
MATH 402 Review for December 7–10

Topics: The topics include Möbius transformations, cross products, and Poincaré isometries.
These were covered in lecture and on Homework 12.

1. Recall from earlier in the term:

• We classified all isometries: we have reflections, rotations, translations, and glide reflections. Of
these, the group or orientation-preserving isometries consists of all rotations and translations.

• In Euclidean geometry, we could use Cartesian coordinates (x, y) to write down nice formulas
for translation, reflection across the x-axis and y-axis, and rotation about 0. This was useful to
us: it made proving certain theorems much easier!

• Recall that we introduced the extended complex plane, along with complex multiplication and
addition.

2. Things to know about Möbius transformations:

(a) A Möbius transformation is a function f : C→ C of the form

f(z) =
az + b

cz + d
,

where a, b, c, d are complex constants with the property that ad − bc = 0. (This condition,
ad − bc = 0 is equivalent to the statement that f is bijective.) Möbius transformations are
exactly the bijective functions C → C which are conformal, which means they preserve angles
and preserve local scale.

(b) Möbius transformations form a group (where the group operation is composition), denoted by
M.

(c) A Möbius transformation with three or more fixed points must be the identity.

(d) The choice of constants a, b, c, d is not unique: we can scale them all by any non-zero complex
number λ, without changing the function f .

3. Things to know about the cross-ratio:

(a) The cross-ratio of four complex numbers (a, b, c, d) is

a− c
a− d

b− d
b− c

.

(Note that it could be ∞, if a = d or b = c, but that’s fine since we’re working in the extended
complex plane. It is not well-defined if at least three of the numbers a, b, c, d are not distinct,
because in that case we have 0

0 , which is not defined.)

(b) Given three distinct complex numbers b, c, d, we can use the cross-ratio to define a function
f(z) = (z, b, c, d), which has the property that f(b) = 1, f(c) = 0, and f(d) =∞. Likewise, given
another three distinct complex numbers (b′, c′, d′), we can define f ′(z), and then the composition
(f ′)−1 ◦ f(z) sends b 7→ b′ etc.

(c) A Möbius transformation preserves cross-ratios.

(d) The cross-ratio of four complex numbers (a, b, c, d) is real (rather than complex) if and only if
all four of those numbers lie on a circle or a line. We can use this to prove that a Möbius
transformation sends a circle or a line c to a circle or a line.



(e) We can use the cross-ratio to calculate Poincaré distance between two points z0, z1 ∈ DiskP : let
w0, w1 be the omega-points of the Poincaré line through z0 and z1. Then

dP (z0, z1) = | ln(z0, z1, w1, w0)|.

4. Things to know about the group MP

(a) By definition MP consists of all Möbius transfomations which preserve the boundary and the
interior of the unit disk. (Hence they send a Poincaré point to a Poincaré point.)

(b) One can prove that every f(z) ∈MP has the form

f(z) = β
z − α
αz − 1

,

where α, β ∈ C with |α| < 1, |β| = 1.

(c) A function f ∈ MP preserves the Poincaré distance function, and hence gives an isometry in
the Poincaré model.

(d) For example, when α = 0 and β = eiθ we get rotation about (0, 0) by angle φ + 180◦. When
β = 0, we get translation along the line through α and (0, 0).

(e) When α and β vary, we get many more isometries: in fact, we get all orientation-preserving
isometries.

(f) Recall that a translation was defined to be the composition of two reflections across lines which
are parallel. In hyperbolic geometry, we can ask whether those two parallel lines are ultra-parallel
or limiting parallel. When the lines are ultraparallel, there is a unique common perpendicular
line l, and the resulting isometry is hyperbolic translation along this line. (The distance of course
depends on how far the original lines are from each other.) When the lines are limiting parallel,
there is actually no common perpendicular, and the isometry has no invariant lines. Instead of
calling this a translation, we call it a parallel displacement.

(g) What about an orientation-reversing isometry g of the Poincaré disk? Choose a favourite
reflection r (often we take r to be reflection across the x-axis, which is given by z 7→ z). Then
g ◦ r is orientation-preserving, so we can write g ◦ r = f for some f ∈ MP . So g = f ◦ r; every
orientation-reversing isometry has this form for some choice of f .

Practice Questions
Draw some pictures to convince yourself of the following facts. (Choose two reflections that can be used to
define the isometry.) Recall that a reflection has: one fixed line, all perpendicular lines as invariant lines,
and two fixed omega-points. Recall also that all of these isometries can be thought of as functions defined
on all of C, and can have up to two fixed points anywhere in C (but not more!), but when we view them
as isometries of the Poincaré disk, we only care about fixed points inside the disk.

• A (non-identity) rotation has one fixed point, no invariant lines (unless it is a half-turn, in which
case it has all lines through the centre of rotation as invariant lines), and no fixed omega-points.

• A hyperbolic translation has no fixed points, one invariant line, and two fixed omega-points.

• A parallel displacement has no fixed points, no invariant lines, and one fixed omega-point.


