MATH 402 Review for October 8–12

Topics: Euclidean isometries (5.1), reflections (5.2), composing reflections to get rotations and translations.

These were covered in lecture and in Worksheet 5. This material will also appear in Homework 6.

1. Recall from last week:

(a) We defined transformations and isometries. You proved that isometries form a group.

2. Things to know about isometries of the plane:

- (a) We proved this big theorem that tells us that an isometry is bijective, sends lines to lines, and preserves angle measure.
- (b) We defined what it means for a set to be *invariant* under f and *fixed* by f.
- (c) We showed that if f is an isometry and S is its fixed point set, S can only be of a few different forms:
 - i. $S = \emptyset$.
 - ii. S is a point.
 - iii. S is a line ℓ (and in this case f is a *reflection*, by definition).
 - iv. S is everything (and in this case f = id).
- (d) In particular, to check whether an isometry is the identity, it is enough to check that it has three non-collinear fixed points. As a corollary, it is a homework problem to prove that two isometries which agree on three non-collinear points are equal.

3. Things to know about reflections:

- (a) Definitions: reflection, line of reflection.
- (b) Given two distinct points P and P' there is exactly one reflection r such that r(P) = r(P').
- (c) Any isometry can be written as a composition of at most three reflections.

4. Things to know about composing reflections:

- (a) Definitions: translations, rotations.
- (b) $r_m \circ r_\ell \circ r_m = r_{r_m(\ell)}$. (Make sure you understand what this says; the notation can be confusing.)
- (c) A non-identity translation has no fixed points.
- (d) A non-identity rotation has exactly one fixed point.

Practice Questions

1. Practice with reflections:

- Prove that $r^2 = id$.
- Using this fact, and the definition of translations and rotations, explain why id is *both* a translation and a rotation. (Geometrically, it's "translation by zero" and "rotation by zero".) Is there a way to think of id as a reflection? (Either geometrically or from the definition.)¹
- Draw two congruent triangles. Find a sequence of reflections which takes one of them to the other. Find a different sequence. Observe that the decomposition of an isometry into a sequence of reflections is not unique.
- On Wednesday, we proved the theorem mentioned in 3(b) on the previous page. We defined a function r, and we had to prove it was an isometry, i.e. that CD = r(C)r(D). In class, we checked two cases: $C, D \in \ell$; and $C, D \notin \ell$ but on the same side of ℓ . Prove the remaining two cases: one of C, D is in ℓ ; and C, D are on opposite sides of ℓ . Make sure you understand why these four cases cover all possibilities.