐹 dR,! : Crys(𝒴2) → Crys(𝒴1),
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2.3 𝒟-modules

and note that the assignment 𝒴 ↦→ Crys(𝒴), 𝐹 ↦→ 𝐹 dR,! upgrades to a functor

Crys! : PreStkl.f.t. → DGCatcont.

Indeed, it is just the composition of the functors dR and IndCoh!. There is a natural

transformation oblvdR : Crys! → IndCoh! given by

oblvdR,𝒴
..= 𝑝!dR,𝒴 : IndCoh (𝒴dR) → IndCoh (𝒴) .

When we interpret objects of Crys(𝒴) as right 𝒟-modules on 𝒴 , oblvdR,𝒴 is just the

functor of forgetting the 𝒟-module structure on a sheaf.

We have the following alternative presentations of the category Crys(𝒴):

Lemma 2.3.4 (Proposition 1.2.5, [20] III.4). For 𝒴 ∈ PreStkl.f.t., we have an equiv-

alence

Crys(𝒴) ∼−→ lim
𝑆∈(𝒞/𝒴 )op

Crys(𝑆),

where 𝒞 is the category SchAff,red
f.t. , SchAff

f.t. , Sch
red
f.t. , or Schf.t..

Remark 2.3.5. In fact, this lemma holds even if we start with a DG-prestack 𝒴
(which is locally almost of finite type), i.e. a functor

(︀
DG-SchAff

a.f.t.

)︀op → ∞-Grpd.

Then the lemma implies that Crys(𝒴) is determined by the underlying classical

prestack cl𝒴 , which is the restriction of 𝒴 to SchAff
f.t. . Together with the observation

that 𝒴dR ≃ (cl𝒴)dR, this implies that Crys(𝒴) ≃ Crys(cl𝒴). In particular, when work-

ing with crystals, the base-change formulas from Lemma 2.2.10 hold for the classical

fibre product of schemes; it is not necessary to work with the DG fibre product.

2.3.2 𝒟-modules on pseudo-indschemes

Suppose that 𝒴 ≃ colim𝐼∈𝒮 𝑍(𝐼) is a pseudo-indscheme. Then it follows from Lemma

2.3.4 that

Crys(𝒴) ∼−→ lim
𝐼∈𝒮op

Crys(𝑍(𝐼)),

where the morphisms in the diagram are given by

𝑍(𝛼)dR,! : Crys(𝑍(𝐼)) → Crys(𝑍(𝐽)).
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However, the properness assumptions on the maps 𝑍(𝛼) imply that the functors

𝑍(𝛼)dR,! = (𝑍(𝛼)dR)
! have left adjoints

(𝑍(𝛼)dR)
IndCoh
* : IndCoh (𝑍(𝐽)) → IndCoh (𝑍(𝐼)) .

Hence we can form the colimit

colim
𝐼∈𝒮

Crys(𝑍(𝐼)).

The following is a particular case of Lemma 1.3.3, [13]:

Lemma 2.3.6. For any 𝐼 ∈ 𝒮, the tautological functor Crys(𝒴) → Crys(𝑍(𝐼)) admits

a left adjoint Crys(𝑍(𝐼)) → Crys(𝒴). These induce a functor

colim
𝐼∈𝒮

Crys(𝑍(𝐼)) → Crys(𝒴),

and this is an equivalence of DG-categories.

2.3.3 De Rham cohomology of prestacks

Given an arbitrary map 𝐹 : 𝒴1 → 𝒴2, the functor

𝐹 dR,! : Crys(𝒴2) → Crys(𝒴1)

does not admit a left adjoint in general. However (as in 1.5 of [16]) we can define a

full subcategory

Crys(𝒴1)good for 𝐹 ⊂ Crys(𝒴1)

whose objects are those F ∈ Crys(𝒴1) for which the functor

Crys(𝒴2) → ∞-Grpd

G ↦→ HomCrys(𝒴1)(F , 𝐹 dR,!G )

is co-representable. That is, there exists some F ′ ∈ Crys(𝒴1) such that

HomCrys(𝒴1)(F , 𝐹 dR,!G ) ≃ HomCrys(𝒴2)(F
′,G )

for every G ∈ Crys(𝒴2). Then we define

𝐹! : Crys(𝒴1)good for 𝐹 → Crys(𝒴2)

F ↦→ F ′.

Remark that if 𝐹 satisfies sufficient properness conditions (for example, if it is an

ind-proper map of indschemes) then Crys(𝒴1)good for 𝐹 is all of Crys(𝒴1), and 𝐹! is

just (𝐹dR)
IndCoh
* .
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2.3 𝒟-modules

Definition 2.3.7. We call 𝐹! the partially-defined left adjoint of 𝐹 dR,!.

We allow ourselves the following abuse of notation: the dualising sheaf of 𝒴dR

will be denoted by 𝜔𝒴 rather than 𝜔𝒴dR
, and will still be called the dualising sheaf

of 𝒴 . Note that its image under the forgetful functor Crys(𝒴) → IndCoh (𝒴) is the

dualising sheaf in IndCoh (𝒴) as originally defined.

Definition 2.3.8. Let 𝒴 be a prestack such that

𝜔𝒴
..= 𝑝dR,!𝒴 (𝑘) ∈ Crys(𝒴)good for 𝑝𝒴 .

Then we set

H∙(𝒴) ..= (𝑝𝒴)!𝑝
!
𝒴(𝑘) ∈ Vect.

This is the de Rham cohomology of 𝒴 .

If 𝐹 : 𝒴1 → 𝒴2, then we have a canonical isomorphism

𝜔𝒴1 ≃ 𝐹 dR,!𝜔𝒴2 .

If 𝜔𝒴1 ∈ Crys(𝒴1)good for 𝐹 , then this induces a map

𝐹!(𝜔𝒴1) → 𝜔𝒴2 .

In particular, we obtain a map

TrH∙(𝐹 ) : H∙(𝒴1) → H∙(𝒴2),

provided that both sides are defined.

Suppose that 𝒴 ≃ colim𝐼∈𝒮 𝑍(𝐼) and 𝒴 ′ ≃ colim𝐼′∈𝒮′ 𝑍 ′(𝐼 ′) are two pseudo-

indschemes. Suppose further that we have a functor 𝜑 : 𝒮 → 𝒮 ′ and a natural

transformation

𝐹𝑍 : 𝑍 ⇒ 𝑍 ′ ∘ 𝜑
𝐹 (𝐼) : 𝑍(𝐼) → 𝑍 ′(𝜑(𝐼)).

By the universal property of colimits, this induces a morphism

𝐹 : 𝒴 → 𝒴 ′,

and we can show (1.5.5–6, [16]) that 𝜔𝒴 ∈ Crys(𝒴)good for 𝐹 .
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2 Sheaves on prestacks

In particular, for any pseudo-indscheme 𝒴 , the map 𝒴 → pt fits into the above

set-up, and so H∙(𝒴) is always defined, and there is a canonical map

TrH∙ : H∙(𝒴) → H∙(pt) = 𝑘 ∈ Vect.

We can also show that

H∙(𝒴) ≃ colim
𝐼∈𝒮

H∙(𝑍(𝐼)).

It follows that H∙(𝒴) always lives in non-positive cohomological degree. Moreover,

the degree zero part of the trace map

H0(𝒴) → 𝑘

is non-zero whenever 𝒴 is non-empty, and is an isomorphism if all 𝑍(𝐼) are connected.

Definition 2.3.9. If 𝒴 is a prestack such that Tr𝒴 is an equivalence H∙(𝒴) ∼−→ 𝑘, we

say that 𝒴 is homologically contractible.

Remark 2.3.10. Note that 𝒴 is homologically contractible if and only if the pullback

𝑝!𝒴 is fully-faithful.

2.3.4 Left 𝒟-modules

We can also consider the category of left crystals on a prestack 𝒴 :

Definition 2.3.11 (2.1.1, [18]). We set

Crys𝑙(𝒴) ..= QCoh (𝒴dR) = lim
𝑆∈(SchAff

/𝒴dR
)op

QCoh (𝑆) .

Note that 𝒴 does not need to be locally of finite type for this definition. If 𝑆

is a smooth scheme of finite type, one can show that Crys𝑙(𝑆) is equivalent to the

category of left modules over the algebra 𝒟𝑆 of differential operators on 𝑆. In other

words, this definition is indeed an extension of notion of left 𝒟-modules. See section

5 of [18] for a detailed discussion.

Given any map 𝐹 : 𝒴1 → 𝒴2 of prestacks, we have the functor

(𝐹dR)
* : QCoh (𝒴2,dR) → QCoh (𝒴1,dR) .

We adopt the notation

𝐹 †,𝑙 : Crys𝑙(𝒴2) → Crys𝑙(𝒴1)
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2.3 𝒟-modules

for this functor. These assignments extend to a functor

Crys𝑙 : PreStk → DGCatcont.

We have a canonical natural transformation

oblv𝑙 : Crys𝑙 ⇒ QCoh*
PreStk

which is given by the forgetful functors

oblv𝑙𝒴
..= 𝑝*dR,𝒴 : QCoh (𝒴dR) → QCoh (𝒴) .

Analogously to Lemma 2.3.4, we have:

Lemma 2.3.12 (Corollaries 2.1.4 and 2.2.4, [18]). For 𝒴 ∈ PreStkl.f.t., we have an

equivalence

Crys𝑙(𝒴) ∼−→ lim
𝑆∈(𝒞/𝒴 )op

Crys𝑙(𝑆),

where 𝒞 is any of the categories

SchAff,red
f.t. , SchAff

f.t. , Sch
red
f.t. , Schf.t., Sch

Aff,red , SchAff, or Schred .

Recall that for any 𝒴 ∈ PreStkl.f.t. we have a functor

ϒ𝒴 : QCoh (𝒴) → IndCoh (𝒴) .

Applying this to 𝒴dR, we obtain the following commutative diagram

Crys𝑙(𝒴) Crys(𝒴)

QCoh (𝒴) IndCoh (𝒴)

ϒ𝒴dR

oblv𝑙
dR,𝒴 oblvdR,𝒴

ϒ𝒴

Lemma 2.3.13 (Proposition 2.4.4, [18]). The functor ϒ𝒴dR
is an equivalence.

Since the ϒ functors intertwine the *-pullback functors for quasi-coherent sheaves

with the !-functors for ind-coherent sheaves (see Lemma 2.2.14), we also have the

following commutative diagram for any 𝐹 : 𝒴1 → 𝒴2 ∈ PreStkl.f.t.:
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2 Sheaves on prestacks

Crys𝑙(𝒴2) Crys(𝒴2)

Crys𝑙(𝒴1) Crys(𝒴1)

ϒ𝒴2,dR

𝐹 †,𝑙 𝐹dR,!

ϒ𝒴1,dR

By Lemma 2.3.13, for any 𝒴 ∈ PreStkl.f.t., we can consider a single category

𝒟(𝒴)

of 𝒟-modules on 𝒴 , with realisations as either the category of left crystals or right

crystals on 𝒴 . We hence have two forgetful functors, to the categories QCoh (𝒴) and

IndCoh (𝒴):

𝒟(𝒴)

QCoh (𝒴) IndCoh (𝒴) .

oblv𝑙
dR,𝒴 oblvdR,𝒴

ϒ𝒴dR

We denote the functors 𝐹 dR,! or 𝐹 †,𝑙 simply by

𝐹 ! : 𝒟(𝒴2) → 𝒟(𝒴1)

when this will not be ambiguous.

Notation 2.3.14. If 𝒴 = colim𝐼∈𝒮 𝑍(𝐼) is a pseudo-indscheme, we have for each 𝐼 a

pair of adjoint functors

𝜆𝐼! : 𝒟(𝑍(𝐼)) � 𝒟(𝒴) : (𝜆𝐼)!.

Notation 2.3.15. The category 𝒟(𝒴) of 𝒟-modules has a symmetric monoidal struc-

ture, coming from the symmetric monoidal structures on QCoh (𝒴) and IndCoh (𝒴).

When we are thinking of the left realisation of 𝒟-modules, we will use the notation

⊗, but when we are thinking right realisation, we will typically denote the tensor

operation by ⊗!, just as we did for ind-coherent sheaves.

The compatibility between the two realisations is the following: suppose we have

𝒟-modules on a scheme𝑋 given by quasi-coherent sheaves F ,G ∈ QCoh (𝑋dR). If we

view them instead as right 𝒟-modules, they correspond to the ind-coherent sheaves

given by F ⊗ 𝜔𝑋 and G ⊗ 𝜔𝑋 . The tensor product of the quasi-coherent sheaves
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2.3 𝒟-modules

(or left 𝒟-modules) is simply F ⊗ G , which corresponds to the ind-coherent sheaf

(F ⊗ G )⊗ 𝜔𝑋 under the equivalence ϒ𝑋dR
. On the other hand, the compatibility of

the action of QCoh (𝑋dR) on IndCoh (𝑋dR) with the monoidal structures of the two

categories implies that

(F ⊗ G )⊗ 𝜔𝑋 ≃ (F ⊗ 𝜔𝑋)⊗! (G ⊗ 𝜔𝑋).
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The main diagram

We include on the next page an extra copy of the main diagram. The reader may

wish to cut it out for ease of reference while reading Chapter II.
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Appendix C

Proof of compatibility of 𝜃 with
composition

In this section, we show that for F ∈ U 𝒟
𝑛 the assignment (𝑓, 𝛼) ↦→ 𝜃(F )(𝑓, 𝛼) is

compatible with composition.

Suppose that we have a commutative diagram as follows

𝑆3

𝑆2 ℳ̃(∞)
𝑛

𝑆1

𝑓1

𝑓2

(𝜋3 , 𝜎3)

(𝜋2, 𝜎2)

(𝜋1
, 𝜎1

)

𝛽

𝛼

with the commutativity of the diagram given by morphisms 𝛼 and 𝛽 represented by

common étale neighbourhoods (𝑉𝛼, 𝜑𝛼, 𝜓𝛼) between 𝑋1/𝑆1 and (𝑆1 ×𝑆2 𝑋2)/𝑆1, and

(𝑊𝛽, 𝜑𝛽, 𝜓𝛽) between 𝑋2/𝑆2 and (𝑆2×𝑆3𝑋3)/𝑆2. Then the commutativity of the large

triangle in the diagram is given by the morphism 𝑓 *
1𝛽 ∘𝛼 represented by the pullback

of the common étale neighbourhoods:
(︁
𝑉𝛼 ×(𝑆1×𝑆2

𝑋2) (𝑆1 ×𝑆2 𝑊𝛽) , 𝜑𝛼 ∘ pr𝑉𝛼 , 𝑓 *
1𝜓𝛽 ∘ pr𝑆1×𝑆2

𝑊𝛽

)︁

=
(︀
𝑉𝛼 ×𝑋2 𝑊𝛽, 𝜑𝛼 ∘ pr𝑉𝛼 , 𝜌𝛼 × 𝜓𝛽

)︀
.

We wish to show that

𝜃(F )(𝑓2 ∘ 𝑓1, 𝑓 *
1𝛽 ∘ 𝛼) = 𝜃(F )(𝑓1, 𝛼) ∘ 𝑓 *

1 𝜃(F )(𝑓2, 𝛽). (C.1)

From the definition of 𝑓 *
1𝛽 ∘ 𝛼, we have that

𝜃(F )(𝑓2 ∘ 𝑓1, 𝑓 *
1𝛽 ∘ 𝛼)

= 𝜏𝑓*1 𝛽∘𝛼
*
(︁
F (𝜑𝛼 ∘ pr𝑉𝛼 , id𝑆1) ∘ F (pr𝑋3

∘𝜓𝛽 ∘ pr𝑊𝛽
, 𝑓2 ∘ 𝑓1)−1

)︁
. (C.2)
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Applying the compatibility of F (∙) with composition of fibrewise morphisms, we

can rewrite (C.2) as follows:

𝜏𝑓*1 𝛽∘𝛼
*
(︁
(pr𝑉𝛼 , id𝑆1)

*
𝑋/𝑆F (𝜑𝛼, id𝑆1) ∘ F (pr𝑉𝛼 , id𝑆1) ∘ F (pr𝑊𝛽

, 𝑓1)
−1

∘(pr𝑊𝛽
, 𝑓1)

*
𝑋/𝑆F (𝜓𝛽, id𝑆2)

−1 ∘ (pr𝑊𝛽
, 𝑓1)

*
𝑋/𝑆(𝜓𝛽, id𝑆2)

*
𝑋/𝑆F (pr𝑋3

, 𝑓2)
−1
)︁
. (C.3)

Next we note the following equalities:

(a) (pr𝑉𝛼 , id𝑆1)𝑋/𝑆 ∘ 𝜏𝑓*1 𝛽∘𝛼 = 𝜏𝛼;

(b) (pr𝑊𝛽
, 𝑓1)𝑋/𝑆 ∘ 𝜏𝑓*1 𝛽∘𝛼 = 𝜏𝛽 ∘ 𝑓1;

(c) (𝜓𝛽, id𝑆2)𝑋/𝑆 ∘ 𝜏𝛽 = 𝑓 *
2𝜎3;

(d) (𝜓𝛼, id𝑆1)𝑋/𝑆 ∘ 𝜏𝛼 = 𝑓 *
1𝜎2.

We will use these repeatedly in the remainder of this section. For example, using

(a),(b),(c), we can rewrite (C.3) in the following way:

𝜏𝛼
*F (𝜑𝛼, id𝑆1) ∘ 𝜏𝑓*1 𝛽∘𝛼

*F (pr𝑉𝛼 , id𝑆1)

∘ 𝜏𝑓*1 𝛽∘𝛼
*F (pr𝑊𝛽

, 𝑓1)
−1 ∘ 𝑓 *

1 𝜏𝛽
*F (𝜓𝛽, id𝑆2)

−1 ∘ 𝑓 *
1 𝑓

*
2𝜎3

*
F (pr𝑋3

, 𝑓2)
−1. (C.4)

On the other hand, the right hand side of (C.1) is given by

𝜃(F )(𝑓1, 𝛼) ∘ 𝑓 *
1 𝜃(F )(𝑓2, 𝛽)

=
(︀
𝜏𝛼

* (︀F (𝜑𝛼, id𝑆1) ∘ F (pr𝑋2
∘𝜓𝛼, 𝑓1)−1

)︀)︀

∘ 𝑓 *
1 𝜏𝛽

* (︀F (𝜑𝛽, id𝑆2) ∘ F (pr𝑋3
∘𝜓𝛽, 𝑓2)−1

)︀
. (C.5)

We expand this using the compatibility of F (∙) with composition, and use the

equalities (c) and (d) to obtain

𝜏𝛼
*F (𝜑𝛼, id𝑆1) ∘ 𝜏𝛼*F (𝜓𝛼, id𝑆1)

−1 ∘ 𝑓 *
1𝜎2

*
F (pr𝑋2

, 𝑓1)
−1

∘ 𝑓 *
1 𝜏𝛽

*F (𝜑𝛽, id𝑆2) ∘ 𝑓 *
1 𝜏𝛽

*F (𝜓𝛽, id𝑆2)
−1 ∘ 𝑓 *

1 𝑓
*
2𝜎3

*
F (pr𝑋3

, 𝑓2)
−1. (C.6)

Comparing (C.4) and (C.6) we see that to prove the desired equality (C.1), it

suffices to show that

𝜏𝛼
*F (𝜓𝛼, id𝑆1)

−1 ∘ 𝑓 *
1𝜎2

*
F (pr𝑋2

, 𝑓1)
−1 ∘ 𝑓 *

1 𝜏𝛽
*F (𝜑𝛽, id𝑆2)

= 𝜏𝑓*1 𝛽∘𝛼
*F (pr𝑉𝛼 , id𝑆1) ∘ 𝜏𝑓*1 𝛽∘𝛼

*F (pr𝑊𝛽
, 𝑓1)

−1,
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or equivalently that

𝑓 *
1𝜎2

*
F (pr𝑋2

, 𝑓1) ∘ 𝜏𝛼*F (𝜓𝛼, id𝑆1) ∘ 𝜏𝑓*1 𝛽∘𝛼
*F (pr𝑉𝛼 , id𝑆1)

= 𝑓 *
1 𝜏𝛽

*F (𝜑𝛽, id𝑆2) ∘ 𝜏𝑓*1 𝛽∘𝛼
*F (pr𝑊𝛽

, 𝑓1). (C.7)

Using (b), the right hand side of (C.7) becomes

𝜏𝑓*1 𝛽∘𝛼
*
(︁
(pr𝑊𝛽

, 𝑓1)
*
𝑋/𝑆F (𝜑𝛽, id𝑆1) ∘ F (pr𝑊𝛽

, 𝑓1)
)︁

= 𝜏𝑓*1 𝛽∘𝛼
*F (𝜑𝛽 ∘ pr𝑊𝛽

, 𝑓1). (C.8)

Meanwhile, using (d) and (a), the left hand side of (C.7) can be written as

𝜏𝑓*1 𝛽∘𝛼
* (︀(𝜓𝛼, 𝑖𝑑𝑆1)

*
𝑋/𝑆(pr𝑉𝛼 , id𝑆1)

*F (pr𝑋2
, 𝑓1)

∘(pr𝑉𝛼 , id𝑆1)
*F (𝜓𝛼, id𝑆1) ∘ F (pr𝑉𝛼 , id𝑆1)

)︀
. (C.9)

Using once again the compatibility of F (∙) with composition, we see that this is

equal to

𝜏𝑓*1 𝛽∘𝛼
*F (pr𝑋2

∘𝜓𝛼 ∘ pr𝑉𝛼 , 𝑓1). (C.10)

Since pr𝑋2
∘𝜓𝛼∘pr𝑉𝛼 = 𝜑𝛽 ∘pr𝑊𝛽

, the expression in (C.8) is equal to the expression

in (C.10) and so the proof is complete.
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